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ABSTRACT

This thesis is concerned with the application of statistical methods to spectral data. A

major concern which arises from spectral data is that the number of variables or dimen­

sionality usually exceeds the number of available spectra. This leads to a degradation in

performance of traditional statistical methods. There are basically two strategies which

can be implemented for overcoming such situations. It is common practice to first reduce

the dimensionality of the data by some feature extraction preprocessing method, and then

use an appropriate low dimensional statistical procedure. An alternative procedure is to

use a high dimensional statistical procedure which is capable of handling a large number

of variables. This thesis considers both approaches, and investigates the applicability of

wavelets as features for statistical analyses, as well as other feature extraction procedures.

The particular statistical analyses investigated are discriminant and regression analysis.

It is shown that, the wavelet based methods, particularly wavelets which have been

designed to suit a particular task, perform quite adequately when compared to traditional

approaches.
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Chapter 1

Thesis Summary

1.1 Overview

This thesis investigates different strategies for performing statistical analyses on near- in­

frared (NIR) spectra [16, 110, 124]. In recent years, the popularity of NIR spectroscopy

has increased enormously, perhaps at a much faster rate than which statistical methods for

analysing NIR spectra have deyeloped. The popularity of NIR spectroscopy and indeed

similar forms of spectroscopy, can be attributed to the fact that spectral methods provide

a relatively efficient, non-destructive technique for analyzing chemical substances. This

11as many great benefits for research and can be an extremely effective method to employ

for monitoring quality control procedures in industry.

Near infrared spectra are obtained by directing electromagnetic radiation with a set

wavelength at some sample whose state may be a solid, liquid or gas~ The amount of

radiation which is reflected (or absorbed) by the sample is then measured. By changing

the wavelengths of the electromagnetic radiation by constant increments and plotting the

amount of reflectance (or absorption) against each wavelength, a spectrum is produced~

We refer to spectra which d·etail the amount of radiation which has been reflected, as

reflectance spectra. Likewise, absorption spectra detail how much radiation has been

absorbed. Figure 1.1 shows an absorption spectrum obtained by analyzing a sample of

paraxylene.

Figure 1.2 was produced to provide some indication about the near infrared region

of the electromagnetic distribution. The NIR region of the electromagnetic spectrum

ranges from 750.nanometers (nm) to 25 micrometers (,urn). These wavelengths are longer

1
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Figure 1.1: A spectrum obtained from a sample of paraxylene.

2

than the wavelengths which pertain to the visible part of the electromagnetic distribution

and are much shorter than microwaves. Whilst Figure 1.2 implies that there is a cut-off

point which separates the electromagnetic distribution into different regions, this is not

actually the .case. There is a considerable degree of overlap between the regions, and such

descriptions about the electromagnetic distribution tend to vary from one text to another.

The information used to produce Figure 1.2 was obtained from [142].
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FiguJ 1.2: The electromagnetic spectrum.

The NIR spectra analyzed in this thesis, have wavelengths ranging from 900 nm ­

2500 nm, although one data set (the seagrass data) extends into the visible region and has

wavelengths incrementing from 400 nm up to 2500 nm (see Section 7.2.1).
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Spectra usually vary depending on the chemical composition of the sample. This is due

to molecules exhibiting different vibrational behaviours which interferes with the radiation

reflected (or absorbed) for each of the. wavelengths. It is quitedi:ffi.cult to ascertain the

exact chemical composition of a substance by analyzing its NIR spectrum, but by placing

particular attention on characteristics of the spectrum such as the shape, position and

heights of peaks, some insight about the chemical composition of the sample may be

obtained. This however, will often require the expertise of a skilled NIR analyst.

In this thesis automated statistical methods are investigated for exploring the char­

acteristics of the NIR spectra. The statistical methods applied are discriminant analy­

sis [102, 48] and regression analysis [29, 106].
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Figure 1.3: A discriminant analysis problem.

In the case of discriminant analysis one is interested in assigning spectra to one of

several predefined categories. Figure 1.3 shows five sample spectra from three different
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species of seagrasses which are referred to as Species 1,.2 and 3. The discriminant problem

involves assigning the spectrum whose class identity is unknown into one of the classes (Le.

species). A simple approach is to look for similarities between the unidentified spectrum

and the spectra ~hich have been labelled. This task is not straightforward. For this

data, it appears quite difficult for the human eye to detect any clue which may be- able

_to distinguish the spectra from different classes. This problem highlights the relevance of

discriminant methods.fof analysing spectral data.

Discriminant analysis involves trying to predict a discrete response (class label) from a

set of predictor variables, which in this case are the reflectance (or absorbance) measures

for each of the :wavelengths. Regression analysis can be seen as an extension of discriminant

analysis. For regression analysis, the response which is to be predicted (or modelled) using

the ·predictor variables, is quantitative and may take on a continuous range of values.

A spectral data set used for performing statistical analyses will contain information

about several spectra. Each spect~um represents a case or observational unit, and the

wavelengths can be considered equivalent ~o the variables. Spectral information about

the·ith spectrum will be represented by the (column) data vector Xi == (Xli, X2i, • •.• , Xpi).T.

Here p denotes the number of variables or the number of wavelengths for which the reflec.ted

(or absorbed) radiation of a sample has been measured. The symbol p may also refer to

the dimensionality of the data. Each of the data vectors xi,·for i == 1, ... , n will be stored

as columns in the p X n data matrix X ==. (Xl, X2, ... , x n ) where n represents the number

of spectra or observational units ..

There are several difficulties which arise-from analysing spectral data. One of the major

problems is that the di~ensionality'p, is usually quite large, especially when compared to

the number of available spectra n. Consequently the estimated paramet~rsin the statistical

models become highly variable and, in some instances, unobtainable due to numerical

instabilities. This leads to a substantial performance degradation of the multivariate

statistical model. Another issue is the existence of a high correlation structure in spectral

data owing to the presence of a strong ordering in the variables. Such features are not

limited to spectral data, and the statistical methods used in this thesis can be applied

to many other forms of signals which exhibit an equivalent systematic orderin.g of the

variables. Such ordering can for instance be made in time or space.
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There are some statistical methods which have evolved in recent y~ars with the aim

of combating problems associated with pigh dimensionality and high correlation struc­

tures. Such techniques are referred to as high dimensional techniques and generally involve

some form of regularization.. High dimensional discriminant techniques include regular­

ized discriminant analysis [44] and penalized discriminant analysis [61]. High dimensional

regression methods include partial least squares [145, 41] and principal component regres­

sion [41, 37].

Techniques which begin to fail as the dimensionality becomes large when compared

to the s~mple sizes are referred to as low dimensional techniques. Low dimensional dis­

criminant metllods include Fisher's linear discriminant analysis [34], flexible discriminant

analysis [60J and the Bayesian linear and quadratic discriminant analysis [102]. The ordi­

nary least squares multiple linear regression model is one of the most common regression

methods and can be considered to be a low dimens~onal regression technique.

The high dimensional methods generally allow for a more automated procedure for mod­

elling.. Unfortunately though, many high dimensional methods have evolved quite recently

and are therefore not as well publicised or understood by the scientific or industrial com­

munity. Also, it can be more difficult to apply high dimensional technIques since they are

generally not standard procedures in most mathematical or statistical toolbox packages~

Finally, most of these techniques provide few facilities for aiding the interpretation of the

resulting multivariate prediction mo·deL For these reasons, low dimensional methods are

often preferred.

Input Features

Preprocessing Feature·
Transformation

Feature

_____S_e_Ie_ct_io_n_--' Output Features

Figure 1.4: Feature. ex~ract.ionmodel.

Before low dimensional statistical methods are applied, some form of feature extraction

should be implemented prior to the analyses.. Feature extraction can consist of three main

components as displayed in· Figure 1..4.. The first component involves 'preprocessing the
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data. This can involve collecting the data and performing some standard data manipu­

latio~s which may include transforming the data by perhaps the standard normal variate

·transformation [5] or the second derivative transformation [55, 5]. It may even involve

·subsampling the data, i..e. omitting every second or third yariable. This can oftell be done

with little loss of information due to the high correlation structure in the spectra. Once the

data has been preprocessed, then it may undergo more complex variable transformations,

by for example transforming the variables into orthogonal variables. This is the second

component of the feature extraction model.

The third component is the feature selection algorithm vvhich selects a subset of the

transformed variables. Stepwise procedures are common feature selection algorithms. If

feature selection is performed on 'the preprocessed data (without f~rther transformation)

then, the" variable tr?tnsformation can be seen as multiplying" the preprocessed features

with the identity matrix~

Many kinds of feature transformations have been proposed for spectral data ranging

from univariate to multivariate tr~nsformationsinvolving all the variables" of the spe~trum.

Perhaps one of the most familiar feature transformations is principal component analysis

(peA). Principal component analysis is a multivariate technique which ~ransforms the

original variables into a new set of uncorrelated variables that are linear combinations

of the original variables and are derived in decreasing order of variability. Of particular

importance with spectral data is the order of th~ wavelengths. Unfortunately, peA does

not ~ake advantage of the 'picture' (i.e spectrum) which is portrayed by the ordering of

the variables.

The Fourier transform (FT) [88] can however be used to take into account the ordering

of variables associated with a spectrum. The FT however, is a global transform and any

localized changes which o~cur in a spectrum will be absorbed by most, if not all, of the

Fourier coefficients. To avoid such global effects and to better ident,ify localized changes,

the wavelet transform [24, 128] can be quite a useful feature transformati0!l to employ.

The wave"let transform 'produces a set of wavelet coefficients, which when linearly com­

bined with a set of wavelet basis functions can be used to represent some function or

signaL Wavelets are translated and dilated versions of some predefined wavelet called a

'moth~r wavelet' ~ Figure 1.5 shows some wavelet basis functions. Notice that they all have
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Figure 1.5: Some wavelet basis functions.

basically the same shape, but they differ in the ·amount which they are stretched (dilated)

and shifted (translated) from one another.

The wavelets which we consider in this thesis are compact as seen in Figure 1.5, that

is they are non-zero for a finite duration, and unlike sine and cosine waves used in the

Fourier transform, they do not extend the entire horizontal axis. Since wavelets are local

in space and are dilated by different amounts, the wavelet coefficients convey localized

information about the frequency-like content of some function or signal., This makes the

wavelet coefficients extremely useful features for representing small scale effects in spectral

data. Examples which demonstrate this phenomenon are highlighted in Chapter 5.

There exists an abundant variety of wavelets and the fundamental problem to overcome

is deciding which wavelet will best suit the particular application. A typical approach is

to perform the wavelet transform based on a predefined (mother) wavelet from literature.

The (mother) wavelet which produces the 'best' performance measures is then employed

for future analyses. The performance measures will usually be based on some multivariate

modelling criteria which is calculated using the wavelet coefficients produced from the
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wavelet transform. Generally, a feature selection strategy will first be performed on the

wavelet coefficients, before the performance measures are calculated.

We propose a new and innovative scheme which avoids the need to preselect a wavelet

basis from literature. The (mother) wavelet is designed so that a specified multivariate

modelling criterion is optimized. An appropriate criterion for discriminant analysis might

be based on a correct classification rate, while an appropriate criterion for regression may

involve the residual sum of squares.

Input features

Feature Transformation

Refme Feature

Extraction Procedure

Output features

Figure 1.6: Integrated feature extraction model.

The wavelet gradually adapts to the application at hand, and continually updates the

wavelet coefficients until the modelling criterion is optimal. The wavelet is referred to

as an 'adaptive' or 'task-specific' wavelet, since it is adapting to the current task. This

adaptive wavelet algorithm can be seen as an integrated feature extraction procedure.

An integrated feature extraction procedure incorporates the multivariate model into the

general feature extraction model as depicted in Figure 1.6
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1.2 ThesisStruGt~reand Contribution

Chapter 1,
Thesis Structure

9

Chapter 4
Feature Extraction

v
Chapter 2

DiscriminaI;lt ·Analysis

v
Chapter 3

Regression Analysis

r5.-------r- ......l

Chapter 5
Wavelets

v
Chapter 6

Adaptive wavelets

Chapter 7
Discriminant Applications

Chapter 9
Concluding Remarks

Chapter 8
Regression Applications

Figure 1.7: Thesis outline.

An outline of the structure of this thesis is summarized in Figure 1.7. The thesis con­

tinues from the overview by dis~ussing discriminant analysis in Chapter 2 and regression

analysis Chapter 3. The chapter on discriminant analysis is an expanded version of our
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papers [97, 146]. The discrimi~ant,methods discussed are Fisher's linear discriminant anal­

ysis (FLDA), flexible discriminant analysis (FDA), penalized discriminant analysis (PDA),

Bayesian linear and quadratic disc~iminan.t analysis (BLDA and BQDA) and regularized

discriminant analysis (RDA). Each of these methods are applied to NIR spectral data

sets in Chapter 7. 'The classifi~ation methods are introduced accordin~g to their origin,

whether they be Fisher-based or Bayesian-.based discriminant methods. Also in Chapter

2, is a discussion on different approaches for assessing the performance of discriminant

models.

In Chapter 3, three regression methods are discussed - multiple linear regression

(MLR) principal component regression' (peR) and partial least squares -regression (PLS).

This chapter together with our paper on nonparametric regression methods [93] provides

a more detailed account on regression methods. Methods for assessing the adequacy. of

regression models are also presented in this chapter.

Chapter 4, introduces the two main approaches for feature extraction - feature selection

'and feature transformation. Preprocessing methods have been .merged into the section on

feature transformations. Of the variable transformation procedures it is mentioned that

wavelet coefficients might be potentially good features to use as input to multivariate

statistical techniques. Wavelets are discussed in greater detail in Chapter 5.

Wavelets have existed for many years, but it is only in the last decade that they

have become increasingly popular. Much of this popularity can be attributed to Ingrid

Daubechies, Yves Myer and Stephanie Mallat. Ma.ny of the applications which utilize

wavelet methodologies focus on function representation and image compression. Although

there. are many other applications for their use, such as solving partial differential equa­

tions, there have been relatively few applications where wavelets, or more precisely wavelet

coefficients have been' used as features for discriminant and regression problems, and in

particular to the discrimination and regression of near-infrared spe,ctral data. (Previous

applications are documented in Chapter 4, Section 4.2.4)

Since the use of wavelet methodologies as a feature ex~raction procedures is quite new

and remains relatively unexplored, it is important to investigate and gain further insight

to their applicability of such procedures. This is one of the primary aims of this thesis.

The second aim is to investigate the potential of adaptive wavelets to discriminant and



CHAPTER 1. THESIS SUl\;fMARY 11

r~gression pr~blems for spectral data. Most applications of w~velets involve using standar'd

or traditional wavelet bases which are alread~y defined in the literature. We explore the

advantages associated with designing individual wavelets to suit specific tasks. To ~he best

of our ability, we have been unable to find references of wavelets which have been designed

for discrimination and regression, that have' not been based on, or linked in. anyway to

predefined, existing wavelets. ,

The adaptive wavelet methodology is based on the paper by I{autsky and Turcajova

(19.95) [78]. In tllis paper the authors describe a way in which a wavelet can be designed

for removillg disturbances in signals. Based. on a similar algorithm, we investigate ways

in which wavelets can ~e designed for multivariate statistical analyses. In [96J there is

a detailed descrip~ion about the adaptive wavelet algorithm and its applications to the

classification of NIR spectral data. A summary of this paper is contained in [94J. A

tutorial paper about the general application of adaptive wavelets can be found in [95].

Cll~pters 7 and 8 involve applications for the discrimination and regression of spectral

data. Various feature extraction strategies along with several discriminant and regression

methods are applied in each chapter, respectively. In conclusion, some final remarks and

issues which arise from the topics I?resented in this.thesis are discussed in·Chapter 9.



Chapter 2

Discriminant Analysis

2.1 Introduction

Discriminant analysis techniques (also called classification techniques) are concerned with

classifying objects into one of two or more classes~ Discriminant techniques are considered

to be learning procedures~ Given, a set of objects whose class identity is known, a model

'learns' from the variables which have been measured for each of the objects, a procedure

which can be used 'to assign a new object, whose class identity is unknown, into one of

the predefined classes~ Such a procedure is performed using a well defined discriminatory

rule. One practical discriminant proble1J1 which is important to environmental scientists

investigating the diets of dugongs, involves determining the species of seagrasses. The

different categories or classes are formed by the various species, and the classification

problem is then based on the chemical composition ·of th~ seagrasses which might be

represented using spectra which measure the reflected radiation of .various wavelengths.

Discriminant techniques are not necessarily used forthe sole p~rpose of assigning obJects

into predefined classes. 'Sometimes it is of interest just to explore the group structures of

the data, e.g. to visualize the positioning in space of the objects from the different classes,

Of, to determine which variables are important for discrimination. Thus, discriminant

techniques themselves can be categorized into classes - those that:

1. are used for allocation

·2. are used as exploratory procedures

3. are ~sed for both allocation and exploratory procedures.

12
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Fisher's linear discriminant analysis [34] (FLDA) which can be used for both alloca­

tion and descriptive purposes, is one of the traditionally favoured techniques. Typically,

the discriminant analysis methods which are based on FLDA fall into the third category,

whilst discriminant techniques based on probability measurE;lS such as Bayesian linear dis­

criminant analysis (BLDA) and Bayesian quadratic discriminant analysis (BQDA) can be

considered useful for allocation purposes only. It is important to pay consideration to

the goal of the analysis and to choose the appropriate discriminant analysis procedure

accordingly:

Discriminant techniques can be subdivided· another way which is dependent upon the

ratio of the number of observations (or cases) to the number of variables. Some classifiers

begin to fail when the dimensionality (Le. number of variables) becomes large compared to

the number of observations. Despite what one would intuitively think, having a plentiful

supply of variables does not necessarily improve the performance of the classifier. In fact,

such a situation can cause the parameter estimates in the discriminant model to become

highly variable (imprecise) leading to a degradation in the performance of the discriminant

procedure [3, 21, 46, 69, 102, 140].
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Figure 2.1: Percentage of correctly classified objects obtained by three discrim­
inant techniques (Dl,D2 and D3) for eight combinations of dimensionality and
class sample sizes.
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Figure 2~1 which is taken from [3], shows the classification performance (in, terms of

the correct classification rate, CCR) for three different discriminant techniques for various

dimensionality and sample size settings of some simulated data. "Por the moment we

will refer to the discriminant techniques as Di, D2 and D3. 1 1he two dimensionalities

considered are 30 a.nd 10. The class samples sizes are set at 10, 20, 30 and 300 when

thp: dimensionality is 30. When the di:u.J.ensionality is set at 10, the class sample size

considered are 5, 10, 20 a.nd 100. The data used in this example have been simulated so

that there are, three classes which have different circular class covariance matrices. ,One

general observation which can be- made fronl Figure 2.1 is that the discriminant meth~d

Dl seem~ to be less a~ected by the varying observation-to-variable ratio an·d consistently

outperformp the discriminant methods JJ2 and D3. Another observation which can be

IIlade is that for small observation-to-variable ratios, the discrimina.nt method D2 produces

higher classification rates than D3. The discriminant method D3 however, produces much

11igher classifier rates when the class sample sizes are very much bigger than the number

of variables~

We refer to classifiers which are not suited to small observation-to-variable ratios as

being low dimensional classifiers. Conve~"sely, classifiers whicl1 are suited· to small ratios

are referred to as higll dimensional classifiers. In Figure 2.1, the method Dl is actually a

high dimensional classifier, while D2 and D3 are low dimensional classifiers.

Both low and high dimensiona.l discrilninant metllods consist of linear and nonlinear dis­

criminant methods .. The linear methods produce linear decision boundaries, for assigning

objects into a particular class, whilst nonlinear methods will generally form nonlinear de~

cision boundaries far PE?rforming the same task.. Figure 2.2 presents a schematic overvie~r

of some modern and common discriminant methods .. 'Two common linear·law.dimensional

methods include Fisher's linear· discriminant analysis. and Bayesian linear dIscriminant

analysis [21, 102]. (T'he Inethod D2 in Figure 2.1 is BLDA). Nonlinear low dirnensional

metllods include Bayesian quadratic discriminant analysis (BQDA) [21, 102], flexible dis­

criminant analysiE!. (FDA) [60], kernel density and nearest neighbour methods [21, 102]

and neural networl(s [116]. Bayesian quadratic discriminant analysis is a nonlinear ex­

tension of BLDA which has decision boundaries of a quadratic nature. BQDA involves

estimating more parameters, namely ·the individual· class covariance Inatrices, in the dis-



CHAPTER 2. DmCmMmANTANAL~m 15

criminant modeL Generally, for BQDA to have the potential to perfOITI) satisfactorily,

the ratio of the number of objects per class should be much larger (eg at least 3 times)

than the· dimensionality. In Figure 2.1 D3 is BQDA. One can observe that as the ratio· of

the class sample sizes to the dimensional~ty increases, thenBQDA (fof this data) begins

to outperforn1 BLDA. Another nonlinear low dimensional method which has developed

recently is Flexible discriminant analysis [60]. Flexible discriminant analysis combines

nonparametric regression methods \vith Fisher's linear discriminant analysis to achieve

greater nonlinearity and flexibility in the decision boundaries.

Low Dimensional Classifiers High Dimensional Classifiers

linear

FLDA
BLDA

nonlinear

BQDA
FDA
Kernel Density
Nearest Neighbour
Neural Networks

linear

RDA

nonlinear
I
RDA
PDA
SIMCA
DASCO

Figure 2.2: Summary of some discriminant analysis methods.

Due to the extensive alllount of literature and wide availability of lovv diIuensional clas­

sifiers, these methods are often the preferred candidates. If a low dimensional discriminant

techniq:ue is to be used for classifying high· dimensional spectral data., then it is recom­

mended that the dimensionality of the data be reduced so that the observation-to-variable

ratio becolnes large. The dimensionality should be reduced with the goal of retaining as

much relevant information as possible~ Such a strategy is referred to'as feature extraction.

Feature extraction is discussed in greater detail in Chapter 4.

A distinct advantage of applying high-dimensional classifiers is the need for feature

extraction can be avoided or greatly reduced~ High-dimensional classifiers such as regular­

ized discriminant anal~ysis (RDA) [38, 44] and class modelling systems such as SIMCA [39,

38, 82, 144] and DASCO [38] are quite popular. RDA can produce linear or nonlinear
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.decision boundaries depending on certain parameters in the model which are dependent

on the particular data set being analysed. Of late, Hastie et. al.. [61] have d~veloped a

penalized discriminant method also capable of handling high dimensional data. Penal­

ized discriminant analysis IS based on the same principles as FDA,~nd thus stems from

Fisher's' lilleardiscriminant analysis. The main difference between FDA and PDA is the

nonparametric regression methods which are employed.

The chapter proceeds by introducing some notation and then discusses the time hon­

oured technique FLDA. It is then shown that the low dimensional classifier, flexible dis­

criminant analysis is a nonlinear extension ofFLDA.. The high dimensional classifier penal­

ized discriminant analysis which is an extension of FLDA, derived from similar principles

as FDA is also presented. The Bayesian classifiers introduced are - Bayestan linear and

quadratic discriminant analysis, here BQDA is a nonlinear Bayesian extension of BLDA.

The high dimensional classifier RDA is discussed next. It can be seen that RDA is a hybrid

technique which is based on BLDA and BQDA. Model assessment criteria and. evaluating

techniques are also presented.

2.2 Notation

In many instances one will be giv~n a set of training data co~sisting of n r objects Xi(r)

from class r E {l-,~2, ... ,R} giving a total of n = 2:~=1 nr objects. Each object Xi consists

of measurements made on p variables and can be represented as a data vecto~ of the

form Xi == (Xli, X2i, ..... Xpi) T, whe~e p also indicates the dimensionality of the data set. In

the case of a spectral data- set, each object will represent a spectrum.. For each -training

object Xi the class identity Yi E {I; 2, ... ,R} is known. The training objects are stored as

columns in the:p x n data matrix X.== (Xl, X2, .... , x n ) and we prefer that the class labels

are stored in the n X 1 column vecto.r y == (Yl' Y2, ... , Yn)T. The reason for defining X

to be a p X n matrix, which is in slight contrast to the dimension of y, is to allow for a

simplification of notation when wavelets are introduced in Chapters 5 and 6.

A discriminant model which is assessed using the same training data which. designed

the model will usually re~ect overly optimistic results.. It can be appropriate t<? use an

independent test set for assessing the validity of the modeL. Let XI define the testing data

which contains n' objects xi with n~ objects from class r such that nl ==2:~==1 n~ .and yf
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denotes .the vector of true class labels of the testing data.

2.3 Fisher's linear DiscriIninant Analysis (FLDA)
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Fisher's linear discriminant analysis is sometimes referred to as can.onical discriminant

analysis due to the equivalence between FLDA. and canonical correlation analysis [87].

Fisher's lin~ar discriminant analysis seeks linear combinations of the measurement vari­

ables which se12arate the objects from different classes as much as possible. Factors which

determine the separability of ~lasses include the distances between groups and the com­

pactness of each group. It then follows, that the ratio of the between-to-within variability

of the transformed training data vectors (i.e. spectra) should be maximized. Equivalently,

v~le seek the linear transformation

that maximizes

z==xTv (2 ..1)

(2.2)

Sw ==

subject to vTSwv == 1, where v == (VI, V2, ••• , vp)Tisthe vector of discriminant coefficients,

and SB and Sw are the between- arid within-covariance matrices of the data matrix X,

respectively. Th~se are defined by
i R

SB = - L nr(xr -,- X)(Xr ..,... xln
r=l

1 R nr

- L L(Xi(r) - xr ) (Xi(r) - xr ) T
n r=l i=:l

where, Xi(r) i~ an object from class T, xr == :L~::1 Xi(r)/nr is the mean vector or centroid

of class rand,
1 R· 1 n

X= RLxr=;?=Xi
r=l t=1

is the overall mean vect.or. Fisher's linear discriminant analysis does not restrict the class

populations to be multivariate normal, but does assume the class covariance matrices

1 nr

Sr == -L(Xi(r) - Xr)(Xi(r) - xr)T for r == 1, .. ·.,R
nr i=1

are equal" [71], that is 8 1 == 8 2 == · • . ==. SR. The maximization problem reduces to solving

(SB - A8W)V == 0 (2.3)
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or, assuming the inverse of Sw exists,
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(2.4)

Notice that there will be So = min(R - l,p) eigenvalues Al ?:: A2 2 ..... ~ Aso and

So corresponding eigenvectors Vl,V2, ..... , V So which produce So discriminant vectors (or

variables) Zl, Z2, ... , ZSo such that Zi = X T Vi- -The discriminant variables v<,rill have an

identity within covariance.

It is convenient if the vectors Vi and Zi (~or i =. 1, ...... , so) are stored as· columns in

tlle matrices V Bo and ZSQ' that is, YSo == (Vl,V2,,,.,,,Vso ) and Zso = (Zl,ZZ, .... ,zso),

tllen Zso = XTVso gives the coordinates of the objects in the .so-dimensional discriminant

coordinate systerp..

If Equation 2.3 is premultiplied with v~, we can see that A == VTS.BV is a ll1easure

of the discri~inant criterioll" The first discriminant variable gives the largest measure

_of the discriminant criterion. The second discriminant variable achieves the next largest

discriminant criterion such that Z2 is uncorrelated \vith Zl, and so on for ·Z3, ... , ZSo" For

more details the reader is referred to Tatsuoka [132} and Lebart [87] ..

FLDA assigns an object x to the class rEI, .... ,R, which minimizes

(2.5)

where s* ~ So discriminant variables are used. Here, x;Vs* is the centroid for class J

-in the discriminant c?ordinate system. Thus, x is assigned to the class r for which the

distance between xTVS'M and x;V5* is minimum.

Whilst FLDA can be used for predicting the class membership of future objects, it

is perhaps best recognized for its graphical element~ "Vhen the discriminant variables

are plotted against each other, one can gain further insight to the structure of tIle data.

Figure,2~3 plots the first two discriminant variables (Z1 and Z2) against each other. Since

the discriminant variables are derived in of.der of separability, most separation among the

classes will generally be observed in the first fe\v discriminant variables .. Note that in order

to produce a .discriminant plot prior knowledge about the class identity of the objects in

X is required ..
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Figure 2.3: A scatterplot of the discriminant scores produced by FLDA.

2.4 Flexible Discriminant Analysis (FDA)

Flexible discriminant analysis is a nonlinear extension of FLDA which incorporates non­

parametric regression methods to obtain nonlinear decision boundaries. This is achieved

by first casting regression and classification into a common framework.

It is a well known fact that when R = 2, Fisher's discriminant coefficients are propor­

tional to the coefficients of the multiple linear regression (MLR) model, where the variables

(rows) in the data matrix X form the predictors, and the response is the vector of class ­

labels.1 When R > 2 the relationship between linear regression and classification is not

so straight forward. One obvious approach is to produce a n X R class indicator matrixY

(Yir = 1 if Xi belongs to class r and zero otherwise) and use multivariate linear regression

(MVLR) 2 to predict the columns ofY. The object Xi is assigned to the class r which has

IThis result is easily verified [87] by coding the response with the dichotomous labels 0 and 1 for classes
1 and 2 respectively, and noting that Equation 2.4 is equivalent to (ST1SB ->.I)v =: 0 with ST = SW+SB.

2The difference between MLR and MVLRis, MLR models a single response vector, whereas MVLR
models several responses.
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the largest value of {Yir }~1' where Yir denotes the estimate of Yir- rrhe e~timate, [ii," will

not necessarily lie between 0 and 1. An alternative procedure referred to as softmax [60],

assigns Xi to the class T' which has the maximum value of exp(Yir)/E~=lexp(Yir) E[0,1].

HaStie et. .al. [60] suggest softmax generally does 110t"perform as favourably as FLDA..

A more sophisticated approach for relating regression anel classification is that of Breiman

and Ihaka [11J. They'make use of optiInal scoring to establish an equivalence between

linear regression and FLDA. Hastie et. al. [60] extend this relationship to allow for

non-parametric (multivariate) linear regression methods. 'rhis technique is referred to as

flexible discriminant analysis (FDA) and is described in Figure 2.4.

Flexible Discriminallt Allalysis

1. Construct the class indicator matrix w*.
2. Based on X, perform a multivariate regression to predict w*.--Let W* be the predicted values of 'l"*.
3. Calculate the eigenvectors and eigenvalues of (W*T~In) .

Store the eigenvectors as columns in e and the eigenvalues

in descending order in the vector Afda

4. Construct the diagonal matrix D which has Dii = l/y'Ai fda (l ~ Aifd~).

where Aifda. is the ith element~ Afda

5. Form discriminant variables "'lJ*E>D ..
6. Classify x~ into the class r which minimizes 1I(1J(x*) ~ ij~)DII where,

1J(x*) is the predicted value of x* obtained using the nonparametric

regression model, multiplied with 8. For classification based OIl

posterior probabilities, use Equation 2.12.

Figure 2.4: The FDA algorithln.

Tile first step of the FDA algorithnl involves forming a class indicator matrix 'IF* whose

columns are uncorrelated "vith zero nlean and unit variance such that -p*-T'lF* == I. If the

class sample sizes are equal, then it is sufficient to have '1'* == Y /nr as the class indicator

matrix. The default procedure used in the Spius code of I-Iastie et. al. [60J constructs the

indicatqr matrix 'l'* by multiplying Y with another matrix Was' follows

qf* == Y'lt. (2.6)
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The matrix 'II, is formed by a series of steps which are described below.
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1. A matrix r is constructed which has the form

1 -1 -1 -1 -1
1 1 -1 -1 -1
1 0 2 -1 -1

r= 1 0 0 3 -1
..

1 0 0 0 0

-1 .
-1
·-1
-1

R-1

The general form of r .is

• the first column: ril = 1 for i = 1, ... ,R.

• diagonal elements rii = i-I for i = 2, ... ,R
. .

• upper triangular elements: rij = -1 for j :> i
• remaining elements: set to zero.

2. r is then adjusted to account for the different class sample sizes. Let

be a column vector containing the class sample sizes, and define

to be a column vector containing the square root of the class proportionalities. Also

let

r 0 = r 0(n.;p l~)

where lR is a R x 1 column vector whose elements are all equal to 1. The symbol·

'0' is used to indicate a form of array multiplication across two matrices such that

B = C 0 G ----+ Bij =CijGij.

3. A QR decomposition is then performed on r 0 so that r 0 = QR.

·4. If Q.,-l represents Q with the first column removed, then W = Q.,-10n .;pI~-l

Once 'II has been formed, then ~* is calculated according to Equation 2.6.
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Step 2 of the FDA algorithm involves performing a multivariate regression on the in­

dicator matrix 'J[*. This can be' done by either the traditional multiple linear regression

approach, or by using nonparametric regression methods .. In either case regression is ini­

tially based on the original data matrix X .. A multivariate linear regression procedure

predicts the columns of '1J* by

where

and

is a linear projector matrix.

The .nonparametric methods used in [60J produce a new predictor matrix X* which is

based on the original matrix X. The matrices X and X* both have the same number.

of observations n, but the dimensionality may differ for each of the matrices depending

on how the nonparametric method forms the new predictor matrix. For instance, some

nonparametric regression methods may actually be integrated with a feature extraction

procedure to produce X*. A trivial example for X* may be produced by augmenting

the original predictor matrix with squares of the original variables. This would produce

decision boundaries of a quadratic nature ..

The nonparametric regression procedures used in [60J are MARS [45,93] and BRUTO [59J.

These methods use a much more creative approach for forming the new predictor matrix..

MARS and BRUTO adaptively compute the predictor variables with the 0in1 of minimiz­

ing some fitting criterion relevant to W*. MARS creates the new set of predictor variables

by adaptively computing additive and interactive basis functions from regression splines.

BRUTO [59J is an additive regression model vlhich computes terms in the nev\T predictor

matrix by using smoothing splines. When FDA is applied in conjunction witll the BRUTO

algorithm'it is possible to have a large number of predictors as the BRUTO procedure

includes a variable selection method. Refer to [59, 60] for more details.

Once the new predictor matrix has been formed by the nonparametric regression meth­

ods, then the class indicator matrix is predicted, by replacing the linear operator P X with
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P X* such that

For the MARS and BRUTO procedures '1'* can also be, predicted by ,

vvhere B is now equal to

23

There is little advantage in using the MLR procedure described previously, since, the end

result would be equivalent to using FLDA on the original variables. The nonparametric

regression procedures provide greater variability in selecting the predictor variables, which

in turn allows for mor~ nonlinearity in the decision boundaries. Or, as will be described

in Section 2.5, allows a simple way to incorporate regularization into the discriminant

procedure.

Step 3 of the FDA algorithm involves calculating the eigenvectors and eigenvalues of

The eigenvectors "vill be stored as columns in the matrix e and the eigenvalues will be

stored in descending order in the matrix Afda. The eigen-analysis arises by formulating

an optimal scoring procedure. The optimal scoring problem presented in [60] involves

transforming the class indic~tor matrix \]j* in such a way that the transformed class labels

(called optimal scores) are optimally predicted by linear regression on X*. If nonparamet­

ric regression methods are not used, then prediction of the optimal scores will be based

on the original predictor n1atrix X. Let E)* denote the vector of transformed class labels

which are formed by

8* == w*8.

'The optimal scoring problem as presented in [60J seeks the solution(s) to minimizing the

average squared residual (ASR)

(2.7)

subject to the constraint

~ e TW*T \lJ*8 == I.
n
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Here, R* :S R - 1, xi denotes the -ith column or object vector in X*, and bros is the

rth column of the matrix of regression coefficients for the optimal scoring problem, Bos.

Equation 2.7 can be reformulated in terms of matrices by

where

ASR = ~ trace (8* - e*) T (8* - e*)

8*

PX·S* .

(2.8)

(2.9)

(2.10)

.::>ubstituting Equation 2.9 and 2.10 into Equation 2.8 along with S* = w*8, then the

optimal scoring problem reduces to minimizing

ASR = ~ trace ( 8 TW*T (1 - P X)'1T*8) . (2.11)

When Equation 2.11 is minimized subject to 8 TW*T'1T*8/n = 1 then one arrives at

solving an eigen-equation of the form

where Aida is a diagonal matrix with the -ith diagonal element equal to the eigenvalue

Ai{da.' By calculating the eigenvectors of W*T~ one can now compute the matrix 8 for

converting the indicator matrix '1T* into the matrix of optimal scores 8*.

Step 4 computes a diagonal matrix D which has

>3 (1-)'? ).
tfda. tfda.

The diagonal matrix can then be used as part of the process for converting the regression

analysis into a discriminant problem.

Step 5 of the FDA algorithm forms the discriminant variables. The key fact used in

the FDA algorithm is that the columns of the matrix of regression coefficients Bos are

individually proportional to the matrix of discriminant coefficients V. More specifically,

they are related by
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The optimal scoring problem presented above does ,not calculate Bos d-irectly, instead Bas

is formed by converting the regression coefficients B used for predicting 'lJ*. This is done

using

Bas == BE>

and follows from

Bas (XXT)-lxe*

(XXT)-lX'lr*8

(XXT)-lx'!J*e

Be

The discriminant variables can now be formulated by

or

---\]!*8D.
Since the discriminant variables from FLDA and FDA are equivalent, then so to are the

properties of the discriminant variables. That is, the discriminant variables will have an

identity within covariance matrix.

The final part of the FDA algorithm is to use the model for classification. If 1](x*)

denotes the vector of fitted values for x* such that T](x*) == x*TB8, the coordinates ofx*

in the discriminant coordinate system is given by

l1(x*)D.

An equivalent classification rule as that used in FLDA for assigning .objects into various

classes can be applied here. Assign x* into the class j E 1, ... , R which minimizes

where fJ r == I:i~l 1J(xi(r))/nr is the fitted centroid of class r. Again if the regression

method is based on the original predictor matrix, then x* would be replaced with x in the

above discussion.
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The SpIus code of Hastie et. al. [60] also allows for the calculation of posterior probabil­

ities. If assignment is based on posterior probabilities, an object is assigned to the class r

which has the largest posterior probability P(r Ix*) for rEI, ... ,R. Using Bayes-optimal

procedure, (see Section 2.6) the authors state that, for a Gaussian model, the posterior

probability is proportional to

P(r Ix*) ex: P(r) exp[-O.5(x* - x;)TS}"J(x* - x;)]

ex exp[( -O.51J(x*, r) - logP(r))] (2.12)

where x; == ;r 2:7~1 xi(r) and P(r) is the prior probability for class I. If the priors are

equal, then classification based on posterior probabilities will be equivalent to classification

based on distances D(x*, r).

Hastie et. al. [60] apply different variations of FDA against FLDA, BQDA, CART(see

Section 4~1.3) and softmax on three sets of simulated data and one real data set. For

these data BQDA and CART produced quite biased results and generally FLDA and

FDA seemed to outperform the other techniques with the exception of one simulated data

set for which BQDA did reasonably well.

2.5 Pellalized DisCl--irnillant Allalysis (PDA)

Penalized discriminant analysis (PDA) is a high dimensional classification technique which

follows the same methodology as that presented for FDA. That is, optimal scoring provides

the link between regression and classification. The main difference between FDA and PDA

are the regression methods which are used in the optimal scoring procedure. Since PDA

is designed vvith the aim of classifying highly dimensional and correlated data, then the

regression methods employed by PDA should also be suited to extreme dimensionalities

and somewhat resistant to lnulticollinearities. The regression methods which are used by

PD.i\. have some form of regularization.

PDA considers a penalized optimal scoring problem which seeks the solution(s) for

minimizing

(2.13)

where Brsf!Bos is the penalty term. The discriminant variables and classification is then

as for the FDA algorithm.
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The penalized optimal scoring problem is made equivalent to a penalized linear discrim­

inant -analysis \vhich seeks the matrix of discriminant coefficients V such that

V~daSBVpda

is maximized subject to the constraint

Hastie et. at. [61] trial different versions of PDA on vowel and digit recognition data.

Various regression methods including improper. splines and generalized ridge regression

,yere incorporated into the testing procedure. This allowed for different forms of the

penalty matrix to be used. Their analysis highlights the vast improvement gained in

applying PDA as opposed to FLDA vvhich had the tendency to overfit.

2.6 Bayesian Classifiers

Unlike methods stemming from Fisher's linear discriminant analysis, Bayesian classifiers

are not based on discriminant variables. SOfie Bayesian classifiers are based on the assump­

tion that the class probability densities p(x I r) follow a multivariate normal distribution.

That is,

(2.14)

Commonly, the class covariance matrices Sr, and the class mean vectors X r , are calculated

using the maximum likelihood estimates

Bayesian classifiers are then based on Bayes decision rule which assigns an object x to the

class r, which maximizes the posterior probability

P(rlx) forr==l, ... ,R. (2.15)

By performing a direct application of Bayes theorem, the posterior probability in Equa­

tion 2.15 can be written as

P( ! ) == p(x I r)P(r)
r x p(x)' (2.16)
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Here, P(r) is the a ]Jriori probability of belonging to class rand p(x) is the probability

density of x~ The classification problem can be reformulated as-assign object x to the

group r, \~hich maximizes the classification score

g(x,r) == p(x I r)P(r) for r == 1, ... ,R.

Since p(x) is independent of r, it is not considered in Equation 2.17.

