This file is part of the following reference:

Mallet, Yvette Lelia (1997) Wavelet based feature
extraction methods for the discrimination and
regression of spectral data. PhD thesis, James Coook
University.

Access to this file is available from:

http://leprints.jcu.edu.au/17437

JAMES COOK UNIVERSITY


http://eprints.jcu.edu.au/17437�

WAVELET BASED
FEATURE EXTRACTION METHODS
FOR THE
DISCRIMINATION AND REGRESSION
OF

SPECTRAL DATA

Thesis submitted by
Yvette Lelia MALLET Bsc(Hons) Qld
in October 1997

for the degree of Doctor of Philosophy
in the School of Computer Science, Mathematics and Physics

James Cook University of North Queensland



IN MEMORY OF TES EVERINGHAM'



STATEMENT OF ACCESS

I, the undersigned, the author of this thesis, understand that James Cook University of
North Queensland will make it available for use within the University Library and, by
microfilm or other means, allow access to users in other approved libraries. All users

consulting this thesis will have to sign the following statement:

In consulting this thesis I agree not to copy or closely paraphrase it in whole
or in part without the written consent of the author; and to make proper public

written acknowledgement for any assistance which I have obtained from it.

Beyond this, I do not wish to place any restriction on access to this thesis.

i



STATEMENT ON SOURCES
DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for
another degree or diploma at any umiversity or other institution of tertiary education.
Information derived from the published or unpublished work of others has been acknowl-

edged in the text and a list of references is given.

e SR
Sl m
bt Y
(Date)

iv



ACKNOWLEDGEMENTS

Foremostly, I thank my supervisors A/Prof Danny Coomans and A/Prof Olivier de
Vel, for their professionalism and encouragement in the development of this thesis. I am
also grateful for the many hours that they have spent revising this and other manuscripts

throughout the course of my research work.

I extend my appreciation to Professor Massart for allowing me to visit his laboratory
at the Free University of Brussels and providing me with the opportunity to become more
familiar with NIR data. Also from the Free University, I thank Delphine Jouan-Rimbaud,
Paula Fernandez, Eric Bouveresse, Wu Wen, Beate Walczak and Wim Penninckx, for their

assistance.

Sincere thanks is expressed to Dr Jaroslav Kautsky at Flinders University in Adelaide,
who gave up his valuable time to introduce me to wavelets. I would also like to thank Dr
Bill Moran, Radka Turcajovd and Pavel Turcaj for their assistance and cooperation whilst
I was visiting Flinders University.

I extend my appreciation, to Professor Trevor Hastie for supplying his S-plus code and
providing valuable input. Many people have provided data which I have used as part of
my thesis, these people are acknowledged in Sections 7.2 and 8.2 of this thesis.

Thanks to my colleagues in the School of Computer Science, Mathematics and Physics
at James Cook University for their encouragement during the final stages of this thesis. In
particular to Dr Wayne Read for revising parts of this thesis. The encouragement provided

by A/Prof Bob Staudte was also much appreciated.

Whilst pursuing the research summarized in this thesis, I was primarily supported by

the Australian Government in the form of an Australian Postgraduate Research Award.

I wish to thank my fiancé, Andrew Everingham for his continual support and encour-
agement. I would also like to thank my team-mates for their patience and understanding.

Finally, I thank my mother for always thinking of the little things that mean so much.



ABSTRACT

This thesis is concerned with the application of statistical methods to spectral data. A
major concern which arises from spectral data is that the number of variables or dimen-
sionality usually exceeds the number of available spectra. This leads to a degradation in
performance of traditional statistical methods. There are basically two strategies which
can be implemented for overcoming such situations. It is common practice to first reduce
the dimensionality of the data by some feature extraction preprocessing method, and then
use an appropriate low dimensional statistical procedure. An alternative procedure is to
use a high dimensional statistical procedure which is capable of handling a large number
of variables. This thesis considers both approaches, and investigates the applicability of
wavelets as features for statistical analyses, as well as other feature extraction procedures.

The particular statistical analyses investigated are discriminant and regression analysis.

It is shown that, the wavelet based methods, particularly wavelets which have been
designed to suit a particular task, perform quite adequately when compared to traditional

approaches.
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Chapter 1

Thesis Summary

1.1 Overview

This thesis investigates different strategies for performing statistical analyses on near in-
frared (NIR) spectra {16, 110, 124]. In recent years, the popularity of NIR spectroscopy
has increased enormously, perhaps at a much faster rate than which statistical methods for
analysing NIR spectra have developed. The popularity of NIR, spectroscopy and indeed
similar forms of spectroscopy, can be attributed to the fact that spectral methods provide
a relatively efficient, non-destructive technique for analyzing chemical substances. This
has many great benefits for research and can be an extremely effective method to employ

for monitoring quality control procedures in industry.

Near infrared spectra are obtained by directing electromagnetic radiation with a set
wavelength at some sample whose state mav be a solid, liquid or gas. The amount of
radiation which is reflected (or absorbed) by the sample is then measured. By changing
the wavelengths of the electromagnetic radiation by constant increments and plotting the
amount of reflectance (or absorption) against each wavelength, a spectrum is produced.
We refer to spectra which detail the amount of radiation which has been reflected, as
reflectance spectra. Likewise, absorption spectra detail how much radiation has been
absorbed. Figure 1.1 shows an absorption spectrum obtained by analyzing a sample of

paraxylene.

Figure 1.2 was produced to provide some indication about the near infrared region
of the electromagnetic distribution. The NIR region of the electromagnetic spectrum

ranges from 750 nanometers (nm) to 25 micrometers (um). These wavelengths are longer
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Figure 1.1: A spectrum obtained from a sample of paraxylene.

than the wavelengths which pertain to the visible part of the electromagnetic distribution
and are much shorter than microwaves. Whilst .Figure 1.2 implies that there is a cﬁt—oﬁ'
point which separates the electromagnetic distribution into different regions, this is not
actually the case. There is a considerable degrée of overlap between the regions, and.-such
descriptions about the electromagnetic distribution tend to vary from one text to another.

The information used to produce Figure 1.2 was obtained from [142].
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Figw 1.2: The electromagnetic spectrum.

The NIR spectra analyzed in this thesis, have wavelengths ranging from 900 nm -
2500 nm, although one data set (the seagrass data) extends into the visible region and has

wavelengths incrementing from 400 nm up to 2500 nm (see Section 7.2.1).
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Spectra usually vary depending on the chemical composition of the sample. This is due
to molecules exhibiting different vibrational behaviours which interferes with the radiation
reflected (or absorbed) for.each of the wavelengths. It is quite difficult to ascertain the
exact chemical composition of a substance by analyzing its NIR spectrum, but by placing
particular attention on characteristics of the spectrum such as the shape, position and
heights of peaks, some insight about the chemical composition of the sample may be

obtained. This however, will often require the expertise of a skilled NIR analyst.
In this thesis automated statistical methods are investigated for exploring the char-

acteristics of the NIR spectra. The statistical methods applied are discriminant analy-

sis [102, 48] and regression analysis [29, 106].
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Figure 1.3: A discriminant analysis problem.

In the case of discriminant analysis one is interested in assigning spectra to one of

‘several predeﬁned categories. Figure 1.3 shows five sample spectra from three different
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species of seagrasses which are referred to as Spe(_:ies 1,2 and 3. The discriminant problem
involves assigning the spectrum whose class identity is unknown into one of the classes (i.e.
species). A simple é,pproa,ch is to look for similarities between the unidentified spectrum
- and the spectra which have been la,bellé_d. This fask is not straightforward. For this
data, it appears quite difficult for the human eye to detect any clue which may be able
to distinguish the spectra from different classes. This ﬁroblem highlights the relevance of

discriminant methods for analysing spectral data.

Discriminant analysis involves trying to predict 5, discrete response (class label) from a
set of predictor variables, which in this case are the reflectance (or absorbance) measures
for each of the wavelengths. Regression analysis éan be seen as an extension of discriminant
analysis. For regression analysis, the response which is to be predicted (or modelled) using

the predictor variables, is quantitative and may take on a continuous range of values.

A spectral data sét used for performing statistical analyses will contain information
about several spectra. Each spéct:um represents a case or observational unit, and the
wavelengths can be considered equivalent to the variables. Spectral information about
the ith spectrum will be represented by the (column) data vector x; = (zy;, T2y - - mpi)T.
Here p denotes the number of variables or the number of wavelengths for which the feﬁeqted
(or absorbed) radiation of a sample has been measured. The symbol p may also refer to
the dimensionality of the data. Each of the data vectors x;, for i = 1, ..., n will be stored

as columns in the p x n data matrix X = (x1,Xg, ..., X,) Where n represents the number

of spectra or observational units.

There are several difficulties which arise from analysing spectral data. One of the major
problems is that the dimensionality p, is usually quite large, especially when compared to
the number of available spectra n. Cohsequently the estimated parameters in the statistical
models become highly variable and, in some instances, unobtainable due to numerical
instabilities. This leads to a substantial performance degradation of the multivariate
statistical model. Another issue is the existence of a high correlation structure in spectral
data owing to the presence of a strong ordering in the variables. Such features are not
limited to spectral data, and the statistical methods used in this thesis can be applied
to many other forms of signals which exhibit an equivalent systematic ordering of the

variables. Such ordering can for instance be made in time or space.



CHAPTER 1. THESIS SUMMARY 5

There are some statistical methods which have evolved in recent years with the aim
of combating problems associated with high dimensionality and high correlation struc-
tures. Such techniques are referred to as high dimensional techniques and generally involve
some form of regularization. High dimensional discriminant techniques include regular-
ized discriminant aha,lysis [44] and penalized discriminant analysis [61]. High dimensional
regvression methods include partial least squé,res [145, 41] and principal component regres-
sion [41, 37].

Techniques which begin to fail as the dimensionality becomes large when compared
to the sample sizes are referred to as low dimensional techniques. Low dimensional dis-
criminant methods include Fisher’s linear discriminant é,nalysis [34], flexible discriminant
analysis [60] and the Bayesian linear and quadratic discriminant analysis [102]. The ordi-
nary least 'squéres multiple linear regression model is one of the most common regression

methods and can be considered to be a low dimensional regression technique.

The high dimensional methods generally allow for a more automated procedure for mod-
elling. Unfortunately though, many high dimensional methods have evolved quite recently
and are therefore not as well publicised or understood by the scientific or industrial com-
munity. Also, it can be more difficult to apply high dimensional techniques since they are
generally not standard procedures in most mathematical or statistical toolbox packages.
© Finally, most of these techniques provide few facilities for aiding the interpretation of the
resulting multivariate prediction model. For these reasons, low dimensiona,l methods are

often preferred.

. Feature - Feature
~| Preprocessing o I

Transformation " Selection
Input Features ’ Output Features

Figure 1.4: Feature extraction model.

Before low dimensional statistical methods are applied, some form of feature extraction
should be implemented prior to the analyses. Feature extraction can consist of three main

components as displayed in Figure 1.4. The first component involves ‘preprocessing the
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data. This can involve collecting the data and performing some standard data manipu-
lations which may indude transforming the data by perhaps the standard normal variate
»transformation (5] or the second derivative traﬁsformation [55, 5]. It may even involve
subsampling:the data, i.e. omitting every second or thira variable. This can often be done
with little lqss of information due to the high correlation structure in the spectra. Once the
data has been preprocessed, then it may undergo more corﬁplex vériable transformations,
by for example transforming the variables into orfhogonal variables. This is the second

componenf of the feature extraction model.

The tlﬁrd component is the feature selection algorithm which selects a subset of the
transforrﬁed.variables. Stepwise procedures are common feature selection algorithms. If
feature selection is performed on the preprocessed data (without further transformation)
then, the variable transformation can be seen as multiplying.the preprocessed features

with the identity matrix.

Many kinds of feature transformations have been proposed for spectral data ranging
from univariate to multivariate transforrﬁations involving all the variables of the spectrum.
Perhaps one of the most familiar feature transformations is priﬁcipal component analysis
(PCA). Pﬁhcipal component analysis .is a multivariate technique which transforms the
oﬁginal variables into a new set of uncorrelated variables that are linear combinations
of the original variables and are derived in decreasing order of variability. Of particular
importance with spectral daté is the orcier of the wavelengths. Unfortunately, PCA does
not take advantage of fhe ‘picture.’ (i-e spectrum) which is portrayed by the ordering of

the variables.

The Fourier transform (FT) [88] can however be used to take into account the ordering
of variables associated with a spectrum. The FT however, is a global transform and any
localized changes which occur in a spectrum will be absorbed by most, if not all, of the
Fourier coefficients. To avoid such global effects and to better identify localized changes,

the wavelet transform [24, 128] can be quite a useful feature transformation to employ.

The wavelet transform produces a set of wavelet coeflicients, which when linearly com-
bined with a set of wavelet basis functions can be used to represent some function or
signal. Wavelets are translated and dilated versions of some predefined wavelet called a

‘mother wavelet’. Figure 1.5 shows some wavelet basis functions. Notice that they all have
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Figure 1.5: Some wavelet basis functions.

basically the same shape, but they differ in the amount which they are stretched (dilated)
“and shifted (translated) from one another.

The wavelets which we consider in this thesis are compact as seen in Figure 1.5, that
is they are non-zero for a finite duration, and unlike sine and cosine waves used in the
Fourier transform, they do not extend the entire horizontal axis. Since wavelets are local
in space and ‘ar.e dilated By different émounts, the wavelet coefficients convey localized
information about the frequency-like content of some function or signal, This makes the
wavelet coefficients extremely useful features for representing small scale effects in spectral
data. Examples which demonstrate this phenomenon are highlighted in Chapter 5.

