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Abstract 

 

Multivariate profiling aims to find groups in a response dataset that are described by 

relationships with another.  Profiling is not predicting each variable within the 

response set, but finding stable relationships between the two datasets that define 

common groups.  Profiling styles of analysis arise commonly within the context of 

survey, experimental design and diagnosis type of studies.  These studies produce 

complex multivariate datasets that contain mixed variables often with missing values 

that require analysis with a flexible, stable statistical technique. 

 

The profiling model under consideration within this thesis is a Classification and 

Regression Tree (CART).  A standard CART model finds groups within a univariate 

response by building a decision tree from a set of predictor variables.  The flexible 

structure of a CART model allow it to be used for either discriminate or regression 

analysis whilst also catering for mixed types within the predictor set.  

 

The goal of this thesis to develop methods that extend CART for a multivariate 

response dataset involving mixed data types.  Multivariate regression for CART 

(MRT) has recently been shown to be a powerful profiling and clustering tool.  

However the same successes in extending CART for multivariate classification and 

multivariate mixed type analysis is yet to be realised.  To begin with thesis explores 

simple extensions to CART for multivariate mixed type analysis.  These are binary 

substitution of categorical variables within the response set and partitioning of a 

distance matrix using Db-MRT.  These techniques use already existing extensions to 



 

CART methods and are used as comparison methods to gauge the performance of the 

ensemble and consensus approaches that are the focus of this thesis. 

 

Ensemble models using CART, such as random forests and treeboost, not only 

improve the overall accuracy of the model predictions but also introduce an ensemble 

proximity matrix as a measure of similarity between observations of the response set.  

In this thesis, through MRT, extensions to both random forests and treeboost are 

developed such that they predict a multivariate response. Furthermore, by binary 

substitution of the categorical variables within the response set these multivariate 

ensemble techniques are further extended to mixed type profiling.  A result of this 

extension is that the ensemble proximity matrix now describes the groups found 

within the multivariate response.  In this way multivariate tree-base ensembles can be 

interpreted as a cluster ensemble method, where the ensemble proximity matrices can 

be seen as cluster ensemble consensus matrices.  In this thesis these proximity 

matrices are found to be powerful visualisation tools providing improved resolution of 

group structure found by a multivariate ensemble method.  More so, as in cluster 

ensembles using these matrices as an input in to a clustering method improves the 

accuracy of the groups found. 

 

The main work of this thesis is the development of the Multivariate Consensus 

Tree (MCT) framework for mixed type profiling.  Motivating the MCT approach 

is the need to further understand which variables relate to the groups observed within 

the proximity matrix.  To do this MCTs describe three methods to intelligently 

combine the ensemble proximity matrices of individual responses into one overall 

consensus matrix.  This consensus matrix is a summary of the overall group structure 



 

within each individual proximity matrix.  As MCTs work solely with proximity 

matrices they are independent of the data types within the variables of the response 

set.  Furthermore as each response variable is explicitly predicted it is possible to 

assess the quality of each proximity matrix in terms of predictive accuracy of the 

corresponding ensemble. 

 

The MCT consensus matrix is a visualisation tool for the groups present within both 

the response and predictor datasets.  As a consensus matrix is a similarity matrix this 

thesis proposes five new splitting criteria for tree-based models that search for 

decision rules within variables of the predictor set that partition the consensus matrix 

into the observed groups.  This tree provides a logical decision path that predicts each 

group.  As the groups within the response are now defined by their relationships 

within the predictor set, the MCT profiling is complete.  This thesis proposes two 

algorithms for building an MCT; global MCTs and local MCTs.  Global MCTs 

construct an overall consensus matrix spanning all observations, and recursively 

partition on this matrix to build the tree.  Local MCTs build a new consensus matrix 

at each terminal node to evaluate each new split.   

 

As MCTs have the proximity matrices to summarise the group structure within each 

response variable methods to identify important subgroups within these variables are 

also proposed.  This search for subgroups within the response can be done on two 

levels.  Firstly to identify subgroups of response variables for overall analysis; and 

secondly to identify subsets of response variables within any specific group found by 

the MCT.  By finding subsets of response variables that relate to specific group 

structure the understanding of structure within the dataset is greatly improved. 



 

This thesis shows tree-based methods for profiling, in particular MCTs, to be a 

powerful tool for mixed type analysis.  Firstly, the visualisation of the tree, combined 

with the proximity matrices, provide a unique view of the groups found and allow for 

their easy interpretation within the context of the analysis.  Secondly, MCTs are 

shown to accurately estimate the number of groups and provide measures on their 

stability and accuracy.  Furthermore, MCTs are found to be resistant to noise 

variables within the analysis.  Finally they provide methods to find subgroups within 

the response variables and to identify unimportant variables from the analysis.  

Throughout this thesis these tree-based methods are compared with standard 

clustering techniques to provide an accurate benchmark for their performance. 
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