2.6.1 ·Bayesiall Linear Discriminallt Allalysis (BLDA)

For BLDA, the class covariance matrices Sr, are assumed to be'equal and are replaced

vvith the pooled covariance matrix

In Equation 2.14~ Taking the natural logarithln of Equation 2~17 and ignoring the con­

stants, the following classification rule for BLDA results

(2~18)

Given hon10geneous class covariance matrices and equal priors, the equivalence betweell

FLDA using So discriminant variables and BLDA can be established since

For more details concerning this relationship the reader is referred to Johnson and Wich­

ern [71](page 549)~ .Fearn [35] also giveE; an excellent discussion about the relationship

between Mahalanobis distance and FLDA for the two group case (R == 2) ~

If Equation 2.18 is expanded and the constants which are the same for each gblda(X, 1), ~. ~,

gblda(X, R) are disregarded then one arrives at the linear function

One can then understand that the decision boundary which partitions objects from classes

is also linear ~
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2.6.2 Bayesian Quadratic Discriminallt Analysis (BQDA)

29

If the class covariances are not equal, then the class probability densities in Equation 2.14

remain unchanged. The- quadratic -discriminant rule, results when the class probability

densities in Equation 2.17 are replaced by Equation 2.14. Taking the natural logarithm

and ignoring constants, the quadratic classification rule can be written as

(2.19)

If Equation 2.19 is expanded and the constants which are the same for each gbqda(X, 1), .... ,

gbqda(X, R) are disregarded then one arrives at the quadratic function

Now the decision boundaries which partition the objects from different classes are quadratic.

Both BLDA and BQDA are parametric discriminant methods, since the class probability

densities p(x I r) were assumed to follow a particular distribution namely, a multivariate

normal distribution. Some nonparametric discriminant- methods have focused on '.'dis­

tribution free" estimates for the class probability densities. I{ernel density and nearest

neighbour methods [21, 102] are two examples of discriminant methods which relax the

normality assumption about p(x I r).

2.7 Regularized Discrilninallt Analysis (RDA)

Regularized discriminant analysis [44], is a high dimensional classifier which introduces reg­

ularization into the covariance matrix. RDA differs from penalized discriminant analysis,

in that, RDA steIns frail1 the Bayesian classifiers, while PDA is a Fisher-based approach.

Both techniques involve perfornling some form of regularization to the covariance matrix,

but PDA. does this in a. regression context.

Regularizing the covariance matrix can produce substantial improvements in classifi­

cation [3], particularly in ill- and poorly-posed settings when the estin1ates of the class'

covariance matrix become highly variable [44]. At the expense of increasing bias in the

parameter estimates, regularization of the covariance matrix reduces the va.riance of the

estimates. A silnple form of regularization occurs when reverting from BQDA to BLDA.
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Replacing the class covariance matrix' with the pooled covariance matrix means fewer pa­

rameters are required to be estimated. This form of regularization has the significant effect

of reducing the variance of the estimates, thus producing enhanced classification results

despite the differences in the class covariance matrices.

Friedman's regularized discriminant method initially replaces the class covariance ma­

trix with a linear combination of the class and pooled covariance matrices

Sr(a) == (1 - a)Sr + aSpooled. (2.20)

The c;:ovariance matrix Sr(a) is further adjusted in order- to under' estimate the larger

eigenvalues and over estimate the smaller eigenvalues. This is achieved by shrinking Sr(a)

to a multiplier of the identity matrix I,

Sr(a, b) == (1- b)Sr(a) + b trace (Sr(a)) lip, (2.21)

here, the multiplier is the average eigenvalue of SR(a).

The parameter a E [0,1], controls the degree to which the pooled covariance matrix

should be used. The value of b E [0,1] determines the degree to which S(r)(a) is shrunken

toward a multiplier of the identity matrix. A grid of a and b values ranging between 0 and

1 are trialled. The pair of values which produce the minimal risk of misclassification are

used. -If more than one pair of values produce the same number of misclassified objects,

then the chosen a and b parameters are determined by the largest b corresponding to the

largest value of a [115]. Rayens and Greene [115] have developed a procedure based on

an empirical Bayes formulation to estimate the degree to which the covariance matrices

should be pooled.

Several articles have been \vritten which compare the performance of RDA particularly

against "BLDA and BQDA. Friedn1an [44] presented simulations to help identify situa­

tionswhen RD.A.. is likely to outperform its predecessors BLDA and BQDA. F'rank and

Friedman" [38J presented applications of RDA compared with BLDA, BQDA, SIMCA and

DASCO" Six simulated data sets were generated each of dimension 6 and 40, in addition

four real data sets were tested. It was concluded there exists several striking advantages of

RDA that rnake it an extremely useful and worthwhile technique to apply. Other articles

which involve applications of RDA, BLDi\ and BQDA include [2, 97, 146].
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2.8 AsseSSlllent of Model Perforlllance
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Before classifying new spectra whose true class identity in not known, it is important

to assess how well the discriminant model actually· works. There are two itelllS ,vhich

should be addressed when assessing the performance of a discriminant modeL Firstly,

consideration should be given to the assessment criterion. Once the assessment criterion

has been selected, it is then necessary to choose a test set for evaluating the assessment

criterion.

2.8.1 AsseSSluent Criteria

The correct classification rate (eCR) or misclassification rate (MeR) are perhaps the most

favoured assessment criteria in discriminant analysis. Their widespread popularity is ob­

viously due to the ease in interpretation and implementation. Other assessment criteria

are based on probability measures. Unlike correct classification rates which provide a dis­

crete measure of assignment accuracy, probabilitJT based criteria provide a more continuous

measure and reflect the degree of certainty which assignments have been made.

Correct Classification Rates (CCR)

In- the descriptions to follow we speak of correct classification rates when misclassification

rates (MCR==l-CCR) would equally suffice. A correct classification rate can be interpreted

as the probability of assigning an object to the correct class. The correct classification

rate is typically fOflTIulated as the ratio of correctly classified objects (from a testing set)

\vith the total number of objects in the test set. More formally, let y denote the vector

of true class labels and y the vector of predicted class labels with Yi, Yi" E 1, ... ,R. The

correct classification rate can then be expressed as follows

1 n

CCR = -;;,~ 0Yi,Yi ·
i=l·

Here 5 is an indicator variable such that 0Yi,Yi == 1 if Yi :::::: Yi and zero otherwise. For an

interesting documentation involving error-rate estimation procedures to simulated data,

the reader is referred to [65].

A correct classification rate is a discrete measure whose calculation is based upon which

side of a decision boundary the observations lie. It does not reflect how "close" or "far
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away" the observations lie from the decision boundary and hence how clear the assign­

ments are made. An advantage of using probabilistic based classification methods such' as

those based on Bayes decision rule, is that it is possible to obtain more information than

just the correct classification rate. Probabilistic measures provide information about tIle

assignment accuracy, but they also reflect the degree of certainty which assignments have

been made. We now consider other probabilistic measures which assess the trustworthiness

or distinctness of the class predictions.

Probabilistic Measures

Most probab'ilistic discriminatory measures have the basic form

1 n
p = -;; La(xi)

i=l

(2.22)

where a(xi) is an appreciation function which produces an appreciation score for Xi. The

correct classification rate of a Bayesian discriminant method such as BLDA, can for exam­

ple be expressed in terms of a probabilistic measure. This vvould require the appreciation

function having the very simple form

accr(Xi) 1

o otherwise.

(2.23)

(2.24)

(2.2.5)

Per I Xi(r)) denotes the posterior probability for the true class of Xi. The correct classifi­

cation rate is then written as

Another silnple probabilistic measure results when the appreciation score is

TIle associated probabilistic measure is the average probability that an object is assigned

to the correct class:
1 n

PA= - LaA(Xi).
n i=l

The quadratic appreciation score which is used in Chapter 7 is formulated as follows,

I" 1 R
aQ(xi) = "2 +P(1' I Xi(r)) - "2LP (1' \xd2

·
r=l
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The quadratic probabilistic measure is then defined

1 n
QP1J1 == - 2".:aQ(xi) == PQPM.

n i=l
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The q.uadratic probability measure is related to the Brier quadratic score, which is a

loss function- fOf. comparing two probability vectors, and is used for the elucidation of

probabilities [13,211.

Probabilistic measures based on appreciation functions other than the accr , are less vari­

able than correct classification rates, especially when there are relatively few observations.

On the downside, most probabilistic measures and appreciation functions are generally

more difficult to interpret than correct classification rates. This can be due to the fact

that appreciation functions are less frequently encountered. As a general rule - a higher

probability measure implies objects have been assigned to their respective groups with a

greater degree of certainty. The assessment criterion applied in future chapters are based

on the correct classification fate and the quadratic probability measures. These methods

are subsequently referred to in the next section when procedures for choosing an evaluation

set are discussed.

2.8.2 CI'loosing tl1.e Evaluation Set

Careful consideration should be given t~ choosing an evaluation set. Based on some

assessment criteria, the evaluation set determines how well (or how poorly) a discriminant

model actually performs. There are several procedures for selecting an evaluation set. This

section will describe fouf approaches, namely the resubstitution, holdout, leave-one-out

cross-validation and bootstrapping methods.

Resubstitution Method

The resubstitution method is quite simple. Here the evaluation (or testing) set~ is exactly

the same as the training set which designed the discriminant modeL This approach is

generally not preferred, since the results are often overly optimistic, giving somewhat of

a 'false' insight to the true performance of the classifier. This is a consequence of the

parameters in the discriminant model being estimated from the same data which are

later used to assess the model. Several articles have been written which demonstrate this

phenomenon, see for example [83, 101J.
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Holdout Method
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The holdout method attempts to reduce the overly optimistic results obtained when the

testing data are identical to the training data. With the holdout m'ethod, the sampled

observations are divided into two separate sets of data - the training and testing data.

Here, the training data designs the classifier, and the testing data is used for determining

110w well the classifier works. The classification performance using the holdout method

is likely. to be slightly pessimistic. It can be a useful exercise to calculate the assessment

criterion on the training and testing data set, since this can provide some indication about

the bounds of the assessment measure [46].

If the test set X' contains n' objects xi with n~ objects from class r such that n' ==

2:~=1 n~ and y' denotes the vector of true class labels of the testing q.ata and y' is the

corresponding vector of predicted class labels with y~, fJi E 1, .... ,R, then the correct clas­

sification rate of the testing data can be expressed as follows

n'
I 12:CCR == - Oy~ y"~n . t't

2=1

\vhere c5Yi ,Yi == 1 if yi == fJ~ and zero othervvise. The QPM based on the testing data set is

tllen
n'

QPM' = 2:aQ(xi).
i=l

where
R

aQ(xi) = ~ + P (r I X~(r») - ~ 2:P (1' Ixi)2·
r=l

(2.26)

The parameter estimates such as the covariance matrices and mean vectors associated

with the calculation of the posterior probabilities are calculated using the training data.

An issue which arises from the holdout method concerns the sample sizes of the training

;:l.ud testing data. The interested reader is refer~ed to [46,47, 114, 113, 68] for more·detailed

information on such topics.

In some circumstances, it Inay not be viable to have a test set. For instance, there may

only be a sufficient number of samples available to build the discriminant model and not

to test its adequacy. Cross-validation is a mechanism which can be used for assessing the

predictive ability of a classifier when the holdout method is not suitable.
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Leave-out-one Cross-Validation ,Method
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Cross-validation [83, 135] is the procedure for deleting objects from the training data,

building the model in absence of the deleted objects, and then assessing the performance

of the classifier based on the deleted objects. The deleted objects are then replaced, and

another set of objects are deleted, (these objects can not have been deleted before). Again,

the discriminant model is built in absence of these objects and the performance is assessed

based on the deleted objects. Once all of the objects have been deleted a performance

rate based on all of the deleted objects can be measured.

If the number of 'objects in each of the deleted groups is one, then the procedure is

referred to as leave-one-out cross-validation. If Y-i is the predicted value of Xi, obtained

when Xi was deleted from the model building process then, define the leave-aut-one cross­

validated correct classification rate to be

,-. 1 n

CVCCR == - LOY-i,Yi
n i=l

where 6Y_i'Yi == 1 if Y-i == Yi and zero otherwise. Similarly, define the leave-aut-one

cross-validated quadratic probability measure to be

where

1 n
CVQPM = - L aQ (Xi, -i)

n i==l

R

aQ(xi' -i) = ~ + P-i (r IXi(r)) - ~ LP-i (r IXi)2
r==l

(2.27)

with P-i(r IXi) being the posterior probability for Xi when the covariance matrices and

mean vectors in the probability density function have been calculated in the absence of

When several objects are 'left out' the procedure is referred to as V-fold cross-validation [1~

Here, V refers to the number of testing groups created. It is preferable to have the same

number of objects in each testing group with an equal distribution of objects from different

classes.

Leave-one-out cross-validation can be a time consuming operation. It is possible however

to make use of fast updating formula (see for example [2, 44J) which can dramaticaliy speed

up the leave-one-out procedure.
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Cross-validation is not lin1ited to classification, nor are the resubstitution and holdout

methods for that luatter. These methods can also be used in other statistical applications

such as regression analysis. \iVhen the least squares linear regression model is being ap­

plied, then an explicit formula~ can ,be used for calculating a leave-one-out cross-validated

measure of the predictive residual sun1 of squares. This formula does not require any

updating formula or the actual deletion of observations (see .Section 3.6).

Bootstrapping Method

The bootstrapping method [30, 31, 32] san1ples (with replacement) n objects from the

original data set. These samples are referred to as the bootstrap samples. The bootstrap·

samples can be randomly generated from the original data, or can be generated by some

artificial generating process. The bootstrap samples are then used to build the discriminant

modeL The discrilninant model is assessed twice, using the bootstrap samples and the

original samples. The difference CCR~ between these two estimates is averaged over

several runs (eg 10-200) to produce ·an estilnate of the bias in the resubstitution method.

The actual classification rate which is the estimate obtained by classifying future unknown

objects is then estimated by substracting CCR~ from the optimistic classification rate

based on the original training set.

Recommendations

The way in which the evaluation set is chosen depends mostly on the number of available

samples. If the~e are sufficient samples to warrant an independent test set then the holdout

method is generally preferred. If there is not enough training data to have a training and

separate test set, then some form of cross-validation or bootstrapping method should

be ~mplemented. Both these methods are computationally expensive, although for some

parametric models, fast updating formula can be implemented to make the cross-validation

procedures less burdensome.



Chapter 3

Regression Analysis

3.1 Il1.troductioll

The. previous chapter discussed methods for predicting discrete response values based on

a set of predictor variables. The response values were the class labels of the objects in the

data set. This chapter is also interested in predicting response measurements based on a

set of predictor variables, but now, the response values may take on a continuous range of

measurements as opposed to discrete values.

An example of a regression applic;ation which is considered further in Chapter 8 is to

predict the amount of fibre present in sugar cane samples. NIR spectra are obtained for

several samples of sugar cane, and the reflectance measures for the NIR wavelengths, form

the set of predictor variables. The predictor variables along V\rith the fibre (response)

measurements for the samples constitute the training data. Based on the training data,

the regression model is designed with the aim of fitting and predicting the data responses

adequately.

It is important to mention that it is possible for a model to fit the data well and give a

good prediction of t'he training responses, but be very poor at predicting future (unseen)

samples. It is tllerefore necessary to determine how well the model predicts by for instance

implementing a cross-validation routine or by the use of an independent test set.

Regression methods when applied to spectral or other forms of highly dimensional data,

are susceptible to similar problems which are encountered by discriminant methods, that

is highly variable parameter estimates \vhich can degrade the performance of the modeL

31



CHAPTER 34 REGRESSION ANALY~SIS 38

Biased regression methods which are suited to low observation-to-variable ratios~ reduce

the variance of the parameter estimates in the regression model, at the expense of increas­

ing bias. It is hoped that this bias I variance tradeoff will reduce the expected squared

error of the parameter estimates and produce a more stable model for predicting future

samples4 Some biased regression methods which are commonly used on spectral data in­

clude principal component regression [37, 41J, partial least squares [37,41,51,52,67, 145J

and ridge regression [66, 119J.

Using the same terminology adopted in earlier chapters, biased regression methods can

be considered high dimensional methods since they can be applied to situations where the

. observation-variable ratio is quite small. Likewise, low dimensional regression methods

are better suited to high observation-variable ratios.

The least squares multiple linear regression model [29, 106J is undoubtedly the most

widely applied regression model and can be considered to be a low dimensi?nal technique.

In high dimensional settings, some forn1 of feature extraction is highly recommended if

this technique is to be employed.

This chapter proceeds by first iutrodueing some notation and the regression methods

- multiple linear regression, principal component regression and partial least squares re­

gression. Following these discussions, some model selection criteria are introduced.

3.2 N otatiOl1.

In this chapter we follow much of the same notation as that presented in Chapter 2. The

response vector Y== (Yl' Y2, ... , Yn)T which may contain continuous values is a nX 1 column

vector. The n X p predictor matrix also remains unchanged, but will be augmented with a

1 X n row vector of ones 1; to allovv for an intercept term in the regression procedure. The

variables in X vvill be referred to as predictors or independent variables, and the response

vector y may also be referred to as the dependent variable.
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3.3 Multiple Lillear Regression (MLR)

The general form of the multiple linear regression model is

39

Here, Yi is the response measurement for the ith object Xi == (Xli, X2i, .•• , Xpi)T, Ei is the

residual or prediction error for the ith observation, the coefficients 13o, /31, /32, ... , f3p are

the regression coefficients and 130 is also referred to as the (y-)intercept,

TIle multiple linear regression model can also be described in terms of matrices as

follows

with j3 == (130,131, (32, ... , j3p)T, €== (El,. E2, ... , En)T and Xl is the' matrix which augments

1; with the matrix of predictor variables. In practice, the vector of regression coefficients

{3, is usually unknown and is typically estimated by the least squares method. The least

squares IJ?ethod calculates regression coefficients so that the residual sum of squares €T €

is minimized. The least squares solution is

where b == (bo, bl , ... , bp)T is the estimate of the true regression coefficients f3 . .The

estimated response is then

and

€==y-y.

The MLR model assumes the residuals are independent and Ei rv N(O, (j2). If the predictor

and dependent variables are centered, so that they sum to zero, then it is not necessary

to have a constant vector of ones in the predictor matrix, since, the intercept ter~ will be

zero.
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3.4 Principal COlnponent Regression
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Principal component regression is simply MLR performed on the principal components,

that is the predictor variables are now the principal components. Section 4.2.2 dis­

cusses principal component analysis in greater detail, but briefly, the principal compo­

nents PI, P2, ... , Pp which are stored as columns in the n X p matrix P, are obtained by

multiplying the data matrix X with a set of eigenvectors such that

Pi ==XT ai for i == 1, ... , p

where aI, a2, ... , ap are the eigenvectors of the total covariance matrix of X, that is {ST ­

rI)a == o.

The multiple linear regression ruodel is then

y== p If3p cr + €

where f3p cr are the regression coefficients estimated· by the meth~d of least squares and

PI is a matrix with the first column equal to In and remaining columns equal to P.

Of course there is still a total of p principal components, and in the case of spectral data

p ~ n hence a subset of the principal components should be selected. If the first p' princi­

pal components are used then, this is called a top down approach. There is no guarantee

however that the first p' principal components will be best for regression analysis since

the principal components are formed without any consideration of the dependent variable

y. Partial least squ~res regression however, uses components called latent variables vilhich

are constructed with consideration given to y.

3.5 Partial Least Squares Regression

Partial least squares (PLS) can be used for 1110delling single or multiple response vectors. If

one response is being modelled than the procedure is generally referred to as PLS1, whilst

PLS2 is commonly used' to explore the relationship between several response vectors. In

this section we consider the partial least squares algorithm for predicting a single response

vector.

Partial least squares (PLS) regression forms a new set of p'redictor variables called

latent variables t l , t 2 , ••. , t p • These latent variables are stored as columns in the matrix
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T == (t I , t2, ... , tp*). The response is then modelled using

y == TfJpls + €

where the estimate of f3p Is is calculated by

bpls == (TTT)-lTTY
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TIle PLS predictor variables or latent variables are in fact linear cOlnbinations of the

original-variables, i.e., T == XTW where W·o == (WI, ... ,w p*). This implies -a relationship

of the form

y == XTWt3pls + E

and hence a PLS regression estimator bpIs == Wbpls .

The latent variables are determined sequentially, such that each new predictor variable

or latent variable has maximal covariance ,,\lith the response, and is uncorrelated vvith

previously constructed latent variables. Generally the number of latent variabies p*, is

chosen such that P* < p. There are several ways of choosing P* in practice. In Chapter 8

P* was initially set to 16. Then for P* == 1, ... , 16 the predictive residual based on leave­

one-out cross-validation ",vas calculated. Finally the value of P* was chosen as the one

which minimized the predictive residual sum of squares.

The PLS algoritllrh which has been applied in Chapter 8 is that of Denham [26], vlhich is

a slight modification of the PLS algorithm due-to Helland [62]. The algorithm implemented

by Denhatn [26J is summarized in Figure 3.1.

The first step in the PLS algorithm simply centers the response vector by subtracting

the mean f} == 2:7=1 Yi/ n from the uncentered response. Likewise, the second step in

the PLS algorithm centers the predictor matrix by subtracting the mean object vector

x == 2:7=1 Xi/ n from each observation. Ste~ 3 calculates the sums of squares and cross

product (SSCP) between X and y, this is denoted by WI. Step 4 calculates the first latent

vector and Step 5 uses this latent vector to calculate residual vector T. The algorithm

then enters a loop where the vectors wand t are calculated for each iteration of the loop

using the updated residual vector r. U"nless specified otherwise, this procedure continues

P* times.

Partial least squares regression can be used when the observation-to-variable ratio is

low and in situations vi/hen the predictor variables are highly correlated. This makes PLS
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Partial Least Squares Algorithm
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1.

2.
3.

4.

5.
6.

7.

8.
9.
10.
11.

12.

Y f- Y - yIn
X ~ X-xl;
W1 == Xy
i 1 == XWl

. T -1 Tr == y - t 1 (t 1 t 1 ) t 1 y

FOR i == 2, .. . ,p*
Wi == Xr
ti == X TWi
T == Y - Ti(TyTi)-lTty

END
~pls == (T~*Tp*)-lT~*y

b pIs == W P* bpls

where Ti ~ (t1, ... , ti) and Wi == (WI, ... ,Wi)

Figure 3.1: Partial least squares algorithln.

a popular regression technique to employ for spectral data and is indeed quite popular

in the field of chemometrics. There exists many variations to PLS algorithms, see for

example [25, 57, 62, 40, 98, 145].

3.6 AsseSSlnell.t of Model PerforIllance

When comparing different regression models produced using the same data set, some

criterion must be specified that gives a measurement defining how 'good' one model is

relative to another. The word good is usually meant to reflect two properties of a model­

ho\v well it predicts, and how well it fits the data. Some of the most common assessment

criteria are now discussed.

3.6.1 Assessment Criteria

RSS and R 2

The residual sum of squares (RSS) and the R-squared (R2 ) criteria both measure how well

the model fits the 'data. The residual sum of squares and R2 are defined respectively to
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be
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RSS == I:~=l (Yi - fJ)2
1 _ I:i-l (Yi-y)2

2:£=1 (Yi-y)2
== 1- RSS.

TSS

(3.1)

(3.2)

The RSS Ineasures the sum of squared deviations between the actual and predicted values

of the response. Typically, a lower measure of the RSS is preferred. The -R2 criterion

measures the variation explained by the model. If response values were always predicted

to be the sample mean of the data, then the residual sum of squares would be equal to

the total sum of squares (TSS) and hence R2 == o. It is hoped that the RSS will be much

less than the TSS so that an R 2 measure closer to one will be obtained. The rank order of

the models in terms of the residual sum of squares and R-squared values will be the same

for all candidate models.

It is important to note that a low measure of RSS and hence a high R 2 value could

simply be a reflection of overfitting. The more terms in a regression model the lower the

RSS and the higher the R2 value. It is for this reason why the RSS and R2 should not be

used to compare models of different complexities~

Unlike the RSS and R2
, the Inean square error (MSE), adjusted R2 (R~dj)' Mallow's Cp

and Akaike's Information Criterion (AlC) can be used to compare the performance of

models with different complexities. By incorporating a term into these formula which

accounts for the varying degrees of freedom-, these criterion will deteriorate if marginally

important variables are included in the modeL The sYlnbol Po will be used to denote the

number of parameters estimated (including the intercept) in the model. The degrees of

freedom (DF) is then equal ton - Po.

The mean square error is simply the ratio of the residual sum of squares to the degrees

of freedom and is written as

MSE= RSS = RSS .
DF n - Po

The adjusted R-squared is typically formulated (see for example [106J) as follows

R 2 . = 1 _ RSS/(n - Po) .
ad) TSS/(n - 1)
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The rank order of the models in terms of the MSEand adjusted R-squared values will

be the same for all candidate models as was the case between the RSS and R-squared

criteria. This is more clearly seen by representing the adjusted R-squared in terms of the

mean square error as follows

R2 . = 1 _ MSE(n - 1)
adJ TSS·

Mallows Cp is derived by taking into consideration both the biases and variance in a

regression modeL Biases result from regression models which suffer from a lack of fit, and

high variability is a consequence of overfitting. A _derivation for Mallows Cp based on these

principles is given in [106J where it is shov.;rn that

where RSSpo denotes the RSS of the model with complexity Po, and the 11SE is based on

tIle largest postulated modeL If values of Cp are plotted against p, candidate models will

lie close to the line Cp == p.

The Ale'score is the deviance (DEV) of the model plus twice the degrees of freedom

tilnes a dispersion parameter (ep), that is

AlC == DEV + 2 DF cp

where, the deviance is twice the difference between the log-likelihood of the full Inodel

f!.(bmax ; y) and the log-likelihood of the actual model £(b; y)

DEV == 2[e(bmax ; Y) - e(b; y)]

A model with a lovv AlC score is preferred to one that has a high- Ale score.

Cll00sillg tIle Evaluatioll Set

The same methods described in Section 2.8.2 for choosing an evaluation set for discriminant

analysis can also be used in regression analysis. The methods previously discussed were

the resubstitution, holdout, cross-validation and bootstrapping methods.

If one is interested in assessing how well the model fits the data, then the resubstitution

metll0d could be applied. That is, assessment is simply made on the original data which
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built the regression modeL If however, we are interested in determining how well the

model will predict response values for a Hew set of observations, then it· is necessary to

base the assessment criteria on an independent test set which differs from the data which

desigI?-ed the regression lllodel.

The holdout method allows for an independent testing set. As was the case with dis­

criminant analysis, there are no strict rules for· formulating an independent test set, and

much controversy can surround this topic. The interested reader is referred to Myers rl061

and Snee [120] for more details.

In this thesis the performance of the regression methods will be compared on the basis

of an independent test set. It has been decided to formulate an R 2 measure for the test

set which is denoted by Rtest
2 RSStest

R test == 1 - TSS ·
test

The residual and total sum of squares for the testing data are defined respectively to be

n'

RSS "'(y',; _ y"-')2test == L-J "
i=l
n'

TSStest I:(y'i - y')2
i=l

(3.4)

(3.5)

where y' is the response values of the independent test set, y' are the predicted test

response values, and n' is the number of objects in the test data set.

A criterion which is not a function of degrees of freedom has been chosen because for

some of the biased regression methods such as partial least squares it is not clear how the

degrees of freedom would be formulated. Of course if an independent test set is unavailable

then measures of predictive performance may be obtained by using cross-validation or

bootstrapping method as previously described in Section 2.8.2.

Recall that cross-validation is the procedure which involves deleting a group of observa­

tions from the training data, building the regression model in the absence of these 'pseudo'

testing objects and then calculating the prediction performance based on the deleted ob­

jects. This procedure is repeated until each object from the training set has been removed

once. If a single object is deleted at each iteration of the cross-validation procedure, then

this is referred to as leave-ane-out cross-validation. In the case of linear estimators such
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as multiple linear regression, it is possible to calculate a predictive measure of the resid­

ual sum of. squares (PRESS) without actually having to build a new model each time an

observation is deleted. Instead it is necessary to construct a single ll10del only.

Define the PRESS statistic to be

n

PRESS = I)Yi - fJ_i)2.
i=l

Here, Y-i is the predicted value for Yi, but object Xi was 'le~t out' vvhen estimating the

parameters in the regression model. Another \vay of calculating the PRESS statistic is

simply· by using

~ Yi - Yi (3 6)
Yi - Y-i == 1 - !iii .

where, nii is the element along the ith diagonal of the hat matrix 1l =: X T (XXT)-l X.

This avoids the need to leave out observations. in turn. A leave-aut-one cross-validated

R-squared score .could then be formulated as

CVRSQ =: 1 - PRESSjTSS (3.7)

The formulation of Equation 3~6, makes the leave-aut-one method of cross-validation quite

a useful and relatively inexpensive procedure to employ.
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Feature Extraction

It has been discussed in earlier chapters that some form of feature extraction should be

implemented prior to performing multivariate analyses using low dilnensional statistical

methods. Besides ilnproving the performance of the statistical analyses,. having fewer

variables often means results can be obtained with reduced computational and economical

expense. Another reason for extracting features may simply be that the features are more

meaningful than the raw data and thereby enhance the interpretability of the data~

Feature extraction is a dimension reducing procedure which selects ·a subset of variables

p* from a much larger set of p ·variables. The variables can be selected from the original

data, Of, from data which has been preprocessed or transformed in some other \"lay. Typ-

ically, the dimensionality P* of the subset of feature variables is less than p and usually

very much less than the number of observations, or spectra n. The feature extraction"

procedure aims to retain as much of the information as possible, whilst simultaneously

eliminating redundant features which do not contribute or have an adverse effect on the

statistical procedure.

Feature extraction can consist of three modules - a preprocessing module, a feature

transformation module and a feature selection lnodule. We first introduce some feature

selection strategies and then consider some feature transformation methods. It was decided

to make preprocessing methods a part of the section on feature transformation, since

preprocessing methods often involv~ some form of transformation. There are many ways

to perform feature extraction. In this chapter we discuss some modern and customary

approaches used for feature extraction.
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4.1 Featllre Selection
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As previously mentioned, feature selection involves selecting a smaller set of variables from

a bigger set on the basis of some criteria. The criteria used fat feature selection should

reflect the goal of the statistical analysis. For exalnple, if the goal is to assign an object

to a particular class as accurately as possible, then the criterion for variable selection

could involve a misclassification rate.- Or, if the goal is to select variables which are used

to pred-iet some response such as the concentration levels of chemical substances, then

feature selection could be bas~d upon the predictive residual sum of squares.

'iVhen feature selection is based on the original data which mayor may not have been

preprocessed, then the procedure is sometimes called variable selection· as opposed to

feature selection. In this thesis we allow feature selection to be a selection of either the

transformed data Of, the original data. When feature selection is from the original data,

the feature transformation is via the identity matrix.

One item which needs to be addressed is the number of features to be selected. Of course

this will often depend on the kind of statistical method which is implemented. F~r example

it is possible to have more variables for Bayesian linear discriminant analysis than Bayesian

quadratic discriminant analysis. Some examples of references which address the topic in

a classification perspective include [36,47, 114, 113]. While references which address this

problem and related issues with respect to regression analysis include [106, 120].

We now consider feature selection strategies separately for discriminant analysis and

regression problems.

4.1.1 Feature Selection Strategies for Discriminant Allaly-sis

In this section we present a brief overview of some of the many feature selection strategies

that can. be applied in discrim.inant analysis. There are two main goals of discriminant

analysis. The first is to accurately predict group memberships of unclassified objects and

tIle second is to observe and understand the spatial separation of objects wllose group

identity has been established. These two goals are quite different, and it is recommended

by IvlcLachlan [102} that the criteria should reflect the aim of the discriminant procedure.

As mentioned above, if the goal is assignment, then the variable should be selected on
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tIle basis of an error rate. If hovvever, one is purely interested in observing SOHle spatial

separation, then the variable selection criterion should be based on a measure of separation.

Of course it is still possible, in some cases, to obtain favourable classification rates from

variables selected by rneasures of separation. Some separa.tion criteria include the ratio of

between-to-\vithin~variability,Mahalanobis distance [7, 99J, E·uclidean distance and vVilk's

Lambda [102].. Assignment or allocation criteria usually involve clas,.sification rates or

posterior pro'babilities.

\Afu et al [148] €lnpIoy SOlne of the above criteria. when inlplementing univariate fea­

ture selection techniques. One feature selection method involves selecting variables which

produce high values of the ratio of the bet\veen-to-within variability~ l"'hat is, for each

variable, the between-varia.bility divided by the vlithin·-variability is calculated and the

variables which produce large values of this quotient are used as input to the classifier.

'This Ineasure of betvveen-to-\vithin~variabilit}Tis sometimes referred to <...8 the I~ishers cri­

terion. A second scheme chooses variables that are most correlated with the (ordinal)

response which~ in this case, is the vector of group labels. ...A..nother feature selection

method .utilized by the sanle authors involves searching for non-overlapping regions of the

spectra froln different classes. rOf each. variable the range of response values for each of

the groups a.re indiviclually deternlined. If the response ranges for S0111e variable, for each

group are non-overlapping (distinct), then that particular variable is a likely candidate to

be selected. Ideally, the variables for vlhich the response ranges (for each of the groups)

are nlost separated \vill b.e extracted and used for classification.

Consid.eration should also be given to selecting c0l11binations of variables. For exanl­

pIe t"vo features chosen separately may produce less favourable results than t"vo features

chosen in cornbination. With high diruensional data it is not realistic to perform an ex­

haustive search of every possible combination of variables~ In this case1 stepyvise methods

can be considered. 1~ forward stepwise search seqllentia.lly incorporates variables into the

discriminant procedure that contribute to the discrilnination pOVv'-er of the model. Gen­

erally, variables cease to enter the ITlodel when little or no change to the perforrnance

'of the discriminant model is registered. Conversely, a backward step"\vise search renloves

variables from the model until the perfoIrnance of the model begins to deteriorate. In

the presence of high dimensional data, it is not advisable to use a backward stepvvise
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search, since initially all the variables will be fed to the classifier which will lead to ill­

and poorly-posed situations, not ~o mention the computational expense and the numerical

instabilities which are likely to arise. Instead, a backward selection scheme could be used

following-the irrlplementation of a forward stepwise selection method.

One possible forward selection scheme is as follows; first select 'the variable which gives

the largest value of Wilk's Lambda A. Calculate A for every remaining variable (in combi­

nation with the first selected variable) and enter the variable which gives the largest value

of A.. If A(i) equals A at the'ith iteration, then the routine continues until A(i+l) - A(i) ::; .6­

where ,6. is prespecified.. If the purpose would be to find a set of variables which classi­

fies accurately the same procedure could be employed, but with a cross-validated correct

classification rate replacing A. Since stepwise techniques involve repetitive calculations,

it is worthwhile to make use of fast updating formulae [2]. This avoids the need to com­

pletely recalculate parameters such as the covariance matrix and dramatically reduces the

computational burden.

The SAS [122] and SPSS [109, 108] statistical computing packages have an option for

. performing stepwise discriminant analysis. SAS allows for a forward, back\vard, and

forvvard/backward combination wh~ch enters/removes variables according to the Wilk's

Lambda criterion [132]. SPSS, also has a stepwise procedure which combines the features

of a forward and backwards selection procedure. There are several selection criterion made

available for entering and relnoving variables from the modeL These criterion are based

on Wilk's Lambda, Rao's V, Mahalanobis distance, between groups t-statistic and the

sum of unexplained variance. The reader is referred to [108J for more details about these

criterion ..

Another multivariate variable selection method is the bran-ch-and-bound technique.

This technique becomes very inefficient when there are 30 or more variables [48, 58].

4.1.2 Feature Selectioll Strategies for Regression Allalysis

One of the most standard feature selection procedures applied in regression analysis are

stepwise approaches.. Stepwise procedures for regression analysis can be forward, back­

ward, or a combination of forward and backward procedures. As is the case with stepwise

procedures for discriminant analysis, backward procedures are generally not recommended
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as the initia1 procedure to apply for highly dimensional data, since 111any instabilities are

likely to arise.

r\ silnple criterion :which is used for the entry of variables into a regression equation is

the residual sum of squares . .-j\. stepwise procedure which is applied in Chapter 8 is similar

to that outlined in Draper [29J. For each variable the Rfrain of the lnodel was calculated.

The variable vv"hich gave the largest increase in R~rain entered the model. At each iteration

all the variables in the current model were tested for removaL Variables \vere rerrloved if

their t-statistic for testing if the regression coefficient is significantly different from zero,

was less than some prespecified amount. ~rhe procedure stopped when no more variables

were retained in the model, or, until there \vere P* variables in the model vvhich ever carne

sooner. Here, P* vvas also prespecified-

In earlier discussions about Inudel selection criteria it vvas noted that as more terms

are added into a ll10del the residual sunl of squares (or R-squared) value \vill decrease~

It may seem contradictory to have stepwise methods continually incorporating variables

into a model based on this criterion. In practice, one typically plots the residual sum of

squares against the iteration of the stepvvise procedure. Small changes in- the resiclual sum

.of squares fronl aIle iteration to the next usually imply that the drop in residual sum of

squares is a consequence of a<lding variables into the model, and not froill the variables

providing more useful information. The t-statistic which is calculated at each iteration for

testing if the coefficients a,re zero at each iteration can a.lso help form a safeguard against

this problem. This t-statistic is a.lso .quite useful since as more terms are incorporatecl

into the rHodel, va.riables "vhich entered the equation in the early stages of the stepwise

procedure can be found to be less useful, as other terms enter the Inodel.

Stepwise techniques usually come standard in many statistical packages for regression,

these include Sl~S [122J,. SPSS [109J and S-Plus [126J for exalnple. Splus (version 3~2) al-

lo\vs for these three stepvv-ise procedures to be perfoTlned. The forvvard stepwise procedure

begins to include variables into the model which give the largest decrease in residual SUIn

of squares, while the backward procedure begins to delete variables (initially from tIle full

model) "\vhich give the sluallest decrease in the residual sum of squares. EfroyrIlson's step-­

"vise nlethod cOlnbines a for\va.rd entry and backwards deletion scheme (VvThere necessary).

T'his is sirnilar to a forwa,rd procedure, except each time a new variable is incorporated
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into the model, partial correlations [29, 106] between the .independent variables and the

response are considered to determine if any variables should be removed from the modeL

Spius also allows for a~ exhaustive procedure, where the smallest residual sum of squares

of all possible variable subsets of a specified size are calculated_ The final model has the

smallest residual sum of squares.

SPSS (version 6.1) allows for forward and backward stepwise .procedures as well as a

combination s~epwise method which tests if any variables should be removed from the

model at each iteration of a forward procedure. The criteria which SPSS allows the user

to ~pecify for variables to enter or exit a model are a t-to-enter/exit or the probability of

t-to-enter/exit. Note that criteria based on partial correlations, t-statistics or f-statistics

~an be considered equivalent.

SAS (version 6.03) also allows for forward, back\vards and the combination method

as well as forms of best subset searches of a specified size. The fOT\vard/backwards and

combination stepwise procedures are based on the f-statistic criteri~n. The best subset

method searches for the subset of variables which give the most suitable .R-squared, ad­

justed R-squared, or Mallows' Cp , which ever is specified by the user.

For the above packages, we have mentioned that forms of exhaustive s~arches are avail­

able. For spectral data however, such searches can 'be very computationally expensive and

inappropriate, as was the case vvith exhaustive methods for discriminant analysis.

The branch-and-bound technique [48, 58J could also be used for regression, but is not

recommended as a feature selection technique for spectral data. Perhaps more appropriate

are genetic algorithms [89, 134J. Genetic algorithms have previously been used as a feature

selection method for regression see for exampie [74, 84, 85J ~ In [85J, the genetic algorithms

are also· used for outlier detection. Other variable selection strategies which are performed

in the presence of outliers include that discussed in Sommer et. al. [121] ..

Another Sill1ple feature selection strategy is to select the variabl~s which are most cor­

related with the response as described in [75]. The wavelengths which are most correlated

could then be used in a multiple linear regression model for example_
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4.1.3 Classification and Regression Trees (CART)
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CART is a nonparametric method which can be used for discriminant or regression analy­

sis. CART [10] is based on a recursive partitioning scheme and is an extension of the work

performed by [6, 9, 54, 64, 90, 103,43]. For a thorough account about the CART algorithm,

the reader is referred to Breiman et. al. [10]. Other useful references include [17, 117, 149].

Var(3)< 10 Var(3) > 10=----

Var(5)< -2.3

~
Figure 4.1: A CART model.

Var(5)? -2.3

8
CART recursively splits the datasets into homogeneous subsets. Figure 4.1 shows a

simple CART model which has a binary tree structure and contains 5 nodes. At the top

of the tree there is a single node which is called a root node, and is labelled by No. At the

next level, the nodes are referred to from left to right as N I and N 2• Similarly, at the next

level the nodes are N3 and N4• Nodes which do not have any descendants are referred to

as terminal nodes, thusNl> N3 and N4 are terminal nodes and are indicated by the square

boxes.