There exists an abundant variety of wavelets and the fundamental problem to overcome
is deciding which wavelet will best suit the particular application. A typical approach is
to perform the wavelet transform based on a predefined (mother) wavelet from literature.
The (mother) wavelet which produceé the ‘best’ performance measures is then employed
for future analyses. The performance measures will usually be based on some multivariate

modelling criteria which is calculated using the wavelet coefficients produced from the
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wavelet transform. Generally, a feature selection strategy will first be performed on the

wavelet coefficients, before the performance measures are calculated.

We propose a new and innovative scheme which avoids the need to preselect a wavelet
basis from literature. The (mother) wavelet is. designed so that a specified multivariate
modelling criterion is optimized. An appropriate criterion for discriminant analysis might
be based on a correct classiﬁca,tioﬁ rate, while an appropriate criterion for regression may

involve the residual sum of squares.
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Figure 1.6: Integrated feature extraction model.

The wavelet gradually adapts to the application at hand, and cohtinuaﬂy updates the
wavelet coefficients until the modelling criterion is optimal. The wavelet is referred to
as an ‘adaptive’ or ‘task-specific’ wavelet, since it is adapting to the current task. This
adaptive wavelet algorithm can be seen as an integrated feature extraction procedure.
An VintegrAated feature extraction procedure incorporates the multivariate model into the

general feature extraction model as depicted in Figure 1.6
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1.2 Thesis Structure and Contribution

Chapter 1
Thesis Structure |

Chapter 2 Chapter 3
Discriminant-Analysis Regression Analysis
. Chapter 4 '
: Feature Extraction

Chapter 5
Wavelets

Chapter 6
Adaptive wavelets

Chapter 7 Chapter 8
Discriminant Applications Regression Applications

Chapter 9
Concluding Remarks

Figure 1.7: Thesis outline.

An outline of the structure of this thesis is summarized in Figure 1.7. The thesis con-
tinues from the overview by discussing discriminant analysis in Chapter 2 and regression

- analysis Chapter 3. The chapter on discriminant analysis is an expandéd version of our
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papers [97, 146]; The discriminant methods discussed are Fisher’s linear discriminant anal-
ysis (FLDA), flexible discriminant analysis (FDA), pena,liied discriminant analysis (PDA),
Bayeéian linear and quadratic disc_riminanfc analysis (BLDA and BQDA) and regularized
discriminant analysis (RDA). Each of these methods are applied to NIR spectral data
sets in Chapter 7. The classification methods are introduced according to their origin,
whether they be Fisher-based or Bayesian-based discriminant methods. Also in Chapter

2, is a discussion on different approaches for assessing the performance of discriminant

models.

In_Chapter 3, three regression methods are discussed — multiple linear regression
(MLR) principal component regression (PCR) and partial least squares regression (PLS).
This chapter together with our paper on nonparametric regfession methods [93] provides
a more detailed account on regression methods. Methods for assessing the adequacy of
regression' mbdels are also presented in this chapter.

Chapter 4, introduces the two main approaches for feature extraction — feature selection
and feature transformation. Preprocéssing methods have been merged into the section on
feature transformations. Of the variable transformation procedures it is mentioned that
wavelet coefficients might be potentiélly good features to use as input to multivariate

statistical techniques. Wavelets are discussed in greater detail in Chapter 5.

Wavelets have existed for many years, but it is only in the last decade that they
have become increasingly popular. Much of this popularity can be attributed to Ingrid
Daubechies, Yves Myer and Stéphanie Mallat. Many of the applications which utilize
wavelet methodologies focus on function representation and image compression. Although
there are many other applications for their use, such as solving partial differential equa-
tions, there have been relatively few applications where wavelets, or more precisely wavelet
coefficients have been' used as features for discriminant and regression problems, and in
particular to the discrimination and regression of near-infrared spectral data. (Previous

applications are documented in Chapter 4, Section 4.2.4)

Since the use of wavelet methodologies as a feature extraction procedures is quite new
and remains relatively unexplored, it is important to investigate and gain further insight

to their applicability of such procedures. This is one of the primary aims of this thesis.

The second aim is to investigate the potential of adaptive wavelets to discriminant and
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regression problems for spectral data. Most appliéations of wavelets involve using standard
or traditional wavelet bases which afe alréady defined in the literature. We explore the
advantages associated with designing individual wavelets to suit specific tasks. To the best
of our ability, we have been unable fo find references of wavelets which have been designed
for discrimination and regression, that have not been based on, or linked in anyway to

predefined, existing wavelets.

The adaptive wavelet methodology is based on the paper by Kautsky and Turcajova
| (1995) [78]. In this paper the authors describe a way in which a wavelet can be designed
for removing disturbances in signals. Based on a similar algorithm, we investigate ways
in which wavelets can be designed for multivariate statistical analyses. In [96] there is
a detailed description about the adaptive wavelet algorithm and its applications to the
classification of NIR spectral data. A summary of this paper is contained Vin [94]. A
tutorial paper about the general application of adaptive wavelets can be found in [95].
Chapters 7 aﬁd 8 involve a.ppﬁcaﬁoﬂs for the discrimination and regression of spectral
data. Various feature extraction strategies along with several discriminant and regression
methdds are applied in each chapter, respectively. In conclusion, some final remarks and

issues which arise from the topics presenfed in this.thevsis are discussed in-Chapter 9.



Chapter 2

Discriminant Analvsis

2.1 Introduction

Discriminant analysis techniques (also called classification techniques) are concerned with
classifying objects into one of two or more classes. Discriminant techniques are considered
to be learnihg procedures. Given, a set of objects whose class identity is known, a model
‘learns’ from the variables which have been measured for each of the objects, a procedure
which can be used to assign a new objecf, whose class identity is unknown, into‘one of
the predefined classes. Such a procedure is performed using a well defined discriminatory
rule. One practical discriminant problem which is important to environmental scientists
investigating the diets of dugongs, involves determining the species of seagrasses. The
different categories or classes are formed by the various species, and the classification
problem is then based on the chemical composition of the seagrasses which might be

represented using spectra which measure the reflected radiation of various wavelengths.

Discriminant techniques are not necessarily used for the sole plirpose of assigning objects
into predefined classes. Sometimes it is of interest just to explore the group structures of
the data, e.g. to visualize the positioning in space of the objects from the different classés,
or, to determine which variables are important for discrimination. Thus, discriminant

techniques themselves can be categorized into classes — those that:

1. are used for allocation
2. are used as exploratory procedures

3. are used for both allocation and exploratory procedures.

12
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Fisher’s linear discriminant analysis [34] (FLDA) which can be used for both alloca-
tion and descriptive purposes, is-one of the traditionally favoured techniques. Typically,
the discriminant analysis methods which are based on FLDA fall into the third category,
whilst discriminant techniques based on probability measures such as Bayesian linear dis-
criminant analysis (BLDA) and Bayesian quadratic discriminant analysis (BQDA) can be
considered useful for allocation purposes only. It is important to pay consideration to
the goal of the analysis and to choose the appropriate discriminant analysis procedure
accordingly.

Discriminant techniques can be subdivided another way which is depéndent_ upon the
ratio of the number of observations (or cases) to the number of variables. Some classifiers
begin to fail when the dimensionality (i.e. number of variables) becomes large compared to
the number of observations. Despite what one would intuitively think, having a plentiful
supply of variables does not necessarily improve the performance of the classifier. In fact,
such a si"cua,tion'can cause the parameter estimates in the discriminant model to become
highly vé,riable (imprecise) leading to a degradation in the performance of the discriminant

pfocedure [3, 21, 46, 69, 102, 140].
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Figure 2.1: Percentage of correctly classified objects obtained by three discrim-
inant techniques (D1,D2 and D3) for eight combinations of dimensionality and
class sample sizes. ‘



CHAPTER 2. DISCRIMINANT ANALYSIS 14

Figure 2.1 which is taken from [3], shows the classification performance (in terms of
the correct classification rate, CCR) for three different discriminant techniques for various
dimensionality and sample size settings of some simulated data. For the moment we
will refer to the discriminant techniques as D1, D2 and D3. The two dimensionalities
considered are 30 and 10. The class samples sizes are set at 10, 20, 30 and 300 when
the dimensionality is 30. When the diiuensionality is set at 10, the class sample size
considered are 5, 10, 20 and 100. The data used in this example have been simulated so
that there are three classes which have different circular class covariance matrices. One
general observation which can be made from Figure 2.1 is that the discriminant method
D1 seems to be less affected by the varying observation-to-variable ratio and consistently
outperforms the discriminant methods V2 and D3. Another observation which can be
made is that for small observation-to-variable ratios, the discriminant method D2 produces
higher classification rates than D3. The discriminant method D3 however, produces much
higher classifier rates when the class sample sizes are very much bigger than the number

of variables.

We refer to classifiers which are not suited to small observation-to-variable ratios as
being low dimensional classifiers. Conversely, classifiers which are suited to small ratios
are referred to as high dimensional classifiers. In Figure 2.1, the method D1 is actually a
high dimensional classifler, while D2 and D3 are low dimensional classifiers.

Both low and high dimensional discriminant methods consist of linear and nonlinear dis-
criminant methods. The linear methods produce linear decision boundaries, for assigning
objects into a particular class, whilst nonlinear methods will generally form nonlinear de-
cision boundaries for performing the same task. Figure 2.2 presents a schematic overview
of some modern and common discriminant methods. Two common linear low dimensional
methods include Fisher’s linear discriminant analysis and Bayesian linear ciscriminant
analysis [21, 102]. (The method D2 in Figure 2.1 is BLDA). Nonlinear low dimensional
methods include Bayesian quadratic discriminant analysis (BQDA) [21, 102), flexible dis-
criminant analysis. (FDA) [60], kernel density and nearest neighbour methods [21, 102]
and neural networks [116]. Bayesian quadratic discriminant analysis is a nonlinear ex-
tension of BLDA which has decision boundaries of a quadratic nature. BODA involves

estimating more parameters, namely the individual class covariance matrices, in the dis-
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criminant model. Generally, for BQDA to have the potential to perform satisfactorily,
the ratio of the number of objects per class should be much larger (eg at least 3 times)
than the dimensionality. In Figure 2.1 D3 is BQDA. One can observe that as the ratio of
the class sample sizes to the dimensjonality increases, then BQ]jA (for this data) begins
to outperform BLDA. Another nonlinear low dimensional method which hésdeveloped
recently is Flexible discriminant analysis [60]. Flexible discriminant analysis combines
nonparametric regression methods with Fisher’s linear discrimiﬁant analysis to achieve

greater nonlinearity and flexibility in the decision boundaries.

[Low Dimensional Classiﬁers} (High Dimensional Classiﬁers]
linear nonlinear linear nonlinear
| | | I

FLDA BQDA RDA RDA

BLDA  FDA PDA
Kernel Density SIMCA
Nearest Neighbour DASCO
Neural Networks

Figure 2.2: Summary of some discriminant analysis methods.

Due to the extensive amount of literature and wide availability of low dimensional clas-
sifiers, these methods are often the preferred candidates. If a low dimensional discriminant
technique is to be used for classifying high dimensional spectral daté., then it is recom-
mended that the dimensionality of the data be reduced so that the observation-to-variable
ratio becomes large. The dimensionality should be reduced with the goal of retaining as
much relevant information as possible. Such a strategy is referred to as feature extraction.

Feature extraction is discussed in greater detail in Chapter 4.

A distinct advantage of applying high-dimensiohal classifiers is the need for feature
extraction can be avoided or greatly reduced. High-dimensional classifiers such as regular-
ized discriminant analysis (RDA) [38, 44] and class modelling systems such as SIMCA [39,
38, 82, 144] and DASCQO [38] are quite popular. RDA can produce linear or nonlinear
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decision boundaries depending on certain parameters in the model which are dependent
on the particular data set being analysed. Of late, Hastie et. al. [61] have developed a
penalized discriminant method also capable of handling high dimensional data. Penal-
ized discriminant analysis 1s based on the same principles as FDA, and thus stems from
Fisher’s linear discriminant analysis. The main difference between FDA and PDA is the

nonparametric regression methods which are employed.

The chapter proceeds by introducing some notation and then discusses the time hon-
oured‘technique FLDA. It is then shown that the low dimensional classifier, flexible dis-
criminant analysis is a nonlinear extension of FLDA. The high dimensional classiﬁér penal-
ized vdiscriminant analysis which is an extension of FLDA, derived from similar principles
as FDA is also presented. The Bayesian classifiers introduced are — Bayesian linear and
quadratic discriminant analysis, here BQDA is a nonlinear Bayesian extension of BLDA.
The high dimensional classifier RDA is discussed next. It can be seen that RDA is a hybrid
technique which is based on BLDA and BQDA. Model assesément criteria dnd_evaluating

techniques are also presented.

2.2 Notation

In many instances one will be given a set of training data consisting of n, objects x;(.
from class r € {152, ..., R} giving a total of n = Zle n, objects. Each object x; consists
of measurements made on p variables and can be represented as a data vector of the
form x; = (Z1i, T2i, - - - Tpi) where p also indicates the dimensioﬁality of the data set. In
the case of a spectral data set, each object will represent a spectrum. For each training
object x; the class identity y; € {1,2,..., R} is known. The training objects are stored as
columuns in the p x n.data matrix X = (x1,X2, - .., X,) and we prefer that the class labels
are stored in the n X 1 column vector ;;r = (y1, Y2 - .+, Un)T. The reason for defining X
to be a p X n matrix, which is in slight contrast to the dimension of y, is to allow for a

simplification of notation when wavelets are introduced in Chapters 5 and 6.

A discriminant model which is assessed using the same training data which designed
the model will usually reflect overly optimistié results. It can be appropriate to use an
independent test set for assessing the validity of the model. Let X’ define the testing data

which contains n’ objects x} with n/. objects from class r such that o’ = 3°% 2! and y’
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denotes the vector of true class labels of the testing data.