Initially, all the observations are stored in the root node. In Figure 4.1 the objects in

No are split depending on their measurements for var(3), where var(3) denotes the third

variable in the data set. All objects for which var(3)<10 move into N I , and all objects

for which var(3)210 move into N z. Node 1 is not split any further. Node 2 splits the
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objects based on variable 5. The objects in N2 that l1ave var(5)< -2.3 move into N3 and

the objects for which var(5)2:: -2.3 move into N4 . The objects in N 3 have var(3) 2::10 and

var(5)< -2.3. The objects in N4 have var(3) 2::10 and var(5)2: -2.3.

If Figure 4.1 "vas a classification tree, then each terminal node would be assigned a

group label. For example N 1==group 2, N3==group 1 and N 4 ==group 2. (It is possible for

terminal nodes to have the same class label). If Figure 4.1 was a regression tree, then each

terminal node would be assigned the mean response value for the objects in that node. For

example if Xi[l] denotes the ith object in node Nz, and n[ll denotes the number of objects in

node Nz, then the'terminal nodes in Figure 4.1 would have the values N1 == 2:~lli Yi[l]/n[l]'

N3 == 2:~~i Yi[3]/n[3] , and N4 == 2:~l4i Yi[4]/n[4] , where Yi[l] is the response value of xi[l]. A

response measure for a new object can be predicted by observing which terminal node it

would lie.

The CART algorithm splits the data vvith the aim of obtaining terminal nodes which

contain objects whose properties are similar. For classification, the goal is to split the

dat~ so that terminal no~es contain objects from the saIne class. For regression, the goal

is to have the objects with similar response measurements in each of the terminal nodes.

The CART algorithm searches each potential split point in the data set and chooses the

split point which minimizes some impurity measure of the nod.e ..

The impurity measure used for classification is entropy (see also Section 6.3.1). Here,

the impurity measure will be highest if the node has equal portions of objects from each

class, and will be minimal when the node contains objects from a single class only. The

entropy impurity measure is defined as

R

- ~P(rll) logP(rll)
r=l

where P (rjl) is the proportion of objects in node Nz which are from class I. The impurity

measure used for regression is simply the residual sum of squares.

The variables selected by CART may be good features to US~ vvith other multivariate

techniques. Alternatively, CART could be used as a stand alone method for classification

or regresSlon.

The CART algorithm as implemented in Spius ceases to split a node if there are too fevv

observations in the node, or when the impurity measure reaches a certain threshold. In
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the S-Plu8 statistical package, the minimum number of observations and threshold criteria

can be specified by the user. The reader is referred to [10, 17, 138J for more details.

4.2 FeatlIre TransfOl"IIlatioll

Examples of spectral features which maybe quite informative include the heights, pOSI­

tions or shapes of peaks for instance. Other features commonly used include principai

cOlnponents [33, 53] and Fourier coefficients [150, 147], while more recently, wavelet coef-·

ficients[8, 86, 118, 131] have been explored. The procedure for calculating a new set of

features is called feature transformation.

In this section we discuss some common and modern feature transformation methods.

First, we describe some preprocessing methods which can be applied to spectral data.

It can be considered slightly unusual to discuss preprocessing methods as part of feature

transformations, or indeed feature extraction. Since preprocessing methods usually involve

some transformation procedure, it has been decided to describe preprocessing methods as

part of the feature transformation section.

4.2.1 Preprocessillg Metl1.ods and Trallsformations

For some spectral data sets, it may be appropriate to preprocess the data before performing

statistical analyses. This can be done for several reasons. The obvious reason is that one

may. be able to obtain improved results from spectral data which has been preprocessed.

Another reason for transforming the data is so that the spectra can be appropriately

aligned. For example, if spectra representing samples of gasoline have been collected on

different days and it is obvious that some effect is present purely because the spectra may

have been obtained on different days, then a transformation could be used to counteract

this misalignment. Thus, SaIne transformations can be used to 'align' the spectra, so that

a fair assessment can be made. This section discusses some preprocessing transformations

which are commonly applied to spectral data.

Standard Normal Variate Transformation

The SNV transformation [5, 148] produces spectra of similar shape and slope as the original

(untransformed) spectra. If Xi == (Xli, X2i, ... , Xpi)T denotes the ith spectruIn, then the
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mean value of Xi is calculated by
1 P

Xi = - '2: Xli·
P 1=1

The sample standard deviation of the ith spectrum is then

56

CrXi =
2:r-1 (Xli - Xi)2

p-l

The SNV transformation of Xi is then defined as

where Ip is a px 1 column vector of ones.

Original

SNV Transformed

Figure 4.2: Demonstration of the SNV transformation.

Figure 4.2 shows the effect of performing the SNV transformation on five sample spectra.

It is seen that the SNV transformed spectra have a similar shape and slope as that for the

original spectra, but the variability between spectra is reduced.

Detrending

A single spectrum Xi may be detrended using a second degree polynomial as follows. Let

II = (vo, VI, .. ' ,vp_dT be a column vector of wavelengths which is to be regressed against
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Xi using a second degree polynomiaL That is
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Here, Ei is the'residual vector corresponding to the ith data vector, and b == (bo, b l , b2)T

are the regression coefficients which are found by

The matrix [lp v v 2 ] contains a p X 1 vector of ones in the first column, v in the second

column and v 2 in the third column. The detrended spectrum is obtained by

where

Figure 4.3 shows the effect of detrending and performing the SNV transformation on

five spectra. Detrending has the tendency to remove the baseline trend and curvilinearity,

but there is still some variability within the spectra. By taking the SNV transforlnation

on the detrended spectra, then this variability can be reduced.
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Original

Detrended

Detrended and SNV Transformed
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Figure 4.3: Demonstration of detrending combined with the SNV transforma­
tion.

Hull Q~otient

Another way of removing the baseline effects is obtained by taking the hull quotient.

This is cOIDlllonly used in geology and is a standard transformation option in the spectral

package PIMAVIEW (Ill]. The hull quotient does· not have an implicit mathematical

formula but it is obtained by finding the ratio of the spectrum to the lowest convex curve

lying above the given spectrum. Figure 4.4 provides a pictorial interpretation as to how

the hull quotient of a spectrum is obtained. In the subplot. at the top of Figure 4.4 there

are two lines drawn. The thick line is the lowest convex curve lying above the spectrum

(also called the hull), the spectrum is represented by the thinner line. By taking the ratio
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Original

Hull Quotient

Figure 4.4: Demonstration of the hull quotient.
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of these two lines at each point, the hull quotient spectrum is obtained. This is shown in

the subplot at the bottom of Figure 4.4.
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Second Derivative
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The second derivative transformation (2D) removes the slope and parallel shifts in the

spectra [5]. There are several complications which arise from the 2D transformation. One

is that the 2D transformed spectra look quite different to the original spectra. This makes

interpretation quite difficult.

Different packages may calculate the second derivative spectra in different ways. Typi­

cally, the 2D transformation consists of a differentiation operation and a fitting procedure.

The fitting procedure involves fitting a model to the data, and the differentiation procedure

then differentiates the fitted model at some point. Some packages perform an additional

smoothing procedure to the differentiated data.

vVe provide an example of a very simple procedure for calculating the second -deriva­

tive transformation of a spectrum, the results of which are displayed in Figure 4.5. The

smoothing and differentiation procedure is based on a moving window which contains 17

data points.

Original

'Second Derivative

Figure 4.5: Demonstration of the second derivative transformation ..
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Second Derivative Transformation

1. X=(Xl,X2""'Xp )

2. nw = odd number of data points in each window

3. nlr = (nw - 1)/2
4. j= (-nzr, ... ,-l,O,l, ... ,nzr )T
5. Xu = ( )
6. FOR i =1 + nZr to p - nlr
7. X w = (Xi-nl r ' ... , Xi+nIJ T

8. (bo,bl ,b2)T=([lnw j ?]T[lnw J j2J)-l[lnw J ?]Txw
9. Xu = (xu,2b2)

10. END
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Figure 4.6: A simplified procedure for performing the second derivative trans­
formation.

The algorithm used for performing the second derivative transformation which produced

Figure 4.5 is described for a single spectrum in Figure 4.6. Steps 1 - 4 are simply ini­

tialization procedures. The spectrum x = (Xl, X2, . •• , xp ) which contains p evenly spaced

points is to be transformed using the second derivative transformation. The notation nw

indicates the number of points for which a second degree polynomial will be fitted, that is,

the number of points in the window. The second derivative will be calculated for the point

in the middle of the window. The midpoint has nZr = (nw - 1)/2 points to the left and

right of itself. Step 4 constructs the independent variable whose values are indices which

range from -nzr to nzr . The transformed spectra will be labelled as X2d. In Step 5, X2d is

initialized as a vector with no components. Step 6 begins the FOR loop, which is indexed

from i = 1 + nlr to p - nzr . This index range was chosen since it avoids any complications

which may arise at the end points. These values for i represent the indices of points for

which the second derivative will be calculated. If it is necessary to calculate the second

derivative at the end points we refer the reader to Gorry [55] for further details. Step 7

extracts the data points from x which are in the current window, and will be fitted using

a second degree polynomial. A second degree polynomial will be fitted to X w as follows
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for which. the second derivative is equal to 2b2 .. Step 8 calculates the coefficients of the

second degree polynomial and Step 9 stores the second derivative information in X2d ..

A more sophisticated approach for calculating second· derivative data can be based on

the work performed in Garry [55J. Garry [55J describes a least squares smoothing and

differentiation procedure which is based on the Savitzky-Golay'convolution method [123J.

The method of Garry fits a series of Gram polynomials to windoyvs of the spectrum. Their

method also allows for derivatives of a higher order to be calculated.

Mean, Centering

Mean centering is quite a convenient and common transformation to apply to spectral data

which is to be used for regression analyses .. This is especially the case when partial least

squares and principal component regression are the regression methods being applied .. If

is the mean (column) spectrum of the spectral data set X, then the centered spectra are

obtained as fo110\V8'

-Xi -x

for i = 1,2, ... , n. Equivalently, the data matrix can be Inean centered by

As can be seen in Figure 4.7, when the data is mean centered each of the variables sum

to zero. This results from the data being spread evenly around the horizontal axis..

Subsampling

Subsampling refers to the procedure of omitting every lth data point (or variable) I E Z.

For example, if the reflectance of a spectrum has been measured for the wavelengths

400,401, .... ,2200 nrn, then a subsampled spectrum may consist of reflectance measurements

for every second wavelength i.e. 400,402,404,_ .. ,2200 nm. If the spectra have been obtained

by measuring the reflected (or absorbed) radiation for consecutive wavelengths, then in

many cases little information will be destroyed by subsampling by small factors of 1, eg

l == 2,3,4.
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Original

Mean Centered

Figure 4.7: Demonstration of mean centering.

4.2.2 Principal Component Analysis (peA)

63

Principal component analysis (peA) also known as the Karhunen-Loeve method is 'mostly

recognised as a dimension reducing technique in both statistics and engineering.. In statis­

tics, peA is often used for reducing the dimensionality of a data set .. It can also be used

as an exploratory technique to help identify relationships among variables or even to help

identify outliers or spurious points.

Principal component analysis seeks linear combinations of the original variables, such

that the variance of the transformed objects is maximized. Equivalently, we seek the linear

transformation

p == XTa

which maximizes

subject to aTa=l, where ST is the total. covariance matrix of X. The vector p is the

principal component which contains n principal component scores (one score for each

object), and a == (al,a2, ... ,ap)T is the vector of principal component coefficients. The
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maximization problem reduces to solving

(ST - --yI)a == 0.

64

(4.1)

Notice that there will be p eigenvalues 11 2: 1'2 2: ... 2:: IP and p corresponding eigenvec­

tors al ,a2, . '.. ,ap where each ai. == (ali, a2.i, ... , api)T produces p corresponding principal

components PI, P2, ... , Pp, which IS the nevv coordinate system.Premultiplying Equa­

tion 4.1 with aT it can be seen that the eigenvalues ti == variance(pi) == aTSTai. The first

principal component has the largest variance. The second, principal component has the

next largest variance such that it is uncorrelated with PI and so on for P3, ... ,pp. We vviII

store the principal components as columns in the n1atrix P. For more details the reader

is referred to [72, 71].

Principal components can also be derived by using a singular value decomposition of

the column centered matrix X~. The singular value decomposition of Xr can be written

where S is a n X n matrix, V is a n X p and V is a p X P matrix. The squared elements

along the ith diagonal of 1) are proportional to the eigenvalues Ii of the covariance matrix,

that is
v~·
-E.. == ti.
n

The orthogonal unit eigenvectors ai for i == 1, ... ,P of the covariance matrix are stored

in the ith corresponding column of V. The principal component matrix can then be

calculated by
. T

P == X V,

and the centered principal components are formed by

The discussion sq far has focused on finding the eigenvalues and eigenvectors of the

covariance matrix of X. The principal components can also be calculated from the corre­

lation matrix of X. Generally this approach is recommended if the units of the variables

in X are measured on scales with widely differing ranges or if the measurement units

differ .. There is some mathematical simplifications which occur if the correlation matrix
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is analysed. One useful result is that the principal component coefficients aij which have
\

been calculated from the correlation matrix are directly proportional to the correlation

between the ith principal component and the jth variable, or more formally

Pij = aijVvariance(pj).

Provided the data are correlated, which is true of spectral data, then most of the

variability in the entire data set is accounted for in the first few principal components.

This is an attractive feature of peA. When PCA is being applied in conjunction with

regression or discriminant analysis one item frequently overlooked is that, while most of

the variability in the data can be accounted for in the first few principal components, these

components are not necessarily the best for discrimination [102] or calibration [75J. This

is because the criterion in which the principal components are constructed is not related

to a regression or discrimination criterion, i.e, the data matrix is decomposed without any

reference to the response vector (regression) or to the vector of group labels (classification) ..

For this reason, it can prove to be advantageous to use peA followed by a feature se­

lection technique. For classification purposes, SIMCA [38, 144] which is a popular chemo­

metrics method, skillfully takes advantage of peA. Here, the principal cOlnponents are

used to model the data from each class, and an object is assigned to the appropriate class

depending on the distance between the object and the class model. Another approach

for classification is to select the principal components based on a stepwise strategy [28J.

Similar stepwise approaches have been used for calibration [75]. When principal com­

ponents are used for regression, the procedure is typically called principal component

regression (peR). Instead of using the principal components as features for the statistical

techniques, peA can be used as a feature selection technique for selecting the original

variables a Jouan-Rimbaud et at. [74] select the wavelengths for calibration which llave

a high loading on the principal components. These particular principal components have

previously been selected for regression by use of a stepvvise procedure.

There is yet another way in V\Thich PCA can be used to provide information about which

variables are important for the particular statistical procedure. This is achieved by using

biplots which are a graphical representation of data. Biplots can be considered as an

overlay of two scatterplots. The first plot could be the scatterplot of the first principal

component versus the second principal component which shows the n principal comp·onent
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scores. The second plot gives the relative positions of the p variables by plotting lines such

.that the lengths and direction of the lines for each of the wavelengths provides an indication

as to which variables are important for each component. Thus if we know that the second

principal component is useful for regression, and if the pth variable lies a fair distance

along and near to this axis, one can then presume that this variable may be important

for regression. Basically, biplots are a visual tool for investigating the loadings of the

variables, and providing visual information about the correlation structure between the

variables and objects.

A disadvantage of PCA is that if 0I!€ spectrum is changed, then so do all the princi­

pal components. Another item of somewhat in1portance is that peA does not take into

consideration the particular ordering of variables (i.e. shape) of a spectrum~ By inter­

changing the wavelengths so that the spectra become completely rearranged, the principal

components will not be altered. The Fourier transform which we discuss next, does take

into account the ordering of a spectrum. Also, if one spectrum is altered, then only the

Fourier coefficients pertaining to that spectra vary.

4.2.3 Fourier Tral1sform (FT)

A transformation often used vifith high dimens~onal data, particularly infra-red and near

infra-re~ spectra is the Fourier transform (FT). This transformation was initially used

in spectroscopy as a way of increasing the signal to noise ratio. The FT is also useful

for providing visual interpretations of spectra, so useful in fact that many instruments

perform this transformation automatically.

The FT [112] represents a function or discrete signal as a linear combination of complex

exponential basis functions. Let x == (xo, Xl, ... , Xp-l) denote a discrete object such as a

spectrum, then the discrete FT is

p-l
~ ~- ~ ,._ ..

Wl == L..-Xl exp(J*'27r1,L/p),
i==O

and the inverse discrete FT is
1 p-l

Xi = .:::.L wzexp(-j*27riljp) where j* = v=I.
P [=0

The Fourier coefficients convey information about the underlying frequency content of

a spectrum, that is, they represent the weight to which a basis function of a particular
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frequency contributes to the fit of the spectrum. Since the Fourier coefficients are com­

plex nun1bers, the magnitude of ,each Wz, denoted by I Wz I, is typically used for further

multivariate analyses_

One of many references vvhich have applied Fourier method's in .classification is that by

Young and Calvert [150], who mention that the frequency spectrum obtained by a FT of

signal in the time domain can be quite valuable for the classification of speech signals.

Wu et aL [147] have also demonstrated that the Fourier transform is a useful feature

extraction method to apply for classification ..

While the FT does take into consideration the ordering of a spectrum, the Fourier

coefficients are not localized.. If one part of a spe<;truffi or signal is changed slightly,

then all the Fourier coefficients change as a result. To avoid such global effects, wavelet

coefficients which are produced from the wavelet transform can be used. The wavelet

coefficient~ are able to convey localized frequency information of a spectrum.

4.2.4 Discrete Wavelet Transforn1. (DWT)

The wavelet transform has mostly been used for data compression and denoising. Some

examples mentioned by Vidakovic and Muller [139] in their tutorial paper include com­

pressing fingerprint images and denoising old sound recordings. It is only recently that

the DWT has been considered as a feature extraction method for discriminant analy­

sis [8, 86, 96, 118, 130, 131, 133, 141J. Wavelet coefficients have also been used in regres­

sion analysis, but are mostly used for function estimation purposes, or in situations when

there is a single independent variable.

The advantage associated with the discrete wavelet transform is that the output (or

wavelet coefficients) convey localized frequency information about a signaL The local­

ization is achieved by using basis functions (or basis vectors for discrete data) which are

dilated and translated b~y different amounts.

Tate et~ al. [131] have used the D\iVT for classifying magnetic resonance spectra (MRS).

TIley perforlned a peA on the wavelet coefficients from the DVvT which were correlated

with the class labels. The principal components were then used as features for classifica­

tion. The authors noted that while their results were slightly better than typical methods

for analyzing MRS data, the use of the DWT, allowed for a more automated procedure
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and reduced the amount of pre-processing.

Bos and Vrielink [8] found that the classification accuracy was improved when they

chose to supply sets of wavelet coefficients to the classifiers, as opposed to supplying the

full spectra. The classification results were based on a linear classifier and a non-linear

neural network classifier. They also- stress that computational expense was somewhat

lessened by training the non-linear neural network on' data of reduced dimensionality.

Saito and Coifman [118] provide an automated approach using the wavelet packet trans­

form (WPT) for discriminant analysis. The wavelet packet transform is an extension to

the DWT where the \vavelet coefficients are organised in a binary tree structure. They

also make use of the best-basis algorithm due to Coifman and vVickerhauser to select an

orthonormal basis for signal classification [20J. Their application on two simulated data

sets of dimension 32 and 128 highlights the potential of wavelet coefficients as features for

discriminant analysis. The classifiers FLDA and CART were applied using the full data

set and the reduced set of wavele~ packet coefficients. It is clearly noted that less biased

results were obtained with the wavelet packet coefficients. Both FLDA and CART on the

original data had the tendency to overfit. The method of Saito and Coifman, which is

referred, to as the LDB algorithm for local discriminant bases is discussed in greater detail

in Section 5.14.2.

Learned and Wilisky [86J have also used the WPT for classification. The energy of the

nodes in the WPT is calculated by the mean sum of squared coefficients in each of the

nodes. A selection of these measures of energy are then used for classification. vValzcak et.

al have also selected features from the wavelet packet transform using univariate feature

selection strategies and the LDB algorithm.. The features were used for classifying NIR

spectra.

A ne"v and innovative technique based on adaptive wavelets, which ailns to reduce

the dimensionality and optimize the discrilninatory criterion is presented in Mallet et.

al [96, 94J. The discrete wavelet transform is utilized to produce wavelet coefficients which

are used for classification. Rather. than using one of the standard wavelet bases, they

generate the wavelet which optimizes specified discriminant criteria. The application of

adaptive wavelets has also been extended to regression analysis.

Previous applications involving the optimization of wavelets for classification include the
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work performed by Telfer et. al. [133] and Szu et. al. [130] .. Telfer et al. [133] consider

optimizing the shift and 'dilation parameters of the discretization of a chosen wavelet

transform, while Szu< et. al. [130] sought the optimal linear combination of predefined

wavelet bases for the classification of speech signals.. The adaptive wavelet method -is

made distinct because tIle wavelet" is designed from i~s humble beginnings. It also allows

for the general m-band wavelet transform to be utiliz~d, as opposed to the more common

, 2-band wavelet transform ..

Adaptive wavelets are presented in Chapter 6. This follows a gener~l overview of wavelet

tl1eory which is pr.esented next.



Chapter 5

Wavelets

In the previous chapter we mentioned that wavelet coefficients might be good features

to use as input to multivariate statistical techniques. Wavelet coefficients are potentially

good features because they are able to detect changes vvhich occur rapidly in a signal

(or spectrum) as well as changes which occur over a longer duration in the signaL More

importantly, wavelets have the ability to detect when the changes occur, unlike Fourier

coefficients.

Consider the following example \vhich demonstrates the ability of wavelet coefficients

to capture local events. Figure 5.1 plots the function sin(2t) which has been sampled 512

times in [-Jr, Jr]. The sine curve on the right has a small disturbance at t ~ 1.5. Below

each of the sine curves are the Fourier coefficients and the wavelet coefficients. Since the

Fourier 'coefficients are complex, the magnitude of the coefficients is shown. Two plots of

tile Fourier coefficients have been shown. When the first half of the Fourier coefficients

are displayed, it is difficult to detect any change in the Fourier coefficients produced for

the original and disturbed signal. This is due to the large coefficient at the second index

which reflects the period of the sine curve. When the magnitude of the 3rd- 19th Fourier

coefficients are considered, then one can note the difference in Fourier coefficients produced

from the two signals. Whilst the Fourier coefficients are different for the disturbed signal,

(compared to the original signal) the small disturbance at t ~ 1.5 is absorbed across most

of the Fourier coefficients. However, in the case of the wavelet coefficients Illost of the

disturbance has been absorbed by only a few of the coefficients. What is also appealing

is that the change in wavelet coefficients occurs in approximately the same region as the

disturbance in the sine curve.
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Figure 5.1: Fourier and wavelet coefficient ofa sampled sine signal, with (right)
and without (left) a small disturbance.

Itshould be mentioned that the relatively large disturbances occurring atthe Oth index

for the wavelet coefficients (left and right) can most likely be attributed to end effects. In

this example we have endeavoured to provide some motivation for the use of wavelets in
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statistics, and ill particular, highlight some of the favourable properties they possess for

feature extraction.

5.1 Introduction

Essentially, the wavelet transform allows us to view signals through different 'windows'.

Some windows provide high frequency )nformation and some vvindows provide low fre­

quency information. The wavelet coefficients shown in Figure 5.1 are from a high frequency

window.

We now set out to discuss in more detail the theory of wavelets. To avoid confusion,

it should be stated that much of the theory of wavelets has evolved from continuous

functions, so wavelets are initially explained in this chapter by using functions which are

continuous. Following this, the wavelet transform for discretely sampled data is presented.

Wavelets form a set of basis functions which can be used to represent a function which

is from the class of square integrable functions L2 (R). The set' of basis functions are

derived by translating and dilating one basic wavelet, called a mother wavelet. The di­

lated and translated wavelet basis functions are called children wavelets. The coefficients

in the expansion of the vvavelet basis functions are calculated by the wavelet transform,

and the coefficients are r~ferred to as wavelet coefficients. The wavelet coefficients convey

information about the weight that a wavelet basis function contributes to the function.

Since the wavelet basis functions are localized and have varying scale, the wavelet coef­

ficients therefore provide information about the frequency-like behaviour of the function

(e.g. Figure 5.1).

To gain a better understanding of wavelets and their special characteristics, we first

recall some details about Fourier analysis. The traditional Fourier transform provides

information about the overall frequency content of a signal. The windowed Fourier trans­

form (also called the short time Fourier transform) was introduced so that the frequency

information about a signal could be localized. This is done by analysing pieces of a signal

using a windowing function. In many instances, the procedure for determining the width

of the windowing function is not straight forward. If a window width is too small or too

large, then important information may still remain undetected or become distorted. The

wavelet' transform differs froln the windowed Fourier transform, in that it allows us to
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view the signal through windows whose widths vary in size.

The Fourier transform and windowed Fourier transform are briefly introduced in Sec­

ti011S 5..2 and 5.3, respectively.. For a more complete account of Fourier theory see for

example [19]. The continuous and discrete wavelet transforms (both of continuous func­

tions) are introduced in Sections 5.4 and 5.5. Multiresolution analysis is then described in

Section 5.6. Multiresolution analysis provides a neat framework for better understanding

wavelets, what they represent and also leads to a fast algorithm for estimating the discrete

wavelet transform. This is referred to as the fast wavelet transform and is discussed in

Section 5.7 .. Higher multiplicity wavele~s are discussed in Section 5.8. Each of the sections

outlined above make reference to continuous functions (also .referred to as continuous sig­

nals). Although our spectral data is discrete, we have decided to first discuss continuous

signals, because it provides a historical account of wavelet theory, which then allows us to

draw analogies between the wavelet transform for continuous functions and the vvavelet

transform for discrete data.

The discrete wavelet transform of-discrete signals is then introduced in Section 5.9.

If the reader wishes to avoid much of theory of wavelets in order to obtain a practical

account of wavelet transforms, then they might like to advance to this section. The discrete

wavelet transforms of (discrete) signals is introduced using ideas from filtering processes.

The traditional wavelet transform is then extended to the more general m-band wavelet

transform in Section 5.10 for a single object, and in Section 5.11 for an entire data set.

Filter coefficient conditions are discussed in Section 5.12, and Section 5.13 gives a brief

account of some boundary related issues before the idea of wavelet transforms is extended

to wa"velet packet transforms in Section 5.14. Wavelet packet transforms have a tree based

structure with parent and children nodes.

In this thesis we apply vvavelets which are orthogonal and have compact support, that

is, they are non-zero over a finite interval only. lvfuch of the literature is perhaps biased

towards· discussions on orthogonal wavelets because they are convenient and simple to

implement. However, we feel that is necessary to make the reader aware that wavelets

need not be orthogonal and that wavelets with other properties can be quite useful too.

Briefly, when using an orthogonal basis it is not straight forward to obtain a wavelet which

.has symmetrical properties [24, 80J and allows for an exact reconstruction. That is of course
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with the exception of the trivial Haar wavelet. Biorthogonal wavelets relax the assumptions

of orthogonality, and allow for a perfect reconstruction with symmetrical wavelets. There

are also semiorthogonal wavelets whi,ch, are slightly more restrictive than biorthogonal

wavelets, but may also be worthy of consideration. This thesis does not want to discuss

in great detail other forms of wavelets, but simply wishes to mention their existence, and

directs the reader to [14, 24, 70, 128, 105] for more information. Strang [128] presents a

section on the symmetry and orthogonality i~sue and suggests some alternative approaches

which can be considered if both symmetry and orthogonality is required. Turcajova [136]

provides an excellent discussi~n on the application of higher multiplicity wavelets as an

alternative approach to using wavelets with symmetrical properties. Besides the fact that

many applications utilize wavelets which are orthonormal, we prefer to discuss orthogonal

wavelets because it provides a convenient frame in which to design wavelets, as will be

discussed in Chapter 6.

5.2 Fourier Transforll1

Let f(t) rep~esent a signal from the L 2(R) class of functions, that is I~oo f2(t)dt < 00 .

The continuous (integral) Fourier transform of f(t) "is then written

FFT(W) =1: f(t)e-j·wtdt, (5.1)

where t E R an'd j* = y=I. Equation 5.1 states that in order to obtain information about

a single frequency w, it is necessary to integrate over the entire signaL Thus, any isolated

frequency changes in the signal is averaged with the frequencies across the remainder of the

signal. vVe would like to extract information pertaining to short bursts of high frequency

activity from a signal. This leads to the windovved Fourier transform [49, 76J which was

designed to provide localized frequency information about a signal.

5.3 Windowed Fourier TransforIll

The windowed Fourier transform of f(t) is defined as

FWFT(W,b) =1: f(t)G(t - b)e-j·wtdt t) b E JR (5.2)

for some vvindow function G(t). The windowing function should have a finite integral and

be non-zero over a finite interval. In general, window functions place more weight on the
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function which, is central to the 'Vvindow, and less weight as the function nears the border

of the window. Equation 5.2 is essentially performing t,he Fourier transform on weighted

blocks of f(t) in an attempt to acquire localized-frequency- information about f(t). The

Fourier coefficients are now a function of t,vo variables, wand b. The parameter b controls

the translation of the windovv tunction.

There are some dravvbacks;.).~~nri;:l.t.pdwith the windowed Fourier transform. The preci­

sion with which the localized frequency informat~on is ,obtained· is limited by the size of the

window. Choosing a window width too small may obscure effects ofa slightly larger scale,

and vice versa. There exists a tradeoff between time and frequency localization which

is dependent on the window size. This tradeoff may be less apparent, if the size of the

window could be adjusted. That way, we would be able to obtain information about higll

frequency events, which change quickly in time, as well as low frequency events, which

change slowly over time. This is what wa.velets set out to achieve. W~velets are windowing

functions which, as well as being translated in time, are also dilated by varying amounts

in scale.

5.4 Continuous Wavelet TransforIll

Wavelets are translated and dilated versions of a single wavelet, called a mother wavelet ..

Figure 5.2 displays some translated and q.ilated wavelet basis functions from the Daubechies

family [24,22]. J\tlathematically, the. windowing function G(t - b), is replaced with a win­

dow function of the fornl G (t~b), where a is the dilation parameter. The windowing

function in· the continuous vvavelet transform (mother wavelet) is often denoted by 1./;(t),

and the children wavelets are then 1j; (t:b). The continuous wavelet transform

1100 (t -b)FcwT(a, b) =1 a 1- 2 -00 f(t)'lj; -,a- dt a, b E R, a -:f:. 0

Notice t:h.at the frequency pa-
1

rameter w has been replaced by the dilation or scale parameter a. The. factor I a 1- 2 is

included so that the rescaled wavelets all have equal energy, that is, II 'ljJ (t~b) JI==lJ 1jJ(t) 11·

The original signal can be reconstructed using

11OO jOO 1 (t-b).dadbf(t) =: - FCWT(a, b) I a 1-2 'if; - -2-
C -co -00 a a

(5.3)
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Figure 5.2: Some wavelet basis functions from the Daubechies family.

where c is a constant calculated by c = 27l'J I 'ljJft 1
2 dw / I wi. For c to be finite the Fourier

transform of the mother wavelet should equal zero, i.e., 'ljJFT(O) = 0 and 'ljJ(t) oscillates so

that its integral is zero. A decaying function 'ljJ(t) with J 'ljJ(t) = 0 is a suitable wavelet for

the continuous wavelet transform [128].

It is not necessary to perform the continuous wavelets transform for all values of a and

b, since f(t) can be reconstructed from a much sparser set of (a, b) values. In fact, it

is possible to obtain an analysis which is just as accurate, and more efficient, by using

discrete values for the parameters a and b. This leads to the discrete wavelet transform

(of a continuous signal).

5.5 Discrete Wavelet Transform

Restricting the parameters a and b to represent the discrete measures
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where j, k E Z, m 2:: 2, m E Z+, then the discrete wavelet·transforrn is defined

77

FDWT(j, k) = mj
/
21: j(t)'IjJ(mi - k) dt j, k E Z .

Typically, m is set at two [42, 23, 22], in which case the mother wavelet is stretched or

compressed by factors of two. Wavelets with m > 2 are sometimes referred to as higher

multiplicity wavelets - these are discussed in Section· 5.8 .. OUf immediate discussion will

however assume· that m == 2 unless otherwise stated.

5.6 Multiresolution Analysis

Multiresolution analysis (MRA) [24, 91, 92] provides a concise framework for explaining

many aspects of wavelet theory such as how wavelets can be constructed [128, 70]. MRA

provides greater insight to the representation of functions using wavelets and helps estab­

lish a link between the discrete wavelet transform of continuous and discrete signals. The

MRAalso allows for an efficient algorithm for implementing the discrete wavelet trans­

form. This is called the fast wavelet transform and follows a pyramidal scheme. Of course

it should be stated that MRA still exists in the absence of wavelets, and that wavelets need

not be associated with a multiresolution. However, the vvavelets which we prefer to use, i.e.

those with compact support, vvill, in most instances- be generated from a MRA. For tllese

reasons it is desirable to have wavelets which satisfy the ·properties of a multiresolution.

Multiresolution analysis allows us to represent functions at different resolutions, whicll

can be likened to wavelets analysing functions through different size windows. A multires­

olution divides the space of all square integrable functions L 2 (R), into a nested sequence

of s~bspaces {Vj}jEZ. Each subspace corresponds to a particular scale, and this provides

the key for representing functions from L 2 (IR) at different resolutions. The reason being,

given some function f(t) E L2(lR), then f(t) has pieces in each subspace~ Let tVj denote

the piece of f(t) deposited in Vj, then fVj is an approximation of f(t) at resolution 2i .

There is something special about fVj' it is not just any approximation of f(t) at reso­

'lution 2j , it is the closest approximation to f(t) at this resolution. That is,

'if g(t) E Vj, IIg(t) - f(t)11 ~-llf~· -. j(t)lI,

hence, fVj is an orthogonal projection of f(t) onto 17j. The subspace Vj contains all the

possible approximations of functions in L2(~) at resolution 2j •
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For the subspaces to, generate a multiresoiution, they must satisfy some conditions.

It 11M already been mentioned that the subspaces are nested, this means that vj 'E Z,

Vj C 0+1. That is, a function at a lower resolution can be represented by a function at

a higher resolution. Another condition is limj-+_oo 0 == n0 == {O}. Since information

about a function is lost as the resolution decreases, eventually the approxilnated function

,viII converge to zero. Conversely, as the resolution increases the approximated, function

gets progressively closer to the original function, thus, limj-+co 0 == U0 == £2 (R).

Where do these subspaces come from? The subspaces {Vj} can be generated from each

other by scaling the approximated functions in the appropriate subspace such that,

g(t) E Vj {::> g(2t) E 0+1 j E' z.

It can also be stated that integer translates of the approximated functions, remain in the

same subspace:

g(t) E Vj <=? g(t - k) E Vj j, k,'E z.

Summarising, the sequence of subspaces {l/j}jEZ is a multiresolution of L 2 (R) if the

following conditions are satisfied:

,2. g(t) E Vj {:} g(2t) E 0+1

3. g(t) E 0 {::} g(t - k) E Vj

If {Vj}jEZ is a multiresolution ofL 2 (R), then there exists a unique function ¢(t) E L 2 (R),

called a scaling function such that {<pj,k (t) . == 2j/2¢(2j t - k)} is an orthonormal basis

of Vj [92]. This then implies that any function in Vj can be represented by a linear

combinatioll of the {¢j,k(t)}. Hence, the orthogonal projection of f(t) E L 2 (R) into 0
can be expressed as

00

IVj = L Cj,k<pj,k(t).
k==-co

the coefficients Cj,k are called scaling coefficients. Since Vo C VI,

00

<p(t) = V2 L £k<P(2t - k).
k=-oo .

(5.4)
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So how do w~velets enter the picture? Wavelets are basis functions which can be used

to represent the information lost in approximating a function at a IO"'\\Ter resolution. This

difference is called the detailed part of the function. We prefer that this erro"r lie in

the orthogonal complement of the Vj's. Consider the difference between approximating a

function at resolution 2j and at 2j +1 • This difference will lie in the orthogonal complement

of Vj \vhich is denoted by Wj such that,

(5.5)

In terms of the functions in the subspaces, then

(5.6)

where fWj is the orthogonal projection of f(t) into Wj' Further decomposing iv;- produces

!Vj+l fV;--l + !11'j-1 + iWj
j

~ fWi

Then for some function /(t) we have

f(t) IVj + (f(t) - IVj)
co

fVj +Lfwi

and one can then understand how a multiresolution allows us to represent a function at

various resolutions.

Next, consider how we can represent each !Wj' In order to represent the orthogonal

projection of f(t) into Wj, it is convenient if we have an orthonormal basis for lVj, just

as we had an orthonormal basis for Vj. It can be shown [92] that provided {¢;j,k(t) ==

2] /2¢(2i t- k)} is an orthonormal basis for Vi then there will exist a wavelet basis {'l/Jj,k (t) ==

2j / 2 'ljJ(2i t.- k)} which spans Wj.

Since Wo C VI, an expression for the wavelets can be obtained from a linear cOlnbination

of the scaling functions in the space Vi. That is

(X)

1j;(t) =.j2 L hk</>(2t - k).
k=-co

(5.7)
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The detail of the function obtained by decreasing the resolution from 2i.+1 to 2i is

co

fWj = 2: dj,k'I/Jj,k(t).
k==-oo

80

Since, L 2 (R) == EB~-coWj, every function in L 2 (R.) can be represented as a linear com­

bination of wavelet basis functions

co co

f(t) = L 2: dj,k'I/Jj,k(t).
j=-co k=-oo

(5.8)

Thus we have arrived at the \vavelet series representation of f(t). Alternatively, one could

write f(t) as ~ linear combination of scaling ~nd wavelet basis functions as follows

00 co co

f(t) = L CjoPho,k(t) +L L dj,k'I/Jj,k(t)
k=-oo j'==jo k=-co

The Cj,k are referred to as scaling coefficients and the d.i,k are the wavelet coefficients as

described previously.. Chan [18] shows that the dj,k = FDWT(j, k) ..

Due to the orthogonality of the scalip.g and wavelet functions the scaling coefficients

can be calculated by the inner product

Cj,k =Jf(t)</Yj,k(t) dt

and the wavelet coefficients can be calculated by

dj,k =Jf(t)'l/Jj,k(t) dt.
The orthogonality conditions on the scaling and wavelet coefficients as presented in Strang [128]

are summarized as follows:

1.. The scaling functions ¢(t - k) are orthonormal to each other:1: f(t - k)if>(t - k') dt = 5(k - k').

2. The scaling functions are orthogonal to the wavelets:

100
00

if>(t - k)'I/J(t - k') dt = O.

3 .. The vvavelets 1f;j,k(t) == 2jj21J;(2jt - k) are orthonormal at all scales:

100
00

'l/Jj,k(t - k)'l/Jj1,k'(t - k') dt = O.
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In many cases ¢(t) and 1jJ(t) will not have a closed form, and are not straight forward to

calculate. Strang [128] discusses various procedures for calculating ¢(t) and tf;(t). If the

calculation of ¢(t) and 1jJ(t) can be a tedious matter, concern may arise regarding how the "

scaling and wavelet coefficients will be calculated. In the next section, we show that the

vvavelet coefficients can be obtained without actually having to construct, ¢(t) and 1f;(t) ,

using the properties of the MRA.

5.7 Fast Wavelet m--ansforlll

_The fast \\ravelet transform provides an efficient algorithm- for computing the discrete

wavelet transform. vVe will show that provided we know some function IVj' then the

scaling and wavelet coefficients can be calculated in the absence of the scaling and wavelet

functions.' An expression for the scaling coefficients will be derived first, an expression for

the wavelet coefficients then follows.

Lets assume that we know Iv.;, which is expressed as follows

co

IVj = L Cj,k<Pj,k ·
k=-oo

Since the scaling basis functions in Vj are orthonormal to their translates,

Cj,k == JOO IVj<Pj,k dt =< IVj, <Pj,k > . (5.9)
-00

Equation 5.9 requires some formulation of cPj,k and_ hence ¢(t) which may be difficult to

obtain. It is desirable that an expression for the scaHng Cj,k and wavelet coefficients dj,k

be attainable without the need to construct ¢(t) OT ?j;(t). We now set about doing this.

First, write
co

IVj L Cj,k<Pj,k
k==-co

00 co

L Cj-l,k, <Pj-l,k + L dj-l,k, '1f;j-l,k .
k=-co k=-oo

This is an expression for tVj which has projections in Vj-l and Wj-l. Now an expression

for the scaling coefficients can be written as

Cj-l,k
00

< L Cj,k<Pj,k, <Pj-l,k >
k==-oo
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Using the fact that cPj-l,k == 2(j-l)/2¢(2i - 1t - k) and c/>(2j - 1t - k) == 2:~-co £k-2i¢j,k(t), .

then the fo.llowing 'expression for the scaling coefficients is obtained

00

Cj-l,i = L· fk-2i Cj,k ·
k=-oo

(5.10)

Essentially we are just using the scaling coefficients at the higher resolution to calculate the

scaling coefficients at the next resolution. This is sometimes referred to as the pyramidal

algorithm [92, 104]. A similar procedure is performed for obtaining the wavelet coefficients,

leading to the following expression

co

dj-l,i == L' hk-2iCj,k ..
k=-oo

(5.11)

Provided we know the scaling coefficients at some resolution level j, the remaining

scaling coefficients and wavelet coefficients can be found by the pyramidal filtering algo­

rithm without even havIng to construct a wavelet or scaling function. We need only work

with the coefficients £k and hk. In the ,sections to follow, hk will be referred to as high

pass filter coefficients, and the ek "viII be referred to as low pass filter coefficients. It will

also be shown in Section 5.12 that conditions can be placed on the filter coefficients and

independently of ¢(t) and 7jJ(t) so that a lvfRA and associated wavelet basis exists.