2.3  Fisher’s linear Discriminant Analysis (FLDA)

Fisher’s linear discriminant analysis is sometimes referred to as canonical discriminant
analysis due to the equivalence between FLDA and canonical correlation analysis [87].
Fisher’s linear discriminant analysié Seeks. linear combinations of the measurement vari-
ables which separate the 6bjects from different classes as much as possible. Factors which
determine the separabﬂity of classes include the distances between groups and the com-
pactness of each group. It then follbws, that the ratio of the between-to-within variability
of the transformed training data vecﬁors (i.e. spectra) should be maximized. Equivalently,

we seek the linear transformation

z=XTv (2:1)

that maximizes
vIs BV ‘(22)
subject to vISyv = 1, where v = (v1,v25 .-+, vp)Tis the vector of discriminant coeflicients,

and Sp and Sy are the between- and within-covariance matrices of the data matrix X,

respectively. These are defined by

R
1
Sp = =5 n(% —%) (& —-%)T
B , n;n (Xr .X)(X X)
1 R nr
Sw = — DO iy — ) (i) — %)
r=1 =1

where, X;(,) is an object from class r, X, = py Xi(r) /n, is the mean vector or centroid
of class r and,
R
D A
X=-— E Xy = — E X;
n
R r=1 =1

is the overall mean vector. Fisher’s linear discriminant analysis does not restrict the class

populations to be multivariate normal, but does assume the class covariance matrices

1 &
S, = — i) — %) (Xi(my — %) T f =1,..,
o ;(sz %) (Xir) — %r) or r R
are equal [71], that is S; = Sy = --- = Sg. The maximization problem reduces to solving

(Sp—ASw)v=0 (2.3)
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or, assuming the inverse of Sy exists,
(SwSE — A)v=0. (2.4)

Notice that there will be s, = min(R — 1,p) eigenvalues Ay > Ay > --- > A, and
5, corresponding eigenvectors vy, vs,...,vs, which produce s, discriminant vectors (or
variables) z,zs,...,2;s, such that z; = XTv;. The discriminant variables will have an
identity within covariance.

It is convenient if the vectors v; and z; (for ¢ = 1,...,s,) are stored as columns in
the matrices V,, and Zso; that is, V,, = (vi,Va,...,vs,) and Z,, = (21,29,.--,2s,),
then Z, = X7V, gives the coordinates of the objects in the s,-dimensional discriminant
coordinate system.

If Equation 2.3 is premultiplied with v7, we can see that A = vISpv is a measure
of the discriminant criterion. The first discriminant variable gives the largest measure
of the discriminant criterion. The second discriminant variable achieves the next largest
discriminant criterion such that z; is uncorrelated with zp, and so on for-zs,...,2s,. For

more details the reader is referred to Tatsuoka [132] and Lebart [87].

FLDA assigns an object x to the class » € 1,..., R, which minimizes
D(x,r) = [xVs, = %V, 1%, (2.5)

where s, < s, discriminant variables are used. Here, i{st, is the centroid for class r
in the discriminant coordinate systerﬁ. Thus, x is assigned to the class r for which the
distance between XT’VS“ and i?Vs* is minimum.

Whilst FLDA can be used for predicting the class membership of future objects, it
is perhaps best recognized for its graphical element. When the discriminant variables
are plotted against each other, one can gain further insight to the structure of the data.
Figure 2.3 plots the first two discriminant variables (z; and z;) against each other. Since
the discriminant variables are derived in order of separability, most separation among the
classes will generally be observed in the first few discriminant variables. Note that in order
to produce a discriminant plot prior knowledge about the class identity of the objects in

X is required.
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Figure 2.3: A scatterplot of the discriminant scores produced by FLDA.
2.4  Flexible Discriminant Analysis (FDA)

Flexible discriminant analysis is a nonlinear extension of FLDA which incorporates non-
parametric regression methods to obtain nonlinear decision boundaries. This is achieved

by first casting regression and classification into a common framework.

It is a well known fact that when R = 2, Fisher’s discriminant coefficients are propor-
tional to the coeflicients of the multiple linear regression (MLR) model, where the variables
(rows) in the data matrix X form the predictors, and the response is the vector of class -
labels.! When R > 2 the relationship between linear regression and classification is not
80 straighﬁ forward. One obvious approach is to produce a n X I class indicator matrix h's
{yir = 1if x; Belongs to class r and zero otherwise) and use multivariate linear regression

(MVLR) ? to predict the columns of Y. The object x; is assigned to the class r which has

YThis result is easily verified [87] by coding the response with the dichotomous labels 0 and 1 for classes
1 and 2 respectively, and noting that Equation 2.4 is equivalent to (SEIS B~ A)v =0with Sz =Sw+S5.

2The difference between MLR and MVLR is, MLR models a single response vector, whereas MVLR
models several responses.
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the largest value of {Qz-,}fil, where ¢; denotes.the estimate of y;-. The estimate, g; will
not necessarily lie between 0 and 1. An alternative procedure referred to as softmax [60],
assigns x; to the class r which has the maximum value of exp(;,)/ Zii exp(f:) € [0, 1].

Hastie et. al. [60] suggest softmax generally does not perform as favourably as FLDA. -

A more sophisticated approach for relating regression and classification is that of Breiman
and Thaka [11]. They make use of optimal scoring to establish an equivalence betweérx
linear regression and FLDA. Hastie ef. al. [60] extend this relationship to allow for
non-parametric (multivariate) linear regression methods. This technique is referred to as

flexible discriminant analysis (FDA) and is described in Figure 2.4.

Flexible Discriminant Analysis

1. Construct the class indicator matrix ¥*.
Based on X, perform a multivariate regression to predict ¥*.
Let T be the predicted values of ¥*,

3. Calculate the eigenvectors and eigenvalues of (‘I’*T T / n) .

Store the eigenvectors as columns in @ and the eigenvalues
in descending order in the vector Aggo

4. Construct the diagonal matrix D which has Di; = 1/4/Ai, (1 = iy, )-
where A;,, is the ith element in Aga

5. Form discriminant variables ¥*@D.

6. Classify x™ into the class » which minimizes ||(77(x*) — 7j,)D|| where,
17(x*) is the predicted value of x* obtained using the nonparametric
regression model, multiplied with ®. For classification based on
posterior probabilities, use Equation 2.12.

Figure 2.4: The FDA algorithm.

The first step of the FDA algorithm involves forming a class indicator matrix ¥* whose
célumns are uncorrelated with zero mean and unit variance such that ¥*7W* = I. If the
class sample sizes are equal, then it is sufficient to have ¥* = Y/ n, as the class indicator
matrix. The défaultv procedure used in the Splus code of Hastie et. al. {60] constructs the

indicator matrix ¥* by multiplying Y with another matrix ¥ as follows

T = YU, (2.6)
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The matrix ¥, is formed by a series of steps which are described below.

1. A matrix T is constructed which has the form

1 -1 -1 -1 -1 -+ =1-:
1 1 -1 -1 -1 -« =1
1 0 2 -1--1 .- =1
'=11 0 0o 3 -1 -1
1 0 0 0 0 R-1

The general form of T is

o the first column: Iy =1fori=1,..., R.
e diagonal elements I';; =2 —1for:=2,...,R
e upper triangular elements: Iij=-1 for i>i

e remaining elements: set to zero.
2. T is then adjusted to account for the different class sample sizes. Let
n = (ng, N, .. nR)T
be a column vector containing the class sample sizes, and define
N oy Yoy R ey o

to be a column vector containing the square root of the class proportionalities. Also

let
I'.=T0 (n JB 1£>
where 1g is a B x 1 column vector whose elements are all equal to 1. The symbol-

‘®’ is used to indicate a form of array multiplication across two matrices such that

B =C0OG — B;; =C;;Gy;-
3. A QR decomposition is then performed on I', so that T', = QR.

4. If Q. _q represents Q with the first column removed, then ¥ = Q.—16n ﬁ1£—1

Once ¥ has been formed, then ¥* is calculated according to Equation 2.6. -
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Step 2 of the FDA algorithm involves performing a multivariate regression on the in-
dicator matrix ¥*. This can be done by either the traditional multiple linear regression
approach, or by using nonparametric regression methods. In either case regression is ini-
tially based on the original data matrix X. A multivariate linear regression procedure

predicts the columns of ¥* by
7* = XTB = Px "

where
B = (XXT)"Ix g+
and
Py = XT(XXT)"'X
is a linear projector matrix.

The nonparametric methods used in [60] produce a new predictor matrix X* which is
based on the original matrix X. The matrices X and X* both have the same number
of observations n, but the dimensionality may differ for each of the matrices depending
on how the nonparametric method forms the new predictor matrix. For instance, some
nonparametric regression methods may actually be integrated with a feature extraction
procedure to produce X*. A trivial example for X* may be produced by augmenting
the original predictor matrix with squares of the original variables. This would produce
decision boundaries of a quadratic nature.

The nonparametric regression procedures used in [60] are MARS [45, 93] and BRUTO [59].
These methods use a much more creative approach for forming the new predictor matrix.
MARS and BRUTO adaptively compute the predictor variables with the aim of minimiz-
ing some fitting criterion relevant to ¥*. MARS creates the new set of predictor variables
by adaptively computing additive and interactive basis functions from regression splines.
BRUTO [59] is an additive regression model which computes terms in the new predictor
matrix by using smoothing splines. When FDA is applied in conjunction with the BRUTO
algorithm it is possible to have a large number of predictors as the BRUTO procedure

includes a variable selection method. Refer to [59, 60] for more details.

Once the new predictor matrix has been formed by the nonparametric regression meth-

ods, then the class indicator matrix is predicted, by replacing the linear operator Px with
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P x» such that

——

T* = Py,
For the MARS and BRUTO procedures ¥* can also be predicted by ,
v+ =x*TB

where B is now equal to

B = (X*X*T)_IX*‘P*

There is little advantage in using the MLR procedure described previously, since, the end
result would be equivalent to using FLDA on the original variables. The nonparametric
regression procedures provide greater variability in selecting the predictor variables, which
in turn allows for more nonlinearity in the decision boundaries. Or, as will be described
in Section 2.5, allows a simple way to incorporate regularization into the discriminant

procedure.

Step 3 of the FDA algorithm involves calculating the eigenvectors and eigenvalues of

The eigenvectors will be stored as columns in the matrix ® and the eigenvalues will be
stored in descending order in the matrix Agg,. The eigen-analysis arises by formulating
an optimal scoring procedure. The optimal scoring problem presented in [60] involves
transforming the class indicator matrix ¥* in such a way that the transformed class labels
(called optimal scores) are optimally predicted by linear regression on X*. If nonparamet-
ric regression methods are not used, then prediction of the optimal scores will be based
on the original predictor matrix X. Let ®" denote the vector of transformed class labels
which are formed by

0 =¥"O.

The optimal scoring problem as presented in [60] seeks the solution(s) to minimizing the
average squared residual (ASR)

'n.

ASR:liz(@* ~xTh )2 (2.7)
n r. 2 Tos -

r=1 1=1
subject to the constraint

1 A
~elev Ty e =1
n
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Here, BR* < R — 1, x} denotes the ¢th column or object vector in X*, and b, is the

Tos

rth column of the matrix of regression coefficients for the optimal scoring problem, Bs-

Equation 2.7 can be reformulated in terms of matrices by

! e\ (o _ o
ASR = — trace (e -@) (e —@) (2.8)
where
& = xX7TB, (2.9)
= Px.0". (2.10)

sSubstituting Equation 2.9 and 2.10 into Equation 2.8 along with ®* = ¥*®, then the

optimal scoring problem reduces to minimizing
ASR = % trace (@7 w7 (I - PX)\I'*G) . (2.11)

When Equation 2.11 is minimized subject to @T¥*T¥*®/n = I then one arrives at
solving an eigen-equation of the form

T g
(——n——— - AfdaI> @=0

where Agq, is a diagonal matrix with the ith diagonal element equal to the eigenvalue
A, By calculating the eigenvectors of *TT* one can now compute the matrix ® for

converting the indicator matrix ¥* into the matrix of optimal scores ®*.

Step 4 computes a diagonal matrix D which has

D=1/ \2 (1 — /\?fda).

A
ttda

The diagonal matrix can then be used as part of the process for converting the regression

analysis into a discriminant problem.

Step 5 of the FDA algorithm forms the discriminant variables. The key fact used in
the FDA algorithm is that the columns of the matrix of regression coefficients B,s are
individually proportional to the matrix of discriminant coefficients V. More specifically,
they are related by

V = BesD.
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[\l
[

The optimal scoring problem presented above does not calculate B, directly, instead B.g
is formed by converting the regression coefficients B used for predicting ¥*. This is done
using

B.. =B0®

and follows from

xXxT)-lxe*
XXT)IXv*e
= (XXT)y"1Xv*e

\

= BO
The discriminant variables can now be formulated by
X*"BOD
or
7*eD.

Since the discriminant variables from FLDA and FDA are equivalent, then so to are the
properties of the discriminant variables. That is, the discriminant variables will have an

identity within covariance matrix.

The final part of the FDA algorithm is to use thé model for classification. If 7(x*)
denotes the vector of fitted values for x* such that 77(x*) = x** B®, the coordinates of x*

in the discriminant coordinate system is given by
n(x")D.

An equivalent classification rule as that used in FLDA for assigning objects into various

classes can be applied here. Assign x* into the class r € 1,..., R which minimizes

D(x",r) =]l (n(x*) = 2,)D |I*

where 77, = E?:*ln(x;f‘(r)) /ny is the fitted centroid of class 7. Again if the regression
method is based on the original predictor matrix, then x* would be replaced with x in the

above discussion.
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The Splus code of Hastie et. al. [60] also allows for the calculation of posterior probabil-
ities. If assignment is based on posterior probabilities, an object is assigned to the class r
which has the largest posterior probability P(r|x™) for r € 1,..., R. Using Bayes-optimal
procedure, (see Section 2.6) the authors state that, for a Gaussian model, the posterior

probability is proportional to

P(r{x*) o P(r)exp[—0.5(x* — x)TSHHx* — x9)]
o exp[(—0.5D(x*,r) —log P(r))] (2.12)

1 Tor

where XF = -~ > ',
;L=

xf(r) and P(r) is the prior probability for class r. If the priors are
equal, then classification based on posterior probabilities will be equivalent to classification

based on distances D(x*,r).

Hastie et. al. [60] apply different variations of FDA against FLDA, BQDA, CART(see
Section 4.1.3) and softmax on three sets of simulated data and one real data set. For
these data BQDA and CART produced quite biased results and generally FLDA and
FDA seemed to outperform the other techniques with the exception of one simulated data

set for which BQDA did reasonably well.

2.5 Penalized Discriminant Analysis (PDA)

Penalized discriminant analysis (PDA) is a high dimensional classification technique which
follows the same methodology as that presented for FDA. That is, optimal scoring provides
the link between regression and classification. The main difference between FDA and PDA
are the regression methods which are used in the optimal scoring procedure. Since PDA
is designed with the aim of classifying highly dimensional and correlated data, then the
regression methods employed by PDA should also be suited to extreme dimensionalities
and somewhat resistant to multicollinearities. The regression methods which are used by
PDA have some form o
PDA considers a penalized optimal scoring problem which seeks the solution(s) for
minimizing
ASR =|| ©* - XTB, | +BLOB., (2.13)
where BL QB is the penalty term. The discriminant va,riables and classification is then

as for the FDA algorithm.
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The penalized optimal scoring problem is made equivalent to a penalized linear discrim-

inant analysis which seeks the matrix of discriminant coefficients V such that

ngaSB Vida

is maximized subject to the constraint
VIBw+ Q) Vpaa =1

Hastie et. al. [61] trial different versions of PDA on vowel and digit recognition data.
Various regression methods including improper splines and generalized ridge regression
were incorporated into the testing procedure. This allowed for different forms of the
penalty matrix to be used. Their analysis highlights the vast improvement gained in

applying PDA as opposed to FLDA which had the tendency to overfit.

2.6 Bayésian Classifiers

Unlike methods stemming from Fisher’s linear discriminant analysis, Bayesian classifiers
are not based on discriminant variables. Some Bayesian classifiers are based on the assump-
tion that the class probability densities p(x | r) follow a multivariate normal distribution.
That is, |

P(x | r) = (2m)"% | S, |7°% exp[—0.5(x — %,)TS7  (x — %,)]- (2.14)

Commonly, the class covariance matrices S,, and the class mean vectors x,., are calculated

using the maximum likelihood estimates

1 & _ _ o
S, = . (Xi(r) — Xr) (Xi — Xr)
T ey »
_ 1
Xp = ;;:ZXL'(T).
1=1

Bayesian classifiers are then based on Bayes decision rule which assigns an object x to the

class r, which maximizes the posterior probability
P(r|x) forr=1,...,R. (2.15)

By performing a direct application of Bayes theorem, the posterior probability in Equa-

tion 2.15 can be written as

P(r|x) = fi(i“—]'?g()i@. (2.16)
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Here, P(r) is the a priori probability of belonging to class r and p(x) is the probability
density of x. The classification problem can be reformulated as—assign object x to the

group r, which maximizes the classification score
g(x,r)=px|r)P(r) forr=1,...,R. (2.17)
Since p(x) is independent of r, it is not considered in Equation 2.17.

2.6.1 Bayesian Linear Discriminant Analysis (BLDA)

For BLDA, the class covariance matrices S,, are assumed to be equal and are replaced
with the pooled covariance matrix

1 R
Spooled = ;ansr = SVV

r=1
in Equation 2.14. Taking the natural logarithm of Equation 2.17 and ignoring the con-

stants, the following classification rule for BLDA results

bida(%,7) = —0.5(x = %) TS_1(x —%,) +1n P(r). (2.18)

Given homogeneous class covariance matrices and equal priors, the equivalence between

FLDA using s, discriminant variables and BLLDA can be established since

D(x,r) = (x— )‘(T)S;cfoled(x —x,)T.

For more details concerning this relationship the reader is referred to Johnson and Wich-
ern [71](page 549). Fearn [35] also gives an excellent discussion about the relationship

between Mahalanobis distance and FLDA for the two group case (R = 2).

If Equation 2.18 is expanded and the constants which are the same for each gpqa(x, 1), .. -,

Jblda(X, R) are disregarded then one arrives at the linear function

Tg-1 3 T a—1 -
gblda(X, 1) X X S poolea Xr — 0.5% Spooledxr—rln P(r).

One can then understand that the decision boundary which partitions objects from classes

is also linear.



CHAPTER 2. DISCRIMINANT ANALYSIS k 29

2.6.2 Bayesian Quadratic Discriminant Analysis (BQDA)

If the class covariances are not equal, then the class probability densities in Equation 2.14
remain unchanged. The quadratic discriminant rule, results when the class probability
densities in Equation 2.17 are replaced by Equation 2.14. Taking the natural logarithm

and ignoring constants, the quadratic classification rule can be written as
Ibqda(x) = —0.5(x — %) TS} (x — %,) — 0.5In| S, | +1n P(r). (2.19)

If Equation 2.19 is expanded and the constants which are the same for each gpqda(x, 1), - -,

Jbqda(X, R) are disregarded then one arrives at the quadratic function
Ghada(%,7) < =0.5xT ST x +xTS7 %, — 0.5%TS71 %, — 0.51n | S, | +1n P(r).

Now the decision boundaries which partition the objects from different classes are quadratic.

Both BLDA and BQDA are parametric discriminant methods, since the class probability
densities p(x | r) were assumed to follow a particular distribution namely, a multivariate
normal distribution. Some nonparametric discriminant methods have focused on “dis-
tribution free” estimates for the class probability densities. Kernel density and nearest
neighbour methods [21, 102] are two examples of discriminant methods which relax the

normality assumption about p(x | r).

2.7  Regularized Discriminant Analysis (RDA)

Regularized discriminant analysis [44], is a high dimensional classifier which introduces reg-
ularization into the covariance matrix. RDA differs from penalized discriminant analysis,
in that, RDA stems from the Bayesian classifiers, while PDA is a Fisher-based approach.

Both techniques involve performing some form of regularization to the covariance matrix,

Regularizing the covariance matrix can produce substantial improvements in classifi-
cation [3], particularly in ill- and poorly-posed settings when the estimates of the class
covariance matrix become highly variable [44]. At the expense of increasing bias in the
parameter estimates, regularization of the covariance matrix reduces the variance of the

estimates. A simple form of regularization occurs when reverting from BQDA to BLDA.
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Replacing the class covariance matrix with the pooled covariance matrix means fewer pa-
rameters are required to be estimated. This form of regularization has the significant effect
of reducing the variance of the estimates, thus producing enhanced classification results

despite the differences in the class covariance matrices.

Friedman’s regularized discriminant method initially replaces the class covariance ma-

trix with a linear combination of the class and pooled covariance matrices
S, (a) = (1 — a) S, + aSpooIed‘ (2.20)

The covariance matrix S,(a) is further adjusted in order to under estimate the larger
eigenvalues and over estimate the smaller eigenvalues. This is achieved by shrinking S, (a)

to a multiplier of the identity matrix T,
S-(a,b) = (1 —b)S,{(a) + btrace(S,(a))I/p, (2.21)

here, the multiplier is the average eigenvalue of Sg(a).

The parameter a € [0, 1], controls the degree to which the pooled covariance matrix
should be used. The value of b € [0, 1] determines the degree to which S(,y(a) is shrunken
toward a multiplier of the identity matrix. A grid of ¢ and b values ranging between 0 and
1 are trialled. The pair of values which produce the minimal risk of misclassification are
used. If more than one pair of values produce the same number of misclassified objects,
then the chosen a and b parameters are determined by the largest b corresponding to the
largest value of a [115]. Rayens and Greene [115] have developed a procedure based on
an empirical Bayes formulation to estimate the degree to which the covariance matrices

should be pooled.

Several articles have been written which compare the performance of RDA particularly
against BLDA and BQDA. Friedman [44] plzesented simulations to help identify situa-
tions when RDA is likely to outperform its predecessors BLDA and BQDA. Frank and
Friedman [38] presented applications of RDA compared with BLDA, BQDA, SIMCA. and
DASCO. Six simulated data sets were generated each of dimension 6 and 40, in addition
four real data sets were tested. It was concluded there exists several striking advantages of
RDA that make it an extremely useful and worthwhile technique to apply. Other articles
which involve applications of RDA, BLDA and BQDA include [2, 97, 146].
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2.8 Assessment of Model Performance

Before classifying new spectra whose true class identity in not known, it is important
to assess how well the discriminant model actually works. There are two items which
should be addressed when assessing the performance of a discriminant model. Firstly,
consideration should be given to the assessment criterion. Once the assessment criterion
has been selected, it is then necessary to choose a test set for evaluating the assessment

criterion.

2.8.1 Assessment Criteria

The correct classification rate (CCR) or misclassification rate (MCR) are perhaps the most
favoured assessment criteria in discriminant analysis. Their widespread popularity is ob-
viously due to the ease in interpretation and implementation. Other assessment criteria
are based on probability measures. Unlike correct classification rates which provide a dis-
crete measure of assignment accuracy, probability based criteria provide a more continuous

measure and reflect the degree of certainty which assignments have been made.
Correct Classification Rates (CCR)

In the descriptions to follow we speak of correct classification rates when misclassification
rates (MCR=1-CCR) would equally suffice. A correct classification rate can be interpreted
as the probability of assigning an object to the correct class. The correct classification
rate is typically formulated as the ratio of correctly classified objects (from a testing set)
with the total nurﬁber of objects in the test set. More formally, let y denote the vector
of true class labels and ¥ the vector of predicted class labels with y;,4; € 1,..., R. The
correct classification rate can then be expressed as follows

AT

o L Cvidi

=1

CCR =

Here 6 is an indicator variable such that &, 5, = 1 if y; = §; and zero otherwise. For an
interesting documentation involving error-rate estimation procedures to simulated data,
the reader is referred to [65].

A correct classiﬁca,;cion rate is a discrete measure whose calculation is based upon which

side of a decision boundary the observations lie. It does not reflect how “close” or “far
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away” the observations lie from the decision boundary and hence how clear the assign-
ments are made. An advantage of using probabilistic based classification methods such as
those based on Bayes decision rule, is that it is possible to obtain more information than
just the correct classification rate. Probabilistic measures provide information about the
assignment accuracy, but they also reflect the degree of certainty which assignments have
been made. We now consider other probabilistic measures which assess the trustworthiness

or distinctness of the class predictions.

Probabilistic Measures

Most probabilistic discriminatory measures have the basic form

n

p= %Za(xg) (2.22)

where a(x;) is an appreciation function which produces an appreciation score for x;. The
correct classification rate of a Bayesian discriminant method such as BLDA, can for exam-
ple be expressed in terms of a probabilistic measure. This would require the appreciation

function having the very simple form
Geer(xi) = 1 P(r] Xi(r)) > P(r|x) (2.23)
= 0 otherwise. (2.24)

P(r| xi(,,)) denotes the posterior probability for the true class of x;. The correct classifi-

~ cation rate is then written as
1 7
CCR == Z Geer(Xi) = Peer-
=1
Another simple probabilistic measure results when the appreciation score is
as(x;) = P(r| Xi(r))-

The associated probabilistic measure is the average probability that an object is assigned

to the correct class:
1 k23
P,== E :).
AT n i=1 2)

The quadratic appreciation score which is used in Chapter 7 is formulated as follows,

1 1 2 .
ag(xi) = 5+ P (r| xipny) =5 D P (rIx)". (2.25)

r=1
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The quadratic probabilistic measure is then defined

1 n
PM = — ;) = Popu.
Q - > ag(xs) = Popu

i=1
The quadratic probability measure is related to the Brier quadratic score, which is a
loss function for comparing two probability vectors, and is used for the elucidation of
probabilities [13, 21].

Probabilistic measures based on appreciation functions other than the acc, are less vari-
able than correct classification rates, especially when there are relatively few observations.
On the downside, most probabilistic measures and appreciation functions are generally
~ more difficult to interpret than correct classification rates. This can be due to the fact
that appreciation functions are less frequently encountered. As a general rule — a higher
probability measure implies objects have been assigned to their respective groups with a
greater degree of certainty. The assessment criterion applied in future chapters are based
on the correct classification rate and the quadratic probability measures. These methods
are subsequently referred to in the next section when procedures for choosing an evaluation

set are discussed.
2.8.2 Choosing the Evaluation Set

Careful consideration should be given to choosing an evaluation set. Based on some
assessment criteria, the evaluation set determines how well (or how poorly) a discriminant
model actually performs. There are several procedures for selecting an evaluation set. This
section will describe four approaches, namely the resubstitution, holdout, leave-one-out

cross-validation and bootstrapping methods.
Resubstitution Method

The resubstitution method is quite simple. Here the evaluation (or testing) set, is exactly
the same as the training set which designed the discriminant model. This approach is
generally not preferred, since the results are often overly optimistic, giving somewhat of
a ‘false’ insight to the true performance of the classifier. This is a consequence of the
parameters in the discriminant model being estimated from the same data which are
later used to assess the model. Several articles have been written which demonstrate this

phenomenon, see for example [83, 101].
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Holdout Method

The holdout method attempts to reduce the overly optimistic results obtained when the
testing data are identiéal to the training data. With the holdout method, the sampled
observations are divided into two separate sets of data — the training and testing data.
Here, the training data designs the classifier, and the testing data is used for determining
how well the classifier works. The classification performance using the holdout method
is likely to be slightly pessimistic. It can be a useful exercise to calculate the assessment
criterion on the training and testing data set, since this can provide some indication about

the bounds of the assessment measure [46].