5.8 Hig'ller Multiplicity Wavelets

In the discussion so far, we have rescaled wavelets by a factor of m = 2. In some situations

it may be advantageous to rescale by some integer m > 2. When m > 2, wavelets are

referred to as higher multiplicity wavelets [79, 81, 127,63]. For higher multiplicity wavelets,

tllere exists a single scaling function defined by

00

<p(t) = Viii L fk<P(mt - k)
k=-oo

which generates m - 1 wavelets

7jJeZ )(t) = vrnLh~z)<p(mt - k)
k

z == 1, .... ,m - 1

with m - 1 corresponding sets of high pass filter coefficients, h~z). The constant ..;:m is

used so that the wavelets form an orthonormal basis.
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z = 1, .. -, m - 1.

VVe first consider redefining a multiresolution to cater for situations when functions are

rescaled by a general factor m 2:: 2 and then show how the fast wavelet transform (or

pyramidal algorithm) is performed for·higher mul.tiplicity wavelets.

The sequence, of closed subspaces{Vj}jEZ is a m-multiresolution of L 2 (R) if the following

conditions are satisfied [136]:

2. g(t) E Vj {::} g(mt) E Vj+l

3. g(t) E Vj {::} g(t - k) E Vj

The subspace Vj contains all the possible approximations of functions in ·L2 (R) at res­

olution mi. The orthogonal projection of some function f(t) E L2(lR) into Vj is w·ri~ten

as
00

IV;" == :L Cj,k<Pj,k(t)
k=-oo

and
m-l 00

fw
J
. == ""' .""' d\z) 7/J \Z) (t)L-t L-J J,k J,k

z=l k=-oo

is the orthogonal projection of f(t) into Wj. Notice that the wavelet coefficients a(z2are
J,

also indexed by z. Here,

where

¢(t) = vm'L£k ¢(mt - k)
k

and

1jJ(Z)(t) = -Jm:L h~,z)¢(mt - k)
k

The function f(t) can also b~ completely described by tIle wavelet basis functions as

follows.
m-l 00 00

f(t) = 2: :L :L d;~l7/J;:r
z=l j=-oo k=-co

A pyramidal algorithm can also be used for calculating the scaling and wavelet coeffi­

cients for higher multiplicity wavelets. The procedure is similar to the case whenm == 2.
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That is, the scaling coefficients at some resolution are used to produce the scaling and

wavelet coefficients at the next (lower) resolution. This is done as follows

co

Cj-l,i = L £k-miCj,k •
k=-oo

(X)

4~~1,i = L h~~miCj,k •
k=-co

5.9 The Discrete Wavelet Transforlll of Discrete Data

(5.12)

(5.13)

'The previous sections, have made reference to continuous signals f(t). We now diverge,

and begi~ to discuss the discrete wavelet transform for discretely sampled'signals. There

are many similarities between the DWTof continuous signals and the DWT of discrete

signals. The most notable feature is that the wavelet and scaling coefficients are calculated

in the same way. That is the scaling coefficients Cj == {Cj,k} at some resolution or level

j, are used to produce the scaling coefficients Cj-l == {Cj-l,k} and the wavelet coefficients

dj-l == {dj-l,k} at the next lower level j - 1.

The DWT of discrete signals can be likened to filtering procedures. There is one low

pass filter (L) and one high pass filter (H). The low pass filter acts as a smoother, which

produces a smoothed version of the data sequence which it is filtering. The high pass

filter ~cts as a differencing operator which extracts the ·high frequency components of the

signal that the low pass filter did not capture. The wavelet coefficients d j == {dj,k} are

the outputs of the high pass filters and the outputs of the low pass filters are the scaling

coefficients c == {Cj,k}. This filtering procedure is related to the DWT with m == 2. For

any general m ~ 2 the filtering operations would have one low pass filter, and m - 1 high

pass filters. For the inoment we relate our discussion. to the m == 2 case only. Section 5.10

relates the filter procedure to the DWT with m ~ 2.

We now proceed to mathematically describe the filtering operations used for obtaining

the scaling and wavelet coefficients of some discrete data vector. To make the jump from

continuous 'functions to discrete data vectors less impacting, we initially consider data

vectors which have infinite length. The low pass filtering procedure is first introduced,

and is then follQwed by the high pass filtering procedure.
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A general filtering operation transforms a vector x into another vector s by

co

Si = .~ fkXi+k .
k=-co

85

(5.14)

Here,.e = (... ,L1,.eo,f1, ...) is the vector of low pass filter coefficients, which also has

infinite length. Let the vector of filter coefficients be stored as rows in the matrix L, such

that in the second row each element in .e has ,been shifted to the right by one position,

and so on for successive rows. Then, Equation 5.14 can conveniently be described as a

product of a low pass convolution matrix L and the data vector x, as follows

s=
£0 .e1 .e2
£-1.eo .e1
L 2 L 1 .eo

= Lx. (5.15)

A filter as described in Equation 5.14 is a linear shift-invariant operator. This means if

our input vector x is shifted by some amount, then the output vector s is shifted by the

same amount. Another consequence of filters being shift-invariant, is that each column in

the matrix L from Equation 5.15 is a shift of the previous column. Also, the diagonals of

L are constant, with the £k filling the kth diagonal.

When there is a finite number of filter coefficients, the filter is called a finite impulse

response (FIR) filter. Another filter of importance is a causal filter. When the filter

coefficients with negative indices are zero, that is, £k = 0 for k < 0, we say that the filter is

causal. In this thesis we consider filters which are both FIR and causal. Let Nf denote the

finite number of filter coefficients with nonnegative indices so that .e= (£0, £ll ... ,f.Nrl)'

The convolution matrix using a filter which is FIR and causal has the form

( ~

l"
0 £0 £1 £2 £Nr 1 0 0 0 "" JL= .. . 0 0 £0 £1 £Nr 2 £Nr 1 0 0 ...
0 0 0 f o fNr 3 fNr 2 fNrl 0

In our case, the input vector will be a spectrum which has a finite number of elements. The

number of elements is determined by the number of wavelengths for which the a.bsorbance

or reflectance of a substance has been measured. Finite length data poses a problem
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near the endpoints. To understand this phenomenon consider the following example. Let

x = (XO' Xl, ... , X7)T be the input vector to the filter £ = (£0' £1, £2, £3) is defined by four

filter coefficients (Nf = 4). The output vector will be calculated by

Nf-l

3i = L £kXi+k.
k=O

From Equation 5.16, 30,31,32,83 and 84 are calculated by

Complications arise when 85 is calculated. From Equation 5.16 we then have

(5.16)

. but Xs is not defined. In this thesis periodic (circular) boundary conditions are applied,

so that Xo = Xs and Xl = Xg, or in general if our data vector has length p such that

x = (XO,Xl, ""Xp_l)T, then Xi = Xp+i. For details about implementing other forms of

boundary conditions the reader is referred to [128, 107, 14].

Periodic boundary conditions have the effect of wrapping the filter coefficients in the

convolution matrix so that

£Nr l 0
£Nr 2 .£Nrl

o
o

o

o .£0
o 0

;, ).

.£0

.£0 £1 .e2 .£3 0 0 0 0
0 £0 £1 £2 £3 0 0 0
0 0 .eo £1 £2 £3 0 0

L= 0 0 0 £0 £1 £2 £3 0
.£3 0 0 0 0 £0 £1 .£2
.£2 £3 0 0 0 0 £0 £1
£1 £2 £3 0 0 0 0 £0
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(t 2)L ==

The discrete wavelet transfotm is performed by passing the discrete data vector through

two filters, ~ low pass and a high pass filter. Together, the two filters form an analysis bank.

The low pass filter is defined by the low pass filter coefficients £ == (Po, £1, ... ,£Nf- 1 ) and

the high pass filter is defined by the high pass filter coefficients h == (ho,hI, ... , hNj-I).

The high pass filtering operations are described similarly to ,the lovv pass filtering opera­

tions. Let the output of the high pass filter be denoted by w, then

Nf-l

Wi = L hkXi+k
k=O

The high pass convolution matrix has the form

ho hI h2 h3 hNj-l 0 ... .. . 0

H=
h2 h3 hNj-I 0 0 0 ho hI

hI h2 hNt - 2 hNj-l 0 0 0 ho
The sizes of Land H are influenced obviously by the size of the input and output vectors.

Assuming the number of elements in input and output vectors is the same, then Land H

must be square matrices with the number of rows and columns equal to the length of the

input and output vectors.

A problem evolves from passing a spectrum through a low and a high pass filter - there is

twice the amount of data, but not twice as much information. In terms of feature extraction

where our goal is to reduce the data vvhilst retaining, the majority of information, we are

definitely heading in the wrong direction. Fortunately, this problem is easily oyercome

and the solution is simple. The filtered sequences are decimated. This means every

second element in the sequence is deleted, Of, stated another way, the filtered vectors are

downsampled by tvvo. The symbol (t 2) '\vill be used to indicate such a procedure. For

example (t 2)8 =: (so, 82,34, ... , Sp-l) where p is an even number. The same effect can be

achieved by dropping every second row in, the convolution matrix. In the previous exam,pIe

vvith x == (xo, Xl, ~ .. , X7)T and £ == (fa, £1, £2, £3)T we would then have

eo £1 £2 £3 0 0 0 0
o 0 £0 £1 £2 £3 0 0
o 0 0 0 eo £1 £2 £3
£2 £3 0 0 0 0 £0 £1

The low pass filter coefficients have been shifted horizontally by 2 (=m) positions from

the previous row.
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The filtering operations \vhich have been discussed so far are

~S Lx

w Hx.

When downsampling occurs vve have

88

(t 2)8

(t 2)w

(t 2)Lx

(t 2)Hx.

(5.17)

(5.18)

It is convenient if we define the following notation to avoid the (t 2) symbols

c (-!- 2)8

c (t 2)L

d (-!- 2)w

D (-!- 2)H

then, Equations 5.17 and 5.18 beeo'me

c == ex

and

(5.19)

d == Dx, (5.20)

respectively. From here on we shall assume that the lovv pass and high pass filtering

procedures incorporate the appropriate downsampling routines, so that C and D are now

the low pass' and high pass filter matrices.

The DWT of discrete data is obtained by iterating the low pass and high' pass filtering

operations on the scaling coefficients c. Let J E Z+ denote an arbitrary positive integer

which indicates the highest level in the D\i'lT. In practice the original data points in

x == (xo, Xl, ... , Xp_l)T are considered to be the scaling coefficients CJ at the highest level

in the DWT. vVhen x passes through the analysis bank we have two new sequences c and

d. It is convenient if the subscript J - 1 is given to c and d such that

CJ-l Cx==CcJ

dJ-l D.x == C CJ.
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The elements in CJ-l == (CJ-l,O, CJ-l,l, 4· 4, CJ-l,~-l) and d J - 1 == (dJ-l,O, dJ-l,l, ... 4, dJ -1,~-1)

now have two ·subscripts4 The first subscript is simply the level of the filtering procedure

and the second subscript is the element number in the -vector~ The number of elements

in CJ-l and dJ-I is p/2 which is half that from the previous level. The .next level of

sequences is obtained.by filtering the smoothed data sequence CJ-l as follows

CJ-2 CJ-l CJ-l

DJ-l CJ-l·

(5 ..23)

(5~24)

Notice that subscripts have been assigned to the matrices C and D~ This is necessary

since whilst C and D will- follow the same basic 'wraparound' pattern from one iteration

to the next, their dimensions will change in accordance with the dimensions of c and d.

In general the DvVT from any level j to j - 1 can be defined by

Cj-l == Cj Cj

for j == J, J - 1, ..... , J - maXlev + 1 where maXlev is the maximum number of levels in the

DWT.

The summation equations,

Nf-l

Cj-l,i == L fk Cj,2i+k
k=O

Nf-l

dj-l,i = L hkCj,2i+k-
k=O

for which the DWT ·is based can also be used quite useful in the construction of Cj and

D j. Periodic boundary conditions as discussed earlier in this section continue to be applied

so that

Note the similarities between the DWT of discrete data using Equations 5..23 and 5.24

with the DWT of continuous functions using the recursion formulae in Equations 5410

and 5.11 .. Both the discrete wavelet transforms (of continuous and discrete data) make

use of the equivalent pyramidal algorithm ..
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Xo Xl X2 X 3 X4 Xs X 6 X7

C30 C:3,1 C3,2 C33 L3,4 C:3,5 C36 C37, , , ,

D
3

90

Figure 5.3: Pictorial representation of a2 band DWT for a signal which has
been sampled 8 times.

Figure 5.3 provides a pictorial description as to How the waveletcoefficients (and scaling

coefficients) are calculated for some discretely sampled signal x = (XQ, Xl, •• ,X7)T. Initially,

all the data C3 are passed through the low and high pass filters to give the scaling C2

and wavelet d 2 coefficients at the next lower level. As one progresses down the tree,

the number of elements in each of the bands is reduced by half. The refiltering of the

scaling procedure occurs for 3 cycles, that is, the number of levels nlevels , in this example

is nlevels = maxlev = 3. Whilst J could be some arbitrary integer we prefer to to set

J = ceiling(1ogp/logm).

For future reference, band(j,7) will indicate the 7th band 7 E (0, m - 1) at the jth

level of the DWT. The band at the top of the tree is band(3,0). At the next lower level,

the bands will be labelled as band(2,O) and band(2,1) and so forth until the lowest level

where the bands are denoted by band(O,O) and band(O,1) (see Figure 5.4). Note that for

the two band DWT at a given j, the scali.ng coefficients will be contained in band(j,O),

and the wavelet coefficients will be stored in band(j, 1).

Figure 5.5 shows the effect of performing the DWT on an artificially generated spectrum.

The spectrum contains 256 points and consists of a sine curve with a period of two, sampled

over -IT to IT, a block pulse, and another sine curve which has a period of 5 over the same
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band(3,O)

91

band(2,I)

.l:'lgure 5.4: Labelling of the bands in the DWT.

interval -7r to 7L The DWT is shown for the first six levels (j=8,7,6,5,4,3), when there are

only 8 coefficients in the bands. The original spectrum in band(8,O) undergoes a low pass

filtering process (which includes subsampling) to give the scaling coefficients in band(7,O).

The original spectrum also undergoes the high pass filtering (and subsampling) process to

give the wavelet coefficients which lie in band(7,1).

Next, the scaling coefficients in band(7,O) are then passed through the low pass and

high pass filters to give the scaling coefficients in band(6,O) and the wavelet coefficients

in band(6,1). The same procedure continues with the scaling coefficients from band(6,O)

being filtered to give the scaling coefficients in band(5,O) and the wavelet coefficients in

band(5,1). This process could continue for 8 (=maxlev) in which case there would be one

scaling coefficient and one wavelet coefficient. For display purposes only the first six levels

are shown.

As one moves down the tree, the filtered signal in the scaling bands become smoother

and smoother. The low pass filtering process can be likened to a smoothing procedure

followed by decimation (i.e. subsampling). The wavelet bands highlight the information

which has not been captured by the scaling bands.
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Figure 5.5: 2-band DWT performed on a generated spectrum to level three.
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Figure 5.6: Another presentation for a 2-band DWT performed on the generated
spectrum to level three.
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The components with the highest frequency are the first to be removed from the scaling

coefficients and captured by the wavelet coefficients. Consider for example the scaling

coefficients in band(5,O) and band(4,O). Traces of the sine curve (which had a period of

5) are almost undetected in the scaling coefficients, whilst the remains of the sine curve

sin(2t) are slightly more distinct. However, the most noticeable feature is the remains due

to the block pulse.

In Figure 5.5 the ",~avelet and scaling coefficients were plotted against their index, which

represents the element number of the coefficients in the respective c and d vectors. The

plots appear somewhat continuous since the points in the plot have been joined. Figure 5.6

shows another way in which the scaling and wavelet coefficients can be displayede Line

segments proportional to the value of the scaling and wavelet coefficients are plotted at

there respective index.

Now that SOUle insight has been given to the D:WT performed on a generated spectra,

we present an example of the 2-band DvVT applied to a spectrum which is similar to those

analysed in this thesis. Figure 5.7 shows the effect of performing the DWT on a single

spectrum for the levels j == 8,7, 6, 5, 4, 3. Again, the first six levels have been chosen for

display purposes only. TIle original spectrum which has been sampled 28 times lies in

band(S,O) e It can be seen that the wavelet coefficients at higher levels extract information

about the smaller peaks, while the wavelet coefficients at lower levels in the, tree, extract

information pertaining to the larger, Inore significant peaks of the original spectrae
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Figure 5.7: Two-band DWT for a spectrum to six levels.
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5.10 The ITl-bal1.d Discrete Wavelet TransforIll of Discrete
Data

Sin1ilar recursion formulae for calculating the scaling and wavelet coefficients can be de­

rived for the m-band DvVT of discrete data as those derived for the DWT of continuous

function using higher multiplicity wavelets. Recall that when 'higher multiplicity wavelets

were introduced in Section 5.8 there was one scaling function defined by one set of low

pass filter coefficients, and 17~ - 1 wavelet functions which were defined by m - 1 sets of

high pass filter coefficients~ The DWT with higher multiplicity wavelets· on continuous

data corresponds to performing the DWT ~n discrete data using a filter system which

contains one low pass filter and m - 1 high pass filters~ This is referred to as a m-band

DWT [127J of discrete data~ For the m-band DWT, the downsampling rate is by a factor

of m~ This corresponds to shifting the filter coefficients in each row of the filter matrices

by m. This is explained further in the example pr~sented next.

A 3-band DvVT for the spectrum x == (XO,Xl, ~ •• ,xs) is shown in Figure 5~8. There

is one low pass and two high pass filters producing one set of scaling (or smoothed)

coefficients and two sets of wavelet (or detailed) coefficients. As before, to go from one

level to the next, only the scaling coefficients are filtered and, the number of coefficients

in each band is reduced by one third when moving from one level to the- next. For this

example, nlevels == maXlev == 2.

Following the same notation as introduced earlier, band(j, T) will be referred to as the

Tth band T E {O, 1, ~ ~ ~ , m - I} at the j th level j E {J, J - 1, ... , J - maxlev + 1 of the

DWT. The band at the top of the tree is band(2,O). At the next level the bands from left

to right are referred to as band(l,O), band(l,l) and band(1,2)~ Similarly, the bands in the

last level of the DWT are band(O,O), band(O,l) and band(O,2).

In previous sections, the DWT, has been described by using a single convolution matrix

for the low pass filtering operation, and a single convolution matrix for the high pass

filtering operation~ Now that we 'have several higll pass filters it is necessary to introduce

a convolution matrix for each high pass filter. For the case m = 3 and say iVj == 6 the

filter coefficient matrices which decomposed the original data at level 3 to the next lower
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Figure 5.8: A .3~band discrete wavelet transform.
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level 2, would be represented as follows

(£0 £1 £2 £3 £4 £5 0 0

~5 )Cz - 000 fa £1 £2 £3 £4
- 1!.3 £4 f!.5 0 0 0 .eo £1 £2

( ~~1)
h(1) h(l) } (1) h(l) h(1) 0 0

~~1) )
1 2 ~3 4 5

D(l) 0 0 h(1) h (1) h~1) h(1) h (1)
2 0 1 3 4

h (1) h(1) h(l) 0 0 0 h(l) h(l) h(l)
3 4 5 0 1 2

( ~~2)
h(2) h(2) h(2) h(2) h(2) 0 0

~~2) )
1 2 3 4 5

D(2) - 0 0 h(2) h(2) h(2) h(2) h(2)
. 2 o· 1 2 3 4

h(2) h(2) h (2) 0 0 0 h(2) h(2) h(2)
3 4 5 0 1 . 2

and the scaling and wavelet coefficients at level one in each of the bands would be calculated

by

Cl CZ C2

del) D(l)
1 2 Cz

d(2) D(2)
1 , 2 Cz

In general, the m-band DWT from some level j to the next lower level j - 1 is performed.
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using

Cj-l Cj Cj

In summation notation one has

z == 1, ...... ,m - 1 ,

98

Cj-l,i

d(Z)
j-l,i

Nf-l

L £kCj,mi+k
k=o
lVf-l

"h(z)c' . kL-t k J~mz+ ~

k=O
z -== 1, ...... , m - 1 ..

(5 .. 25)

(5.26)

(5 .. 27)

The periodic boundary conditions have

These operations can be considered equivalent to the discrete wavelet transform of a

continuous signal using higher multiplicity wavelets.

5.11 The ll1-Band Discrete Wavelet Transforlll of a Discrete
Data Set

OUf applications involve performing the m-band DWT (m ~ 2) for each object vector

in a data set and then using the wavelet (or scaling) coefficients as features for some

multivariate modelling method. The m-band DWT has previously been described for

a single data vector, but it is more convenient to redefine this using a slight change of

notation. Let x[j](r) be a column vector containing the coefficients in band(j, r) of the

DW'I', so that for a given j, the scaling coefficients will be stored in x[j](O) and x[j](r) will

be a vector of wavelet coefficients for T E {l, ..... , m - I}. The DWT from level j to level

j - 1 is then described by the matrix operations

X[j-I] (0)

x[j-l] (z)

Cjx[j] (0)

D}Z)x[j] (0) z==l, .... ,m-l ..
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The DWT from level j to level j - 1 for each spectrum is. then described by

99

X[j-I] (0) ==

X[j-I](z)

CjXUJ{O)

D;Z)X[j] (0)

where X[j](r), is the matrix containing the coefficients for the objects which would lie in

band(j,r). Or more specifically, if X~jJ(T) denotes the coefficients in band(j,T) obtained

for object Xi to level j then, this vector will form the ith column in X[j](T). The original

data matrix would be represented by X[J](O).

It is interesting to note that when the DvVT is performed on an entire data set, the

scaling coefficients tend to be more correlated than the wavelet coefficients, particularly at

higher levels. 'lVe already know that spectral data suffer from being highly correlated, and

since the scaling coefficients are similar to smoothed versions of the original spectra, then

the scaling coefficients are likely to inherent the same high correlation structure. Table 5.1

was constructed to provide the reader with some idea about the correlation structure of

the data in the scaling and wavelet bands of "a 2-band .DWT for a spectral data set "which

contained. 100 spectra and had p == 512. The columns in Table 5.1 are indicative of

fa Level: the level of the discrete wavelet transform. (The original data would be at

leve19).

- fa Number> 0.7: the number of correlation coefficients whose magnitud~ is greater

than 0.7.

fa Mean: the mean of the absolute value of the correlation coefficients.

• Variance: the variance of the absolute value of the correlation coefficients.

The number, mean and variance calcula.tions are compared for the scaling and wavelet

coefficients at the various levels of a 2-band DWT. This information is also displayed

graphically using boxplots in Figure 5.9. The middle line indicates the positioning of the

median, and the width of the box is proportional to the number of observations. Since

the number of scaling and wavelet coefficients is reduced from one level to the next, then

so do the number of correlation coefficients which can be calculated.
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Scaling Coefficients Wavelet Coefficients

level number>0.7 mean variance number>0.7 mean variance

8 1781 0.39 0.09 5 0.15 0.00

7 427 0.39 0.09 5 0.15 0.00

6 98 0.38 0.09 9 0.21 0.07

5 21 0.34 0.08 13 0.33 0.17

4 2 0.30 0.06 10 0.50 0.34

3 0 0.35 0.05 1 0.51 0.36

100

Table 5.1: Summary statistics for the correlation coefficients of the scaling and
wavelet coefficients of a spectral data set.

Scaling Coefficients

8 7

Level

6 5 4

8

Wavelet Coefficients
0,-- ----,

c ~ T,gc:o

H - I II
H~!!!!~1!.Lj!!~:~, L~!~

7 6 5 4 3

Level

Figure 5.9: Boxplots obtained from the correlation coefficients discussed for
Table 5.1.

5.12 Filter Coefficient Conditions

We have shown that it is possible to obtain the discrete wavelet transform of both contin­

uous functions and discrete data points without having to construct the scaling or wavelet
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functions. We only need to work with the filter coefficients. One may begin to wonder

where the filter coefficients actually come from. Basically, wavelets with special char­

acteristics such as orthogonality, can be determined by placing -restrictions on the filter

coefficients.

Let A denote the matrix of filter coefficients with the first row containing the lo\v pass

filter coefficients and the remaining m - 1 rows the sets of high pass filter coefficients. If

Nj is the nUluber of filter coefficients contained in each filter, then A will be a m X Nf

matrix. A c~n be partitioned into m X m sub-matrices as follows

Here, q is a non-negative integer such that.q:::: (Nf/m) -1. If for example, there were

three filters (m == 3), with each filter containing six filter coefficients (Nj == 6), hence

q == 6/3-1 == 1 then

and

Ai == (~11) ~11) ~11).)
h(2) h(2) h(2)
345

The restrictions which are imposed on the filter coefficients so that a JvIRA and orthog-

onal wavel~t basis exist are summarized as follows [78]

1 ~ Orthogonality

LAkAr+i = oOi I ,
k

where OOi == 1 if i == 0, and zero otherwise, I is the identity matrix.

2. The basic regularity condition
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3. The Lawton matrix
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Mij = I::: £k£k+i-mi .
k

must have 1 <1!3 a simpl~ eigenvalue. If more sophisticated wavelet and scaling functions

are required, then more .constraints need to be placed on the filter coefficients.

In practice it is common to choose a set of filter coefficients franl literature such as

the Daubechies or Coiflet .filter coefficients, see for exalnple [24]. Chapter 6 considers an

appr«?ach for designing the wavelet matrix A with the goal of optimizing some multivariate

modelling criteria.

5.13 Boundary Related Issues

In the examples presented so far, the dimensionality of the data has been set at p ==

mmaxlev • It is not necessary that the number of variables be some integer power of m.

In the case of periodic boundary conditions one requires that p/mnlevels be equal to an

integer, where nlevels is the number of levels in the DWT as defined earlier~ For instance,

a 2-band D\VT could be performed on data vector with length equal to 20. In this case

the maximum number of levels in the DvVT would be maxlev == 2. This is the largest

integer for Wllich p/mk~x == 20/2~x is also an integer. For other boundary conditions

such as zero padding and symmetric extension this assumption can be relaxed, but in

some cases there is a penalty to pay. If for example symmetric end reflection is applied

to data whose <;limensionality is not divisible by mnlevels, then exact reconstruction is only

pqssible for biorthogonal wavelets [14]. The Splus wavelets user's manual [14] provides a

concise summary of the advantages and disadvantages which should be considered· vvhen

implementing a boundary method. As default settings they have implemented the periodic

boundary treatment method for data which has p divisible by mnlevels vvhere nlevels is pre­

specified by the user. When biorthogonal vvavelets are implement~d and p is not divisible

by m'nleveIs then the sYlnmetric reflection boundary condition is applied. 'V'lhen orthogonal.

wavelets for the same scenario are used, then zero padding is applied. For more details

about boundary treatments'which can be applied the reader is referred to [14, 105, 128].

Another issue which arises is when there are more filter coefficients than wavelet coef-

ficients. This will usually result at a lower level in the DWT transform~Onehas to ask

if it is reasonable to have more filter coefficients than data Doints .. As· a f!eneral rule you
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may wish to define maXlev to be the largest integer such that "p/mk-:x is an integer greater

than or equal to Nf.

5.14 The Wavelet Packet TransfOl-'lll of Discrete Data.

So far we have only considered filtering the scaling coefficients, but it seems perfectly

viable to filter the wavelet coefficients. The "vavelet packet transform (WPT) is obtained

by filtering both the scaling and wavelet coefficients. In this section the discussion on

the wavelet packet transform assumes the m == 2 case. Although it is not necessary, this

discussion on WPT can be simplified if one assumes that p == 2J .

The WPT has a tree like structure, where each band in the transform produces two

new children bands at the next lo\ver level. The tree like structure occurs because now the

detailed (or wavelet) coefficients are filtered through a low pass and a high pass filter to

obtain the next lower level of the WPT. This is done in the same way that the smoothed

(or scaling coefficients) are filtered. Figure 5.10 presents the structure of a wavelet packet

transform for some discretely sampled signal x == (xo, Xl, ... , X 2J_l)T == x[J] (0). Here the

notation °X[j](T) is used to represent the wavelet packet coefficients which occur at the jth

level in the 7th band of the decomposition. The DWT is simply the left most branches of

the \iVPT.

We now describe how the filtering operations depicted in Figure 5.1"0 are obtained

mathematically. For some x == (xo, Xl, .•• , X2 J _l)T· == x[J](O), the (J - l)st level of the

vVPT would be obtained as for the DWT, that is the data is. passed through a lo\v pass

and a high pass filter so that

°X[J-l] (0)

°X[J-l] (1)

CJ x[J](O)

DJ x[J](O)

For the '''IPT, the number of bands doubles from one level to the next (lo\ver) level, since

each of the bands in the previous level is passed through a low pass and a high pass filter.

At the next level, there will be four bands of wavelet packet coefficients which are obtained

by



CHAPTER 5. WAVELETS

o' [IJ

X (0)
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C
I

o [l-IJ
X (0)

C
I-I

D
I

o [I-I]
X (I)

o [J-2J

X (0)

o [1-2J

X (1)

o [l-2J

X (2)

o [1-2J

X (3)

C
1-2

0 [1-3J 0 [J-3J 0 [J-3J 0 [1-3J 0 [J-3J 0 [l-3J 0 [1-3J 0 [J-3J
X(O) X (1) X (2) X (3) X (4) XIS) X (6) X (7)

: : '. :: : '.: '.

Figure 5.10: Wavelet packet transform with m = 2.

°X[J-2] (1)

°X[J-2] (2)

°X[J-2] (3)

= DJ-l °x[J-l](O)

CJ-l °x[J-l](l)

DJ-l °x[J-l](l).

Continuing to the next level, one then has

°X[J-3] (0)

°X[J-3] (1)

°X[J-3] (2)

°X[J-3] (3)

°X[J-3] (4)

°X[J-3] (5)

°X[J-3] (6)

°X[J-3] (7)

CJ-2 °x[J-2](0)

DJ-2 °x[J-2](0)

CJ-2 °x[J-2](1)

DJ-2 °x[J-2](1)

CJ-2 °x[J-2](2)

DJ-2 °x[J-2](2)

_ CJ-2 °x[J-2](3)

_ DJ-2 °x[J-2](3)

The same-procedure may continue until there is one wavelet packet coefficient in each of
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5.14.1 The Best Basis Algorithm
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'The best basis algorithm seeks a basis in the WPT which optilnizes some criterion function.

Thus, the best basis algorithm is a task specific algorithm in that the particular basis

is dependent upon the role for which it will be used. For example, a basis· chosen for

compressing data may be quite different to a basis that might be used for classifying

or calibrating data, since different criterion funct~ons would be optimized. The wavelet

packet coefficients which are resultant of the best basis, may then be used for some spe~ific

task such as com'pression or classification for instance.

The first step in obtaining the wavelet packet coefficients from the best basis is to

produce the wa'velet packet decomposition tree to some level Jo. A criterion measure

for 'each of the vvavelet packet coefficients in each node (or band) in the wavelet packet

decomposition is calculated 'and is denoted by:J( °x[j] (r)) for j = J, ... ,jo. One starts

at level io in the tree and works up, gradually deleting the bands of coefficients in the

tree which do not produce sufficiently good criterion measures. This can be formalised.

Initially, the criterion measure for each of the bands of coefficients at level jo + 1 are

compared with the criterion measures for the bands of the coefficients in the descendants

at level io- Here descendant nodes ~re used to categorize any nodes which lie beneath

a node at a higher level in the tree_ The node which the descendant nodes lie under is
, ,

called a parent node.. If the criterion measure of the parent node is superior to,that of the

descendant nodes, then the descendant nodes are deleted. If the descendant nodes produce

a superior criterion measure, then the descendant nodes are kept and the parent node is

deleted. This procedure continues all the way to the top of the tree and the coefficients

in' the best basis will lie in the bands which were not deleted in the elimination process.



CHAPTER 5. WAVELETS 106

.Figure 5.11 summarizes the procedure described above, i.e. how to find the wavelet packet

Obtaining tIle Wavelet Packet Coefficients
From the Best Bas'is Algorithm

1. Perform vVPT for x == (xo, ... ,X2J_l)T to level jo.
2. BB (jo ,T) == band (jo, T) for T == 0, .... ' 2J - jo - 1
3. FOR j == jo - 1, , J
4. FOR r == 0, , 2J - j - 1

5. IF :r (band(j, T)) :s; :J (BB(j - 1, 2T) UBB(j - 1, 2T+1))
6. BB(j, T) == band(j, r)
7. ELSE BB(j, r) == BB(j - 1, 2T) U BB(j - 1,27+ 1)
8. END
9. END

Figure 5.11: Best basis algorithm.

coefficients from the best basis algorithm. Step 1 performs the WPT to some prespecified

level jo as described previ~usly. Step 2 then initializes a current best basis or best set

of bands. Initially, the best set of bands (BB) is simply all the bands at level jo in the

WPT. Steps 3 to 9 then begins to compare the cost measure of the parent nodes against

the current best of bands which are descendants of the parent node being examined.

Consider finding the best basis for some signal x == (xo, Xl, ..• , X7)T. Once the wavelet

packet transform has been calculated, the next step of the best basis algorithm is to

calculate the criterion measurement for e.ach of the nodes in the wavelet packet transform.

This is done for some task specific criterion. The criterion measurements for each of

the nodes is shown in Figure 5.12, so that j(band(1,3) == 21). The best basis is also

highlighted in Figure 5.12 for SOUle criterion function which is to be minimized. For this

example, io == 0 since the ""7pT transform is performed to the lov/est Ie"veL We now

describe how the best set of bands is formed by working our way up the tree, comparing

descendant and parent nodes.

When j == 1 :

BB(l,O)== { band(l,O) } since 6 < 5+4,

BB(l,l)== { band(O,3), band(O,4) } since 21 > 7+ 11



CHAPTER 5. WAVELETS

43

29

107

8

I
3 12 7

13

2

Figure 5.12: Best basis.

BB(1,2)= { band(1,3) } since 8 < 3+ 12

BB(I,3)= { band(0,6), band(0,7) } since 13> 7+ 2.

When j = 2:

BB(2,0) = { band(l,O), band(0,2), band(0,3) } since 29 > 6+ 7+ 11

BB(2,1) = { band(2,l).} since 15 < 8+7+ 2.

When j = 3:

BB(3,0)= { band(I,O), band(0,2), band(0,3), band(2,1) } since 43 > 6 + 7+11 + 15.

Saito and Coifman [118] use the best basis algorithm to determine a set of wavelet

packet coefficients which are used as input to Fisher's linear discriminant analysis. This

procedure is referred to as the local discriminant basis algorithm.

5.14.2 The Local Discriminant Basis Algorithm

The local discriminant bases algorithm of Saito and Coifman [118] extends the principles

of the best basis algorithm [20] to allow for the classification of digitized data. There are

several steps involved for selecting the wavelet packet coefficients which are to be used as

input to the particular classification procedure.

For each object Xi, the wavelet packet decomposition is performed to some level )0·

Before the best basis algorithm is applied, Saito and Coifman [118] calculate what they
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refer to as an 'energy map'.. This is done for each class r == 1,2, ... ,R. The energy

maps have the same structure as the wavelet packet transform, hence the same indices

will be used to locate items within the energy map (or tree). If e~~)(T) denotes the energy

co.efficients in band(j, T) of the energy map for class r, then,

This represents the sum of squares of the coefficients which occur in the saine position

of the wavelet packet tree divided by a normalization constant~ The energy maps were

obtained from the data objects which belong to class T. The notation oX~{~)(T) are the

vvavelet packet coefficients band(j, T) of the WPT produced from the object vector Xi{r).

Once the energy maps have been constructed, one can then begin to find the wavelet

packet coefficients which correspond to the best basis. Saito -and Coifman describe three

criterion functions which can be used to find the best basis. These criterion functions are

based on entropy and can be used to represent how differently vectors from different classes

are distributed (see also Section 6.3.1). The criterion assigns a discriminatory measure to

to each node 9r band in the wavelet packet transform. The. wavelet packet coetnclents

whicll correspond to the best basis for discrimination give the optimum measure of U

across the entire tree.

Note that in many cases it is nec;essary to choose a subset of the wavelet packet coeffi­

cients, since the number of wavelet packet coefficients corresponding to the best basis is

still equal to the dimensionality of the original data vector. Saito and Coifman mention

that one way of selecting a subset might be to select the wavelet packet coefficients (from

tile best bands) which have the largest ratio of the" between-groups variance to the within­

groups variance as described in Section 4.1.1. Alternatively, one could select the wavelet

packet coefficients based on the entropy criteria.
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Adaptive Wavelets

6.1 Illtr"oduction

There exists an abundant variety of wavelets vvhich are defined by their respective filter

coefficients. These are readily available for the situation when m == 2, and include for

example the Daubechies wavelets, Coiflets, Symlets and the 11eyer and Haar wavelets.

The fundamental problem to overcome is deciding which set (or family) of filter coefficients

will produce the best results for a particular application. In practice, several families of

filter coefficients may be trialled, and the family which produces the most desirable results

is used. It can be advantageous however, to design your Qvvn task specific filter coefficients

rather than using a predefined set.

In this chapter, it is demonstrated how the filter coefficients can be designed to -suit

almost any general application. The goal is to design the wavelet matrix A vvhich optimizes

some specified modelling criterion relevant to a given multivariate prediction model, such

as regression or discriminant analysis. Instead of optimizing over each of the m X Nf

elements in A, we make use of the factorized form [137] of a wavelet matrix and the

conditions placed therein to reduce the number of parameters to be optimized. Since the

filter coefficients gradually adapt to the application at hand, the procedure for designing

the task specific filter coefficients is referred to as the adaptive wavelet algorithm (A\VA).

The adaptive wavelet algorithm forms part of an integrated feature extraction procedure

since the features are repeatedly updated so they conform better to some multivariate

statistical procedure.

109
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Previous applications involving the optimization of wavelets include the work performed

by ,_Telfer et. aL [133] and Szu et aL (130]. Telfer et. al.' [133] consider optimizing the

'shift and dilation parameters of the discretization of a chosen wavelet transform, while

)ZU et al. [130J so'ught the optimal linear combination of predefined wavelet bases for

;he classification of speech signals. In both papers the wavelet features are updated by

adaptively computing the wavelet parameters and shape. This is a form of integrated

feature extraction which also makes use of neural networks. Sweldens [129] also considers

a lifting scheme for constructing biorthogonal second generation wavelets. OUf method,is

made distinct because the wavelet ~s designed from its humble beginnings~ It also allovvs

for the general m-band wavelet transform to be ~tilized, as well as the more common

2-band .wavelet transform.

Since the number of coefficients in the DvVT is equal to the number of wavelengths

in the original spectra, it is necessary to select a subset of wavelet coefficients. In our

implementation, a single band of coefficients at some level in the DWT is selected. The

band of coefficients produced for each spectrum are then supplied to the statistical proce-'

d ure~ The modellin~ criterion for optimizing the wavelet matrix is also based on the same

coefficients.

vVe now consider in more detail the factorized form of a, wavelet. matrix, and show that

A can be constructed frolll SaIne set of normalized vectors, denoted by Ul, ..• , u q , and 'V.

,6.2 Factorizatiol1. of Wavelet Matrices

Recall from Section 5.11, that the wavelet matrix A can be partitioned into m X m 8ub­

matrices as follows A == (Ao,AI, ... , A q ). Provided that the orthogonality condition:

I::k AkA[+i = ooJ is satisfied, the wavelet matrix can also be written in the factorized

form [137J

(6.1)

The symbol 0 denotes the "polynomial product" which is defined by

with

Gi = L BkCi-k-
k
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111

(6.2)

where Ri is a projection matrix and Q == L:i Ai is an orthogonal matrix.

If for example, m == 3 and q == 2 then A == (Ao Al A 2 ) with each Aj having dimension

4 x 4 thus! A has size m X [m(q + 1)] == 3 X 9. Assuming the .orthogonality condition is

satisfied then

QO(R1 I - R 1)O(R2 I - R 2 )

[QR1R 2 Q(R1 - 2R1R 2 + R2 ) Q(I - R1)(I - R 2)J.

Essentially, "\ve strive for representations of Q and each projection matrix ~ (for i

1, ... , q). First consider the representation of Q.

The regularity condition L:k£k == vfiii, places a constraint on the first row of Q. The

regularity condition is equivalent to setting the first row of Q to 1/vfiii I;' where 1m

denotes a m X 1 column vector of ones. The remaining m -1 rows are calculated ensuring

tlle orthogonality of Q is Inaintained. This is satisfied if the last m - 1 rows are calculated

by (I - 2vvT )T 0 D where v is a normalized vector, T is an upper triangular matrix

with diagonal elements Tii == i - m and off-diagonal elements equal to 1. The symbol 0

indicates a form of element by element scalar multiplication across two matrices such that

B 8 C == G -+ BijCfij :::: Gij. This scalar product of T with some matrix D normalizes

the rows of T. The m X m orthogonal matrix Q. is partitioned as follows,

(
1/vfiii 1~ )

Q = (I -2vvT )T0D
(6.3)

Now consider the projection matrices. A symmetric projection matrix of rank 12 can

be written R == UUT where U mXf2 is a matrix with orthonormal columns. For the

vvavelet matrix to be non-redundant, the ranks of the projection matrices must form

a monotonically increasing sequence [137], that is the rank(R1) ~ rank(R2) ~ .. - :s;

rank(Rq)~ For simplicity, we restrict the ranks of each projector matrix to be 1, and so,

(6.4)

wllere uTUi == 1.
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The following example illustrates how" A with m = 3 and q == 2 can be constructed~

The example begins by defining the column vector v of length m - 1 and two columns

vectors Ul and U2 both of length m. Let

v (-0.7918, -O.6107)T

Ul (-0.3873, -0.9097, O.1497)T

U2 (-0.9062,0.1674, O.3884)T

First, consider calculating the symmetric projectors R 1 == Ulu[ and R 2 == u2uf.

(

0.1500 0.3523 -0.0580) ( 0.8212 -0.1517 -0.3520)
R 1 == O~3523 0.8276 -0.1362 and R 2 == -0.1517 0.0280 0.0650

-0.0580 -O~1362 0.0224 -0.3520 0.0650 0.1509,

No\v- consider calculating Q. The first row of Q is (1/V3, 1/v!3, 1/v!3) , and the reluaining

two rows are calculated by (I - 2vvT ) (T 0 D) where

T0D ==

which together give

(
-2 1 1) (1/ -fiG) 1/-fi6) 1/.-fi6))

o -1 1 0 1/-fi2) 1/-fi2) 1/.J(2)

(
-0.81605 0.4802 0.4802)

-0.7071 0.7071

1-2 T == (-0.2539 -0.9671)
vv -0.9671 0.2541 .

(

0.5774 0.5774 0.5774 )
Q == 0.2073 0.5802 -O.787~5

0.7896 -0.5745 -0.2151 '

Now consider forming the wavelet matrix A. Using the factorized form of the wavelet

matrix one has

tllen substituting for Q, R 1 and R 2 one' arrives at the following result for A.

(

0.1542 -0.0285 -0.0661 0.1316 0.6257 -0.0456 0.2917 -0.0198 0.6891 )
A == 0.1690 -0.0312 -0.0724 0.3027 0.6566 -0.1179 -0.2643 -0.0451 -0.5972

-0.0430 0.0079 0.0184 0.8258 -0.3336 -0.3569 0.0069 -0.2488 0.1234
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(

0.1316 0.6257 -0.0456)
Al == 0.,3027 0.6566 -0.1179

0.8258 -0.3336 -0.3569

Of·

A o= (
0.1542
0.1690

-0.0430

-0.0285 -0.0661)
-0.0312 -0.0724

0.0079 0.0184

(

0.2917 -0.0198 0.6891)
A 2 == -0.2643 -0.0451 -0.5972

0.0069 -0.2488 0.1234

,We have now discussed ho\v A can be constructed from the normalized vectors Ul, ... , u q

and· v. Initially, Ul, ... , u q and v are randomly assigned elements from the uniform dis­

. tribution. The optimization routine then proceeds to update the elements of these vectors

so that some modelling criterion can be optimized. We describe 'the different .modelling

criteria for discriminant and regression analysis in Section 6.3.1 and 6.3.2, respectively.

6.-3 Clraiteria Measures for Optill1ization

The adaptive wavelet algorithm can be used for a variety of situations, and its goal is

. reflected by the particular criterion which is to be optimized. In this thesis, we apply the

filter coefficients produced from the adaptive wavelet algorithm for discriminant analysis

and regression analysis. It vvas stated earlier, that the dimensionality is reduced by select­

ing some band(jo, To) of wavelet coefficients from the discrete vvavelet transform. It then

follows that the criterion function J will be based on the same coefficients i.e. X[jo] (To) .

Some suitable criterion functions which are to optimized for the various statistical Droce­

dures are discussed next.

6.3.1 Discrilninant Criterioll Fullctions

If the filter coefficients are to. be used for discriminatory purposes, then the criterion

function (which is referred to as a discriminant criterion function) should strive to reflect

differences among classes. In this section three suitable discriminant criterion functions

are described. These discriminant criterion functions are Wilk's iambda. (:h.,..) , entropy

(JE), and the cross-validated quadratic probability measure (Jcvqpm).

Wilks Lambda

The Wilks' A criterion can be used to test the significance of the differences bet\veen group

centroids [132]. A smaller value for A is preferred since this indicates a larger significance.
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Wilks' A is the ratio of the determinant of the within covariance matrix to the determinant

of the total covariance matrix and is defined to be

A =

=

ISwl
I ST I
ISwl

(6.5)

where the total covariance matrix ST = SB +Sw is the sum of the between (SB) and

within (Sw) covariance matrix.

Entropy

Saito and Coifman [118] discuss a cross entropy measure which can be used to measure

how differently vectors are distributed. Let «1) and «2) be vectors from classes 1 and 2

respectively. If the elements in «1) and «2) are nonnegative and sum to unity, then cross

entropy is ·defined by

_ ~ (i(1)
Ecross({1)'«Z)) - L..-(i(1)log;::-

i=1 ':>t(2)

where p = length((1)) =length((2))' i.e. dimensionality of vectors. Equation 6.5 is not

symmetric, that is the measure of discrepancy for EcrOSS((1), «2))' will be different to

that for Ecross((2) , «1))' For our purposes we prefer to use a symmetric criterion which

is defined in [118] as

Measuring the distinctness of several vectors from different classes, involves calculating

Esym for each combination of vectors. Call this entropy measure the total entropy E tot .

For example, the total symmetric entropy for «(1)' «2) and «3) is calculated as follows

It is necessary to construct a single vector which in some way is representative of

the classes, this could for instance be a mean vector. In Saito and Coifman [118], the

representative vector from each class is an energy vector. More specifically, define the

class energy vector of the wavelet coefficients from band(j, r) as

r= 1, ... ,R
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and if the wavelet packet coefficients are being used then

. diag (OX[j] (T)) (OX[j] (T))T'
e[;] (T) = (1') (1')
(r) canst

r == 1, ... ,R.
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The denOlllinator is a normalization constant. The numerator is'simply the sum ot squares

of the wavelet coefficients 'from 'either the D\iVT or vVPT vvhich occur in the same position

of the wav'elet trees, where' the DvVT 6r WPT has been performed for objects belonging

to the same class. The discriminatory criterion function is then

Cross-Validated Quadratic Probability Measure (CVQPM)

The cross-validated quadratic probability measure (CVQPM) assesses the trustworthiness

of the class predictions made by the discriminant model. The CVQPM ranges from 0 to

1.. Ideally, larger values of the CVQPM are preferred, since this implies the classes can be

differentiated with a higher degree of certainty. The CVQPM was previously discussed in

greater detail in Section 2.8. The CVQPM criterion function based on a band of coefficients

X [j] (T) \iVould be defined as follows

where

6.3.2 Regressioll Criterion Functions

A suitable criterion fUllction for regression analysis should reflect how well the response

values are predicted. In the adaptive wavelet algorithm, the criterion function considered

for regression is based on the PRESS statistic and is then converted to a cross-validated

R-squared measure as discussed in Section 3.6.
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Cross-Validated R-Squared

The cross-validated R-squared criterion function is defined as

JCVRSq (XU] (T)) = 1 - P:R-ESS/TSS

where the TSS and the PRESS statistic are calculated by

n

TSS = L(Yi - fj)2
i==l

and
n

PRESS = L(Yi - Y_i)2,
i=l

respectively. The actual regression model used for predicting the response is

6.4 The Adaptive Wavelet Algorithlll
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Th~ algorithm shown in Figure 6.1 summarizes the adaptive wavelet algorithm. Step 1 of

the algorithm sets values for the parameters m, q,jo and To and Step 2 initializes v and

Ul, ... , u q • Steps 3-6 go about constructing the filter coefficient matrix A, so that the m­

band DWT can be performed based on the filter coefficients in A. This is done in Step 7

to level jo' The coefficients X[jo] (To) are then extracted in Step 8, and the multivariate

modelling criterion :J (X[jo] (To)) is calculated for the extracted data. Step 9 assesses if the

stopping criterion of the algorithm has been reached. The stopping criterion are discussed

further at the end of this section. If the stopping criterion has not been reached, then

the parameters v and {Ui} f=l are updated and the algorithm proceeds to Step 3. If some

stopping criterion has been reached, the.n the algorithm proceeds to Step 10 where the

Lawton matrix condition is verified. Provided Conditions 1 and 2 of Section 5.12 hold,

then the Lawton matrix condition will not be satisfied for exceptional degenerate cases,

thus the Lawton matrix is verified after the adaptive wavelet has been found. Finally,

the multivariate statistical procedure can b~ performed using the coefficients X[jo] (To).

The optimizer used in the adaptive wavelet algorithm. is the unconst.rained MATLAB

optimizer [4J, for which the default algorithm is the quasi-Newton method which alsc

incorporates a mixed quadratic and cubic line search procedure.
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Figure 6.1: The adaptive wavelet algorithm.

Before applying the adaptive wavelet algorithm, values for m, q, jo and To need to be

specified. There is no empirical rule for determining these parameters. In fact, the only

way to know which values will be the best is to try all of them. To reduce the labour

of this intensive task, some heuristics for choosing appropriate parameter values can be

suggested.

First consider some heuristics for choosing the values m and q. The value of m deter-

mines the number of bands in the DWT and the downsampling factor, so m is chosen such

that p/m(J-jo+l) is an integer value. Since m combines with q to determine the number

of the filter coefficients (Nf = m(q + 1)) another constraint is placed on m so that Nf

does not become too large. Similarly, a constraint is placed on q for the same reason. It is

preferred that the number of filter coefficients be less than 25. The analyses which follow

in proceeding chapters typically use 12 or 16 filter coefficients, since experimentation has
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revealed this to be adequate ..

118

Now, consider selecting values for jo and To .. These parameters simultaneously deter­

mine the band(jo, To) and hence the coefficients X[jo](To) for which optimization of the

discriminant criterion is based. The coefficients X [joJ (To) are later used as inputs to the

multivariate statistical method ..

The value for jo determines the level of the DV\TT that the spectra are to be decomposed.

A value for jo should be chosen such that p/m(J-jo+l) which is the number of coefficients in

band (jo, To), is suitable (not too large) for classification .. Each of the appropriate values of

jo should be tested. To perform this task, a value· for To is also required .. To ensure the best

jo and T combination, each of the appropriate values of jo should be individually tested

with ea.ch value of TO .. To reduce this computational burden, we l~ave chosen to select To as

the band which gives the largest :J (X[joJ (To)) at initialization. It is recommended that if

one suspects the basic shape of the data will be useful for classific~tion, then optimization

over the scaling band rnaj! prove worthwhile ...

TIle discussion so far has not eluded to the various criterion which can be used for

deciding 'vi/hen the adaptive wavelet algorithm should cease updating the parameters

v, Ul, ..... , u q .. Based on tolerance settings which control the convergence 'of the algo­

rithm, the algorithm may halt when the optimal value for the modelling criterion has

been achieved or vv-hen a preset nUll1ber of iterations of the optimization routine has been

reached - which ever occurs sooner. Of course stopping the algorithm after a prespecified

number of iterations does not ensure an optimal value will be produced, but does assist

in the practical experimentation of the modeL

When. searching for optimal values, there is alwa.ys the issue of whether or not a global

or local optimal solution has been found. Unless the problem is continuous and has only

one optimal point, there can be no guarantee that a global optimal value has been found.

It is suggested in [4] that starting the optimization routine from different starting values

rna:y assist in overcoming this problem.

6.5 Exaluple

To obtain a better understanding of the adaptive vvavelet algorithm, we apply its concepts

to. a spectral data set.. The goal is to assign the spectra to one of several predefined
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categories. 'llhe adaptive \vavelet is then designed for a discriminant analysis task. In this

example the classifier used is Bayesian linear discriminant analysis. The training spectral

data [118] contains 20 spectra in each of five classes and the test set also contains 20

spectra per class .. The dimensionality p of the data (Le. number of variables) is 512. The

five classes represent differ~nt kinds of minerals, and this data set is subsequently referred

to as the Inineralogical data set and is discussed in greater detail in Section 7.. 2.2.

In this example, the parameters m, q and jo .were set at 4,3 and 3, respectively. Op­

timization ~as based on the coefficients X[3](T) which gave the maximum J (X[3J(T))" at

initialization where T E {a, 1, 2, 3}. Three discriminant criterion functions were considered,

these "vere :lA, J£ and Jcvqpm. The results for each of the criterion functions are displayed

in Tables 6.1. Here the classification rates of the individual bands at initialization and at

completion _of the algorithm are ShOV\Tll. Note that the same starting parameters for v, Ul

and U2 have been used for the implementation involving the different modelling criteria,

hence the same results occur at initialization for each of the criterion functions :lA, :le
and Jcvqpm- The asterisk indicates which band optimization was based upon.

T 0 1 2 3 J
Initialization Train 97 96 97 97 JA,:Je, Jcvqpm

Test 90 90 91 88
Termination Train 98 9& 95 100* JA

Test 91 89 88 90*
Termination . Train 97 94 94* 97 JE-

Test 86 "89 90* 87
Termination Train 100* 98 96 95 Jcvqpm

Test 96* 92 89 87"

Table 6.1: The percentage of correctly classified spectra, usin.g the coefficients
{X[3] (T)} for T == 0, ... , 3 at initialization and at terlnination of the adaptive
wavelet algorithlu. The discriminant criterion functions were Wilk's Lan'lbda,
symnletric eIltropy an.d the CVQPM.

For the Wilk's Lambda criterion, optimization was based on band(3,3), while the en­

tropy criterion optimized over band (3 ,2). The 'CVQPM criterion optimized over the scaling

band(3,O). Some features which we might expect from the adaptive wavelet algorithm, is

that at termination, the band which optimization was based would outperform the, other

bands, at least in terms of the percentage of correctly classified training objects. This is
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t11e case with the CVQPM and A crIterIon, but is not so, for the symmetric entrop~y cri­

terion. In defence however, band(3,2) for the symmetric entropy does produce the largest

percentage of correctly classified objects for the testing data, .and has not overfitted as

significantly to the training data as perhaps the A criterion function.' Overall, for the

results presented in Table 6.1, the CVQPM seems to be performing n10st adequately. It

is the only criterion function which has improved the, test classification rate from those

obtained at initialization. One reasol~ for the success of the CVQPM, maybe due to the

fact that optimization and hence classification is based on scaling coefficients. Since one

can observe from Figure 7.2 which shows some sample spectra of the nlineral data, that

perhaps information about the basic shape of the data might be potentially usefuL For

this reason, the optiluization routine using the vVilk's Lambda, and symmetric criterion

functions \vas repeated, this time forcing optimization over'the scaling band. These results

are summarized in Table 6.2, where for ease of cOlnparison, vIe have reproduced the same

results from Table 6.1 for the percentage of correctly classified objects for Jcvqpm.

T== 0 1 2 3 J
Initialization Train 97 96 97 97 . JA,JE, JcvqPID

Test 90 90 91 88
Termination Train 100* 95 96 96 JA

Test 91* 89 86 90
Termination Train 96* 94 85 91 :IE

Test 92* 90 76 87
Termination Train . 100* 98 96 95 Jcvqpm

Test 96* 92 89 87

Table 6.2: The percentage of correctly classified spectra, using the coefficients
{X[3] (T)} for T == 0, .... , 3 at initializatioll an.d at terlnillation of the adaptive
wavelet algorithm. Optimization was based all {X[3J(O)} alld the discriminallt
criterion fllnctiollS were Wilk's Lambda, symmetric entropy and the CVQPM.

Optimization over the scaling band did improve the results slightly for the Wilk's

Lambda and symmetric entropy criterion, but these criterion functions were not able

to improve upon the results previously obtained vvith the CVQPM criterion function.
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Classification Applications

7.1 Overview

In this chapter, different strategies are investigated for classifying spectral data. A strategy

Inay refer ·to the particular classifier utilized such as Bayesian linear discriminant analysis,

or a featu~e extraction technique. A strategy may even refer to the combination of feature

extraction techniques with a particular classifier.

As an initial step to a discriminant analysis, one would generally experiment with the

original variables, and then perhaps try other kinds offeatures. In this chapter we initially

supply the original data to the classifiers and then investigate the performance of the

discriminant techniques using \vavelet coefficients as features. We use standard wavelet

filter,_coefficients frOITl the Daubechies family and filter coefficients which are derived from

the adaptive wavelet algorithm (AVVA).

It should be mentioned that the goal of this chapter is not necessarily to find the best

discriminant modeL Rather, we would like to investigate the effect of wavelet coefficients

when used as features for discriminant techniques, as opposed to the original variables. The

application of the AWA involves the use of an integrated feature extraction method. Whilst

much emphasis will be placed on numerical measures which reflect the assignment accuracy

of the discriminant strategies, we vvill also qualitatively assess if wavelet coefficients can

llelp us understand more about the group structure of the data as well as regions vvhich

may contain useful discriminatory information.

121
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Data Set Class 1 Class 2 Class 3 Class 4 Class 5 Total

Seagrass Train 55 55 "55 - - 165
Test 34 34 34 - - 102

Mineral Train 20 20 20 20 20 ·100

Test 20 20 20 20 20 100
Paraxylene Train 25 25 25 - - 75

Test 25 25 25 - - 75

Butanol Train 21 27 - - - 48
Test 21 26 - - - 47

Table 7.1: Description of the spectral data sets used for classification.

7.2 TIle Data Sets

Four- spectral d~ta sets will be used for investigating the various classification procedures.

Each data set initially contains 512 variables (Le. p == 512). The data sets will be referred

.to as the seagrass (8), mineral (ill), paraxylene (p) and butanol (b) data. The number of

training and testing spectra in the group categories is listed in Table 7.1 for each set of

data. A further description about the data is now presented.

7.2.1 Seagrass Data

The training seagrass data set contains 165 digitized spectra, for which log l/refiectance

was measured for the 512 wavelengths 400,404, ... , 2444 nm~ The data consists of three

classes of seagrass species - Halophila ovalis (class 1), a mixture of Halodule uninervis

and Halodule pinifolia (class 2) and Halophila spinulosa (class 3).· The training data

comprises of 55 spectra in each group and the testing data has 34 spectra in each class.

Figure 7.1 shows five sample spectra from each of the classes. This data is particularly

relevant to environmental scientists investigating the eating habits of d ugongs, a vI/hale

like mammal j whose diet constitutes a snbstantialproportion of seagrasses. The same

data is also important for taxonomic purposes. The seagrass data was provided by Lem

Aragonesand Dr Bill Foley, from the Department of Zoology at James Cook University.
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Figure 7.1: Five sample spectra from the seagrass data.

7.2.2 Mineral Data

The mineral data was provided by Dr Danny Aswen, from the Department of Earth

Sciences at James Cook University. The mineral data set which has undergone the hull

quotient transformation as described in Section 4.2.1, contains 100 digitized spectra, for

which absorbance was measured at the 512 wavelengths 1478,1480,...,2500 nm. The data

consists of five mineralogical groups - amphilolites (class 1), calsilicates (class 2), granite

(class 3), mica (class 4) and soil (class 5). The training and testing data comprise of

20 spectra in each of the classes. Figure 7.2 shows five sample spectra from each of

the classes. With the exception of the soil spectra the rock data exhibit some within

variation particularly at the peaks of the spectra. 'Whilst it could be worthwhile to seek

some transformation such as the SNV transformation which may assist in dampening the

variation, we elected to leave the data in the hull quotient format only, and compare the

discriminant techniques on this data as it is presented.

The development of automated classification models for the discrimination of miner-
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alogical spectra is important to geologists for obvious practical and economic reasons.

Experienced geologists may be able to distinguish among various minerals by observing

the position and shapes of certain peaks at different wavelengths. The presence of noise

and lack of experience can however, distort ones judgement. In these situations, an auto­

matic discriminant model could be of great value to a geologist.
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Figure 7.2: Five sample spectra from the mineral data.

7.2.3 Paraxylene Data

The paraxylene data was kindly provided by Professor Massart at the Pharmaceutical

Institute, The Free University, Brussels. The data was produced by Dr Wim Penninckx

at the same institute. The training paraxylene data set contains 75 digitized spectra, for

which absorbance was measured at the 512 wavelengths 1289,1291, ... ,2311 nm. The data

consists of three groups. Pure paraxylene (class 1), paraxylene plus 10% orthoxylene (class

2) and paraxylene plus 20% orthoxylene (class 3). The training and testing data comprise

of 25 spectra in each of the classes. Figure 7.3 shows five sample spectra from each of the

classes.
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This data set is important for quality control procedures in pharmaceutical science.

When drugs are being devised, it is possible for impurities to form in the substance.

Production rates of such drugs can be increased ifthere are relatively quick, nondestructive

techniques which can be implemented for detecting levels of impurities which haw formed

in substances.
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Figure 7.3: Five sample spectra from the paraxylene data.

7.2.4 Butanol Data

The butanol data was accessed from Professor Massart and \iVu Wen at the Pharmaceu­

tical Institute, The Free University, Brussels. The training butanol data set contains 48

digitized spectra, for which absorbance was measured at 512 wavelengths in the range

of 1200 nm to 2400 nm. The data consists of two groups. Pure butanol (class 1) and

butanol containing different concentrations of water (class 2). Class 1 in the training set

contains 21 spectra and class 2 in the training set contains 27 spectra. Class 1 in the test

set contains 21 spectra and class 2 in the test data has 26 spectra. AB for the paraxylene

data, this data set also relates to the detection of impurities. Figure 7.4 shows five sample
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spectra from each of the classes. The exaCL wavelength number for each absorbance value

is unavailable. For this reason the horizontal axis is labelled with wavelength indices.
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Figure 7.4: Five sample spectra from the butanol data.

7.3 Discriminant Analysis Based on the Original Variables

In thIS section, the original variables are the features which are inputted to the discrim­

inant techniques BLDA, BQDA, FDA, PDA and RDA. For PDA and RDA, no feature

selection (i.e. dimension reduction) was performed. The set of grid values representing

the combination of (a, b) pairs trialled are listed below. Recall that a E [0,1], controls the

degree to which the pooled covariance matrix should be used, and b E [0,1] determines

the degree to which S(r)(a) is shrunken toward a multiplier of the identity matrix in the

RDA model.

a
0.00 0.25 0.50 0.75 1.00

n nn (0.00,0.00) (0.00,0.25) (0.00,0.50) (n on n '71';\ (0.00,1.00)v.vv \V. v,v.'u)

0.25 (0.25,0.00) (0.25,0.25) (0.25,0.50) (0.25,0.75) (0.25,1.00)
b 0.50 (0.50,0.00) (0.50,0.25) (0.50,0.50) (0.50,0.75) (0.50,1.00)

0.75 (0.75,0.00) (0.75,0.25) (0.75,0.50) (0.75,0.75) (0.75,1.00)

1 (1.00,0.00) (1.00,0.2.5) (1.00,0.50) (1.00,0.75). (1.00,1.00)

The default settings (described in the code of Hastie [60]) were used for PDA and FDA,

where the regression model used in FDA was BRUTO which accommodates a variable
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selection routine. TIle variables selected for ·BLDA and BQDA were based on a forward

stepwise selection strategy and will be now referred to as SBLDA and SBQDA, respectively.

Throughout this section, bold type setting will be used to' identify the highest classification

rates calculated -from the testing data for the various models in a particular. table.

Before presenting the results for FDA, PDA and RDA based on the original data, we

would first like to explain how the stepwise procedures were implemented. Three forvvard

stepwise strategies which will be referred to ,as CFl, CF2 and CF3 were applied to each

of the 'data sets, and are described in greater detail below.

• CFl: The CFl procedure starts with an €lnpty subset and at each step adds the

variable (or wa-yelength) which produces the largest increase in the correct classi­

fication rate (CCR). Since the CCR is a discrete measure, there may be instances

when several variables give the same significant increase in the CCR. Should such

a situation arise, then the variable (from the set of tied variables) which gives the

largest quadratic probability measure (QPM) will enter the model.

• CF2: The CF2 procedure starts vvith an empty subset and at each step adds the

variable (or wavelength) which produces the largest increase in the quadratic proba­

bility measure. Since the QPM is a continuous measure, the event of a tie is unlikely

to occur. In the event of a tie you could' randomly select the variable, but for con­

venience we chose to use the variable which had the smallest wavelength, since this

is automatically done in the Matlab programming language.

.. CF3: The CF3 procedure starts with an empty subset and at each step adds the

variable (or wavelength) which produces the largest increase in the cross-validated

quadratic probability measure. The same tie-breaking mechanism as CF2 is imple­

mented.

The same stopping rule was used for each of the stepwise strategies CFl, CF2 and CF3.

The procedures cease to enter variables into the model when one of the following stopping

criterion is reached:

• The change in the correct classification rate is less than lin where n is the number

of samples in the data set. That is, from one iteration to the next of the stepwise
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routine, the inclusion of another variable does not improve the correct classification

rate by more than lin.

• TIle correct classification rate reaches 100%. At each iteration, both stopping criteria

are checked, and if one of the stopping criteria has been met, the stepwise procedure

will not enter any more variables.

Data SBLDi\. SBQDA
CPl CF2 CF3 CFl CF2 CF3

Seagrass Train 99.39 100 99.39 100 100 100
Test 100 100 100 . 97.06 97.06 97.06

dimension 3 8 6 6 6 6
11ineral Train 99 100 100 100 100 100

Test 86 87 88 92 90 93
dimension 5 5 5 3 3 3

Paraxylene Train 98.67 100 100 100 100 100
Test 78.67 89.33 87.33 80 68 78.67

dimension 9 7 7 6 6 7
Butanol Train 87.50 87.50 87.5 100 93.75 89.58

Test 78.22 72.39 72.39 86.60 68.09 76.60

dimension 3 3 3 7 3 4

Table 7.2: Correct classification rates (%) for the stepwise procedures.

Table 7.2 shovvs the correct classification rates the stepvvise procedures. The numbers

which appear in bold face identify the highest classification rates based cal~ulated from

the testing data for each for the stepwise procedures CFl, CF2 and CF3. The correct

classification rates have been separately highlighted for SBLDA and SBQDA. In the event

that two strategies produce the same (highest) testing classification rate, the forward

method which utilizes the least number of variables is highlighted. If the strategies then

have the same number of variables, the particular method highlighted will have the highest

testing quadratic probability measure. Also shovvn is the resulting dimension or number

of variables in the stepwise modes. Table 7.3 shows the variables in the order vvhich

they were selected by the stepwise models. For the seagrass data it is reasonable for

one to be skeptical about the selection of variables 1 and 3 by SBQDA-CF2. Concern·

arises since these variables (or wavelenghts) lie close to the ends of the spectra, and also

because, SBQDA-CFl and SBQDA-CF3 did not select these same wavelengths. Likewise,
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Seagrass Mineral Paraxylene Butanol
SBLDA eFl CF2 CF3 eFl CF2 CF3 CFl CF2 CF3 CF-l CF2 CF3

153 149 148 458 458 458 236 417 417, 377 405 405
476 6 6 265 266 266 497 380 380, 470 402 402

416 30 30 467 410 411 227 464 464 127 263 263
8 9 314 444 282 63 414 414

124 102 264 281 445 143 187 187
69 66 135 113 198

400 ,214 161 472

506 512
259

CF1 CF2 . CF3 CFl CF2 CF3 eFl CF2 CF3 eFl CF2 CF3
SBQDA 141 148 148 458 458 458 471 417 417 145 405 406

69 232 232 359 357 356 234 380 380 39 '402 417

231 70 71 199 424 351 470 226 226 405 420 402
182 1 181 411 198 198 423 276
71 3 91 413 464 363 38 405

392 221 122 432 227 355 402 419

420

Table 7.3: Original variables selected by SBLDA and SBQDA.

some concern may arise from variable 6 being selected by SBLDA-CF2 and SBLDA-CF3~

However, since two stepwise methods selected this variable at an early stage in the stepwise

routine,' i.e~ in the first three steps, there is perhaps less cause for concern.

\Ve now corrlpare tIle performance of each of the classification methods SBLDA, SBQDA,

FDA, PDA, and RDA~ The correct classification rates and quadratic probability measures

for the training and testing data are displayed in Table 7.4 and Table 7 ~5, respectively.

The best results based on the performance of the test sets have been typed in bold face.

Figure 7.5 was produced to facilitate interpretation of Tables 7~4 and 7.5. Only the

classification rates and quadratic. probability measures based on the, testing data have

been displayed in this figure.

The seagrass data tends to have better classification results than the remaining data

. sets~ The mineral data are the next easily classified. The butanol and paraxylene data

seem to be more difficult to assign the spectra into their appropriate classes.
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Data SBLDA SBQDA FDA PDA- RDA
Seagrass Train 100 100 98.18 96.97 99.39

Test lOOCFl 97.06 CF3 99.02 95.10 99.02

Mineral Train 100 100 100 100 100
Test 88 CF3 93 CF3 95 100 95

Paraxylene Train 100 100 100 86.67 100
Test 89.33 CF2 80.000Fl 86.67 81.33 100

Butanol Train 87.5 100 75 43.68 87.50
Test 78.22oFl 86.60 OFI 70.21 43.75 87.23

Table 7..4: Correct classification rates (%)

Data SBLDA SBQDA FDA PDA RDA
Seagrass Train 0.990 1.000 0.987 0.978 0.994

Test 0 .. 997 0.973 0.990 0.968 0.986

Mineral Train 0.997 0.997 1.000 1.000 1.000

Test 0.904 0.942 0.990 1.000 0.956

Paraxylene Train 0.997 0.984 1.000 0.706 1.000

Test 0.908 0.837 0.876 0.699 1 ..000

Butanol Train 0.906 0.994 0.826 0.767 0.888

Test 0.845 0.779 0.828 0.765 0.881

Table 7.5: Quadratic probability Ineasures
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In terms of the actual discriminant methods, no method performs the best for all of the

data sets, although RDA performs quite well overall. PDA produces the highest test CCR

. for one data set - the mineral data. For the butanol data, PDA performs quite poorly.

The performance ll1easures for the lovv dimensional classifiers is much more diverse.

Analysis of the quadratic probability measures reflect a similar outcome as that of the

correct classification rates. One interesting feature to note however, is that, for the seagrass

and mineral data, FDA and RDA produce the same test classification rate, but in both

instances the QPM for FDA is higher than that for RDA. This indicates that perhaps

the class assignlnents made by FDA have been made with greater certainty than the class

assignments for RDA. Another point of interest arises from the seemingly optimistic QPM

value for the application of PDA to the butanol data. The correct classification rates are

quite low, yet the QPM measures whilst smaller compared to the other QP1vI measures

for butanol, may still seem a little high. It is a phenomenon that the QPM can have a
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Figure 7.5: Correct classification rates (CCR) and quadratic probability Illea­
sures (QPM) for the seagrass (s), mineral (Ill), paraxylene (p) and butanol (b)
data.

tendency to produce overly optimistic values [1]. Another issue arises for PDA, with the

paraxylene data. Now the QPM measures are quite low especially when compared to the

QPM measures for SBLDA, which produced similar test classification rates to PDA.

Not shown in Table 7.4 are the grid values which produced the results for RDA. The

setting (1.00,0.25) was used for the seagrass, mineral and butanol data. For these data,

this indicates that a pooled covariance matrix is preferred to one that is not pooled.

Conversely, the combination (0.25,0.25) used for the paraxylene data which weighs more

heavily the individual class covariance matrices as opposed to the pooled class covariance

matrix.

The next section explores the use of wavelet coefficients as features for discriminant

analysis.

7.4 Discriminant Analysis Based on Wavelet Coefficients

In this section we investigate the use of wavelet (and scaling)· coefficients as features for

classification. Before embarking on the feature extraction procedure we explore the effects

of the DWT when applied to the spectral data sets described in Section 7.2. Here, the

DWT is applied using filter coefficients from the Daubechies family.
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After examining the wavele.t and scaling coefficients (and their backtransformations)

of our data, feature .selection techniques will be applied to the coefficients of the DWT

where the filter coefficients are again, from the Daubechies family. Filter coefficients from

the adaptive wavelet algorithlll (AWA) will also be be used for calculating the coefficients

from the DWT.

7.4.1 Explorillg the DWT

One item of interest when using wavelet based features for classification, is whether tht:;

wavelet coefficients or the scaling coefficients should be used. Sometimes, a combination

of the two may also prove to be worthwhile. To help us better understand \vhat the

wavelet and scaling coefficients represent, Figures 7.6-7.9 have been produced. For reasons

outlined in Section 5.11, it is worthy to remember that the scaling coefficients, particularly

from a higher level in the D\VT, exhibit strong collinearity.

Figures 7.6-7.9 show two components - (i) the scaling and wavelet coefficients from

DWT and (ii) the reconstructed spectra produced for the respective bands of coefficients

in the DWT. In each of the figures, the wavelet transformation has been performed on a

sampled spectrum from each gro~p category. The sampled spectra used are the same as

those in Figures 7.1- 7.4 and are overlayed in the plots. The DWT has been performed

using the Daubechies filter with N f == 16 to level 3, whic-h is when 8 coefficients remain

in the scaling and- wavelet bands. The scaling coefficients for each of the levels (8 through

to 3) are shown in the first column. The next column shows the reconstructed spectra

produced by backtransforming the scaling coefficients (the wavelet coefficients at the same

level have been set to zero). Column 3 shows the wavelet coefficients for each of the spectra

for the levels 8 through to 3. The final column, displays the reconstructed spectra produced

by backtransforming the wavelet coefficients (the scaling coefficients at the same level have

been set to zero).

Consider the fourth row of plots in Figure 7.6. The fourth row corresponds to level

5 of the DWT. The coefficients in band(5,O) are the scaling coefficients which have been

plotted against their index. The reconstructed spectra in the next column were obtained

by thresholding the wavelet coefficients in band(5,1) to zero and then performing the

inverse DWT on the scaling coefficients and the thresholded wavelet coefficients. The
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original (unthresholded) wavelet coefficients at level 5 in the DWT are shown in the third

column of row 5 in Figure 7.6. The final column of the Sanl€ row shows the "reconstructed

spectra which results when the inverse DWT is performed on the wavelet coefficients from

band(5,1) and on the thresholded scaling coefficients from band(5,O) which have'been set

to zero. The, reconstructed spectra, illustrate in an approximate sense, the spectra which

would be obtained, when the coefficients are linearly combined with their respective basis

functions~

Coefficients potentially useful for classification should display s9me (between class) vari­

ability for the sampled class spectra. For the seagrass data this is visible for the scaling

coefficients at most levels and the wavelet .coefficients at lower levels in the DWT. Likewise,

for the lllineral data, it would appear that both the scaling and wavelet coefficients may

provide useful information to the classification procedure~ ·The variation with the paraxy­

lene and butanol data are very slight. Sorp.e minor differences in the scaling and wavelet

coefficients c~n however be detected for the' butanol data. It is important to remember

when inspecting these figures, that only a single spectrum fronl each class has been used

in the construction of the plots, and that spectra from the same class can exhibit some

slight within-class variability.

The aim of this section was, to allow the reader to visualize what the various scaling and

wavelet coefficients from the different levels represent~ The next section applies various

wavelet based feature selection strategiE

7.4.2 Banded Discrimillallt Analysis

In this section we consider two banded approaches~ The first which we refer to as BBLDA is

banded Bayesian linear discriminant analysis (BBLDA), and the second which we refer to

as BBQDA is banded Bayesian quadratic discriminant analysis. Both banded procedures

use all of the coefficients from the same band in the wavelet transform, as input to the

particular discriminant method, Le. BLDA or BQDA. The discriminant analysis is then

based on some set of coefficients X[j](T) at some level j, belonging to some band T~ The

number of coefficients in band(j, T) should be small when compared to the sample size so

that an ill- or poorly-posed situation is avoided. The banded approach is a very simple

procedure for feature selection of the wavelet coefficients. Previously, Bos [8] has used a
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Figure 7.6: The DWT and inverse DWT performed on the seagrass data.
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Figure 7.7: The DWT and inverse DWT performed on the mineral data
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Figure 7.8: The DWT and inverse DWT performed on the paraxylene data.
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Figure 7.9: The DWT and inverse DWT performed on the butanol data.
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similar approach, except that the bands of coefficients were supplied to neural networks.

'In the banded procedure for this section the scaling X[3](O) and wavelet X [3] (1) coef­

ficients from level 3, and the scaling X[4] (0) and wavelet X[4) (1) coefficients from level 4

have been used for classification. At level 3, there are 8 coefficients in each of the bands,

while level 4 has 16 coefficients ill. each of the bands. The classification results for BBLDA

and BBQDA vvhen applied to the wavelet coefficients produced for each of the data sets

of Section 7 ..2 are summarised in Tables 7.6 and 7.7, respectively..

Data X[3] (0) X[3] (1) X[4] (0) X [4] (1)
Seagrass Train 98 ..79 99.39 100 100

Test 100 98.04 100 99.02

Mineral Train 97 95 97 98
Test 87 90 94 98

Paraxylene Train 62.67 68.00 81.33 80 .. 00

Test 50.67 58.67 56.00 61.33

Butanol Train 85.42 87.50 93 ..75 87.50

Test 82.98 82.98 76 ..60 87.23

Table 7.6: Classification results for BBLDA.

We first comment on the results for BBLDA .. The figures typed in boldface have the

highest (test) classification rate for each of the data. If the s~me test classification rate

appears for two or more bands, then the figure typed in bold will have the highest (test)

quadratic probability measure. For the seagrass data each of the scaling bands have out­

performed the wavelet bands, while for the mineral, paraxylene and butanol data wavelet

bands have produced better classification results than the respective scaling bands. For

the butanol data the performance between band(3,O) and band(3,1) is relatively marginal

however ..

For BBQDA, numerical instabilities a.rose for the mineral data when 16 coefficients

were supplied to the classifier. This can be attributed to the fact that for BQDA, the

class sample size should be large compared to the dimensionality. For the mineral data

there are 20 objects per class which is only marginally larger than 16, hence it was not

possible to pro~uce accurate results for this setting. When only 8 wavelet coefficients were

used however there is a 6 per cent iluprovement in using BQDA as opposed to BLDA.

This is seen for both the scaling (band(3,O)) and wavelet bands (band(3,1)). There is
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Data X [3] (0) X[3] (1) X [4] (0) X [4] (1)
Seagrass Train 100 100 100 100

Test 100 99.02 100 100

Mineral Train 100 100 - -

Test 93 96 - -

Paraxylene Train 88 86.67 100 100
Test .66.67 72.00 81.33 76.00

Btitan'ol Train 89.58 87.50 100 100
Test 74.47 72.34 63.83 57.45

Table 7.7: Classification results for BBQDA.
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also an improvement in results for the paraxylene data as well. For the seagrass data the

results are comparable to those obtained by BBLDA. The results for the butanol data

using BBQDA are not as favourable as those obtained using BBLDA.

7.4.3 Stepwise Feature Extraction from tIle DWT

The DWT will be performed to le~el 3 using a Daubechies wavelet defined by 16 filter

coefficients. The total set of features consists of the scaling coefficients at level 3, and the

wavelet coefficients at level 3 up to and including the wavelet coefficients at level 8. These

coefficients constitute the .commonly used Mallat's right hand pyramidal tree.

In this section the stepwise methods SvVBLDA and SWBQDA are applied to the wavelet

and scaling coefficients produced from the seagrass, mineral, paraxylene and butanol data.

Each of the forward stepwise strategies CF1, CF2 and CF3 are applied. The classification

results of the forward stepwise strategies are summarized in Table 7.8.

The boldface type identifies the stepwise procedure producing the highest eeR. If two

or more strategies produce the same "highest" CCR, then the number marked in bold

will have fewer variables. Should both the strategies have the same number of variables,

th~n the method giving the largest QPlvi for the testing data will be highlighted. T'his

procedure is mucll the same as that performed on the original data, and is done separately

for SWBLDA and SWBQDA. The CF3 procedure tends to be outperforming the CFl and

CF2 strategies..

Also ,of interest is the coefficients which have been selected by the stepwise procedures.