If the test set X’ contains n’ objects x; with n. objects from class r such that »’ =
Eil n,. and y’ denotes the vector of true class labels of the testing data and ¥’ is the
corresponding vector of predicted class labels with y/, 4. € 1,..., R, then the correct clas-

sification rate of the testing data can be expressed as follows

1
CCR'= =3
=1

where 5y£ g =11if y: = §; and zero otherwise. The QPM based on the testing data set is

then ’
QPM' = " ag ().
=1
where
/ 1 / 1 2 N\ 2
ag(x) = 5+ P (r I xi)) =5 P (r %)’ (2.26)

r=1

The parameter estimates such as the covariance matrices and mean vectors associated

with the calculation of the posterior probabilities are calculated using the training data.

An issue which arises from the holdout method concerns the sample sizes of the training

<Y

and testing data. The interested reader is referred to [46, 47, 114, 113, 68] for more detailed

information on such topics.

In some circumstances, it may not be viable to have a test set. For instance, there may
only be a sufficient number of samples available to build the discriminant model and not
to test its adequacy. Cross-validation is a mechanism which can be used for assessing the

predictive ability of a classifier when the holdout method is not suitable.
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Leave-out-one Cross-Validation Method

Cross-validation [83, 135] is the procedure for deleting objects from the training data,
building the model in absence of the deleted objects, and then assessing the performance
of the classifier based on the deleted objects. The deleted objects are then replaced, and
another set of objects are deleted, (these objects can not have been deleted before). Again,
the discriminant model is built in absence of these objects and the performance is assessed
based on the deleted objects. Once all of the objects have been deleted a performance

rate based on all of the deleted objects can be measured.

If the number of objects in each of the deleted groups is one, then the procedure is
referred to as leave-one-out cross-validation. If §_; is the predicted value of x;, obtained
when x; was deleted from the model building process then, define the leave-out-one cross-
validated correct classification rate to be

) | .
CVCCR = — ; i s
where 05_.,. = 1 if §_; = y; and zero otherwise. Similarly, define the leave-out-one

cross-validated quadratic probability measure to be

i3

1 :
CVQPM = —~ ; ag (xi, —1) (2.27)

where

L 1 1 & 2
ag(xis —1) = 5+ Poi (r | %) — 5 > Pui(rxi)

r=1
with P_;(r | x;) being the posterior probability for x; when the covariance matrices and
mean vectors in the probability density function have been calculated in the absence of
X

When several objects are ‘left out’ the procedure is referred to as V-fold cross-validation [1Z
Here, V refers to the number of testing groups created. It is preferable to have the same
number of objects in each testing group with an equal distribution of objects from different
classes.

Leave-one-out cross-validation can be a time consuming operation. It is possible however

to make use of fast updating formula (see for example [2, 44]) which can dramatically speed

up the leave-one-out procedure.
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Cross-validation is not limited to classification, nor are the resubstitution and holdout
methods for that matter. These metvhods can also be used in other statistical applications
such as regression analysis. When the least squares linear regression model is being ap-
plied, then an explicit formulae can be used for calculating a leave-one-out cross-validated
measure of the predictive residual sum of squares. This formula does not require any

updating formula or the actual deletion of observations (see Section 3.6).
Bootstrapping Method

The bootstrapping method [30, 31, 32] samples (with replacement) n objects from the
original data set. These samples are referred to as the bootstrap samples. The bootstrap-
samples can be randomly generated from the original data, or can be generated by some
artificial generating process. The bootstrap samples are then used to build the discriminant
model. The discriminant model is assessed twice, using the bootstrap samples and the
original samples. The difference CCRp between these two estimates is averaged over
several runs (eg 10-200) to produce an estimate of the bias in the resubstitution method.
The actual classification rate which is the estimate obtained by classifying future unknown
objects is then estimated by substracting CCRa from the optimistic classification rate

based on the original training set.

Recommendations

The way in which the evaluation set is chosen depends mostly on the number of available
samples. If there are sufficient samples to warrant an independent test set then the holdout
method is generally preferred. If there is not enough training data to have a training and
separate test set, then some form of cross-validation or bootstrapping method should
be implemented. Both these methods are computationally expensive, although for some
parametric models, fast updating formula can be implemented to make the cross-validation

procedures less burdensome.



Chapter 3

Regression Analysis

3.1 Introduction

The previous chapter discussed methods for predicting discrete response values based on
a set of predictor variables. The response values were the class labels of the objects in the
data set. This chapter is also interested in predicting response measurements based on a
set of predictor variables, but now, the response values may take on a continuous range of

measurements as opposed to discrete values.

An example of a regression application which is considered further in Chapter 8 is to
predict the amount of fibre present in sugar cane samples. NIR spectra are obtained for
several samples of sugar cane, and the reflectance measures for the NIR wavelengths, form
the set of predictor variables. The predictor variables along with the fibre (response)
measurements for the samples constitute the training data. Based on the training data,
the regression model is designed with the aim of fitting and predicting the data responses

adequately.

[t is important to mention that it is possible for a model to fit the data well and give a
good prediction of the training responses, but be very poor at predicting future (unseen)
samples. [t is therefore necessary to determine how well the model predicts by for instance

implementing a cross-validation routine or by the use of an independent test set.
Regression methods when applied to spectral or other forms of highly dimensional data,

are susceptible to similar problems which are encountered by discriminant methods, that

is highly variable parameter estimates which can degrade the performance of the model.

%]
wd
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Biased regression methods which are suited to low observation-to-variable ratios, reduce
the variance of the parameter estimates in the regression model, at the expense of increas-
ing bias. It is hoped that this bias / variance tradeoff will reduce the expected squared
error of the parameter estimates and produce a more stable model for predicting future
samples. Some biased regression methods which are commonly used on spectral data in-
clude principal component regression {37, 41], partial least squares {37, 41, 51, 52, 67, 145]
and ridge regression {66, 119].

‘Using the same terminology adopted in earlier chapters, biased regression methods can
be considered high dimensional methods since they can be applied to situations where the
~observation-variable ratio is quite small. Likewise, low dimensional regression methods

are better suited to high observation-variable ratios.

The least squares multiple linear regression model [29, 106] is undoubtedly the most
widely applied regression model and can be considered to be a low dimensional technique.
In high dimensional settings, some form of feature extraction is highly recommended if

this technique is to be employed.

This chapter proceeds by first introducing some notation and the regression methods
— multiple linear regression, principal component regression and partial least squares re-

gression. Following these discussions, some model selection criteria are introduced.

3.2 Notation

In this chapter we follow much of the same notation as that presented in Chapter 2. The
response vector ¥ = (Y1, 93, .., Un)? which may contain continuous valuesis anx 1 column
vector. The n X p predictor matrix also remains unchanged, but will be augmented with a
1 X n row vector of ones 17 to allow for an intercept term in the regression procedure. The
variables in X will be referred to as predictors or independent variables, and the response

vector y may also be referred to as the dependent variable.
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3.3 Multiple Linear Regression (MLR)
The general form of the multiple linear regression model is

Yi = Po+ 121 + Bao; + - - -+ PpTip + €.

Here, y; is the response measurement for the ¢th object x; = (214, 22, - - .,xpi)T, ¢; 1s the
residual or prediction error for the ith observation, the coefficients fo, 51, B2, ..., Bp are
the regression coefficients and S, is also referred to as the (y-)intercept,

The multiple linear regression model can also be described in terms of matrices as
follows |

y=X"B+e€

with B = (Bo, b1, Bay-- -, Bp) T, € = (e1, €2, - - ., &) and X, is the matrix which augments
17 with the matrix of predictor variableé. In practice, the vector of regression coefficients
3, is usually unknown and is typically estimated by the least squares method. The least
squares method calculates regression coefficients so that the residual sum of squares € e

is minimized. The least squares solution is
b = (X1X1T)_1X1y

where b = (bg, by, .. .,bp)T is the estimate of the true regression coefficients 3. .The

estimated response is then

y =Xib

and

E=y—73y.
The MLR model assumes the residuals are independent and ¢; ~ N (0, 0?). If the predictor
and dependent variables are centered, so that they sum to zero, then it is not necessary

to have a constant vector of ones in the predictor matrix, since, the intercept term will be

Zero.
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3.4 Principal Component Regression

Principal component regression is simply MLR performed on the principal components,
that is the predictor variables are now the principal components. Section 4.2.2 dis-
cusses principal component analysis in greater detail, but briefly, the principal compo-
nents pi, P2, ..., Pp Which are stored as columns in the n X p matrix P, are obtained by

multiplying the data matrix X with a set of eigenvectors such that
P =XTa;, fori= 1,...,p

where aj, aq, . . ., a, are the eigenvectors of the total covariance matrix of X, that is (St —
yI)a=0.

The multiple linear regression model is then

y =P8, +e€

where 3., are the regression coefficients estimated by the method of least squares and

per
Piisa matrix with the first column equal to 1,, and remaining columns equal to P.

Of course there is still a total of p principal components, and in the case of spectral data
p>> n hence a subset of the principal components should be selected. If the first p’ princi-
pal components are used then, this is called a top down approach. There is no guarantee
however that the first p’ principal components will be best for regression analysis since

“the principal components are formed without any consideration of the dependent variable
y. Partial least squares regression however, uses components called latent variables which

are constructed with consideration given to y.

3.5 Partial Least Squares Regression

Partial least squares (PLS) can be used for modelling single or multiple response vectors. If
one response is being modelled than the procedure is generally referred to as PLS1, whilst
PLS2 is commonly used to explore the relationship between several response vectors. In
this section we consider the partial least squares algorithm for predicting a single response

vector.

Partial least squares (PLS) regression forms a new set of predictor variables called

latent variables £1,%3,...,%,. These latent variables are stored as columns in the matrix
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T = (t1,%2,...,%p,). The response is then modelled using
y =TS+ €
where the estimate of Bpis 18 calculated by
by = (TTT) 11Ty

The PLS predictor variables or latent variables are in fact linear combinations of the
original variables, i.e., T = XTW where W. = (w1,...,wp,). This implies a relationship
of the form

y =X "Wgy, +e¢
and hence a PLS regression estimator Bpls = Whys.

The latent variables are determined sequentially, such that each new predictor variable
or latent variable has maximal covariance with the response, and is uncorrelated with
previously constructed latent variables. Generally the number of latent variables p., is
chosen such that p. < p. There are several ways of choosing p. in practice. In Chapter 8
P« was initially set to 16. Then for p. = 1,..., 16 the predictive residual based on leave-
one-out cross-validation was calculated. Finally the value of p, was chosen as the one

which minimized the predictive residual sum of squares.

The PLS algorithm which has been applied in Chapter 8 is that of Denham [26], which is
a slight modification of the PLS algorithm due to Helland [62]. The algorithm implemented
by Denham [26] is summarized in Figure 3.1.

The first step in the PLS algorithm simply centers the response vector by subtracting
the mean § = .~ y;/n from the uncentered response. Likewise, the second step in
the PLS algorithm centers the predictor matrix by subtracting the mean object vector
X = y . %;/n from each observation. Step 3 calculates the sums of squares and cross
product (SSCP) between X and y, this is denoted by wi. Step 4 calculates the first latent
vector and Step 5 uses this latent vector to calculate residual vector ». The algorithm
then enters a loop where the vectors w and £ are calculated for each iteration of the loop
using the updated residual vector ». Unless specified otherwise, this procedure continues
Px times.

Partial least squares regression can be used when the observation-to-variable ratio is

low and in situations when the predictor variables are highly correlated. This makes PLS
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Partial Least Squares Algorithm
L. Yy Y —yly
2. X X —x1%
3. w; =Xy
4. t; = Xwy
5. r=y—t4(tl) 4y
6. FORi=2,...,p.
7. w; = Xr
8. t; = XT’wi
9. r=y - Ti(T?Ti)“IT?y
10. END
11 buo= (TLT,,) Ty
12. bpis = W, by
where T; = (11,...,%;) and W; = (wy, ..., w;)

Figure 3.1: Partial least squares algorithm.

a popular regression technique to employ for spectral data and is indeed quite popular
in the field of chemometrics. There exists many variations to PLS algorithms, see for

example [25, 57, 62, 40, 98, 145].
3.6 Assessment of Model Performance

When comparing different regression models produced using the same data set, some
criterion must be specified that gives a measurement defining how ‘good’ one model is
relative to another. The word good is usually meant to reflect two properties of a model—
how well it predicts, and how well it fits the data. Some of the most common assessment

criteria are now discussed.

3.6.1 Assessment Criteria

RSS and R?

The residual sum of squares (RSS) and the R-squared (R?) criteria both measure how well

the model fits the data. The residual sum of squares and R? are defined respectively to
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be
RSS= Y&L,(yi—-9)? =é&'e (3.1)
2 _ o _ Trm(w—9)® RSS
R = 1-gis =1-Fss- (3.2)

The RSS measures the sum of squared deviations between the actual and predicted values
of the response. Typically, a lower measure of the RSS is preferred. The R? criterion
measures the variation explained by the model. If response values were always predicted
to be the sample mean of the data, then the residual sum of squares would be equal to
the total sum of squares (TSS) and hence R? = 0. It is hoped that the RSS will be much
less than the TSS so that an R? measure closer to one will be obtained. The rank order of
the models in terms of the residual sum of squares and R-squared values will be the same

for all candidate models.

It is important to note that a low measure of RSS and hence a high R? value could
simply be a reflection of overfitting. The more terms in a regression model the lower the
RSS and the higher the &2 value. It is for this reason why the RSS and R? should not be

used to compare models of different complexities.
MSE, Rﬁdj, Cp, AIC

Unlike the RSS and R?, the mean square error (MSE), adjusted R? (dej), Mallow’s C,
and Akaike’s Information Criterion (AIC) can be used to compare the performance of
models with different complexities. By incorporating a term into these formula which
accounts for the varying degrees of freedom, these criterion will deteriorate if marginally
important variables are included in the model. The symbol p, will be used to denote the
number of pa,rdmeters estimated (including the intercept) in the model. The degrees of

freedom (DF) is then equal to n — p,.

The mean square error is simply the ratio of the residual sum of squares to the degrees

of freedom and is written as
RSS RSS

MSE = DF ~ n—py

The adjusted R-squared is typically formulated (see for example [106]) as follows

RSS/(n — po)

2 AT o)
Rag =1 TSS/(n — 1)
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The rank order of the models in terms of the MSE and adjusted R-squared values will
be the same for all candidate models as was the case between the RSS and R-squared
criteria. This is more clearly seen by representing the adjusted R-squared in terfns of the
mean square error as follows
Ridj g MSE(n — 1).
TSS

Mallows C), is derived by taking into consideration both the biases and variance in a
regression model. Biases result from regression models which suffer from a lack of fit, and
high variability is a consequence of overfitting. A derivation for Mallows C), based on these
principles is given in [106] where it is shown that

—_— R'SSPO
Cr=sE T2 "

where RSS,, denotes the RSS of the model with complexity p,, and the MSE is based on
the largest postulated model. If values of C, are plotted against p, candidate models will

lie close to the line C), = p.

The AIC score is the deviance (DEV) of the model plus twice the degrees of freedom

times a dispersion parameter (), that is
AIC = DEV +2DF ¢

where, the deviance is twice the difference between the log-likelihood of the full model

£(bmaz; y) and the log-likelihood of the actual model £(5;y)

DEV = 2[l(bmas; y) — £(b; y)]
A model With a low AIC score is preferred to one that has a high AIC score.
3.6.2 | Choosing the Evaluation Set

The same methods described in Section 2.8.2 for choosing an evaluation set for discriminant
analysis can also be used in regression analysis. The methods previously discussed were

the resubstitution, holdout, cross-validation and bootstrapping methods.

If one is interested in assessing how well the model fits the data, then the resubstitution

method could be applied. That is, assessment is simply made on the original data which
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built the regression model. If however, we are interested in determining how well the
model will predict response values for a new set of observations, then it is necessary to
base the assessment criteria on an independent test set which differs from the data which

designed the regression model.

The holdout method allows for an independent testing set. As was the case with dis-
criminant analysis, there are no strict rules for formulating an independent test set, and
much controversy can surround this topic. The interested reader is referred to Myers [106]

and Snee [120] for more details.

In this thesis the performance of the regression methods will be compared on the basis
of an independent test set. It has been decided to formulate an R? measure for the test

set which is denoted by RZ.,

RSS
2 1 test
Rtest =1 TSStest .

The residual and total sum of squares for the testing data are defined respectively to be
RSSteSt = Z(y’i - ’3)/)2 (33)

i=1
TSStest - Z(y,i - gl)Z (34)

=1
(3.5)

where y’ is the response values of the independent test set, ¥’ are the predicted test

response values, and n’ is the number of objects in the test data set.

A criterion which is not a function of degrees of freedom has been chosen because for
some of the biased regression methods such as partial least squares it is not clear how the
degrees of freedom would be formulated. Of course if an independent test set is unavailable
then measures of predictive performance may be obtained by using cross-validation or

bootstrapping method as previously described in Section 2.8.2.

Recall that cross-validation is the procedure which involves deleting a group of observa-
tions from the training data, building the regression model in the absence of these ‘pseudo’
testing objects and then calculating the prediction performance based on the deleted ob-
jects. This procedure is repeated until each object from the training set has been removed
once. If a single object is deleted at each iteration of the cross-validation procedure, then

this is referred to as leave-one-out cross-validation. In the case of linear estimators such
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as multiple linear regression, it is possible to calculate a predictive measure of the resid-
ual sum of squares (PRESS) without actually having to build a new model each time an

observation is deleted. Instead it is necessary to construct a single model only.

Define the PRESS statistic to be
PRESS =) (1 — §-:).
1=1
Here, §_; is the predicted value for y;, but object x; was ‘left out’ when estimating the
parameters in the regression model. Another way of calculating the PRESS statistic is
simply by using

X Yi — Ui
NPt 3.6
%~ = T (3.6)

where, % is the element along the ith diagonal of the hat matrix # = X% (XXT)1X.
This avoids the need to leave out observations in turn. A leave-out-one cross-validated

R-squared score could then be formulated as
CVRSQ =1 - PRESS/TSS (3.7)

The formulation of Equation 3.6, makes the leave-out-one method of cross-validation quite

a useful and relatively inexpensive procedure to employ.



Chapter 4

Feature Extraction

It has been discussed in earlier chapters that some form of feature extraction should be
implemented prior to performing multivariate analyses using low dimensional statistical
methods. Besides improving the performance of the statistical analyses, having fewer
variables often means results can be obfained with reduced computational and economical
expense. Another reason for extracting features may simply be that the features are more

meaningful than the raw data and thereby enhance the interpretability of the data.

Feature extraction is a dimension reducing procedure which selects a subset of variables
p« from a much larger set of p variables. The variables can be selected from the original
data, or, from data which has been preprocessed or transformed in some other way. Typ-
ically, the dimensionality p. of the subset of feature variables is less than p and usually
very much less than the number of observations, or spectra n. The feature extraction
procedure aims to retain as much of the information as possible, whilst simultaneously
eliminating redundant features which do not contribute or have an adverse effect on the

statistical procedure.

Feature extraction can consist of three modules — a preprocessing module, a feature
transformation module and a feature selection module. We first introduce some feature
selection strategies and then consider some feature transformation methods. It was decided
to make preprocessing methods a part of the section on feature transformation, since
preprocessing methods often involve some form of transformation. There are many ways
to perform feature extraction. In this chapter we discuss some modern and customary

approaches used for feature extraction.

5
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4.1 TFeature Selection

As previously mentioned, feature selection involves selecting a smaller set of variables from
a bigger set on the basis of some criteria. The criteria used for feature selection should
reflect the goal of the statistical analysis. For example, if the goal is to assign an object
to a particular class as accurately as possible, then the criterion for variable selection
could involve a misclassification rate. Or, if the goal is to select variables which are used
to predict some response such as the concentration levels of chemical substances, then

feature selection could be based upon the predictive residual sum of squares.

When feature selection is based on the original data which may or may not have been
preprocessed, then the procedure is sometimes called variable selection as opposed to
feature selection. In this thesis we allow feature selection to be a selection of either the
transformed data or, the original data. When feature selection is from the original data,
the feature transformation is via the identity matrix.

One item which needs to be addres‘sedA is thé number of features to be selected. Of course
this will often depénd on the kind of statistical method which is implemented. For example
it is possible to have more variables for Bayesian linear discriminant analysis than Bayesian
quadratic discriminant analysis. Some examples of references which address the topic in
a classification perspective include [36, 47, 114, 113]. While references which address this
problem and related issues with respect to regression analysis include {106, 120].

We now consider feature selection strategies separately for discriminant analysis and

regression problems.

4.1.1 Feature Selection Strategies for Discriminant Analysis

In this section we present a brief overview of some of the many feature selection strategies

n
hat can be applied in discriminant analysis. There are two main goals of discriminant

I

analysis. The first is to accurately predict group memberships of unclassified objects and
the second is to observe and understand the spatial separation of objects whose group
identity has been established. These two goals are quite different, and it is recommended
by McLachlan [102] that the criteria should reflect the aim of the discriminant procedure.

As mentioned above, if the goal is assignment, then the variable should be selected on
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the basis of an error rate. If however, one is purely interested in observing some spatial
separation, then the variable selection criterion should be based on a measure of separation.
Of course it is still possible, in some cases, to obtain favourable classification rates from
variables selected by measures of separation. Some separation criteria include the ratio of
between-to-within-variability, Mahalanobis distance [7, 99], Euclidean distance and Wilk’s
Lambda [102]. Assignment or allocation criteria usually involve classification rates or
posterior probabilities.

Wu et. al [148] employ some of the above criteria when implementing univariate fea-
ture selection techniques. One feature selection method involves selecting variables which
produce high values of the ratio of the between-to-within variability. That is, for each
variable, the between-variability divided by the within-variability is calculated and the
variables which produce large values of this quotient are used as input to the classifier.
This measure of between-to-within-variability is sometimes referred to as the Fishers cri-
terion. A second scheme chooses variables that are most correlated with the (ordinal)
response which, in this case, is the vector of group labels. Another feature selection
method utilized by the same authors involves searching for nor-overiapping regions of the
spectra from different classes. For each variable the range of response values for each of
the groups are individually determined. If the response ranges for some variable, for each
group are non-overlapping (distinct), then that particular variable is a likely candidate to
be selected. Ideally, the variables for which the response ranges (for each of the groups)

are most separated will be extracted and used for classification.

Consideration should also be given to selecting combinations of variables. For exam-
ple two features chosen separately may produce less favourable results than two features
chosen in combination. With high dimensional data it is not realistic to perform an ex-
haustive search of every possible combination of variables. In this case, stepwise methods
can be considered. A forward stepwise search sequentially incorporates variables into the
discriminant procedure that contribute to the discrimination power of the model. Gen-
erally, variables cease to enter the model when little or no change to the performance
‘of the discriminant model is registered. Conversely, a backward stepwise search removes
variables from the model until the performance of the model begins to deteriorate. In

the presence of high dimensional data, it is not advisable to use a backward stepwise
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search, since initially all the variables will be fed to the classifier which will lead to ill-
and poorly-posed situations, not to mention the computational expense and the numerical
instabilities which are likely to arise. Instead, a backward selection scheme could be used

following the implementation of a forward stepwise selection method.

One possible forward selection scheme is as follows; first select the variable which gives
the largest value of Wilk’s Lambda A. Calculate A for every remaining variable (in combi-
nation with the first selected variable) and enter the variable which gives the largest value
of A. IFA®) equals A at the ith iteration, then the routine continues until AGTD — A < A
where A is prespecified. If the purpose would be to find a set of variables which classi-
fies accurately the same procedure could be employed, but with a cross-validated correct
classification rate replacing A. Since stepwise techniques involve repetitive calculations,
it is worthwhile to make use of fast updating formulae [2]. This avoids the need to com-
pletely recalculate parameters such as the covariance matrix and dramatically reduces the

compﬁtational burden.

The SAS [122] and SPSS [109, 108] statistical computing packages have an option for
.performing stepwise discriminant analysis. SAS allows for a forward, backward, and
forward /backward combination which enters/removes variables ac;cording to the Wilk’s
Lambda criterion [132]. SPSS, also has a stepwise procedure which combines the features
of a forward and backwaids selection procedure. There are several selection criterion made
available for entering and removing variables from the model. These criterion are based
on Wilk’s Lambda, Rao’s V, Maha,lanobis distance, between groups t-statistic and the
sum of unexplained variance. The reader is referred to [108] for more details about these

criterion.

Another multivariate variable selection method is the branch-and-bound technique.

This technique becomes very inefficient when there are 30 or more variables [48, 58].

4.1.2 Feature Selection Strategies for Regression Analysis

One of the most standard feature selection procedures applied in regression analysis are
stepwise approaches. Stepwise procedures for regression analysis can be forward, back-
ward, or a combination of forward and backward procedures. As is the case with stepwise

procedures for discriminant analysis, backward procedures are generally not recommended
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as the iritial procedure to apply for highly dimensional data, since many instabilities are

likely to arise.

A simple criterion which is used for the entry of variables into a regression equation is
the residual sum of squares. A stepwise procedure which is applied in Chapter 8 is similar
to that outlined in Draper [29]. For each variable the RZ . of the model was calculated.

train
The variable which gave the largest increase in BZ_; entered the model. At each iteration
all the variables in the current model were tested for removal. Variables were removed if
their t-statistic for testing if the regression coefficient is significantly different from zero,
was less than some prespecified amount. The procedure stopped when no more variables

were retained in the model, or, until there were p, variables in the model which ever came

sooner. Here, p. was also prespecified.

In earlier discussions about model selection criteria it was noted that as more terms
are added into a model the residual sum of squares (or R-squared) value will decrease. -
It may seem contradictory to have stepwise methods continually incorporating variables
into a model based on this criterion. In practice, one typically plots the residual sum of
squares agalnst the iteration of the stepwise procedure. Small changes in the residual sum
of squares from one iteration to the next usually imply that the drop in residual sum of
squares is a éonsequeuce. of adding variables into the model, and not from the variables
providing more useful information. The t-statistic which is calculated at each iteration for
testing if the coeflicients are zero at each iteration can also help form a safeguard against
this problem. This t-statistic is also quite useful since as more terms are incorporated
into the model, variables which entered the equation in the early stages of the stepwise

procedure can be found to be less useful, as other terms enter the model.

Stepwise techniques usually come standard in many statistical packages for regression,
these include SAS [122); SPSS [109] and S-Plus [126] for example. Splus (version 3.2) al-
lows for these three stepwise procedures to be performed. The forward stepwise procedure
begins to include variables into the model which give the largest decrease in residual sum
of squares, while the backward procedure begins to delete variables {initially from the full
model) which give the smallest decrease in the residual sum of squares. Efroymson’s step-
wise method combines a forward entry and backwards deletion scheme (where necessary).

This is similar to a forward procedure, except each time a new variable is incorporated
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into the model, partial correlations [29, 106] between the independent variables and the
response are considered to determine if any variables should be removed from the model.
Splus also allows for an exhaustive procedure, where the smallest residual sum of squares
of all possible variable subsets of a specified size are calculated. The final model has the

smallest residual sum of squares.