Table 7.9 shows the indices ,of the coefficients from the DWT vvhich have been selected
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Data SvVBLDA SWBQDA

CFl CF2 CP3 eFl ,CF2 . 'CF3

Seagrass Train 99.39 100 . 99.39 100 100 100

Test 95.10 97.06 98.04 97.06 97.06 97.06

dimension 3 4 3 4 4 4
Mineral Train 99 100 100 100 100 100

Test 97 93 93 89 92 90

dimension 6 5 6 4 3 4
Paraxylene Train 100 100 98.67 100 100 97.33

Test 69.33 81.33 81.33 77.33 78.67 82.67

dimension 7 7 6 6 '5 6
Butanol Train 100 85.42 85.42 100 100 91.67

Test 72.34 85.11 85.11 68.09 65.57 74.47

dimension 6 6 5 5 5 4

Table 7.8: Correct classification rates for SWBLDA and SWBQD-A.
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Seagrass Mineral Paraxylene Butanol

SWBLDA CF1 CF2 CF3 CFl CF2 CF3 CPl CF2 CF3 CFl CF2 CF3
62 205 205 51 51 51 299 299 299 217 217 217
201 201 201 20 2 2 423 423 381 465 155 155
56 419 2 12 6 7 476 282 476 318 257 318

26~5 66 340 456 324 75 368 427 471 465
501 459 116 460 344 389 309 260 313
2 358 123 486 170 257 334

457 409
S\VBQDA CPl CF2 CF3 CFl CF2 CF3 CPl CF2 CF3 eFl CF2 CF3

204 204 204 51 51 51 299 299 299 217 217 217
34 34 34 40 3 3 491 491 192 465 155 77

202 202 202 374 54 164 168 197 168 118 257 411
1 A 1 A 1 ,..,.1 482 C\ .. 0,. .. 17 191 130 "10')0') 334.iLl: l.'± ill. L:,.J ~qt) l.~.j

368 257 450 467 433

197 45

Table 7.9: Coefficients selected by the forward schemes for SWBLDA and
SWBQDA.
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by each of the forward stepwise schemes, for each of the sets of data. The data has been

stored as follows

band(3,O) band(3,1) band(4,1) band(5,1) band(6,1) band(7,1) band(S,l)

1:8 ' 9:16 17:32 33:64 , 65:128 129:256 257:512

so that the, first 8 cQefficients, are from the scaling band at level 3, while- the' next 8

coefficients are the wavelet coefficients at level 3. The next 16 coefficients are wavelet

coefficients from band(4,1) and so on. The only set ,of scaling coefficients which formed

part of the feature set were those contained in band(3,O). Consider for example SWBLDA­

CF3 applied to the seagrass data. This technique selected coefficients with index labels

of 205, 201 and 2. The indices 205 and 201 refer to the' position of the coefficients in

the DWT. Using the table above, we can see that these coefficients are from band(7,1),

while the coefficient with an index of 2, is the second scaling coefficient in band(3,O). Note

that instead of using indices we could have used the two subscipts (j, k) to identify their

positions in the wavelet tree4 Instead we chose to uS,e a single number so that one can

quickly compare the indices which were selected.

There is a some variation between the coefficients which have been selected for SWBLDA

by the forward selection schemes CFl, CF2 and CF3, although by examination of Table 7.9

one can see, that the coefficients generally pertain to similar· regions of the DWT.A similar

observation can be made for SWBQDA.

Figure 7.10 was produced to help provide some idea where the ~oefficients in Table 7.9

lie in relation to the bands of the DWT. This was done for each of the data sets, but for

SWBLDA using one selection scheme - CFl, CF2 or CF3. The coefficients selected from

the CF3 forward strategy have been shown for the seagrass, paraxylene and butanol data,

while the coefficients displayed for the mineral data were produced using the CFl strategy.

For the paraxylene and butanol data where discrimination appears to be somewhat

challenging, selection of the wavelet coefficients pertaining to a higher levei in the DWT

is more predominant. For the mineral data, SWBLDA (CFl-) has selected a range of

coefficients from the DWT. With the exception of band(7,1) a coefficient has been selected

froln each of the bands constituting the DWT. This indicates that a range of hig'h and low

frequency information is utilized by the stepwise discriminant techniques. There are only

tllree features which have been selected by the stepwise method SWBLDA (CF3) for the
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7.4.4 Local Discriminallt Bases
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In this section a feature extraction method is applied to wavelet packet coefficients. This

procedure is referred to as the local discriminant bases (LDB) algorithm and was previously

discussed in Section 5.14.2.

The wavelet packet transform was calculated to level 3 using the Daubechies filter

coefficients with Nf = 16. Once the wavelet packet decomposition has been formed, it is

necessary to determine the best basis froll1 the energy maps. The criterion which we have

used to form the best basis is the sYlnmetric entropy criterion. Figure 7.11 marks the best

basis selected by the LDB algorithm for each of the sets of data. For the paraxylene data,

the selected best basis is the original data.

Once the best basis has been found, it is then necessary to select a subset of wavelet

packet coefficients from the best basis. It was decided to select the 16 wavelet packet

coefficients based on the same discriminant measure which produced· t~e best basis, i.e.

symmetric entropy..

The asterisks in Figure 7.11 show the positions of the 16 wavelet packet coefficients

which were selected from the best basis and supplied to the classifier BLDA. Tller€ is a

tendency for the wavelet packet coefficients to be selected from band(4,O) and band(4,1)

of the WPT. These bands will contain the same coefficients as those in 'band(4,O) and

band(4,1) from the.DvVT..The wavelet packet coefficients are quite clustered, which is a

likely consequence of selecting the coefficients by a univariate strategy, that is without

consideration given to previously selected features.

The sixteen wavelet packet coefficients with the largest symmetric entropy measures

were then supplied to the classifier BLDA in a top-down approach, that is, the first

1, 2, .... , 16 coefficients were used for classification. That is, initially a single wavelet packet

coefficient (with the largest 'discriminant measure) is supplied to the classifier. Then, the

two wavelet packet coefficients with the largest discriminant measures are supplied to the

classifier. This procedure continues until all 16 coefficients have formed part of the BLDA

model.

Table 7.10 gives the classification rates for the training and testing data for each of

the discriminant data sets where the first 1, .... ,16 wavelet packet coefficients have been
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Seagrass
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Figure 7.11: Selected wavelet coefficients (asterisks) from the best bases.

selected from the best basis, and supplied to BLDA. The numbers highlighted in bold type

have the largest (test) CCR and the fewest terms in the discriminant model.

This application of the LDB approach has followed closely that outlined in [118], the

main difference is that we have used BLDA as opposed to FLDA. There are some issues

which arise from the LDB algorithm. One question is if it is indeed worthwhile to select the

final set of coefficients for classification from the best basis, as opposed to searching through

the entire wavelet packet transform. Walczak et. al [141] have compared performance of

feature selection from the LDB and the full ·WPT using a univariate feature selection
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Number. Seagrass Mineral Paraxylene Butanol
ofWPC Train Test Train Test Train Test Train Test

1 74.55 76.47 67 72 42.67 41.33 72.92 74.47
2 73.33 69.61 87 89 48.00 65.33 75.00 76.60
3 86.67 86.27 88 90 54.67 53.33 79.17 80.85
4 93.94 94.12 93 87 68.00 62.67 81.25- 80.85
5 90.91 89.22 93 87 69.33 57.33 83.33 87.23

6 93.33 91.18 94 85 72.00 57.33 83.33 80.85
7 98.18 97.06 94 88 78.67 77.33 83.33 80.85
8 100.00 100.00 96 88 78.67 78.67 83.33 85.11
9 100.00 100.00 96 88 78.67 77.33 85.42 85.11
10 100.00 100.00 96 88 84.00 73.33 83.33 82.98
11 99.39 99.02 97 93 84.00 72.00 83.33 80.85

12 99.39 99.02 97' 93 84.00 77.33 85.42 82.98
13 100.00 100.00 98 91 88.00 76.00 85.42 82.98

14 100.00 100.00 98 92 89.33 77.33 83.33 78.72

15 100.00 100.00 98 92 89.33 77.33 87.50 -76.60

16 100.00 100.00 99 93 92.00 73.33 87.50 76.60

Table 7.10: Classification performance of the LDB algorithm.
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method based on Fisher's criterion (see Section 4.1.1). For their data, they concluded

that no gain was bought about by the LDB algorithm. One advantage for the LDB

algorithm without taking into consideration the time to calculate the best basis, is that

it will be computationally quicker to select coefficients from the best basis as opposed to

selecting them from the larger set of wavelet packet coefficients.. The other advantage is

that it does help to reduce the inter-dependencies that exist between the coefficients in

the parent nodes with the coefficients in the children nodes. Although, a feature selection

procedure which looked at combinations of features, such as stepwise procedure, would

also take into consideration the inter-dependencies between the coefficients.

7.4.5 Adaptive Wavelet AlgoritllID

In the previous sections, the DWT has been performed using the filter coefficients from

the Daubechies family.. There are many filter coefficients which we could have chosen,

but the Daubechies filter coefficients were chosen since they tend to be documented quite

frequently.. There is no reason however, that another set of coefficients could not have
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been used. Of course, the problem which ,'ll/e face is deciding whether or not we might

obtain better results using other filter coefficients& In this section we design our own task

specific filter coefficients. using the adaptive wavelet algorithm of Chapter 6& The idea

behind the adaptive wavelet algorithm is to avoid the decision of which wavelet basis we

should select and design our own wavelets to suit the current task at hand, which in this

case is djscriminant analysis &

The adaptive wavelet algorithm is applied using several settings of the m, q and jo

parameters. ~he particular (m, q,io) triplets used were (4,3,2), (4,2,2) , (8,1,1), (2,5,3),

(2,5,4), (2,7,3), and (2,7,4)& These settings were chosen because (i) they provide suitable

ratios of the dimensionality ~f the wavelet bands to the sample size and, (ii) so that the

number of filter coefficients is iVj == 12 and Nf == 16& Section 6&4 describes some heuristics

for choosing values for these parameters as well as T &

The discriminant criterion function implemented by the adaptive wavelet algorithm is

the CVQPM criterion' function. A form of banded selection is performed, whereby the

criterion fun~tion is calculated from a band of coefficients JCVQPM (X[j] (T)) & The same

coefficients are later supplied to the classifier.

The value T is chosen as the band which gave the highest -CVQPM value at initialization

for a particular (m, q, jo) triplet& The coefficients in band(j, T) -are then supplied to the

classifier. In some cases the algorithm chose to optimize over a scaling band. This would

occur if the discriminant criterion for a scaling band was higher than that for the wavelet

bands (at initialization). We have discussed earlier that the scaling coefficients may prove

to be useful when the basic shape or low frequency event contains discriminatory informa­

tion. If a scaling band (Le. T == 0) were selected for a particular setting, then for the same

(m, q, jo) settings it was decided" to repeat the experiment and optimize over the wavelet

band having the largest discri~inant measure at initialization.

SOIlle stopping rules were applied to the optinlization routine& The optirnization routine

halted if 2000 iterations of the optimization routine had been performed or sooner if an

optim.al value was obtained. For the seagrass data we found it was necessary to have

only 500 iterations, since the discriminant measure was already quite high in the early

stages of the AvVA. Whilst having a preset number of iterations does not allow for the

best optimal value to be found, from an applied point of view it is more practical. In
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our experimentations we generally found that the classification rates did not improve very

much, if at all, after 1500 iterations.

The results of the adaptive wavelet algorithm are presented in Table 7.11, also shown

is the number of filter coefficients (Nj), used in computing the DWT and the number

of coefficients (Ncoef) in each of the bands for the ~'espective.(m, q,jo) settings. For each

data set the highest CCR based on the testing data, obtained with the least nUlnber. of

coefficients is typed in boldface. The adaptive wavelet algorithm performs quite well for

each of the settings for the seagrass data and eventually, the setting (4,3,2) produced the

best results using fewer coefficients. Quite good results 'are also obtained for the mineral

data with the setting (2,7,4) for band(4,1)w For this setting optimization was initially based

on the scaling coefficients, but when optilnization for the (2,7,4) setting was performed

on the wavelet coefficients the results were further improved. For the par~xylenedata the

classification performance was generally improved when optimization was based on the

wavelet coefficientsw Tllis was not necess~rily the case for the butanol data, where for the

settings (2,5,4) and (2,7,4) classification based on the scaling coefficients improved the test

CCR by more than 10% when compared to their respective wavelet bands.



CHAPTER 7. CLASSIFICATION APPLICATIONS

Seagrass m q jo Nf Ncoef T Train Test
4 3 2 16 8 1 100 100
4 2 2 12 8 0 100 99402

1 99.39 97.06
8 1 2 16 8 1 99.39 99.02
2 5 6 1~ 8 0 100 99.02

1 99.39 99.02
2 5 5 12 16 0 100 100

1 100 100
2 7 6 16 8 1 99.39 99.02
2 7 5 16 16 1 100 100

Mineral m q )0 Nf Ncoef T Train Test
4 3 2 16 8 0 100 96

1 100 92
4 2 2 12 8 0 97 89

1 98 89
8 1 1 16 8 4 96 90
2' 5 3 12 8 1 98 90
2 5 4 12 16 1 99 95
2 7 3 16 8 1 100 95
2 7 4 16 16 0 100 93

1 99 99

Paraxylene m q Jo lVf Ncoef T Train Test
4 3 2 16 8 2 94.67 76'400
4 2 2 12 8 2 88.00 68.00
8 1 1 16 8 2 97.33 74.-67

2 5 3 12 8 0 84.00 58.67
1 85.33 66.67

2 5 4 12 16 0 70.67 50.67
1 94.67 86.67

2 7 3 16 8 0 78.67 61.33
1 84.00 74.67

2 7 4 16 16 1 96400 81.33
Butanol m q Jo NJ Ncoef T Train Test

4 3 2 16 8 3 97.92 61.70
4 2 2 12 8 1 97.92 57.45
8 1 1 16 8 2 '97.92 74.47
2 5 3 12 8 1 93.7-5 87.23

2 .5 4 12 16 0 93.75 82.98
1 95.83 70.21

2 7 3 16 8 1 93.75 65.96
2 7 4 16 16 0 97.92 85.11

1 97.92 74.47

. Table 7.11: Classification results for the adaptive wavelet ,algorithm.
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Figure 7.12: Discriminant measure versus iteration for the adaptive wavelet
algorithm.

To demonstrate convergence of the adaptive wavelet algorithm in at least a local sense,

the values of the criterion measure JCVQPM (Xli] (T)) have. been plotted against the iter­

ation number of the optimization routine as shown in Figure 7.12. This was done for the

setting (m, q, jo, T) = (4,3,2,1) for the seagrass data, the (2,7,4,1) setting for the mineral

data, the (2,5,4,1) setting for the paraxylene data and the (2,5,3,1) setting for the butanol

data. The CVQPM values were initially very high. This is especially the case for the

seagrass data, which is why a maximum of 500· iterations were used in the optimization

routine. For the mineral data the optimization routine halted after approximately 700

iterations. When comparing the output for the paraxylene and butanol data against that

of the seagrass and mineral data, one can see that more work was required by the opti­

mizer to improve the CVQPM measures for the paraxylene and butanol data and both

data sets used 2000 iterations of the optimization routine. The optimization routine will

make several evaluations of the discriminant criterion function before choosing a search

direction. Some of the trialled discriminant criterion values will be quite small and this
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contributes to the sharp drops in Figure 7.12.
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In the next experiment we decided to optimize over a scaling band, and a vvavelet band,

.since s?metimes information is needed about the low and high frequency events. The aim

was to use at least a 3 band pWT and optimize over a scaling and wavelet band, with the

aim of 'pushing' the information which is n.ot useful for discrimination into the remaining

band(s). ,vVe opted to use the m == 4 band DvVT for this experiment With th~ m = 4 band

DWT, it was anticipated that the noise \vould be pushed into the two remaining bands.

The adaptive wavelet algorithm was applied to the (m, q,jo)==(4,3,2) setting. Now that

optimization involves a scaling and wavelet band (at the same level), we need only to select

the wavelet band at initialization. The discriminant measure was formulated based on the

coefficients from the scaling and wavelet band which produced the highest measurement

at initialization. For the mineral data, the vvavelet coefficients X[2] (1) were combined with

the scaling coefficients X[2] (0) from the 4 band DWT. For the paraxylene data, the wavelet

coefficients X[2](2) were combined with the scaling coefficients and for the butanol data,

the wavelet coefficientsX[2] (3) were used together with the scaling coefficients.

Data T Train Test

Mineral X[2](O) and X[2](1) 100 96.00

Paraxylene X[2](O) and X[2](2) 92.00 69.33

Butanol X[2J(O) and X[2l(3) 100 61.70

Table 7.12: Classification results for the adaptive wavelet algorithln where op­
timization was over a scaling and wavelet band for the (4,3,2) setting.

The results from this combined approach are shown in Table 7.12 for the mineral,

paraxylene, and butanol data. The seagrass data was not applied, since the adaptive

wavelet algorithm on a single band already performs quite ad.equately for this data. Des.pite

the attempt of using low and high frequency information, the combined approach was less

effective than using the single band approach. Th~s may simply be due to the data not

performing as well for the m == 4 scenario.
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7.4.6 Sun1.mary of tIle Wavelet Feature Extractioll Strategies
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In the previous sections we have investigated different feature extraction procedures vvhich

involve the' application of wavelet (and scaling) coefficients for classification. We have

considered, the banded feature selection procedures BBLDA and BBQDA, the stepwise

methods SWLBDA and SWBQDA, and the .LDB and AWA algorithms.

In. this s-ection we summarize the results of these 'strategies and compare how these

methods, performed on our discriminant data sets. The correctclassincation rates for

these procedures are listed in Table 7.13. In the previous sections we elected not to

present details about the quadratic probability measures so as to avoid presenting too many

details. In this section we present the quadratic probability measures for the corresponding

models whose correct classification rates .are listed in Table 7.13. The quadratic probability

measures are in' Table 7.14. The classification ra.tes and quadratic probability measures

(for the testing data only) are also displayed in Figure 7.13.

Data BBLDA BBQDA S\iVBLDA SWBQDA LDB AWA
Seagrass Train 100 100 99.39 100 100 100

Test 100 100 98.04cF3 97.06cF3 100, 100

Dimension 16 16 3 4 8 8

Mineral Train 98 100 99 100 97 99
Test '98 96 97cFl 92cF2 93 99

Dimension 16 8 6 3 11 16
Paraxylene Train 80.00 100 98.67 97.33 78.67 94.67

Test 61.33 81.33 81.33cF3 82.67cF3 78.67 86.67

Dimension 16 16 6 6 8 '16

Butanol Train 87.50 89.58 85.42 91.67 83.33 93.75

Test 87.23 74.47 85.11cF3 74.47cF3 87.23 87.23

Dimension 16 8 5 4 5 8

Table 7.13: Correct classification rates for the wavelet based feature extraction
strategies.

The tabulated results for BBLDA correspond to the largest test CCR for each of the

data sets, similarly for BBQDA. This information was taken from Tables 7.6 and 7.7,

respectively. The results for SWBLDA and SVVBQDA were extracted from Table 7.8. For

SWBLDA the results for the CF3 stra.tegy were tabulated for the seagrass, paraxylene and

butanol data, and the results for the CFl strategy were tabulated for the mineral da.ta.
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Data BBLDA BBQDA SWBLDA SvVBQDA LDB AWA
Seagrass Train 1.000 1 ·0.994 1 1 1

Test 1.000 1.000 0.985 0.973 1.000 1.000

Dimension 16 16 3 4 8 8
Mineral Train 0.987 0.997 0.991 0.993 0.978 0.99

Test 0.980 0.960 0.973 0.941 0.941 0.982

Dimension 16 8 3 3 11 16
Paraxylene Train 0.866 1 0.982 0.973 0.834 0.954

Test 0.751 0.819 0.866 0.853 0.838 0.876

Dimension 16 16 6 6 8 16
Butanol Train 0.918 0.927 0.869 0.957 0.88 0.935

Test 0.905 0.866 0.879 0.789 0.883 0.890

Dimension 16 8 5 6 5 8

Table 7.14: Quadratic probability measures for the wavelet based feature ex­
traction strategies.
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Figure 7.13: Correct classification rates (CCR) and quadratic probability TIlea­
sures (QPM) for the wavelet based methods applied to the seagrass (s), TIlineral
(TIl), paraxylene (p) and butanol (b) data.

For SWBQDA the results for the CF3 strategy are presented for the seagrass, paraxylene

and butanol data, and the results for the CF2 scheme are listed for the mineral data. The

results for the LDB model were taken from Table 7.10 and the results for the AWA were

taken from Table 7.11.

Whilst the results presented in this section are based on the largest testing correct clas-
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sincation rates, in practice it will not be known in advance which particular model will

give the best test CCR, and such solution? require further investigation. Since .we are

fortunate enough to have independent test sets available, ,ve have decided to compare the

results based on the performance of the testing data but are aware that further investiga­

tion is required to det.ermine, based on some procedure involving the training data only,

which model will have the best test classification rates. Since our desire is to compare

the performance of the best possible models, 'we feel that the approach· adopted herein is

satisfactory.

In Tables 7..13 and 7.14 the largest CCR and QPM based on the testing data have

been typed in boldface. Despite the somevvhat limited feature extraction procedure imple-.

mented by the AvVA as opposed to the more flexible feature extraction procedures which

can. be implemented when a predefined family of filter coefficients is used for calculating

the DWT, the results for the adaptive wavelet algorithm are consistently favourable across

each of the data sets and, in terms of both the classification rates and quadratic probability

measures.

The SWBLDA routines based on the Daubechies scaling and wavelet .coefficients also

performs quite well. The LDB algorithm performs well for the seagrass and butanol data,

and the BBLDA performs well for the seagrass and mineral data. The only data set which

seemed to perform well under SWBQDA was the paraxylene data.

When examining Figure 7.. 13 it is interesting to note if the profiles for the CCR, are

followed closely b~y the profiles for the QPM (for each data set individually). The profiles

for each data set are mostly the same with the exception occurring for the QPM for

SvVBQDA on the paraxylene data. The ranking then, of our models with respect to the

classification rate based estimates are similar to the ranking of the lTIodels with respect to

their probability based estimates.

7.5 \Vhicll Classificatioll Strategy?

This chapter has presented several classification strategies which can be applied to spectral

data. Of course such strategies extend to similar forms of data. Three main approaches

have been presented:
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1. Classification using all ~f the original data and a high dimensional classifier,
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2. selecting features fralp. the original data and applying a low dimensional classifier,

and

3. selecting wavelet coefficients as features and applying a low dimensional classifier.

In the first approach, PDA and RDA were applied to the original data without any prior

feature selection. The second approach applied SBLDA, SBQDA and FDA to the original

data. The third approach which supplied the wavelet coefficients to the classifiers included

BBLDA, BBQDA, SWBLDA, SWBQDA, the LDB and AWA algorithms.

This section investigates which of the these approaches might be more suitable for the

classification of spectral data in general, and particularly to the seagrass, mineral, paraxy­

lene and butanol data. This will be done in two stages. Firstly, the correct classification

rates and quadratic probability measures will be exalnined for each of the classification

procedures. This performance based assessment is presented in Section 7.5.1. VVe are also

interested in what a particular" classification ·strategy can tell us about our data.. Tllis

qualitative assessment will be given in Section 7.5.2.

7.5.1 Perforlnance Based Measures

In this section a summary of the previous classification results obtained for the original

data and the coefficients from the wavelet transforms is given. Figure 7.14 displays the

correct classification rates for each of the classification strategies, again the information

displayed is calculated from tile testing data. The results for the high dimensional methods

PDA and RDA appear at the top of the graphs for each of the data sets. Following

this the results for the low dimensional classifiers SBLDA, SBQDA and FDA are shown.

For these methods the features have been selected from the original data. TIle last six

classification strategie? have extracted features from the wavelet coefficients. The fllethods

shown are BBLDA, BBQDA, SWBLDA, SvVBQDA, LDB and AWA. To enable easier

interpretation of Figure 7.14, crosses have been used to indicate the results of the lligh

dimensional methods likewise, circles have been used to "indicate the low dimensional

classification performed on the original data, and the asterisks are indicators for the low

dimensional classification methods based on the coefficients from the DWT. To further
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enhance interpretation of Figure 7.14, the line types have also changed accordingly with

the marker indicators.
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Figure 7.14: Correct classification rates for each of the discriminant strategies.

There are three main items which can be noted from the classification summary.

1& RDA tends to outperform the other ·high dimensional classifier PDA, with the excep-

tion being for the mineral data where PDA outperforms RDA. If one compares RDA

against the low dimensional methods which entail some form of feature extraction

(or selection), then one can clearly notice that RDA also consistently produces high

classification results across each of the sets of data. For the mineral data hovvever,

RDA is outperformed by three of the vvavelet based approaches (and PDA).
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.. For the classification methods which are based on a subset of the original variables,

there does not appear to be anyone approach which consistently performs well.

• Of the classification methods vvhich are based on a selection of the wavelet coeffi­

cients, th~ adaptive wavelet algorithm consistently. produces high test classification

rates. The AWA also tends' to produce higher classification rates than the classifi­

cation strategies which involve feature selection on the original variables. The only

exception occurs for the paraxylene data where SBLDA on the original data assigns

89.33% of the observations for the test data to their correct class. The AWA also

compares favourably with the high dimensional classification methods~

• There is no method which clearly outperforms the other methods, although the

AWAdoes consistently classify a large proportion of the testing objects into their

appropriate class categories.

In deciding which discriminant approach should be applied to the classification of spec­

tral data it is important to identify the main goals of the discriminant procedure, that is

the kind of information which is required. From tl~e results presented in this section, if one

is purely interested in assigning o.bjects to their appropriate classes, then RDA and the

AWA tend to consistently perform well. Sometimes, information other than the percent­

age of correctly classified objects is required~ For instance, a common question relating to

the discriminant analysis of spectral data is often posed - "which features are important

for classification?" Some of the classification strategies which have been discussed in this

chapter can assist in answering such questions, while other methods are really only useful

for ~signing spectra to their particular classes. The next section exalnines any additional

information apart from correct classification rates that can be provided by each of the

discrilninant approaches.

7.5.2 Qualitative Assessmellt

This chapter has focused predominantly on the classification of spectral data. Discriminant

analysis can involve more than just assigning an object into a particular class. In terms of

description there. are two main items which are often of interest in discriminant procedures.

One item of importance is to determine vv'"hich parts of the spectra are most useful for
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discriminating among the various classes. Another item of interest is understanding how

tIle' different groups relate to one' another as a whole. This can· most easily be visualized

with th~ aid of discriminant plots.

Some of the discriminant strategies discussed previously will be able to assist in uncov­

ering such information while others will not. 'lYe proceed to investigate the qualitative

illformation which can be obtained from the lower dimensional methods.

For deducing \vhich variables may be important for classification, one typically relies on

the features extraction s~rategies to determine such information. For example, BLDA may

provide little knovvledge as to which variables are important, but this classifier combined

with a stepwise procedure can help to identify which variables contain discriminatory

information.

If feature selection is being performed on the original variables, then it is possible to

deduce the variables which are likely to contain discriminatory information by simply

observing the variables which have been selected~ When features other than the original

variables are used then interpretation of important wavelengths becomes more involved.

For instance, if we are to use wavelet coefficients, then it becomes slightly more difficult to

say if a particular wavelength is important or not. What one can deduce from wavelet (and

scaling) coefficients is (i) the kind of information which is useful e~g. the high frequency

components or the low frequency components, and (ii) which regions of our original spectra

are useful for classification. We novv investigate the different approaches which can be used

to highlight information about the discriminatory regions of our spectra. We consider each

approach separately to highlight the capabilies of each strategy individually.

Low Dilnensional Classification Using the Original'Data

As previously mentioned when feature selection is based on tIle original data it is interest­

ing to examine the actual features, i.e. wavelengtlls which have been selected. Figure 7.15

superimposes the "Vvavelengths which have been selected by the stepwise routines SBLDA

and SBQDA. TIle spectra shown in Figure 7.15 are the same sampled class spectra used

previously in this chapter. Although, SBLDA and SBQDA will often select wavelengths

pertaining to the same region of the spectra, there exists some variability with respect to

the variables selected. This is not surprising since the variables selected by SBLDA will
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classify using linear boundaries, and SBQDA will classify using quadratic decision bound­

aries. Recall from Section 7.3 that the classification strategies used for each of SBLDA

and SBQDA is as follows:

Data SBLDA SBQDA

Seagrass CFl CF3

Mineral CF3 CF3

Paraxylene CF2 CFl

Butanol CF1 CF1

Also shown in Figure 7.15 is the variables selected by FDA.

Seagrass - FDA

l\
~
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Figure 7.15: Wavelengths selected by SBLDA; SBQDA and FDA.

For the seagrass data in the approximate range of 500 urn to 1300 urn, FDA has selected

variables similar to those selected from SBQDA. It has also selected variables' nearer to

the peak occurring around the 1900-2100 nm range. SBLDA selects variables from a

similar region. For the mineral data, there seems to be two main areas of interest - those

around the peak at 1800 nm (FDA, SBLDA) and in the range of 2100 - 2300 nm (SBLDA,
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SBQDA, FD.i\). The wavelengths selected by SBLDA and SBQDA for the paraxylene data

tend to concentrate around the region of approximately 2100 to slightly over 2200 um,

while FDA selects wavelengths pertaining to the peaks occurring in the vicinity of 1400

nm, 1600 - 1800 nrn and 2150 - 2250 nln. It seelns that for the butanol data, SBQDA has

concentrated a selection of wavelengths pertaining to the index near 400. Both FDA and

SBLDA do not concentrate hea\rily on this region and each select only a single wayelength

from this region. Other areas of interest for the butanol data include the trough near

index 130 (SBLDA, SBQDA) and the minima at index 300 (FDA).

vVith the exception of the butanol data, FDA had the tendency to select more variables

than either SBLDA or SBQDA. There seems to be some slight differences to the particular

wavelengths selected by SBLDA, SBQDA and FDA, although ~he variables selected by

each of the lnethods often pertain to similar regions of the spectral data.

With FDA it also possible to obtain information about the segregation of the group

categories. Since FDA stems from a Fisher-based method, it is possible to obtain dis­

criminant plots. TIle discriminant plots for the FDA models are d~splayed in Figure 7.16

where the points in the plots are based on the testing data. The numerals represent their

respective group categories. The seagrass and paraxylene data each have two discriminant

variables, the butanol data has a single discriminant variable, the mineral data has four

discriminant variables but we have only displayed the first three discriminant variables.

The discriminant plot of the seagrass data forms a v-shape. The discriminant plot for

mineral data has reasonably separated each of the mineral groups. Whilst the discriminant

plot for the paraxylene data show some separation of the three groups, there is obviously

a great deal of spread in the plot, one can also observe the overlap in the classes for the

butanol data.

vVe now proceed to discuss the qualitative information which can be determined from

the classification strategies based on the \vavelet (and scaling) coefficients. 'fve discuss

separately the output from the banded procedures BBLDA and BBQDA, the stepwise

methods SBLDA and SBQDA, and the LDB and A\VA algorithrl1s.

Banded Discriminant Analysis

The banded a.pproach is rather limited in what it can identify as important from the

original variables. This is because the way in which we select the bands is based purely on
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Figure 7.16: Discriminant plots produced by FDA.

the number of coefficients in the bands. It is necessary that the number of coefficients in

the bands will not make the situation ill- or poorly-posed. What we can of course compare

is if the scaling or wavelet bands produce more desired results, and one can then gain some

information as to whether the low frequency or high frequency information may be more

useful for classification. The coefficients from the bands which were supplied to BBLDA

and BBQDA are shown in Figures 7.6-7.9.

Stepwise Discriminant Analysis

As for the stepwise methods based on the original data, it is interesting to determine

which variables, or wavelet (and scaling) coefficients in this case, have been selected. We

now present a figure which identifies the wavelet and scaling coefficients selected by the

stepwise methods SWBLDA and SWBQDA when the following forward stepwise searches

were implemented:
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Data SWBLDA SWBQDA

Seagrass CF3 CF3

Mineral CFl CF2

Parax}Tlene CF3 -CF3

Butanol CF3 CF3
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For each of the discriminant data sets, Figure 7.17 shows the wavelet coefficients at levels

j == 8 to j =:: 3, and the scaling coefficients at level j == 3 of the discrete wavelet transform

for the same sampled class spectra presented earlier. The coefficients selected by the

stepwise procedures are then superimposed on the figures. The dotted lines shows the

coefficie~ts selected by SWBLDA and the .d~shed lines identifies the coefficients selected

by SWBQDA. Sometimes both methods selected the same coefficients, so to make this

more visible asterisks have also been plotted for the coefficients selected by SVVBLD...t\..,

and circles at the coefficients selected by SWBQDA.·

The original sampled spectra are shown in the top row of Figure 7.17 where the hor­

izontal axis is labelled in nanometers (this information is not available for the butanol

data). The reason for plotting the original data is to relate the regions of the original data

witll the selected wavelet and scaling coefficients. In an approximate sense, if vertical lines

are extended from the asterisks and circles to the original spectra, then where the lines

meet the original spectra will indicate the approximate region which is represented by the

coefficients. This region is vvider for the coefficients selected at lower levels of the DWT,

and narrower for the coefficients selected at higher levels in the DWT.
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Another interesting procedure which can be performed, is to reconstruct the spectra

by backtransforming the coefficients which were selected by the stepwise procedures. The

reconstructed spectra can however be a little difficult to interpret. For instance, the recon­

structed spectra produced from the coefficients selec;ted by SWBLDA for the seagrass and

mineral data are similar. Their similarity can be attributed to the presence of a scaling

term. If one examines the magnitudes of the reconstructed wavelet terms one can see the

wavelet terms are quite small, and will have a minor effect on the reconstruction process,

if a scaling term is present. When no scaling terms are present, the reconstruction proce­

dure produces spectra which reflect the high frequency components of the spectra. The

reconstructed spectra highlight the information represented by the selected coefficients.

In an approximate sense, the classifiers will utilize the information from the regions of

the reconstructed spectra that are not zero. For instance, SVVBQDA performed on the

paraxylene data tends to utilize information around the 1900 nm region (between the two

major peaks) while SWBLDA utilizes the information nearer the two peaks at the regions

1700 nm and 2200 nm.
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Figure 7.18: Reconstructed spectra produced from the coefficients selected by
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The LDB Algorithm

Another wavelet feature extraction procedure applied is the LDB algorithm. The LDB

algorithm utilizes a wavelet packet transform. Since the coefficients from the wavelet

packet transform are obtained by passing the data in each of the bands· through a low

pass and a high pass filter, it can be more challenging to interpret the coefficients from

the bands in the \vavelet packet transform. vVith the exception of the coefficients selected

from ~he paraxylene data (which vvere the original variables) the coefficients selected from

the best basis produced from the LDB algorithm were mostly from the left hand tree (i.e.

the DWT). Similar methods for displaying and interpreting the coefficients from the best

basis can still be performed. That is the coefficients can be plotted against their index, and

the nonzero coefficients can l!e backtransformed to produce the reconstructed spectra. To

avoid reiteration we have elected not to produce such plots. Since most of the coefficients

are from the DWT, coefficients from the LDB algorithm can be visualized by the use of

Figures 7.11 and Figures 7.6-7.9.

The AWA AIgorithlTI

'Ale now proceed to the interpretation of the adaptive wavelet algorithm. The AvVA

performs a kind of banded selection process whereby coefficients pertaining to the band

of the DWT are supplied to the classifier.. The high pass (or low pass) filter coefficients

are also constructed based on the classification of these 'banded coefficients'. We have

previously mentioned that the banded approach is rather limited in what it can identify

as important from the original variables, although it is interesting to identify if the scaling

or wavelet bands produce more results that are more desirable.

Figure 7.19 shows the adaptive wavelet coefficients which produced the highlighted

results in Table 7.11. Also shown are the reconstructed spectra, which. were obtained by

setting the coefficients in the remaining bands to zero, and then backtransfoflning the

thresholded data.
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Figure 7.19: The wavelet coefficients and reconstructed spectra produced from
the AWA.

The reconstructed spectra are very difficult to interpret for the AWA. When the re­

constructed spectra are plotted in colour, the reconstructed spectra for the sampled class

spectra from the mineral data are more distinguishable than presented here. The same

can not be said however for the reconstructed seagrass, paraxylene and butanol data.

Here, one can look for the positions of the wavelet coefficients where they differ the most

for the individual class spectra, and then see where these differences relate (approximately)

to the original data. For instance with the butanol data, there appears to be some visible

difference in the 2nd, 3rd and 4th coefficients produced from the sampled spectra. This

illdicates that useful discriminatory information might be in the approximate indices of 50

- 250. Again, only a vague interpretation can be provided, because only the coefficients

from a single sampled spectra from each of the classes is shown, and there is likely to

be some variability of the spectra within each of the classes. So whilst some separation

is evident for the spectra which we have selected, there is no guarantee that this same

separability can be visualized if other spectra were selected.
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Discriminant plots were obtained for the adaptive wavelet coefficients which produced

the highlighted results in Table 7.11. These are displayed in Figure 7.20. Although the

classifier used in the AWA was BLDA, it was decid~d to supply the coefficients available

upon termination of the A\VA to FLDA, so we could visualize the spatial separation

between the classes. The discriminant plots are produced from the testing data. There

is a good deal of separation for the seagrass data, while for the paraxylene there is some

overlap between the objects of class 1 and 3. The distinctness of the paraxylene data

appears more evident for the AWA discriminant plots than in the FDA plots of Figure 7.16.

Also, by compa.rison with Figure 7.16 we can see that Figure 7.20 achieves slightly more

separation for the butanol data.
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Figure 7.20: Discriminant plots produced by from the coefficients produced by
the AWA.

High Dimensional Classification Methods

Consider now the high dimensional classifiers, PDA and RDA. Since RDA stems from

Bayesian classification theory, the main information which can be extracted from a RDA

model is how accurately it can assign objects into the respective classes. Also, by exam-
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ining the parameters (a, b) chosen for the RDA model one can determine how much the

pooled covariance matrix has been utilized as opposed to the class covariance matrix, and

thus whether the RDA model is closer to a BLDA model or a BQDA model.

With PDA it also difficult to obtain information about which variables may contribute

significantly to the discrimination of the various groups, but since PDA stems from a

Fisher-based method, it is possible to obtain discriminant plots. The discriminant plots

for the PDA models are displayed in Figure 7.21. The points in the space represent the

testing objects from their respective classes.
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Figure 7.21: Discriminant plots produced by PDA.

For the mineral data, more groups appear to be easily recognized than those obtained

from FDA when applied to the same data. Another interesting features which can be

observed from the PDA discriminant plots is that for the seagrass data, the objects from

class 3 appear in subclusters. The PDA discriminant plots for the paraxylene data is more

scattered than that produced for FDA and AWA.
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In this chapter we have investigated several discriminant approaches which can be applied

-to spectral data sets. The discriminant approaches which we have considered are:

1.. classification using all of the original data and a high dimensional classifier,

2 .. applying a lo"\:v dimensional classifier to a selection of the original variables, and

3.. applying a low dimensional classifier to a selection of the coefficients from the DWT ..

In practice, the particular discriminant method vvhich is to be implemented, will ultimately

depend on ,the goal of the discriminant analysis .. The goals of discriminant analysis are

twofold - to assign objects into a predefined group category, and to understand more

about our data.. This may include determining vvhich regions are more important for

discriminating, or how the groups are related, for instance' one group maybe much easier

to distinguish from the remaining classes.

We have mentioned that if assignment accuracy is the foremost goal of the discriminant

procedure; then it eouid be worthwhile to apply RDA and the adaptive wavelet algorithln ..

In terms of extracting and interpretting information, the stepwise methods using either

the original data or wavelet coefficients are relatively easy to understand. FDA is also

relatively easy to interpret and has the added advantage of producing discriminant plots.

PDA, RDA, BBLDA, and the LDB and adaptive wavelet algorithms seemed to be less

trivial to investigate which regions contain discriminatory information. PDA however vV3..$

able to provide some information about the group structure of the data with the .aid of

discrimillant plots. Discriminant plots were only available for FDA and PDA since these

methods were, based on Fishers linear discriminant analysis. It should be noted however,

that in instan.ces where BLDi\ was the classifier, discriminant plots may have been pro-

duced if the saIne data vvhich was supplied to BLDA, was also supplied to Fishers linear

discriminant analysis. This "vas done in Figure 7 .. 20 for the adaptive wavelet coefficients.

Another item which should be addressed when considering the kind of discriminant pro­

cedure to be implemented is the computational expense which is inherited by the various

methods.. Although a comprehensive analysis of the computational complexities for the

classification strategies was not undertaken, we would like to comment about our expe-
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rience with run times of the various procedures. It. is our experience that RDA and the

AvV algorithm tended to be more computationally expensive than the remaining meth­

ods. Perhaps this extra expense, contributed to the models performing quite well overall.

These two methods involved some form of optimization routine. For RDA, this entailed

finding the optimal (a, b) pairs, and for the adaptive wavelet algorithm this involved the

development of a wavelet basis. The stepwise procedure which used the CF3 forward

stepvvise search was also computationally burdensome, even when fast updating formulae

were implemented. If the cOlnputational tiIne is an issue, then perhaps FDA, or one of t4e

stepwise methods ~lsing a CFl or CF2 approach could be applied. The DvVT is relatively

quick to calculate (faster than the fast Fourier transform), so the stepwise methods could

be applied to the wavelet coefficients with minimal fuss (if a standard wavelet basis is

used).

The next chapter applies regression methods to spectral data sets and follows a similar

format to this chapter.



Chapter 8

Regression Applications

8.1 .Overview

This chapter investigates various regression strategies when applied to spectral data of

relevance to the agricultural industry. As for the previous chapter, the word strategy may

refer to a regression method, a feature extraction technique, or a combination of the two ..

Following an introduction to the data sets which are analyzed in this chapter, some

regression methods vvhich are commonly applied for the regression of spectral data will

be investigated. This includes the application of partial least squares regression and two

stepwise strategies. The first stepwise strategy simply enters the original variables into

the multiple linear regression model, while the second is a stepwise procedur'e applied to

the principal con1ponents and is referred to as stepwise principal component regression

(SPCR) ~ Regression analysis using features from the DWT is also investigated. vVe apply

the DWT using the defined filter coefficients from the Daubechies family, as well as derived

filter coefficients produced from the adaptive wavelet algorithm ..

The structure and goals of this chapter will follow much the same forlnat as that for the

previous chapter on classification applications~ The goals of this c4apter are not necessarily

to find the very best regression model, but to investigate tile various regression approaches

applicable to spectral data, and to assess quantitatively and qualitatively the advantages

of each~
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8.2 The Data Sets
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Two data sets and three responses were used for evaluating the performance of the various

regression procedures. These data sets will be referred to as the sugar and wheat data.

A SUilllnary of each of these data sets are presented in Table 8.1.. Here the number of

spectra in each training and test set is displayed, as well as the response(s) which are to

be modelled by each spectral data set. Further details about the sugar and wheat data are

provided in Sections 8.2.1 and 8.2.2, respectively.. The dimensionality of both data sets is

p == 512.

Data Set Train Test Responses

Sugar 100 89 brix (b), fibre (f)

Wheat 60 40 protein (p)

Table 8.. 1: Description of the spectral data sets used for regression.

8.2.1 Sugar Data

The sugar data was supplied by Dr Nils Burding at the Bureau of Sugar Experiment

Station in Gordonvale. The training sugar data contains 100 digitized spectra for which

log l/reflectance was measured at the .512 wavelengths 916,918, .... ,1938 nm. The test set

contains 89 spectra.. Figure 8.. 1 shows five sample spectra from the sugar training data

which vvere used to model the responses, brix and fibre. At 1100 nrn there is a distortion

which arises from a change in instrumentation.. One detector is used to measure the

radiation reflected for wavelengths less than 1100 nID and another detector is used to

measure the radiation reflected for wavelengths greater than 1100 nrn (inclusively). The

change in receptors gives rise to the jump.
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Figure 8.1: Five sample spectra from the sugar data.

8.2.2 Wheat Data
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Figure 8.2: Five sample spectra from the wheat data.

The wheat data set was accessed from Professor Philip K. Hopke and has previously been

discussed in literature, see for example [77]. The training wheat data contains 60 spectra

for which log l/reflectance was measured at the 512 wavelengths llOO,ll02, .. ~,2122 nm.
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The test set contains 40 spectra. Figure 8.2 shows five sample spectra from the wheat

training data which were used to model protein content.

8.3 COlllIllon Approaches for the Regression of Spectral Data

This section considers the performance of several regression methods~ Multiple linear re­

gression (MLR) is applied using the original variables. Since MLR is considered .to be a

low dimensional regression method, it is first necessary to reduce the dimensionality of

the data. This is done by selecting the original variables by a stepwise routine. Principal

component regression (peR) is also applied where again, a stepwise routine is used to

reduce the dimensionality of the problem by selecting a smaller set of the principal COlll­

ponents~ The ~tepwise routine implem~nted for SPCR is similar to that used for selecting

the original var~ables for MLR, the main difference for SPCR, is that the stepwise routine

is now selecting principal components as opposed to the original variables. This is essen­

tially MLR using the principal components as features. Much of the literature refers to

~his technique as 'principal component regression' and this thesis adopts the same termi­

nology. Partial least squares (PLS) regression is also applied~ The regression strategies in

this section have each been applied to centered data~ That is, the independent variables

and response variables have all been mean centered (see Section 4.2.1).

Table 8.2 shows theR-squared s~ores based on the training and test set for each of the

regression strategies applied to all three responses. The figures typed in bold, highlight

the largest R;est score for each of the regression procedures. Some clarification is now

given for the column headings.

• SMLR-Sl: stepwise MLR where stopping rule 'Sl' is applied. The variable which

gives the largest increase in the R;rain enters the model. At each iteration all the

variables in the model are tested for renlovaL Variables are removed if their t-

statistic is less than 0.674. Since variables are removed from the model when their

t-statistic is less than 0.674, this "y"alue is also referred to as the t-to-remove statistic.

The procedure stops when no more variables can be retained in the model, Of, when

there are 16 variables in the model, which ever occurs sooner. In Table 8.2 all the

models for SMLR-Sl had 16 variables.
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o SMLR-S2: step\vise MLR where stopping rule '52' is applied. As for SMLR-Sl, the

t-to-remove statistic for a variable remains at 0 ..674, but the procedure stops when

the change in R~rain from one iteration to the next is less than 0.005 or when 16

variables have been entered into· the model, which ever results sooner. Stopping

rule '82' tended to produce simpler models which contained fewer variables, at the

expense of a slight decrease in performance.

Comment: the t-to-remove statistic of 0.674 may seem very low. Traditionally de­

fault values in statistical packages are set much higher. For the spectral data sets

in this chapter, setting higher values for the t-to-remove statistic, tended to halt

the algorithm with only 3-5 terms in the model, consequently the prediction perfor­

mance of the model fOf both the. training and test set was very poor. Setting the

t-to-remove statistic at O~674 reduced this effect and produced more superior results

since it allowed for more contributing terms to be included in the modeL

• SPCR: stepwise principal component regression.. At each step, the principal com­

ponent which produces the largest increase in R;rain enters the model. At each

iteration, all the principal components in the model were tested for removaL Princi­

pal components with a t-statistic less than 2.71 were removed from the model. The

SPCR routine stops, when no more variables can be retained in the model, Of, when

16 principal components are in the model, which ever occurs sooner. Note that we

only consider selecting from the first 50 principal components~

Comment: It was considered appropriate to have a higher t-to-remove value for

SPCR, than for SMLR-Sl and SMLR-S2. When the t-to-remove value for SMLR

(0.674) "vas used for the selection of principal components, the mod·el tended to

involve more terms than necessary. Consequently, it was decided to use a larger t­

to-remove statistic of2.71 for SPCR since this resulted in fewer terms being included

in the model which produced equal or better measures of prediction.

• PLS-S3: performs partial least squares regression where the number of components

is chosen by method '83'. That is, the number of PLS components to be retained in

the model corresponds to the minimum PRESS statistic for the first 16 components

only. For example, if for the first 16 components, the PRESS statistic was minimum
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when 12 components were used, then the fLS model would have 12 components.

PLS-S4 : performs partial least squares regression where the nUlnber of components

.8 chosen by method 'S4'. This method simply chooses the number of PLS compo-.

1ents which corresponds to the highest R~est. As for PLS-S3, the maximum number

)f components which can be in a PLS model is 16. This is not a traditional ap­

?roach for choosing the number of PLS components, since this approach would not

)€ possible if an independent test set was unavailable. PLS-S4 was simply included

.n the table to show the very best results that could be obtained by PLS.

Data SMLR-Sl SMLR-S2 SPCR PLS-S3 PLS-S4

Brix Train 0.981 0.964 0.966 0.976 0.977

Test 0.963 0.960 0.953 0.971 0.972

dimension 16 11 12 14 15

Fibre Train 0.908 0.885 0.876 0.898 0.898

Test 0.820 0.800 0.796 0.805 0.805

dimension 16 12 11 15 15

Protein Train 0.991 0.962 0.954 0.983 0.966

Test 0.808 0.792 0.799 0.800 0.832

dimension 16 6 13 16 14

Table 8.2: Training and test R-squared values.

Brix

SMLR-S1 .... - .... ·x-·············

SMLR-S2 ·x· .

SPCR 1-+-8+-----------;

PLS-S3 r-.--------t-C)-t----t

PLS-S41-------0[-.4---4

Fibre

····················x····

·········x···············

Protein

··········x··············

··x·····:·········:·······

0.95 0.96 0.97
R-squared

0.78 0.8 0.82
R-squared

0.79 0.8 0.81 0.82 0.83
R-squared

Figure 8.3: Test r-squared values corresponding to the brix, fibre and protein
responses"
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To facilitate interpretation of Table 8 ..2, Figure 8.3 was produced. In this figure, the

R;est values obtained using SMLR-Sl, SMLR-S2, SPCR, PLS-S3 and PLS-S4 have -been

plotted .. The crosses indicate the results for both SMLR methods and the circles indicate

the results for SPCR .and the two PLS procedures. In the previous chapter, plots were

produced \.vhich overlayed the resul~s for each of the data sets. With the regression results

for brix being much higher than those for fibre and protein, such an overlay of plots made

interpretation less precise.. Hence, this chapter presents the plots displaying the regression

results for each response separately.

Consider first the stepvvise MLR methods .. Here, SMLR-Sl tends to produce higher Rtest

values than SMLR-S2. This is a likely consequence of SMLR-Sl having n10re terms than

SMLR-S2. The simplified SMLR-S2 model usually outperforms SPCR, with the model

for the protein response being the exception .. Here, SPCR outperforms SMLR-S2, but not

SMLR-Sl .. _Both procedures for partial least squares consistently produce a higher R~est

value than that obtained by SPCR. For the modelling of the protein response however,

SPCR compares favourably vvith PLS-S3, but not with PLS-S4 .. Overall, the SMLR and

PLS models are performing quite adequately.

Table 8.3 shows the variables which were included in each SMLR model as well as the

principal components which were selected by SPCR.

Some of the variables selected by SMLR-S2 are not necessarily selected by SMLR-Sl ..

This result occurs for the brix response because SMLR-Sl has allowed more terms to enter

the model. It is possible that a variable which was part of the SMLR-Sl model at an early

stage of the algorithm, 'maybe removed at a later stage.. Conversely, the SMLR-S2 routine

has the tendency to stop earlier, thereby retaining terms that the SMLR-Sl routine may

remove. The wavelengths selected in Table 8.3 are examined further in Section 8.5.2 ..

It can be worthwhile to pursue other feature extraction strategies which may help to

ilnprove the performance of MLR.. In the next section vie investigate if the performance of

MLR can be improved when the features are coefficien~s from the DWT.

8&4 Regression Analysis Using Features FrOlTI the DWT

This section considers different procedures for selecting coefficients (both wavelet and

scaling) from the DWT which are then supplied to MLR. TIle feature extraction methods
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,vhich are applied include banded Inultiple linear regression (BMLR). This procedure is

similar to BBLDA and BBQDA, but instead of supplying coefficients to a classifier, BMLR

supplies the coefficients to MLR.. Another feature extraction method which involves the

use of the DWT, is stepwise ML~. Here, the variables selected are the scaling and wavelet

coefficients from the DWT. This technique will be referred to as SMLRW.. A stepwise pro­

cedure which involves the selection of principal components will also be investigated. Here,

peA is first performed on a selection of the coefficients from the DWT.. This technique

will be referred to as SPCRW. ~or BMLR, SMLRW and SPCRW the DWT is performed

using a Daubechies filter defined by 16 coefficients. For SMLRW and SPCRW, the DWT is

performed to level 3, for BMLR, the scaling and wavelet coefficients fronl level 3 and 4 are

extracted. The adaptive \vavelet algorithm will also be applied using a criterion function

of relevance to regression. Prior to implementing the wav~let feature extraction methods,

Brix Fibre Protein

SMLR-Sl SMLR-S2 SPCR SMLR-Sl SMLR-S2 SPCR SMLR-S1 SMLR-S2 SPCR

1880 1880 2 1114 1114 1 1178 1178 1

1136 1136 8 1410 1410 2 1254 1254 4

1324 1324 6 1128 1128 19 1300 1300 3

1506 1506 10 1324 1324 4 1280 1280 13

1840 1840 3 1098 1098 9 1878 1878 6

1758 1758 1 1276 1276 18 1934 1934 16

1674 1674 12 1080 1080 13 1306 14

1028 1028 9 1066 1066 8 1932 2

1448 1448 14 1082 1082 20 2078 9

1630 1630 11 1456 1456 17 2092 5

1878 13 1884 1884 29 2098 21

1678 16 1516 1516 2108 11

1822 1428 1930 20

1778 1398 1162

1748 1388 1172

1638 1274 1314

Table 8 .. 3: Wavelengths selected by the SMLR routines, and the principal com­
ponents selected by SPCR.
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we first exami~~ the coefficients from the DvVT obtained for the sugar and wheat spectral

data sets.

8.4.1 Exploring the DWT

Figures 8.4 and 8.5 were constructed by applying the DvVT to a single spectrum from

the sugar and wheat data. At the tin1e the DWT was performed, these spectrum were

in their original (uncenter,ed) form. The scaling and wavelet coefficients from each of the

ban9.s in the DWT are plotted against their index. The reconstructed spectra are shown

in the second and fourth colulnns. Here the inverse DWT has been applied to the bands

of scaling and 'wavelet coefficients, respectively. One distinguishing feature in Figure 8.4

is that the wavelet coefficients ha\Te detected the change of instrumentation which occur

at the 1100 nm mark of the original spectra. For a more detailed description about the

constru~tion of Figures 8.4 and 8.. 5·, the reader is referred to Section 7..4 .. 1 where similar

figures were constructed fOf. the classification of spectral data sets.

8.4.2 Banded Multiple Lillear Regression (BMLR)

Banded multiple linear regression (BMLR) uses all of the coefficients from the same band in

the wavelet transform, as input to the regression technique, MLR. The particular bands

of coefficients which are supplied to. MLR are the scaling X[3](0) and wavelet X[3](1)

coefficients from level 3, and the scaling X[4](O) and wavelet X [4] (1) coefficients from level

4. Here, the wavelet transform was produced using the Daubechies wavelet with 16 filter

coefficients (Nj == 16) .. The DWTwas ~erformedon the original (uncentered data), but the

coefficients and response variables were centered, prior to them entering the, MLR modeL

'rhe R;rain and R~est values for each of the responses are. displayed in ·Table 8.4 where the

largest R~est for each of the responses has been highlighted. Due to numerical instabilities,

it was not possible to obtain regression results for the protein model when the scaling

coe-fficients from band(4,0) were supplied to MLR. This problem arises from the condition

number of the matrix (X[4](O)TX[4](O)) having a large condition number (3.133e+17).

Care should also be taken when interpreting the resuits for the scaling coefficients from

the wheat data in band(3,O). Here, the co~ffi.cients (x[3] (0)TX[3] (0)) also had a relatively

large condition number (2.0937e+16). (The condition number of (X[3](1)TX[3](1)) was

5.5276e+03).
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Figure 8.4: The DWT and inverse DWT performed on the sugar data.
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Figure 8.5: The DWT and inverse DWT performed on the wheat data.
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Data X[4] (0) X [4] (1)" X [3] (0) X (3] (1)
Brix Train 0.975 0.961 0.740 0.525

Test 0.973 0.949 0.753 0.530 .

Fibre Train 0.781 0.797 0.647 0.707

Test 0.692 0.723 0.533 0.569

Protein Train - 0.952 0.763 0.795

Test - 0.704 0.263 0.108

Table 8.4: Classification results for banded BLDA.

8.4.3 Stepwise Feature Extraction
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In this section, tvvo stepwise strategies are investigated. The first will involve stepwise

selection of wavelet coefficients from the DWT, and the second will involve stepwise selec­

tion of principal components, where the ·principal components have been calculated from

a selection of wavelet and scaling coefficients.

Stepwise Feature Extraction from the DWT (SMLRW)

SMLRW applies a stepvvise strategy which selects coefficients from the DWT. The DWT is

applied to the original (uncentered) spectral data sets to level 3 using a Daubechies wavelet

defined by 16 filter coefficients. The total set of features consists of the scaling coefficients

at level 3, and the wavelet coefficients at level 3 up to and including the wavelet coefficients

at level 8. The wavelet and scaling coefficients, along with the response variables are mean

centered. SMLRW will be applied using two stopping rules. These are the same stopping

rules previously implemented by SMLR (see Section 8.3) except, the t-to-remove value for

S11LRW is now set at 2.71. The two SMLRvV applications will be referred to as SMRL\iV­

81 and SMLRW-S2, the results for vvhich are displayed in Table 8.5. Both SMLRvV-

81 arid Slv'ILR\iTI-S2 produce the sarne results, since the $arne model for each technique

was produced. SMLRW produces reasonable results for the training response values but

performs much less adequately when predicting the test response values, particularly for

fibre and protein.

Table 8.6 shows the indices of the coefficients which have been selected from the DWT.

Figure 8.6 identifies where the selected coefficients lie in relation to the DWT. For each
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Data SMLRvV-Sl SMLRvV-S2

Brix Train 0.886 0.886

Test 0.767 0.767

dimension 6 6

Fibre Train 0.765 0.765

Test 0.451 0.451

dimension 6 6

Protein Train 0.958 0.958

Test 0.500 0.500

dimension 6 6

Table 8.5: R-squared values for SMLRW-Sl and SMLRW-S2.
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Brix Fibre Protein

SMLRW-Sl SlvILRVV-S2 SMLRW-Sl SMLRW-S2 SMLRW-Sl SMLRW-S2

23 23 25 . 25 43 43

50 50 111 111 44 44

18 18 107 107 65 65

293 293 214 214 135 135

211 211 241 241 212 212

153 153 449 449 286 286

Table 8.6: Coefficients selected froln the DWT by SMLRW-Sl and SMLRW-S2.

of the models no coefficients were selected from level 3 in the DWT. Another common

occurrence is that each of the response models contained 6 terms. After this; no more

variables (coefficients) could be entered into the model which had a t value greater than

the specified t-to-remove value of 2.71.
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Figure 8.6: Coefficients selected from the DWT by SMLRW.

Stepwise Feature Extraction from the Principal Components (SPCRW)

This section applies a stepwise procedure which involves the selection of principal com­

ponents where the principal components are formed from a reduced subset of coefficients

from the DWT. This technique will be referred to as SPCRW. Principal component anal­

ysis is performed on the coefficients from t~e DWT which have an absolute correlation

coefficient of more than 0.5 with the response. Stepwise peR is then. performed· using

methods '81' and '82' as described for SMLRW (also with the same t-to-remove value of

2.71).

The SPCRW procedure is summarized as follows:

1. Perform the DWT on the original (uncentered) data to level 3 of the transform ..

2 .. Measure the correlation between the coefficients indexed for each j E {3, .... , 8}
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k E {O, ... , 2 j - 1} pair.
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3. Perform peA on the the coefficients which have an absolute correlation of more than

0.5 with the response.

4. Select the principal components using a stepwise routine. Selection is from the first

50 principal components only.

The results of the SPCRW routines are presented in Table 8.7, where again both stop­

ping rules produce the same modeL For each respons~ variable SPCRW stops at the

tenth iteration with .10 principal components. in each of the models. Table 8 ..8 shows the

principal components which enter the models.

Data SPCRW-S1 SPCRW-S2

Brix Train 0.936 0.936

Test 0.891 0.891

dimension 10 10

Fibre Train 0.825 0.825

Test 0.664 0.664

dimension 10 10

Protein Train 0.934 0.934

Test 0.656 0.656

dimension 10 10

Table 8.7: R-squared values for SPCRW-Sl and SPCRW-S2.

8.4.4 Adaptive Wavelet Algoritilm

We also apply the adaptive vvavelet algorithm (AWA) to the regression spectral data sets~

The AWA is applied with similar settings as those used in Section 7.4.5 of the previous

chapter. The (m, q, jo) settings for which the AWA is applied, are again (4,3,2), (4,2,2),

(8,1,1), (2,5,3), (2,5,4), (2,7,3), and (2,7,4). The most conceivable difference between the

A\TVA when applied for regression (as opposed to classification) is the criterion function

which is implemented. Here, the cross-validated R-squared criterion which is based on the
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Brix Fibre Protein

SPCR\iV-Sl SPCRW-S2 SPCRW-Sl SPCRvV-S2 SPCRW-Sl SPCRW-S2

1 1 1 1 1 1

4 4 2 2 3 3

5 5 4 4 6 6

8 8 23 23 4 4

6 6 21 21 16 16

3 3 9 9 13 13

2 2 8 8 2 2

7 7 22 22 17 17

11 11 19 19 12 12

18 18 32 32 10 10

Table 8.8: Components selected from the DWT by SPCRW-Sl and SPCRW-S2 ..

PRESS statistic is the regression criterion which is implemented by the AWA. A similar

banded selection strategy used for classification is used for regression. Here, each band

at some level jo in the DWT, the ba.nd (Le. T) which produces the largest regression

criterion measure (JCVRSQ (XU] (r))) forms the basis of the optimization routine. The

same coefficients are later supplied to IvILR. If the algorithm chose to optimize over a

scaling band (i.e. T == 0), then for the same (m, q,jo) settings the experiment was repeated,

where optimization was over the wavelet band producing the largest CVRSQ measure

at initialization. The optimization routine halted if 2000 iterations of the optimization

routine had been performed or sooner if an optimal value was obtained.

The results of the adaptive wavelet algorithm for each setting are presented in Table 8.9.

For each response, the largest Rtest is typed in boldface. For the brix response the (2,5,4)

setting produced the same results (to 3 decimal places) for both the scaling and wavelet

bands, indicating that low frequency and high frequency components perform well for this

setting. vVhen the fibre response was modelled using the AWA, the best setting in terms

of the Rtest measure "vas (2,.5,4). The best results for the wheat data were also obtained

vvith the (2,5,4) setting where optimization was over a wavelet band.
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Brix m q Jo NJ Ncoef T Train Test

4 3 2 16 8 1 0.955 0.949

4 2 2 12 8 3 0.977 0.967

8 1 1 16 8 3 0.972 0.968

2 5 3 12 8 1 0.927 0.930

2 0.971 0.969

2 5 4 12 16 0 0.975 0.971

1 0.975 0.971

2 7 3 16 8 1 0.950 0.946

2 7 4 16 16 1 0.976 0.968

Fibre m q Jo NJ Ncoef T Train Test

4 3 2 16 8 2 0.791 0.676

4 2 2 12 8 0 0.721 0.636

2 0.855 0.799

8 1 1 16 8 5 0.872 0.801

2 5 3 12 8 0 0.718 0.638

1 0.731 0.603

2 5 4 12 16 1 0.869 0.814

2 7 3 16 8 0 0.703 0.612

1 0.777 0.641

2 7 4 16 16 0 0.863 0.794

1 0.868 0.737

Protein m q Jo Nf Ncoef T Train Test

4 3 2 16 8 0 0.677 0.260

3 0.959 0.671

4 2 2 12 8 2 0.937 0.781

8 1 1 16 8 6 0.970 0.797

2 5 3 12 8 1 0.781 0.369

2 5 4 12 16 1 0.975 0.825

2 7 3 16 8 1 0.838 0.365

2 7 4 16 16 1 0.974 0.790

Table 8.9: Regression results for the adaptive wavelet algorithln.

186
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Figure 8.7 plots l,.7CVRSQ (X[j] (r)) against the iterations of the optimization routine.

This was done for the (2,5,5, 2) setting for the brix response, the (2,7,5,2) setting for the

fibre response and th~ (2,5,5,2) setting for the protein response. The CVRSQ values at

initialization (and completion) were lower for fibre, than those for the brix _and protein

responses. The same can be said w~en comparing the R;est measures for fibre, implying

that the A\A1A performed more adequately for the brix and protein responses, as was the

trend with most of the regression applications.

Brix (2,5,4,1) Fibre (2,5,4,1)
1 1

0.98 0.9 0.9

g 0.96-J 0.8 0.8
a:
> 0.7 0.700.94

0.92 0.6 0.6

0.9 0.5 0.5
500 "1000 1500 500 1000 1500

iteration iteration

Protein (2,5,5,2)

( 'I I
~

500 1000 1500
iteration

Figure 8.7: Regression criterion measure versus iteration for the adaptive
wavelet algorithm.

One noticeable feature ~or the protei!! response in Table 8.9 is the extremely low Rtest

values occurring for the (4,3,2,0), (2,5,3,1), and (2,7,3,1) settings~ This is a consequence

of the extremely high condition numbers for the matrices XU] (T)TX[j] (r) for each of these

(m, q,jo, r) settings. The condition numbers of the matrices for the (4,3,2,0), (2,5,3,1),

and (2,7,3,1) settin~s are 2.9260e+16, 4~9224e+16 and 1.7691e+16, respectively.

8.4.5 Summary of Wavelet Based Feature Extraction Strategies

In this section we summarize the results vvhich vvere obtained by the wavelet based regres­

sion approaches. This is done in Table 8.10. The first application of a regression procedure

involving the DWT was the banded multiple linear regression procedure (BMLR). The re­

sults which have been tabulated for BMLR are when the coefficients from band(4,O) were

used for modelling brix, and when the coefficients from band(4,1) were used for the fibre
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and protein responses. Also shown in Table 8.10 are the results froln e~ch of the stepwise

procedures - SlVILRW and SPCRW. Recall from Section 8..4.3 that each of the stopping

procedures \vhich were applied in conjunction with SMLRW and SPCRW, produced the

same model. The results which have been presented for the AWA correspond to the

highlighted values in Table 8.9.

Data BMLR SMLRW SPCR\iV AWA

Brix Train 0.975 0.886 0..936 0.975

Test 0.973 0.767 0.891 0.971

dimension 16 6 10 16

Fibre Train 0.797 0.765 0.825 0.870

Test 0.723 0.451 0.664 0.814

dinlension 16 16 10 16

Protein Train 0.952 0.958 0.934 0.975

Test 0.704 0.500 0.656 0.825

dimension 16 6 10 16

Table 8.10: Training and test r-sqllared values for the wavelet based regression.
approaches.

Based on the R~est IIleasures, most of the regression procedures produce reasonable

results when modelling the brix response, particularly BMLR and the AWA. For the

modelling of the fibre and protein responses.' the AWA appears to outperform the other

wavelet based regression methods, in terms of the R~est value. This is more clearly seen

in Figure 8.8 which displays the R~est values from Table 8.10 for each response separately.

8.5 Wllicll Regression Strat~gy?

This chapter has presented several regression strategies for calibrating spectral data. Some

traditional approaches have. been explored as well as some modern feature extraction

techniques. In this section we wish to elaborate further on the regressiqn procedures

applied thus far .. This will be done in two parts for each of the response models. The first

part will involve .an assessment of SOIne performance based measures. The second part
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Figure 8.8: Test r-squared values for the wavelet based regression methods.

will explore the additional descriptive information which can be obtained about our data

from each of the regression strategies. Particular attention is focused on which regions of

the spectra maybe informative for regression purposes.

8.5.1 Perfornlance Based Measures

In· this section we summarize the Rtest measures for each of the regression strategies

presented in this chapter. We will also examine the p-values associated with each of the

models and their coefficients. Plots of the residuals and fitted versus observed values will

also be examined.
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Figure 8.9: Test r-squared values each of the regression strategies.

Figure 8.9 displays the Rtest values for each regression strategy. The wavelet based

stepwise procedures, SMLRW and SPCRW produce reasonably low Rtest values for each
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of the response models. To allow for easier interpretation of the remaining methods Fig­

ure 8.10 has been produced without the R;est values displayed for these techniques. The

Brix Fibre Protein

_._.-._._._.-.*.
~._._._._._._._.

.. ·.... ·.... ·· ......x··· ..
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0.75 0.8
R-squared

0.7

·······················x·
············X·····

-*_.-._._._._._.
-._._._._._._*.

0.720.740.760.780.80.82
R-squared

BMLR _.-._._._.-.-.?*

AWA .-._._.~.

0.955 0.96 0.965 0.97
R-squared

PLS-S4f---------1~~

SMLR-S1 ············x············
SMLR-S2 -X .

SPCR 1-8--8--------1

PLS-S31--------H-8--1

Figure 8.10: Test r-squared values each of the regression strategies (SMLRW
and SPCRW not shown).

following information can be conveyed:

• There is no method which consistently produces the highest Rfest measures across

all response models.

• For the brix response, the wavelet methods BMLR and AWA, perform well as does

the PLS-S4 procedure.

• The stepwise techniques (SMLR-Sl) for fibre seem to perform the most adequate (in

terms of the test measure) and again, the PLS method produces the next highest

Rtest score.

• PLS-S4 gives the highest Rtest measure closely followed by the AWA for the protein

models.

• The PLS approaches consist~ntly perform well as does the AWA method.

Model Assessment

An extensive summary of regression diagnostics for most of the models discussed through­

out this chapter are presented in Appendix A. All regression models with the exception

of PLS-S4 have been presented, since these results will resemble closely those for PLS-S3.

The statistics which are presented for the overall model include the residual standard error,
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tIle F -statistic and the corresponding p-valuee The statistics which are pre~ented for the

individual terms in the models include the regression coefficients (coef), the standard error

of the coefficients (std.err), the t-statistic (t.stat) and corresponding p-value (p.value) for

each of the coefficients.

All of the regression models are shown to be significant, but the same can not be said

for all of the regression coefficients in the modeL There are some regression coefficients

which are not considered to be significantly different from zero, if we use a significance

level of 0.05. Table 8_11 summarizes the p-values for each of the terms for the n10dels

shown in ...I\ppendix Ae The notation 'Vi' means the ith term (or variable) in the model..

Note that both AWA models for brix have been shown. The first colull1ll is for the model

when optimization was over the scaling band, and the second column is for the model

when optimization was over the v;,ravelet bande The p-values in Table 8.11 which are larger

than 0.05 have been shadede

Table 8.11 presents the p-values separately for the non-wavelet (top) and wavelet (bot­

tom) based regression methods_ For the non-wavelet based methods, the SMLR-S1 con-

tains several insignificant terms for Brix, two insignificant terms for fibre and one insignif­

icant term for protein. One of the effects of changing the stopping rule for SMLR-Sl to

SMLR-S2, is a reduction in the number of insignifi<;.ant terms- For SMLR-S2 there is only

one insignificant term at the 0.05 level, this is for the brix response.

For the wavelet based strategies, insignificant terms are apparent. for the proced ures

which involve some- banded selection process. Many of the coefficients for BMLR are not

significant_ This phenomenon can be attributed to the problems which ~le have previously

discussed about band selectiolle That is, we are selecting the band not because we knovv

it contains useful information for regression, but rather because the number of coefficients

in the band is convenient for regression purposes_ For the adaptive wavelet algorithm, tllis

problem is also present.

When there are insignificant terms in the model, a common procedure is to refit the

model in absence of these variables. This is performed in an attempt to obtain a simpler,

yet just as effective model (or more effective in some cases) for explaining the sample

variability. This can be seen as a second-stage procedure to the regression analysis_ In tllis

thesis weare primarily concerned not with finding the very best model, but investigating
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SMLR-S1 SMLR-S2 SCPR PLS
TERM BRIX FIBR~I PRiBR'X FIBRE PROT BRIX FIBRE PROT BRIX FIBRE PROT

V1 0.000 0.000 0.006 0.000 I0.000 0.000 0.000 0.000 0.000 0.000 0.000
V2 0.001 0.035 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
V3 0.000 0.000 0.002 II'j 0.000 0.000 0.000 0.000 0.000 0.000 0.000 .0.000
V4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
V5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
V6 0.000 0.Q15 0.000 0.000 I0.002 0.000 0.000 0.000 0.000 0.000 0.000
V7 0.032 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
VB 0.000 0.001 0.000 0.000 0.000 I0.000 0.000 0.000 0.000 0.000
V9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

V10 0.007 0.000 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.000
V11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000
~ 0.039 0.000 0.001 0.000 0.001 0.000 0.000 0.000- IV13 0.000 0.008 0.001 0.002 0.000 0.000 0.000

V14 0.001 0.000 0.000 0.033 0.000 0.000
V15 0.009 0.009 0.003 0.039 0.000
V16 0.01511. 0.012 0.000

192

TERM
V1
V2
V3
V4
V5
V6
V7
VB
V9
V10
V11
V12
V13
V14
V15
V16

Table 8.11: Summary of p-values for the regression models.
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the performance of the various regression strategies on a first-stage basis, that is without

modifying the regression modeL vVhilst this thesis does not consider the relnoval·of terms

and refitting the various models (at a second-stage level), we wish to make the reader

aware, that if it is necessary to find the 'best' regression model, then such a procedure is

worthy of investigation.

Residllal and Fitted Value Plots

A residual analysis is another procedure \vhich can be useful for determining which changes

might be useful to make to a model. If the residuals are plotted against the independent

variables, or the vector of fitted (i.e. estimated/predicted) response values, then some

clues can be given about the suitability of the model, or if additional terms should be

incorporated into a model. For example if some second degree curvature is present when

the residuals are plotted against some variable, then it might be worth adding a quadratic

term for that variable to the modeL For a more detailed review of residual analysis, the

reader is referred to [29, 106]. We do not actually plot the residuals against each of the

variables in the model, since with so many models, this would be quite cumbersome. Here

we will examine:

1. Plots of the residuals versus the fitted values.

2. Histograms of the residuals~

3. Plots of the fitted values versus the observed values.

Figures 8.11-8~13 show the residuals versus the fitted values for each of the responses

(brix, fibre and protein), separately~ A plot which has observations scattered about the

horizontal line passing tllrough the origin (that is the line y == 0) is preferred to one

that has any structure. To help visualize if any structure is present in the data, a line

lIas been superimposed on the residual plots. This line represents a smoothed version

of the residuais and is called a sm'ooth. If there is little. structure in the residuals, then

the smooth should resemble closely the horizontal line y == o. The residual plots for the

brix response hint at some slight curvature, but in general, there is little evidence of any

structure among the residuals~
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Figure 8,11: Residuals versus fitted values for the brix response models.

Figures 8,14-8.16 shows histograms of the residuals, Ideally, the residuals should follow

a normal distribution with a mean of zero and constant variance. Generally the histograms

produced for the brix response in Figure 8.14, appears to be normal, with the exception of

the residuals from the SMLRW model, which has many values spread relatively constant

in the tails of the distribution, and some clustered around the zero point. The residuals

for both the SMLRW and SPCRW models exhibit are larger degree of variability, than

the remaining models. The histograms shown in Figure 8.15 for the residuals of fibre

are less symmetric than those in Figure 8.14, though some bell-shaped appearance is

present in most plots. Histograms in Figure 8.16 for protein portray a similar outcome to

+h~ h:S+~g~~~s ;~ v;~"~e 8 1 A n.:+h +he ~es:duals .f'~orA tho Q1IJfT P,)\T anrl QPr'P,XT Tnorlolc
\.sU.C: 11.1 LiV 1.a..U.1. 111 .i." lOU!. • .L"'I', VVl.tl1.1. \.Ill. 1. . .1 1.1. .L.U. \.11. '--" U.LV.1..LJ..L\"V f .u.u U~ '-..1..L"i' .L.U.. u.........l.U

having a wider range of residuals than the remaining methods.

The next selection of plots show the fitted values versus the obtained values. Although

plotting the fitted values against the actual values is not technically considered to be part

of a residual analysis, it is interesting to observe how close the predicted values are to the

actual values. The closer the objects conform to a straight line the better the predicted
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Figure 8.12: Residuals versus fitted values for the fibre response models.

alues. Figures 8.17-8.19 plot the fitted training response values against the actual training

~sponse values. One can observe again, that the scattering for the SMLRW and SPCRW

lOdels appears to be greater than those for the remaining models.
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Figure 8.13: Residuals versus fitted values for the protein response models.

8.5.2 Qualitative Assessment

This section investigates the additional information that can be obtained from our data by

asing each of the regression strategies which have been discussed throughout this chapter.

:)f particular. interest, are the regions or features which are important for regression.

:::>f course there are no fixed guidelines for determining such information, and indeed

;he different regression strategies may even utilize different information. It is possible

lOwever, that some regression methods may suggest that similar regions or features are

nOTe useful than others. From this some subjective conclusions can be drawn regarding

iVhich wavelengths, regions or particular features maybe more important than others.

The additional information which can be obtained from SMLR, SPCR and PLS are

liscussed. We also consider the qualitative information which can be obtained by the

iVavelet based regression strategies. The regression methods which have been applied in

:onjunction with the DWT are BMLR - banded MLR, SMLRW - stepwise MLR on the

:oefficients from the DWT, where theDWT consisted of the scaling and wavelet coefficients
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Figure 8.14: Histograms of the residuals from the brix response models.

l.t level 3, the wavelet coefficients at level 4 up to and including the wavelet coefficients at

evel 8, SPCRW - SPCR where peA has been applied to the coefficients from the DWT

wd the final wavelet based regression method which was applied is the AWA - adaptive

liTavelet algorithm. We consider each.of the wavelet based strategies separately, and note

;hat much of the same techniques as those discussed in in Section 7.5.2 in the chapter on

;lassification applications have been used here for extracting information of relevance to

'egression analysis.

He consider first the step'wise methods applied to the original data. Here, it is of interest

;0 simply observe which variables have been selected by the SMLR models for each of

;he data sets. In Section 8.3 two SMLR models were investigated SMLR-S1 and SMLR­

32. The variables selected by SMLR-S1 and SMLR-S2 are displayed in Figure 8.20. The

liTavelengths selected for the modelling of brix are spread widely across the spectrum while

l.reas for the fibre and protein responses a.re more concentrated at particular features. For
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Figure 8.15: Histograms of the residuals from the fibre response models.

the modelling of fibre several wavelengths priot to and following the sharp discontinuity

at 1100 nm have been selected as well as the region near the peak at 1400 nm. Unlike the

wavelengths selected for the brix response, the fibre response does not utilize information

from the 1600-1800 nrn region. The concentrated regions for the protein stepwise models

occur in the trough around the 1300 nm mark,
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Figure 8.16: Histograms of the residuals from the protein response models.

SPCR

Stepwise peR was also applied where PCA was performed on the original data, and the

principal components were then selected by a stepwise routine. Since PCA involves linearly

combining the original variables it is slightly more difficult to directly link which variables

or wavelengths are important. Of course if we only had two principal components, we

could simply examine biplots to note which variables had high loadings, but with several

significant principal components in the model, this becomes less of an option. What

could be done however is to establish which variables have a strong dependence on the

principal components, and then if it is known which principal components are important

for regression, we can deduce which variables form an important role in the SPCR model.

To achieve this, an average absolute correlation measure has been calculated. This

involves calculating the correlation between each variable with the each of the selected

principal components. If Pij denotes the correlation between the ith variable and the jth
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Figure 8.17: Plots of the residuals versus the fitted values for each of the models
for brix.

principal component, then the average absolute correlation (AAC) is determined by,

• ~j IPij!
AAC = average(lpil) = d' . r

ImenSlOna Ity

where the dimensionality is the number of selected principal components. Figure 8.21,

plots the average absolute correlation measure against each of the 512 wavelengths indices

for each of the responses. Also shown is the absolute correlation measures (AC= !Pil)
against each wavelength, for each principal component selected by the stepwise routine.

If one considers only the AAC and assumes that a large AAC measure infers a more

significant attribute, then essentially all we can conclude by examining the middle row of

plots in Figure 8.21 is which regions are not important. These occur where the local minima

appear. If one considers the absolute correlation (AC) measure separately for each of the

selected principal components, then one can see that sometimes a variable may produce

a large AC value for one component but a small AC value for another component. This

makes the interpretation of important variables or regions of our spectra quite difficult to

assess.



CHAPTER 8. REGRESSION APPLICATIONS 201

SMLR-S1 SMLR-S2 SPCR

4 4 4. : ., :'
"0 " 2 ...~~ 2 ... "
'" 2 .. _..... ..... .' .
'" . ........;1:· :ii';}'" i,"''':f:'"">. 0 ":f.~•." 0 . ~." 0, .' 1.-.., ..'...;:;' .. '. 'V!' .. :.::...

-2 ...". -2 -2:.'" . ." ,,"::'
-2 0 2 4 6 -2 0 2 4 6 -2 0 2 4 6

PLS BMLR SMLRW

4 44 .
: .

. ~ .... . .
-0 2 .. ~" .. 2 ....- 2

..
~

.
.-.:;.~:."~:•.. •.'l ;,..:,"'.- ....

>. 0 g,-..•' .
0 • J\-.... -...~J:: :. '~'" 'Go.. .. 0 .- ...~~..-

-2 ......, .. ... :.:~.~::". '. -2 :. :.,.:"' .. '.": .:
-2 :

-2 0 2 4 6 -2 0 2 4 6 -2 0 2 4 6

SPCRW AWA

4 4

'. . ~
2 ~. " 2 "

-0 ~ .. -=. .. .. .. .. :-'.,-'.: ..§ '..'i! ' . ..:":-e.
0

. ,
>. 0 .<;..:. .~·:I'.I:,,.1... ~::

:~A
-2 :'.,,'1:' -2 ' .. .'

-2 0 2 4 6 -2 0 2 4 6
yobserved yobserved

Figure 8.18: Plots of the residuals versus the fitted values for each of the models
for fibre.

PLS

Before discussing how one might deduce which variables are significant from a PLS model

we first note that in Section 8.3 two PLS models were considered, PLS-S3 and PLS-S4. In

this section we search for the significant variables from the PLS-S4 model. If one makes

the assumption that a large regression coefficient implies a more significant variable, then

one can examine the size of theregression coefficients from the PLS model. If the data

are not standardized then a large coefficient may indicate an important variable but may

also reflect a variable which has a small magnitude and large variance [50]. If the data

are standardized, then this problem relating to the interpretation of important variables

can be somewhat lessened. Here, we standardize our original data, and then calculate the

regression coefficients for each of the responses, using the same number ofPLS components

that were used in PLS-S4, that is 15 for the brix and fibre responses, and 14 for the protein

response. Figure 8.22 plots the absolute values of the regression coefficients obtained from

PLS-S4, for each of the responses.
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Figure 8.19: Plots of the resIduals versus the fitted values for each of the models
for protein.