SPSS (version 6.1) allows for forward and backward stepwise procedures as well as a
combination stepwise method which tests if any variables should be removed from the
model at each iteration of a forward procedure. The criteria which SPSS allows the user
to specify for variables to enter or exit a model are a t-to-enter/exit or the probability of
t-to-enter/exit. Note that criteria based on partial correlations, t-statistics or f-statistics

can be considered equivalent.

SAS (version 6.03) also allows for forward, backwards and the combination method
as well as forms of bést subset searches of a specified size. The forward/backwards and
combination stepwvise procedures are based on the f-statistic criterion. The best subset
method searches for the subset of variables which give the most suitable R-squared, ad-
justed R-squared, or Mallows’ C,, which ever is specified by the user.

For the above packages, we have mentioned that forms of exhaustive searches are avail-
able. For spectral data however, such searches can be very computationally expensive and
inappropriate, as was the case with exhaustive methods for discriminant analysis.

The branch-and-bound technique [48, 58] could also be used for regression, but is not
recommended as a feature selection technique for spectral data. Perhaps more appropriate
are genetic algorithms [89, 134]. Genetic algorithms have previously been used as a feature
selection method for regression see for example [74, 84, 85]. In [85], the genetic algorithms
are also used for outlier detection. Other variable selection strategies which are performed
in the presence of outliers include that discussed in Sommer ef. al. [121].

Another simple feature selection strategy is to select the variables which are most cor-
related with the response as described in [75]. The wavelengths which are most correlated

could then be used in a multiple linear regression mode! for example.
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4.1.3 Classification and Regression Trees (CART)

CART is a nonparametric method which can be used for discriminant or regression analy-
sis. CART [10] is based on a recursive partifioning scheme and is an extension of the work
performed by [6, 9, 54, 64, 90, 103, 43]. For a thorough account about the CART algorithm,
the reader is referred to Breiman et. al. [10]. Other useful references include [17, 117, 149].

Var(3)<< 10 Var(3) > 10

d

Var(5)<< -23 Var(5) > 2.3
N, N,

Figure 4.1: A CART model.

CART recursively splits the datasets into homogeneous subsets. Figure 4.1 shows a
simple CART model which has a binary tree structure and contains 5 nodes. At the top
of the tree there is a single node which is-called a root node, and is labelled by Ng. At the
next level, the nodes are referred to from left to right as N and Ns. Similarly, at the next
level the nodes are N3 and V4. Nodes which do not have any descendants are referred to
as terminal nodes, thus Ny, N3 and Ny are terminal nodes and are indicated by the square

boxes.

Initially, all the observations are stored in the root node. In Figure 4.1 the objects in
Ny are split depending on their measurements for var(3), where var(3) denotes the third
variable in the data set. All objects for which var(3)<10 move into Ny, and all objects

for which var(3)>10 move into N;. Node 1 is not split any further. Node 2 splits the
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objects based on variable 5. The objects in N, that have var(5)< —2.3 move into N3 and
the objects for which var(5)> —2.3 move into N;. The objects in N3 have var(3)>10 and
var(5)< —2.3. The objects in Ny have var(3)>10 and var(5)> —2.3.

If Figure 4.1 was a classification tree, then each terminal node would be assigned a
group label. For example Ni=group 2, Ns=group 1 and Ny=group 2. (It is possible for
terminal nodes to have the same class label). If Figure 4.1 was a regression tree, then each
terminal node would be assigned the mean response value for the objects in that node. For
example if x,;; denotes the ith object in node Nj, and nyj denotes the number of objects in
node IV, then the terminal nodes in Figure 4.1 would have the values Ny = Z?ﬂ Yir)/ 7
N3 = Z?ﬂ Yis)/m3p, and Ny = Z?ﬁ Yifa)/ 4}, Where y;p is the response value of x;p;. A
response measure for a new object can be predicted by observing which terminal node it
would lie.

The CART algorithm splits the data with the aim of obtaining terminal nodes which
contain objects whose properties are similar. For classification, the goal is to split the
data so that terminal nodes contain objects from the same class. For regression, the goal
is to have the objects with similar response measurements in each of the terminal nodes.

The CART algorithm searches each potential split point in the data set and chooses the
split point which minimizes some impurity measure of the node.

The impurity measure used for classification is entropy (see also Section 6.3.1). Here,
the impurity measure will be highest if the node has equal portions of objects from each
class, and will be minimal when the node contains objects from a single class only. The

entropy impurity measure is defined as

R
= P(r[))Jog P(r|l)

where P (r|l) is the proportion of objects in node IN; which are from class 7. The impurity
measure used for regression is simply the residual sum of squares.

The variables selected by CART may be good features to use with other multivariate
techniques. Alternatively, CART could be used as a stand alone method for classification
OT Tegression.

The CART algorithm as implemented in Splus ceases to split a node if there are too few

observations in the node, or when the impurity measure reaches a certain threshold. In
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the S-Plus statistical package, the minimum number of observations and threshold criteria

can be specified by the user. The reader is referred to [10, 17, 138] for more details.

4.2 Feature Transformation

Examples of spectral features which maybe quite informative include the heights, posi-
tions or shapes of peaks for instance. Other features commonly used include principal
components [33, 53] and Fourier coefficients [150, 147], while more recently, wavelet coef-
ficients [8, 86, 118, 131] have been explored. The procedure for calculating a new set of

features is called feature transformation.

In this section we discuss some common and modern feature transformation methods.
First, we describe some preprocessing methods which can be applied to spectral data.
It can be considered slightly unusual to discuss preprocessing methods as part of feature
transformations, or indeed feature extraction. Since preprocessing methods usually involve
some transformation procedure, it has been decided to describe preprocessing methods as

part of the feature transformation section.

4.2.1 Preprocessing Methods and Transformations

For some spectral data sets, it may be appropriate to preprocess the data before performing
statistical analyses. This can be done for several reasons. The obvious reason is that one
may be able to obtain improved results from spectral data which has been preprocessed.
Another reason for transforming the data is so that the spectra can be appropriately
aligned. For example, if spectra representing samples of gasoline have been collected on
different days and it is obvious that some effect is present purely because the spectra may
have been obtained on different days, then a transformation could be used to counteract
this misalignment. Thus, some transformations can be used to ‘align’ the spectra, so that
a fair assessment can be made. This section discusses some preprocessing transformations

which are commonly applied to spectral data.
Standard Normal Variate Transformation

The SNV transformation [5, 148] produces spectra of similar shape and slope as the original

(untransformed) spectra. If x; = (21, zai, - ..,:vp,')T denotes the ith spectrum, then the
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mean value of x; is calculated by
1<
I;=— Z Z;.
p I=1 .
The sample standard deviation of the ith spectrum is then
L1 (e — E)?
p—1 '

Ox; =
The SNV transformation of x; is then defined as

X; — Tilp
axi

where 1, is a p X 1 column vector of ones.

Original

SNV Transformed

Figure 4.2: Demonstration of the SNV transformation.

56

Figure 4.2 shows the effect of performing the SNV transformation on five sample spectra.

It is seen that the SNV transformed spectra have a similar shape and slope as that for the

original spectra, but the variability between spectra is reduced.

Detrending

A single spectrum x; may be detrended using a second degree polynomial as follows. Let

v = (¥o,¥1,-- -, Vp—1) be a column vector of wavelengths which is to be regressed against



CHAPTER 4. FEATURE EXTRACTION 57
x; using a second degree polynomial. That is
X; = bo + bll/ + bgl/2 + é\i.

Here, & is the residual vector corresponding to the ith data vector, and b = (bg, b1, by)T

are the regression coefficients which are found by
b= ([1, v VT, v VQ])~1 1, v v x;.

The matrix [1, v »?] contains a p X 1 vector of ones in the first column, v in the second

column and v? in the third column. The detrended spectrum is obtained by
X; — X;

where

)A(i:bo—f—bll/-ﬁ-bzl/z .

Figure 4.3 shows the effect of detrending and performing the SNV transformation on
five spectra. Detrending has the tendency to remove the baseline trend and curvilinearity,
but there is still some variability within the spectra. By taking the SNV transformation

on the detrended spectra, then this variability can be reduced.
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QOriginal

Figure 4.3: Demonstration of detrending combined with the SNV transforma-
tion.

Hull Quotient

Another way of removing the baseline effects is obtained by taking the hull quotient.
This is commonly used in geology and is a standard transformation option in the spectral
package PIMAVIEW [111]. The hull quotient does not have an implicit mathematical
formula but it is obtained by finding the ratio of the spectrum to the lowest convex curve
lying above the given spectrum. Figure 4.4 provides a pictorial interpretation as to how
the hull quotient of a spectrum is obtained. In the subplot at the top of Figure 4.4 there
are two lines drawn. The thick line is the lowest convex curve lying above the spectrum

{also called the hull), the spectrum is represented by the thinner line. By taking the ratio
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Original

MW\\

Hull Quotient

Figure 4.4: Demonstration of the hull quotient.

of these two lines at each point, the hull quotient spectrum is obtained. This is shown in

the subplot at the bottom of Figure 4.4.
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Second Derivative

The second derivative transformation (2D) removes the slope and parallel shifts in the
spectra [5]. There are several complications which arise from the 2D transformation. One
is that the 2D transformed spectra look quite different to the original spectra. This makes

interpretation quite difficult.

Different packages may calculate the second derivative spectra in different ways. Typi-
cally, the 2D transformation consists of a differentiation operation and a fitting procedure.
The fitting procedure involves fitting a model to the data, and the differentiation procedure
then differentiates the fitted model at some point. Some packages perform an additional
smoothing procedure to the differentiated data.

We provide an example of a very simple procedure for calculating the second -deriva-
tive transformation of a spectrum, the results of which are displayed in Figure 4.5. The
smoothing and differentiation procedure is based on a moving window which contains 17

data points.

Original

Second Detivative

Figure 4.5: Demonstration of the second derivative transformation.
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Second Derivative Transformation
1. X = (Z1,%2,...,Tp)
2. v Ty = odd number of data points in each window
3. ny = (ny — 1)/2
4. i=(Cnmy o, =1,0,1,. . m)T
5. Xog = ()
6. FOR i=1+ns top—ny,
7. Xy = (Timnypy - - - mi-i-mr)T
8. (bo, b1, b2)T = ([1ny, § 317 [Lny § 37 [ny § 547 %0
9. Xod = (ng, 2b2)
10. END

Figure 4.6: A simplified procedure for performing the second derivative trans-
formation.

The algorithm used for performing the second derivative transformation which produced
Figure 4.5 is described for a single spectrum in Figure 4.6. Steps 1 — 4 are simply ini-
tialization procedures. The spectrum x = (z1, %2, ..., ) which contains p evenly spaced
points is to be transformed using the second derivative transformation. The notation n,
indicates the number of points for which a second degree polynomial will be fitted, that is,
the number of points in the window. The second derivative will be calculated for the point
in the middle of the window. The midpoint has nj. = (ny — 1)/2 points to the left and
right of itself. Step 4 constructs the independent variable whose values are indices which
range from —ng. to ny.. The transformed spectra will be labelled as x24. In Step 5, x24 is
initialized as a vector with no components. Step 6 begins the FOR loop, which is indexed
from ¢ = 1+ ny, to p— nyr. This index range was chosen since it avoids any complications
which may arise at the end points. These values for 7 represent the indices of points for
which the second derivative will be calculated. If it is necessary to calculate the second
derivative at the end points we refer the reader to Gorry [55] for further details. Step 7
extracts the data points from x which are in the current window, and will be fitted using

a second degree polynomial. A second degree polynomial will be fitted to x,, as follows

%y = b + b1 j+ ba j?
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for which the second derivative is equal to 2by. Step 8 calculates the coefficients of the

second degree polynomial and Step 9 stores the second derivative information in x4.

A more sophisticated approach for calculating second derivative data can be based on
the work performed in Gorry [55]. Gorry [55] describes a least squares smoothing and
differentiation procedure which is Based on the Savitzky-Golay convolution method [123].
‘The method of Gorry fits a series of Gram polynomials to windows of the spectrum. Their

method also allows for derivatives of a higher order to be calculated.
Mean Centering

Mean centering is quite a convenient and common transformation to apply to spectral data
which is to be used for regression analyses. This is especially the case when partial least

squares and principal component regression are the regression methods being applied. If

is the mean (column) spectrum of the spectral data set X, then the centered spectra are
obtained as follows

X — X

for i =1,2,...,n. Equivalently, the data matrix can be mean centered by
X.=X-x17,

As can be seen in Figure 4.7, when the data is mean centered each of the variables sum

to zero. This results from the data being spread evenly around the horizontal axis.
Subsampling

Subsampling refers to the procedure of omitting every [th data point {or variable) [ € Z.
For éxample, if the reflectance of a spectrum has been measured for the wavelengths
400,401,...,2200 nm, then a subsampled spectrum may consist of reflectance measurements
for every second wavelength i.e. 400,402,404,...,2200 nm. If the spectra have been obtained
by measuring the reflected (or absorbed) radiation for consecutive wavelengths, then in
many cases little information will be destroyed by subsampling by small factors of [, eg

[=2,3,4.
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Original

Mean Centered

Figure 4.7: Demonstration of mean centering.

4.2.2 Principal Component Analysis (PCA)

Principa_l component analysis (PCA) also known as the Karhunen-Loéve method is mostly
recognised as a dimension reducing technique in both statistics and engineering. In statis-
tics, PCA is often used for reducing the dimensionality of a data set. It can also be used
as an exploratory technique to help identify relationships among variables or even to help

identify outliers or spurious points.