The PLS model for the regression of brix has larger coefficients at approximately

1400 nm and between 1600-1800 nrn. The larger (in magnitude) PLS coefficients for

the modelling of fibre occur around the 1100 nm mark, around the 1400 nrn position, the

1600 nrn position and in the vicinity of 1850 nrn. These regions are similar to those u;ti­

lized by SMLR for predicting fibre. The exception however occurs for the 1600 nm mark

which- appears important for the PLS model, but not for the SMLR modeL The larger

PLS coefficients for the protein model lie predominantly between the 1200-1300 nm range~
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Figure 8.21: Absolute correlations between each wavelength and the principal
components selected by SPCR.

BMLR

For BMLR, one can observe the coefficients from the- bands which were supplied to MLR.

These can be seen in Figures 8.4-8.5 for the sugar and wheat data, respectively. For reasons

discussed in Section 7.5.2, it is difficult to draw any conclusions about the important

regions of the spectra from BMLR. This is because, ,we have preselected the bands of

coefficients without any consideration of the data, but rather, so that the number of

coefficients in the bands allows for a well-posed regression problem.

SMLRW

The results for SMLRW-Sl and SMLR\i\T-S2 are identical since the different stopping rules

produced the same models, we will subsequently refer to either SMLRW-Sl or SMLRW-S2

as SMLR\iV. Figure 8.23 (page 206) shov.,rs the coefficients from the DvVT which have been

selected by SMLRW for each response. The original sampled spectra are shown in the

top row of Figure 8.23. Recall from Chapter 7, that if vertical lines are extended from
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the asterisks to the original spectra, then where the lines meet the original spectra will

indicate in an approximate sense, the region which is represented by the coefficients.

The main areas of focus for the SMLRW-brix model appears to be prior to the 1100 nm

jump and around the central peak of 1400 nm. For the SMLRW-fibre model, information

prior to the peak at 1400 nm and between 1600-1800 nm appears to be represented by the

wavelet coefficients which were supplied to MLR. The coefficients fQr the SMLRW-protein

model relate to the peaks at approximately 1200 nm, 1400 nm and the small elevation at

approximately 1750 nm.

We also consider backtransforming the wavelet coefficients which were selected by the

SMLRW models for each of the responses to visualize the spectra which would be obtained

when the selected wavelet coefficients are linearly combined with their respective basis

functions. Figure 8.24 presents these reconstructed spectra.
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Figure 8.24: Reconstructed spectra produced from the coefficients selected by
SMRLW.

If were to assume that the regions which are not equal to zero contain the useful informa­

tion for regression, then there would appear to be some disagreement with the information
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Figure 8.23: Coefficients from the DWT which·were selected by SMLRW.
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"presented in Figure 8.24 (page 205) to that in Figure 8.23 (page 206). Take the protein

response for example. From Figure 8.23 vve conjectured that information around the peaks

at approximately 1200 nm, 1400 nm and at 1750 nm contain useful information for regres­

sion. However, in F.igure 8.24 there seems to be one main area which has been extracted for

regression, that is around 1600 nrn. One problem which arises from superimposing each

of the backtransformed spectra associ~ted vvith each of the '?Vavelet coefficients, is that

the magnitude of so"me of the backtransformed spectra will be larger than others, hence

impeding the visibility of the backtransformed spectra with smaller magnitudes. This is

especially the case when we produce a reconstructed spectra from coefficients from differ­

ent levels in the DWT. The next series of plots shows the reconstructed spectra produced

by backtransforming the coefficients from the individual bands in t.he DWT. That is if

two coefficients vvere selected from the same band by SMLRW, then both coefficients will

be bacl\transformed to produce a reconstructed spectrum. These reconstructed spectra

are shown in Figure 8.25. Now, the reconstructed spectra with a smaller magnitude can

be ~ore clearly visualized, and the informative regions are now in agreement with that

in Figure 8.23. Note that some of the ax~s do not contain any plots. These 'blank' axes

have simply been shown so that direct comparison with Figure 8.23 is made easier. Also,

at the expense of having less 'cluttered' plots, the scales on the vertical axis have been

omitted. Generally though, the higher up the transform, the smaller the scale, since at

the higher levels in the transform, the wavelet coefficients contain information about the

high frequency events.
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Figure 8.25: Reconstructed spectra produced from the coefficients selected by
SMRLW that pertain to the same band.
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SPCRW

209

The process for determining which features are utilized is not straight forward to calculate

for SPCRW..VVe note that both SPCRW-Sl and SPCRW-S2 produced the same models

so we can speak of SPCRW in generaL I~ order to determine which features are more

predominantly involved in the SPCRW models there are several steps which need to be

performed. First, it is necessary to consider the wavelet coefficients for which PCA was

performed. Here we selected the wavelet coefficients which had an absolute correlation

of more than 0.5 with the response. Next we need to consider which of the selected

coefficients are more significant to the principal components which 'Yere selected by the

stepwise routine. This could be done as before by measuring the correlation between the

reduced set of wavelet (and scaling) coefficients with the selected principal components.

If we could determine which wavele~ coefficients were important, then this information

could be translated to determine which regions of the spectra are important. We believe

that such an approach would be too subjective. When SPCR was applied to the original

data we previously mentioned that interpretation was difficult, since some variables are

more important for certain principal components and less important for other principal

components. Now that an intermediate step has been included i.e. performing the DWT,

the level of subjectivity is further enhanced.

AWA

In this section we investigate the information which was extracted from the original spec­

tra by the AWA. Here we will examine the adaptive wavelet coefficients (Figure 8.26)

which produced the highlighted results in Table 8.9 as well as the reconstructed spectra,

which were obtained by setting the coefficients in the remaining bands to zero, and then

backtransforming the thresholded data.
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Figure 8.26: The wavelet coefficients and reconstructed spectra produced from
the AWA.

Interpretation of the ad~ptive wavelet coefficients is not straight forward. One might

immediately assume that a larger coefficient implies a mor~ important variable. From

the p-values in Table 8.11, '\ve see this is not necessarily true. Take for example the brix

model. When optimization was over the wavelet band the 12th and 13th coefficients are

quite large, but have quite high p-values (see Table 8.11) indicating that these coefficients

are not significant terms in the model. Perhaps what is more .interesting is if we could

examine the reconstructed spectra which would be obtained if all the adaptive wavelet

coefficients which were used for regression are backtransformed. The reconstructed spectra

are shown in the bottom row of plots in Figure .8.26. As was the case in the previous

chapter, interpretation of the reconstructed spectra is not straight forward. One interesting

feature to note however, is that when the scaling coefficients from the brix response are

backtransformed, we obtain a spectrum similar to the original spectrum, which is typical

of backtransformations involving the scaling terms.

One might assume that for the backtransformed wavelet coefficients, a region which
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deviates from the horizontal line y= 0 contains information which is represented by the

adaptive wavelet coefficien~s and hence contains useful information for regression. Based

on this. assumption,. then one might conclude that the i_nformation extracted by the AWA

comes from the 1000 nrn and 1300~1600 nm regions for the brix response, the region

prior to 1000 nm and the region after 1700 nm for the fibre response, and for the protein

response., fronl' the 1100-1300 nm and 1900-2000 nrn regions.

8 .6 Sullllllary

This chapter has explored several regression procedures which can be applied to spectral

data. We have considered using features which are the original data such as SMLR,

and features ·which involve some (linear) combination of the original variables, such as

SPCR and the PLS rqutines. vVavelet coefficients which can also be thought. of as a linear

combination of the original variables have also been used as features for the regression

procedures BMLR, SPCRW, SMLRW and the AvVA.

In terms of performance measures narnely the R~est measure, the tvvo techniques which

tended to produce higher measures than the remaining methods were PLS, the AWA

and SMLR-Sl, while SMLRW and SPCRW tended to produce lower values. If one then

considers the proportion of insignificant terms in the three models mentioned above, we

can see from Table 8.11 that the SMLR-Sl and AWA models tended to have a higher

proportion than the PLS models which did not have any insignificant terms at the 0.05

level. It is interesting to note that despite the poor performance of SMLR\V and SPCRW,

all terms in this model were significant.,

If one is interested in discovering any additional information about our- data such as,

which regions might be potentially useful for regression, then one would conclude that of

tIle methods presented here, such information was more easily accessible by the SMLR

routines applied to the original data as well as the wavelet coefficients. By examining the

PLS coefficients it was also possible to make some decisions about the regions which the

PLS model paid particular attention to, though the PLS coefficients were rather 'jagged' in

appearance, thereby making such judgements more difficult. SOlne attempt was made with

the A\7VA algorithm for deducing similar information, but as for the PLS method, such

information was not well defined, unlike the Slv1LR and SMLRW strategies. The SPCR
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Chapter 9

Concluding Remarks

9.1 Original COl1.tribution

This thesis has investigated several strategies that can be used for the discrimination and

regression of spectral data. A problem which frequently occurs when modelling spectral

data, is that the diInensionality (i.e., number of variables) is usually quite large, especially

when. cornpared to the number of spectra that are available. This leads to a substantial

deterioration in performance of traditi?nally favoured classifiers and regression methods.

There are basically two approaches that can be implemented to help overcome this prob­

lem. One option is to apply a high dimensional technique which is capable of handling a

large number of variables. An alternative procedure, and perhaps more commonly applied,

is to first reduce the dimensionality by some feature extraction preprocessing method, and

then use an appropriate lovv dimensional classification or regression technique.

This thesis h~ introduced some novel dimension reducing techniques as well as some low

and high dimensional multivariate methods which have evolved quite recently (e.g. FDA

and PDA). The original part of this thesis comes in the exploration of wavelet coefficients

as features for the multivariate analysis of spectral data. In particular, the discrimina­

tion and regression of near infrared spectral data. The discrete w"avelet transform was

introduced as a method for extracting features. Wavelets were considered as features for

discriminant and regression analysis because of their ability to detect local changes in a

spectrum. Whilst, there have been previous applications of the discrete wavelet trans­

form as a feature extraction procedure for classification and regression, this field remains

relatively unexplored and any work performed in this area is of much interest4

218
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T4is thesis has considered two main approaches where wavelets form the foundation of

the feature extraction proceduree The first procedure selected wavelet coefficients from

the discrete wa·velet transform that was produced using standard wavelet bases. A new

and innovative feature extraction scheme was also proposed, which avoids the need, to

preselect a,' vvavelet basis. vVe demonstrated how wavelets can be designed to suit almost

any general application, but we focused on designing wavelets for the classification and re­

gression of spectral datae The wavelet gradually adapts to the application at hand, and is

therefore referred to as an 'adaptive wavelet'. The adaptive wavelet methodology simulta­

neously reduces the dilnensionality and attempts to find the wavelet which optimizes some

multivariate modelling criteria. The adaptive wavelet methodology stems from the work

peformed by I{autsky and Turcajova (1995) [78] vvha introduce a procedure for designing

wavelets for removing disturbances in signals. The adaptive wavelet algorithm applied in

this thesis is based on a similar algorithm to that in [78]. The .main difference betvveen

the t\VQ algorithms is the c.riteria which are to b~ optimized and the particular application

that the adaptive wavelets are designed for.

9.2 SUlTIlllaJ.--y of Results

This section provides a summary of the results obtained using the various classification

and regression strategiese Since a summary was provided at the end of Chapters 7 and 8,

only a brief summary will be provided here.

Each of the discriminant and regression applications can be divided into into one of

three main categories.

1.. High dimensional multivariate statistical methods using all of the original variables.

2. Low dimensional multivariate statistical methods which have selected from the orig­

inai data.

3. Low dimensional multivariate statistical methods which have selected wavelet coef­

ficients as features.
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The multivariate methods that were employed for discriminant analysis include:

215

• PDA: penalized discriminant analysis

CD RDA: regularized discriminant analysis

• SBLDA: stepwise Bayesian linear discrin1inant analysis

• SBQDA: .stepwise Bayesian quadratic discriminant analysis

• FDA: flexible discriminant analysis

• BBLDA: banded Bayesian linear discriminant analysis

• BBQDA: banded Bayesian quadratic discriminant analysis

• SWBLDA: step"vise Bayesian linear discriminant analysis applied to the wavelet

coefficients

• SWBQDA: stepwise Bayesian quadratic discriminant analysis applied to the wavelet

coefficients

(0 LDB: local discriminant ba$es algorithm

• AWA: adapti've wavelet algorithm..

The multivariate methods which were applied for the regression of spectral data include:

• SMLR: stepwise multiple linear regression

til SPCR: stepwise principal component regression

• PLS: partial least squares regression

• BIvILR: banded multiple linear regression

• SMLRvV: stepwise multiple linear regression applied to wavelet coefficients

• AWA: adaptive V\Tavelet algorith'm.
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Throughout the previous two chapters we have discussed the advantages and disadvan­

tages of each of the strategies listed above. This was done by taking into consideration

two main objectives:

1. hovv·vvell the model performed in terms of specified performance measures, and

2. consideration was a.lso given to the descriptive information which could be provided

by each of the approaches.

In terms of the performance based measures for classification it was noted that RDA

and the A'lVA consistently performed well, and for regression, PLS tended to dominate,

although the AWA with a simpler regression model often produced comparable results.

The high dimensional methods RDA and PLS tended to give quite reasonable per­

formance measures, but were relatively difficult to convey infomation about the spectral

regions which vvere important for either discrimation or regression. The AWA also per­

formed vvell but also seemed to be difficult to extract information about the useful features

of the spectra. This is a consequence of the banded selection procedure. However, the

AWA is able to provide more information about the spectra than RDA.. If one is inter­

ested in a technique that produces average performance measures and is relatively easy to

interpret or to extract additional information, then one might like to pursue some of the

strategies involving stepwise feature selection.

In terms of the wavelet, based methods, the AWA seemed to be more superior than

the remaining wavelet based strategies which were investigated. This is despite the some­

what restrictive procedure of basing optimization over an entire band. The success of the

adaptive' wavelets can be attributed to their ability to adapt to different tasks. This is

a primary advantage of using adaptive wavelets as opposed to predefined wavelets. Of

course predefined wavelets are more readily available and generally do not require the use

of optimization procedures.
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9.3 Future Work and General Relllarks About the AWA
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There are several items' regarding the adaptive \vavelet alE;orithm which warrant further

discussion. These items are novv considered ·separaLely.

• Number of Iterations

One can argue that using a prespecified number of iterations in the AWA' (as we

have done) does not necessarily allovv for a optimal value to be found. This is quite

true', but from a practical perspective it is more convenient. We have also noted

that generally there is little if!lprovement to the model after 2000 iterations. It is

important to mention however, that this was not rigorously tested, and is simply an

observation which has been made. It is possible hovvever that with more extensive

experimentation on additional real and simulated data, that a more suitable nunlber

of maximum iterations could be found.

• Local and Global Minima

If the AWA algorithm doe~ converge to an optimal value prior to reaching the maxi­

mum number of iterations then one can query if it is indeed a local or global minima.

As we have discussed previously in Chapter 6 unless the problem is continuous and

has only one optimal point, there can be no guarantee that a global optimal value

has been found. One suggestion offered in [4] is that starting the optimizationrou­

tine using different values for parameters at initialization may assist in overcoming

this problem. Due to time constraints this was not done for every model produced

by the AvVA. It was however trialled for a few settings where the criterion function

did converge to the same optimal value.

• Constrained Optimization Versus Unconstrained Optimization

In the the ada.ptive wavelet algorithm, it was possible to avoid using constraints

which ensured orthogonality. This is due to some clever algebraic factorizations of

the wavelet matrix for which much credit is due to [79J. However, one constraint

\vhich we have not discussed in very much detail is that the vectors v, ui, ... ,u q

are required to have unit lengthc This normalization procedure occurs during the

optimization routine. An alternative· strategy which could be employed, is to place

constraints on these vectors requiring them to be normalized.
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• Choosing the best ('17~, q, l, T)-settings

Selecting the (m, q, 1, r) combination involved trialing several suitable combinations

of these values. Presently, it is un~nown how one might be able to predetermine

with any degree of certainty vifhich setting combinations may produce more preferred

results. One general observation hovvever, is that the case m == 2 does seem to be

prqdueing a higher proportion of larger correct classification rates as well as higher R­

squared measures. In order to determine which settings are more preferable remains

to be further explored.

., Validation without an independent test set

Each of the data sets applied in this thesis have consisted of a training and indepen­

dent test set. Assessment of the various techniques often involved an analysis of the

prediction accuracy for the testing data. It was previously mentioned in Section 2.8

and in Section 3.. 6 that if there are two few observations to allovv for an independent

testing and training data set, then cross-validation could be used to assess the pre­

diction performance of the discriminant or regression method. Should this be the

situation, it is necessary to mention that it would be an extremely computational ex­

ercise to implement a full cross-validation routine for the AvVA .. That is, it would be

too time consuming to leave out one observation, build the AWA model, predict the

deleted observation, and then repeat this leave-one-out procedure for each observa­

tion separately. In the absence of an independent test set, a more realistic approach

would be to perform cross-validation using the wavelet produced at termination of

the AvVA, but it is important to mention that this would not be a full validation.

The tasks dis~ussed above remain the work of future investigations for further exploring

and enhancing the adaptive wavelet algorithm. In conclusion we wish to further highlight

the potential of wavelets as metllods for feature extraction and their interesting way of

viewing data through different windows.
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SMLR-Sl BRIX
Residual Standard Error == 0.2075, Multiple R-Square == 0.9812 N == 100, F-statistic == 273.412 on 16 and
84 elf, p-value == 0

coef std.err t.stat p.value

VI -413.3916 82.8005 -4.9926 0.0000

V2 33.1535 9.1333 3.6300 0.0005

V3 -44.0129 7.2449 -6.0750 0.0000

V4 -140.0819 16.6898 -8.3933 0.0000

V5 -557.4451 76.8799 -7.2509 0.0000

V6 185.3640 100.2743 1.8486 0.0680

V7 -474.5068 217.0552 -2.1861 0.0316

V8 -14.0633 7.7300 -1.8193 0.0724

V9 81.2956 12.9722 6.2669 0.0000

VI0 -169.9041 144.8098 -1.1733 0.2440

VII 485.5299 88.4825 5.4873 0.0000

V12 228.1292 222.8518 1.0237 0.3089

V13 476.8709 103.2429 4.6189 0.0000

V14 -276.0465 78.8086 -3.5027 0.0007

VIS 206.1745 76.7681 2.6857 0.0087

V16 387.5836 155.2515 2.4965 0.0145
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SMLR-Sl FIBRE
Residual Standard Error = 0.5372, Multiple R-Square = 0.9077 N = 100, F-statistic = 51.6229 on 16, and
84 elf, p-value = 0

coef std.err t.stat p.value

VI -947.1048 120.1131 -7.8851 0.0000

V2 368.3170 171.4882 2.1478 0.0346

V3 898.3101 128.9032 6.9689 0.0000

V4 -981.5167 108.2112 -9.0704 0.0000

V5 -1686.1420 288.5763 -5.8430 0.0000

V6 814.6825 91.7905 8.8755 0.0000

V7 6949.1739 1464.5789 4.7448 0.0000

V8 -1224.5805 245.0395 -4.9975 0.0000

V9 229.4859 184.1823 1.2460 0.2162

VIa -4092.2697 1473.1539 -2.7779 0.0067

VII 393.2618 73.5601 5.3461 0.0000

VI2 33.6203 16.0073 2.1003 0.0387

\113 -59.1393 21.8135 -2.7111 0.0081

V14 -526.9223 139.3476 -3.7814 0.0003

VIS -561.1551 208.7378 -2.6883 0.0087

V16 443.1769 287.0874 1.5437 0.1264



APPENDIXA. ~21

SMLR-Sl PROTEIN
Residual Standard Error == 0.1387, Multiple R-Square == 0.9905 N == 60, F-statistic == 287.6991 on 16 and
44 df, p-value == a

coef std.err t.stat p.value

VI -103.4695 69.6912 -1.4847 0.1448

V2 -569.0466 47.6506 -11.9421 0.0000

V3 -575.0757 170.2500 -3.3778 0.0015

V4 760.8207 128.3992 5.9254 0.0000

V5 33.4229 6.1876 5.4016 0.0000

V6 140.9795 55~6816 2.5319 0.0150

V7 506.3303 149.5141 3.3865 0.0015

V8 -320~O526 88.2420 -3.6270 0.0007

V9 178.1800 30.8989 5.7665 0.0000

VIO -298.5406 55.4835 -5.3807 0.0000

VII 298.7727 59.3241 5.0363 0.0000

V12 -150.1197 36.2051 -4.1464 0.0002

V13 195.9957 54.2381 3.6136 0.0008

V14 -159.2740 37.0052 -4.3041 0.0001

VI5 325.7624 102.4385 3.1801 0.0027

V16 -242.6675 92.9929 -2.6095 0.0123

SMLR-S2 BRIX
Residual Standard ·Error == 0.2785, Mcltiple R-Square == 0.9641 N == 100, F-statistic == 216.9789 on 11 and
89 elf, p-value == a

coef std.err t.stat p.value

VI 24.6889 8.6760 2.8457 0.0055

V2 59.7694 12.3162 4.8529 0.0000

V3 14.1401 8.8403 1.5995 0.1132

V4 -47.7623 8.6337 -5.5321 0.0000

V5 -241.7219 18.4566 -13.0968 0.0000

V6 136.4132 22.3162 6.1128 0.0000

V7 144.9032 18.0175 8.0424 0.0000

V8 -167.3372 12.4628 -13.4269 0.0000

V9 251.2473 26.8518 9.3568 0.0000

VIa -114.9007 17.5833 -6.5347 0.0000

VII -50.2653 10.9866 -4.5751 0.0000
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SJvILR-S2 FIBRE
Residual Standard Error = 0.5866, Multiple R-Square = 0.8847 N = 100, F-statistic = 56.2599 on 12 and
88 df, p-value= 0

coef std.err t.stat p.value

- VI -818.3904 92.1510 -8.8810 ' 0.0000

V2 -213.7444 45.0951 -4.7399 0.0000

V3 802.9916 93.7831 8.5622 0.0000

V4 -831.1576 106.5776 -7.7986 0.0000

V5 -1234.9175 268.0046 -4.6078 0.0000

V6 673.1537 78.2243 8.6054 0.0000

V7 6576.0327 1584.2692 4.1508 0.0001

V8 -914.5712 229.8370 -3.9792 0.0001

V9 350.6474 59.4780 5.8954 0.0000

VIa -4475.4210 1602.1541 -2.7934 0.0064

VII 104.1997 24.7005 4.2185 0.0001

V12 56.4568 15.7666 3.5808 0.0006

SMLR-SZ PROTEIN
Residual Standard Error.== 0.2525, Multiple R-Square == 0.9615 N ,= 60, F-statistic == 224.6625 on 6 and
54 df, p-value == 0

coef std.err t.stat p.value

VI 84.8764 8.9748 9.4572 0.0000

V2 -624.9640 34.2107 -18.2681 0.0000

V3 -362.7573 38.0906 -9.5235 0.0000

V4 873.3815 60.8132 14.3617 0.0000

V5 24.7410 .4.9389 5.0094 0.0000

V6 13.6638 4.1881 3.2625 0.0019
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SPCR BRIX
Residual Standard Error ~ 0.2726, Multiple R-Square = 0.9659 N == 100, F-statistic == 208.0096 on 12 and
88 df, p-value == a

coef std.err t.stat p.value

VI 4.2093 0.1358 30.9984 0.0000

V2 33.5693 1.3521 24.8276 0.0000

V3 9.7738 0.6385 15.3069 0.0000

V4. -27.3959 2.1091 -12.9894 0.0000

\'5 2.8332 0.2325 12.1868 0.0000

V6 0.2003 0.0215 9.3183 0.0000

V7 -29.1912 3.2209 -9.0629 0.0000

V8 -17.8065 2.0230 -8.8021 0.0000

V9 -29.7696 4.7879 -6.2177 0.0000

VI0 16.9209 2.9502 5.7356 0.0000

VII -22.2199 4.0771 -5.4499 0.0000

VI2 39.3850 8.9062 4.4222 0.0000

SPCR FIBRE
Residual Standard Error == 0.6047, Multiple R-Square == 0.8761 N == 100, F-statistic == 57.1892 on 11 and
89 elf, p-value == 0

coef std.err t.stat p.value

VI 0.8967 0.0477 18.8058 0.0000

V2 2.0134 0.3012 6.6845 0.0000

V3 -211.0782 32.1852 -6.5582 0.0000

V4 -4.4383 0.7670 -5.7868 0.0000

V5 -24.9685 4.4873 -5.5642 0.0000

V6 132.1473 23.8125 5.5495 0.0000

V7 47.1311 9.0437 5.2115 0.0000

V8 14.0427 2.9992 4.6822 0.0000

V9 135.6085 35.2008 3.8524 0.0002

VI0 80.5381 20.9538 3.8436 0.0002 .

VII 300.4022 80.8993 3.7133 0.0004
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SPCR PROTEIN
Residual Standard Error == 0.2951, Multiple R-Square == 0.9542 N == 601. F-statistic == 75.361 on 13 and 47
df, p-value == 0

coef std.err t.stat p.value

VI -0.6344 0.0339 -18.7189 0.0000

V2 -5.2481 0.3~39 -13.3245 0.0000

V3 -2.7032 0.2363 -11.4395 0.0000

V4 -34.3029 4.0530 -8.4636 0.0000

VS -7.3966 0.9429 -7.8445 0.0000

V6 41.3803 6.5338 6.3332 0.0000

V7 27.4129 4.4115 6.2140 0.0000

V8 0.6697 0.1131 5.9221 0.0000

V9 -7.1017 1.4912 -4.7624 o~oooo

VIO 2.9666 0.7775 3.8157 0.0004

VII 64.4310 17.3055 3.7232 0.0005

V12 -7.8878 2.2502 -3.5053 0.0010

VI3 48.8068 15.0334 3.2466 ,0.0022

PLS BRIX
Residual Standard Error == 0.2287, Multiple R-Square == 0.9766 N == 100, F-statistic == 256.0153 on 14 and
86 df, p-value == a

coef std.err t.stat p.value

VI 0.1393 0.0023 59.8683 0.0000

V2 0.4696 0.0081 58.1210 0.0000

V3 8.1823 0.1869 43.7777 0.0000

V4 12.4374 0.3068 40.5358 0.0000

V5 19.3918 0.6230 31.1256 0.0000

V6 9.9626 0.3726 26.7346 0.0000

V7 55.2129 3.1950 17.2812 0.0000

V8 51.9918 3.2378 16.0578 0.0000

V9 53.0374 4.6422 11.4250 0.0000

VIO 197.7996 20.7199 9.5464 0.0000

VII 508.6738 81.6619 6.2290 0.0000

VI2 354.9034 74.9618 4.7345 0.0000

V13 555.0606 141.6994 3.9172 0.0002

V14 231.6885 107.1771 2.1617 0.0334
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PLS FIBRE
Residual Standard Error = 0.5614,' Multiple R-Square = 0.898 N = 100, F-statistic = 49.8674 on 15 and
85 df, p-value = 0

coef std.err ' t.stat p.va).ue

,VI 0.0113 0.0004 27.3498 0.0000

V2 1.4776 0.0807 18.2986' 0.0000

V3 12.3480 0.7483 16..5023 0.0000

V4 85.5599 5.5652 15.3742 0.0000

V5 20.5716 1.3794 14.9130 0.0000

V6 81.4700 5.8077 14.0280 - 0.0000

V7 3"(3.0133 28.7931 12.9549 - 0.0000

V8 219.4928 17.8641 12.2868 0.0000

Vg' 186.2217 15.5385 11.9845 0.0000

VIa 482.4133 41.4357 11.6425 0.0000

VII 1308.8532 130.9792 9.9928 0.0000

VI2 313.4975 53.7439 5.8332 0.0000

V13 1386.8892 277.8799 4.9910 0.0000

VI4 1584.8630 341.7175 4.6379 0.0000

VIS 1384.0165 659.6079' 2.0982 0.0389
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PLS PROTEIN
Residual" Standard Error == 0.1865" Multiple R-Square == 0.9829 N == 60, F-statistic = 15.7.8145 on,16 and
44 df, p-value == 0

coef std.err t.stat p.value

VI 0.0372 0.0007 50.2497 0.0000

V2 1.2601 0.0314 40.1534 0.0000

V3 1.4897 0.0422 35.2642 0.0000

V4 6.9472 0.2371 29'.2957 0.0000

V5 36.5421' 1.4108 25.9013 0.0000

V6 122.7007 5.5415 22.1421 0.0000

V7 80.8912 4.0994 19.7325 0.0000

V8 110.8226 6.5049 17.0368 0.0000

V9 249.5727 20.3698 12.2521 0.0000

VI0 435.0110 42.3651 10.2681 0.0000

VII 501.2799 51.3976 9.7530 0.0000

VI2 239.3746 26.5649 9.0109 0.0000

V13 437.6089 54.7417 7.9941 0.0000

V14 749.7086 ,104.5505 7.1708 0.0000

VIS 1040.0230 158.0652 6.5797 0.0000

V16 384.9349 95.5418 4.0290 0.0002
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BMLR BRIX
Residual Standard Error == 0.2396, Multiple R-Square == 0.9749 N == 100, F-statistic == 203.7632 on 16 and
84 elf, p-value == 0

coef std.err t.stat p.value

VI 1.0592 3.5050 0.3022 0.7633

V2 -6.2497 3.0676 -2.0373 0.0448

V3 23.1697 5.1022 4.5411 0.0000

V4 -22.6871 8.5814 -2.6437 0.0098

V5 15.5482 3.9389 3.9474 0.0002

V6 -22.7034 2.4196 -9.3832 0.0000

V7 24.0416 2.4895 9.6572 0.0000

V8 -20.6519 4.4916 -4.5979 0.0000

V9 -20.3396 7.3185 -2.7792 0.0067

VIa 46.5804 6.4574 7.2135 0.0000

VII -50.8380 5.1534 -9.8650 0.0000

VI2 42.4398 6.4154 6.6153 0.0000

V13 1.9550 . 5.0120 0.3901 0.6975

V14 -16.1397 2.4828 -6.5005 0.0000

VIS -0.2121 2.6536 -0.0799 0.9365

V16 -6.3390 3.5985 -1.7616 0.0818
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BMLR FIBRE
Residual Standard Error == 0.796, Multiple R-Square == 0.7973 N == 100, F-statistic == 20.6499 on 16 and.
84 df, p-value == 0

coef std.err t.stat p.value

VI 15.7990 33.8356 0.4669 0.6418

V2 -187.2881 91.8747 -2.0385 0.0446

V3 -288.6024 102.5862 -2.8133 0.0061

V4 -163.6692 105.0642 -1.5578 0.1230

V5 -94.2978 124.2972 -0.7586 0.4502

V6 -678.7155 160.8204 -4.2203 0.0001

V7 -472.9067 133.2914 -3.5479 0.0006

V8 62.8721 38.9508 1.6141 0.1102

V9 12.6681 35.5259 0.3566 0.7223

VIa -17.6691 74.3150 -0.2378 0.8126

VII -33.6705 62.8214 -0.5360 0.5934

V12 -156.1085 37.7196 -4.1387 0.0001

V13 -427.7977 138.5951 -3.0867 0.0027

V14 ~243.5802 149.0532 -1.6342 . 0.1060

V15 -66.3361 197.8717 -0.3352 0.7383

VI6 29.7571 43.4330 0.6851 0.4952
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BMLR PROTEIN
Residual Standard Error == 0.3128, Multiple R-Square == 0.9518 N = 60, F-statistic == 54.3503 on 16 and
44 df, p-value == 0 .

coef std.err t.stat p.value

VI 234.7303 86.1259 2.7254 0.0092

V2 157.9888 38.7069 4.0817 0.0002

V3 26.0952 38.2142 0.6829 0.4983

V4 89.0377 45.0397 1.9769 0.0543

VS 21.0500 16.5506 1.2719 0.2101

V6 5.1615 5.9630 0.8656 0.3914

V7 33.5142 12.5365 2.6733 0.0105

V8 12.7502 18.6861 0.6823 0.4986

V9 -26.7414 13.5606 -1.9720 0.0549

VI0 -19.5341 16.6508 -1.1732 0.2470

VII 38.5200 21.5308 1.7891 0.0805

V12 58.5335 31.6643 1.8486 0.0712

V13 -20.2556 22.3299 -0.9071 0.3693

V14 4.1250 7.5704 0.5449 0.5886

VIS 9.5707 , 19.0961 0.5012 0.6187

,V16 112.6701 64.4422 1.7484 0.0874

SMLRVV BRIX
Residual Standard Error == 0.4823, Multiple R-Square == 0.8861 N == 100, F-statistic == 121.9396 on 6 and
94 elf, p-value == 0

coef std.err t.stat p.valrie

VI 112.0421 12.6864 8.8317 0.0000

V2 -587.7874 47.5490 -12.3617 0.0000

V3 -18.7954 3.0312 -6.2007 0.0000

V4 36749.8410 10050.2465 3.6566 0.0004

V5 -3334.3371 755.7048 -4.4122 0.0000

V6 6452.2226 1921.0921 3.3586 0.0011
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SMLRW FIBRE
Residual Standard Error == 0.811, Multiple R-Square == 0.7645 N == 100, F-statistic == 50.8587 on 6 and 94
ill, p-value == 0

coef std.err t.stat p.value

VI -4.3691 0.8745 -4.9963 0.0000

V2 2592.0316 399.9554 6.4808 0.0000

V3 2233.2707 397.1550 5.6232 0.0000

V4 7700.8274 1322.0250 5.8250 0.0000

V5 2341.1482 502.1983 4.6618 0.0000

V6 -19969.2631 6635.5992 -3.0094 0.0034

SMLRW PROTEIN
Residual Standard Error == 0.2643, Multiple R-Square == 0.9578 N == 60, F-statistic == 204.2821 on 6 and
54 df, p-value == 0

coef std.err t.stat p.value

VI 517.8027 27.4632 18.8544 0.0000

V2 -163.2285 14.2193 -11.4794 0.0000

V3 -615.1766 135.4929 -4.5403 0.0000

V4 -1542.8067 303.7776 -5.0787 0.0000

V5 1200.0862 266.8916 4.4965 0.0000

V6 -957.3443 242.8538 -3.9421 0.0002
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SPCRW BRIX
Residual Standard EITor == 0.3694, Multiple R-Square ==0.936 N == 100, F-statistic == 131.'7058 on 10 and
90 df, p-value = 0

coef std.elT t.stat p.value

VI 6.3170 0.2925 21.6000 0.0000

V2 76.7129 5.6634 13.5454 0.0000

V3 -105.4595 8.6689 -12.1653 0.0000

V4 385.,0874 32.2931 11.9248 0.0000

V5 -132.5143 13.1893 -10.0471 0.0000

V6 27.5505 2.7619 9.9752 0.0000

V7 13.4658 1.3743 9.7986 0.0000

V8 228.5009 28.8609 7.917~ 0.0000

V9 304.0115 96.1552 3.1617 0.0021

Via 1594.3647 575.1809 2.7719 0.0068

SPCRW FIBRE
Residual Standard Error == 0.7143, Multiple R-Square == 0.8251 N == 100, F-statistic == 42.4544 on 10 and
90 elf, p-value == 0

coef std.err t.stat p.value

VI 0.8973 0.0563 15.9230 0.0000

V2 -2.0412 0.3669 -5.5636 0.0000

V3 4.6783 0.9291 5.0356 0.0000

V4 -393.1734 82.8737 -4.7442 0.0000

V5 301.7367 64.5316 4.6758 0.0000

V6 -24.1737 5.4611 -4.4265 0.0000

V7 -15.3318 3.6534 -4.1966 0.0001

V8 271.2654 77.0088 3.5225 0.0007

V9 181.8684 52.5139 3.4632 0.0008

V10 886.4472 300.3162 2.9517 0.0040
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SPCRW PROTEIN
Residual Standard Error == 0.3437, Multiple R-Square == 0.9339 N == 60, F-statistic == 70.677 on 10 and 50
elf, p-value ==- 0

coef std.err t.stat - p.value

VI 0.6465 0.0399 16.1893 0.0000

V2 -4.0626 0.3446 -11.7898 0.0000

V3 12.8359 1.4676 8.7461 0.0000

V4 -4.7927 0.5881 -8.1490 0.0000

V5 -138.8801 21.0014 -6.6129 0.0000

VB -49.2715 8.5493 -5.7632 0.0000

V7 0.8674 0.1560 5.5611 0.0000

V8 -117.9042 22.8729 -5.1548 0.0000

V9 -22.0719 4.9422 -4.4660 0.0000

VIa 8.0787 2.7894 2.8963 0.0056

AWA - band(2,5,O) BRIX
Residual Standard Error == 0.2381, Multiple R-Square == 0.9752 N == 100, F-statistic == 206.4704 on 16 and
84 df, p-value == a

coef std.err t.stat p.value

VI 0.9624 4.3145 0.2231 0.8240

V2 16.8904 3.6243 4.6603 0.0000

V3 -37.4660 8.8290 -4.2435 0.0001

V4 28.6036 8.2427 3.4702 0.0008

V5 -25.5626 2.9157 -8.7674 0.0000

V6 23.7097 2.7388 8.6571 0.0000

V7 -35.9495 3.2954 -10.9091 0.0000

V8 12.1630 6.2623 1.9423 0.0555

V9 35.4129 7.6807 4.6106 0.0000

VIO -50.2272 6.0778 -8.2641 0.0000

VII 57.8430 6.7563 8.5613 0.0000

V12 -31.1792 5.9031 -5.2819 0.0000

V13 -10.0719 4.0500 -2.4869 0.0149

V14 3.7706 2.6101 1.4447 0.1523

V15 -5.1649 2.5863 -1.9970 0.0491

V16 3.7216 4.0358 0.9221 0.3591
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A\"lA - band(2,5,1) BRIX
Residual Standard Error = 0.2388, Multiple R-Square = 0.975 N = 100, F-statistic = 205.154 on 16 and
84 df, p-value = 0

coef std.err t.stat p.value

VI 52.0331 12.6895 4.1005 0.0001

V2 -59.6844 21.3923 -2.7900 0.0065

V3 35.5449 12.9744 2.7396 0.0075

V4 -54.8479 6.9832 -7.8542 0.0000

V5 37.0434 11.7281 3.1585 0.0022

V6 -43.8805 11.3191 -3.8767 0.0002

V7 -54.8110 12.9727 -4.2251 0.0001

V8 71.8989 16.7222 4.2996 0.0000

V9 -113.2040 14.8415 -7.6275 0.0000

VIa 79.3447 14.6540 5.4146 0.0000

VII -13.7873 9.3965 -1.4673 0.1460

V12 -24.6244 15.2165 -1.6183 0.1094

VI3 8.6526 4.6731 1.8516 0.0676

V14 -33.7096 22.3995 -1.5049 0.1361

VIS 9.3147 5.2253 1.7826 0.0783

V16 -39.6199 19.7891 -2.0021 0.0485
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AWAFIBRE
Residual Standard Error = 0.6407, Multiple R-Square = 0.8687 N == 100, F-statistic = 34.7199 on 16 and
84 df, p-value = a

coef std.err t.stat p.value

VI 287.1120 41.5706 6.9066 0.0000

V2 -14.6522 46.2303 -0.3169 0.7521

V3 -30.4353 32.5657 -0.9346 0.3527

V4 162.7707 53.7136 3.0303 0.0032

V5 -162.0510 37.4868 -4.3229 0.0000

V6 197.5076 51.6857 3.8213 0.0003

V7 -29.3467 42.1692 -0.6959 0.4884

V8 -156.3376 46.9818 -3.3276 0.0013

V9 96.7725 36.7527 2.6331 0.0101

VIO 51.9793 42.1593 1.2329 0.2210

VII -9.5745 49.5830 -0.1931 0.8473

V12 35.6617 34.5059 1.0335 0.3043

V13 35.2423 42.0055 0.8390 0.4039

V14 -115.3310 45.2348 -2.5496 0.0126

VIS 329.3379 45.1346 7.2968 0.0000

V16 -435.9561 73.5939 -5.9238 0.0000
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AWAPROTEIN
~esidual Standard Error := 0.2241, Multiple R-Square = 0.9753 N == 60, F-statistic == 10~.4756 on 16 and
~4 df, p-value == 0

coef std.err t.stat p.value

VI -2.8615 8.2078 -0.3486 0.7290

V2 52.8530 15.5264 3.4041 0.0014

V3 -5.6918 19.9444 -0.2854 0.7767

V4 31.1330 20.5265 1.5167 0.1365

V5 61.1461 14.3145 4.2716 0.0001

V6 -6.0746 11.2027 -0.5422 0.5904

V7 78.5630 10.5020 7.4808 0.0000

V8 30.0703 6.1721 4.8720 0.0000

V9 -11.3970 7.5945 -1.5007 0.1406

VIa 60.8383 10.7431 5.6630 0.0000

VII 62.6580 7.7381 8.0974 0.0000

VI2 -5.5753 3.3728 -1.6530 0.1054

V13 122.4131 9.9775 12.2689 0.0000

V14 -74.8368 9.5503 -7.8360 0.0000

VIS 25.7174 4.8644 5.2869 0.0000

V16 93.1781 8.0314 11.6018 0.0000
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