Principal component analysis seeks linear combinations of the original variables, such
that the variance of the transformed objects is maximized. Equivalently, we seek the linear
transformation

pP= XTa
which maximizes

aTSTa

subject to ala=1, where St is the total covariance matrix of X. The vector p is the
principal component which contains n principal component scores (one score for each

object), and a = (ay, ag,.. ., ap)T is the vector of principal component coefficients. The
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maximization problem reduces to solving
(St —yI)a=0. (4.1)

Notice that there will be p eigenvalues v; > 5 > --- > 7, and p corresponding eigenvec-
tors aj, a, ..., a, where each a;.= (a1, a2, .-, ap:) 7 produces p corresponding principal
components pi, P2, -- -, Pp, Which is the new coordinate syétem. Premultiplying Equa-
tion 4.1 with al it can be seen that the eigenvalues v; = variance(p;) = al'Sra;. The first
principal component has the largest variance. The second principal component has the
next largest variance such that it is uncorrelated with p; and so on for ps, ..., p,. We will
store the principal components as columns in the matrix P. For more details the reader

is referred to [72, 71].

Principal components can also be derived by using a singular value decomposition of

the column centered matrix XZ. The singular value decomposition of XZ can be written
XTI = spyT

where & is a n X n matrix, D is a n X p and V is a p X p matrix. The squared elements

along the ¢th diagonal of D are proportional to the eigenvalues +; of the covariance matrix,

that is
Di = -
n
The orthogonal unit eigenvectors a; for ¢ = 1,..., p of the covariance matrix are stored

in the 7th corresponding column of V. The principal component matrix can then be
calculated by

P =XTy,
and the centered principal components are formed by

P.=X'V=38D.

The discussion so far has focused on finding the eigenvalues and eigenvectors of the
covariance matrix of X. The principal components can also be calculated from the corre-
lation matrix of X. Generally this approach is recommended if the units of the variables
in X are measured on scales with widely differing ranges or if the measurement units

differ. There is some mathematical simplifications which occur if the correlation matrix
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is analysed. One useful result is that the principal component coefficients a;; which have
A .
been calculated from the correlation matrix are directly proportional to the correlation

between the :th principal component and the jth variable, or more formally

pi; = a;ij4/ variance(p;).

Provided the data are correlated, which is true of spectral data, then most of the
variability in the entire data set is accounted for in the first few principal components.
This is an attractive feature of PCA. When PCA is being applied in conjunction with
regression or discriminant analysis one item frequently overlooked is that, while most of
the variability in the data can be accounted for in the first few principal components, these
components are not necessarily the best for discrimination [102] or calibration [75]. This
is because the criterion in which the principal components are constructed is not related
to a regression or discrimination criterion, i.e, the data matrix is decomposed without any
reference to the response vector (regression) or to the vector of group labels (classification).

For this reason, it can prove to be advantageous to use PCA followed by a feature se-
lection technique. For classification purposes, SIMCA [38, 144] which is a popular chemo-
metrics method, skillfully takes advantage of PCA. Here, the principal components are
used to model the data from each class, and an object is assigned to the appropriate class
depending on the distance between the object and the class model. Another approach
for classification is to select the principal components based on a stepwise strategy [28].
Similar stepwise approaches have been used for calibration [75]. When principal com-
ponents are used for regression, the procedure is typically called principal component
regression (PCR). Instead of using the principal components as features for the statistical
techniques, PCA can be used as a feature selection technique for selecting the original
variables. Jouan-Rimbaud et. al. [74] select the wavelengths for calibration which have
a high loading on the principal components. These particular principal components have

previously been selected for regression by use of a stepwise procedure.

There is yet another way in which PCA can be used to provide information about which
variables are important for the particular statistical procedure. This is achieved by using
biplots which are a graphical representation of data. Biplots can be considered as an
overlay of two scatterplots. The first plot could be the scatterplot of the first principal

component versus the second principal component which shows the n principal component
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scores. The second plot gives the relative positions of the p variables by plotting lines such
that the lengths and direction of the lines for each of the wavelengths provides an indication
as to which variables are important for each component. Thus if we know that the second
principal component is useful for regression, and if the pth variable lies a fair distance
along and near to this axis, one can then presume that this variable may be important
for regression. Basically, biplots are a visual tool for investigating the loadings of the
variables, and providing visual information about the correlation structure between the

variables and objects.

A disadvantage of PCA is that if one spectrum is changed, then so do all the princi-
pal components. Another item of somewhat importance is that PCA does not take into
consideration the particular ordering of variables (i.e. shape) of a spectrum. By inter-
changing the wavelengths so that the spectra become completely rearranged, the principal
components will not be altered. The Fourier transform which we discuss next, does take
into account the ordering of a spectrum. Also, if one spectrum is altered, then only the

Fourier coefficients pertaining to that spectra vary.

4.2.3 Fourier Transform (FT)

A transformation often used with high dimensional data, particularly infra-red and near
infra-red spectra is the Fourier transform (FT). This transformation was initially used
in spectroscopy as a way of increasing the signal to noise ratio. The FT is also useful
for providing visual interpretations of spectra, so useful in fact that many instruments
perform this transformation automatically.

The FT [112] represents a function or discrete signal as a linear combination of complex
exponential basis functions. Let x = (%o, %y,...,2,—1) denote a discrete object such as a

spectrum, then the discrete FT is

p—1
w) = le exp(j.2nil /p),
1==0
and the inverse discrete FT is
s
T; = ;Zwl exp(—7.2mil/p) where j, =+/—1.
=0

The Fouriler coefficients convey information about the underlying frequency content of

a spectrum, that is, they represent the weight to which a basis function of a particular
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frequency contributes to the fit of the spectrum. Since the Fourier coefficients are com-
plex numbers, the magnitude of each wy, denoted by | w; |, is typically used for further

multivariate analyses.

One of many references which have applied Fourier methods in classification is that by
VYoung and Calvert [150], who mention that the frequency spectrum obtained by a FT of
signal in the time domain can be quite valuable for the classification of speech signals.
Wu et. al. [147] have also demonstrated that the Fourler transform is a useful feature

extraction method to apply for classification.

While the FT does take into consideration the ordering' of a spectrum, the Fourier
coefficients are not localized. If one part of a spectrum or signal is changed slightly,
then all the Fourier coefficients change as a result. To avoid such global effects, wavelet
coeflicients which are produced from the wavelet transform can be used. The wavelet

coefficients are able to convey localized frequency information of a spectrum.

4.2.4 Discrete Wavelet Transform (DWT)

The wavelet transform has mostly been used for data compression and denoising. Some
examples mentioned by Vidakovi¢ and Muller [139] in their tutorial paper include com-
pressing fingerprint images and denoising old sound recordings. It is only recently that
the DWT has been considered as a feature extraction method for discriminant analy-
sis [8, 86, 96, 118, 130, 131, 133, 141]. Wavelet coefficients have also been used in regres-
sion analysis, but are mostly used for function estimation purposes, or in situations when

there is a single independent variable.

The advantage associated with the discrete wavelet transform is that the output (or
wavelet coefficients) convey localized frequency information about a signal. The local-

ization is achieved by using basis functions (or basis vectors for discrete data) which are

Tate et. al. [131] have used the DWT for classifying magnetic resonance spectra (MRS).
They performed a PCA on the wavelet coefficients from the DWT which were correlated
with the class labels. The principal components were then used as features for classifica-
tion. The authors noted that while their results were slightly better than typical methods
for analyzing MRS data, the use of the DWT allowed for a more automated procedure
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and reduced the amount of pre-processing.

Bos and Vrielink [8] found that the classification accuracy was improved when they
chose to supply sets of wavelet coefficients to the classifiers, as opposed to supplying the
full spectra. The classification results were based oﬁ a linear classifier and a non-linear
neural network classifier. They also stress that computational expense was somewhat

lessened by training the non-linear neural network on data of reduced dimensionality.

Saito and Coifman [118] provide an automated approach using the wavelet packet trans-
form (WPT) for discriminant analysis. The wavelet packet transform is an extension to
the DWT where the wavelet coefficients are organised in a binary tree structure. They
also make use of the best-basis algorithm due to Coifman and Wickerhauser to select an
orthonormal basis for signal classification [20]. Their application on two simulated data
sets of dimension 32 and 128 highlights the potential of wavelet coeflicients as features for
discriminant analysis. The classifiers FLDA and CART were applied using the full data
set and the reduced set of wavelet packet coefficients. It is clearly noted that less biased
results were obtained with the wavelet packet coefficients. Both FLDA and CART on the
original data had the tendency to overfit. The method of Saito and Coifman, which is
referred to as the LDB algorithm for local discriminant bases is discussed in greater detail

in Section 5.14.2.

Learned and Willsky [86] have also used the WPT for classification. The energy of the
nodes in the WPT is calculated by the mean sum of squared coefficients in each of the
nodes. A selection of these measures of energy are then used for classification. Walzcak et.
al have also selected features from the wavelet packet transform using univariate feature
selection strategies and the LDB algorithm. The features were used for classifying NIR

spectra.

A new and innovative technique based on adaptive wavelets, which aims to reduce
the dimensionality and optimize the discriminatory criterion is presented in Mallet et.
al [96, 94]. The discrete wavelet transform is utilized to produce wavelet coefficients which
are used for classification. Rather.than using. one of the standard wavelet bases, they
generate the wavelet which optimizes specified discriminant criteria. The application of

adaptive wavelets has also been extended to regression analysis.

Previous applications involving the optimization of wavelets for classification include the
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work performed by Telfer et. al. [133] and Szu et. al. [130]. Telfer et. al {133] consider
optimizing the shift and dilation parameters of the discretization of a chosen wavelet
transform, while Szu- et. al. [130] sought the optimal linear combination of predefined
wavelet bases for the classification of speech signals. The adaptive wavelet method is
made distinct because the wavelet is designed from its humble beginnings. It also allows
for the general m-band wavelet transform to be utilized, as opposed to the more common

. 2-band wavelet transform.

Adaptive wavelets are presented in Chapter 6. This follows a general overview of wavelet

theory which is presented next.



Chapter 5

Wavelets

In the previous chapter we mentioned that wavelet coefficients might be good features
to use as input to multivariate statistical techniques. Wavelet coefficients are potentially
good features because fhey are able to detect changes which occur rapidly in a signal
(or spectrum) as well as changes which occur over a ldnger duration in the signal. More
importantly, wavelets have the ability to detect when the changes oécur, unlike Fourier
coefficients.

Consider the following example which demonstrates the ability of wavelet coefficients
to capture local events. Figure 5.1 plots the function sin(2t) which has been sampled 512
times in [—7,7]. The sine curve on the righ_t has a small disturbance at ¢ = 1.5. Below
each of the sine curves are the Fourier coefficients and the wavelet coefficients. Since the
Fourier coeflicients are complex, the magnitude of the coefficients is shown. Two plots of
the Fourier coefficients have been shown. When the first half of the Fourier coefficients
are displayed, it is difficult to detect any change in the Fourier coefficients produced for
the original and disturbed signal. This is due to the large coefficient at the second index
which reflects the period of the sine curve. When the magnitude of the 3rd- 19th Fourier
coefficients are considered, then one can note the difference in Fourier coefficients produced
from the two signals. Whilst the Fourier coefficients are different for the disturbed signal,
(compared to the original signal) the small disturbance at ¢ ~ 1.5 is absorbed across most
of the Fourier coefficients. However, in the case of the wavelet coefficients most of the
disturbance has been absorbed by only a few of the coefficients. What is also appealing
is that the change in wavelet coefficients occurs in approximately the same region as the

disturbance in the sine curve.
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Figure 5.1: Fourier and wavelet coefficient of a sampled sine signal, with (right)
and without (left) a small disturbance.

It should be mentioned that the relatively large disturbances occurring at the 0th index
for the wavelet coefficients (left and right) can most likely be attributed to end effects. In

this example we have endeavoured to provide some motivation for the use of wavelets in
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statistics, and in particular, highlight some of the favourable properties they possess for:

feature extraction.

5.1 Introduction

Essentially, the wavelet transform allows us to view signals through different ‘windows’.
Some windows provide high frequency information and some windows provide low fre-
quency information. The wavelet coefficients shown in Figure 5.1 are from a high frequency
window.

We now set out to discuss in more detail the theory of wavelets. To avoid confusion,
it should be stated that much of the theory of wavelets has evolved from continuous
functions, so wavelets are initially explained in this chapter by using functions which are
continuous. Following this, the wavelet transform for discretely sampled data is presented.

Wavelets form a set of basis functions which can be used to represent a function which
is from the class of square integrable functions L2(R). The set of basis functions are
derived by translating and dilating one basic wavelet, called a mother wavelet. The di-
lated and translated wavelet basis functions are called children wavelets. The coeflicients
in the expansion of the wavelet basis functions are calculated by the wavelet transform,
and the coefficients are referred to as wavelet coefficients. The wavelet coefficients convey
information about the weight that a wavelet basis functioﬁ contributes to the function.
Since the wavelet basis functions are localized and have varying scale, the wavelet coef-
ficients therefore provide information about the frequency-like behaviour of the function
(e.g. Figure 5.1).

To gain a better understanding of wavelets and their special characteristics, we first
recall some details about Fourier analysis. The traditional Fourier transform provides
information about the overall frequency content of a signal. The windowed Fourier trans-
form (also called the short time Fourier transform) was introduced so that the frequency
information about a signal could be localized. This is done by analysing pieces of a signal
using a windowing function. In many instances, the procedure for determining the width
of the windowing function is not straight forward. If a window width is too small or too
large, then important information may still remain undetected or become distorted. The

wavelet transform differs from the windowed Fourier transform, in that it allows us to
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view the signal through windows whose widths vary in size.

The Fourier transform and windowed Fourier transform are briefly introduced in Sec-
tions 5.2 and 5.3, fespectively. For a more complete account of Fourier fheory see for
example [19]. The continuous and discrete wavelet transforms (both of continuous func-
tions) are introduced in Sections 5.4 and 5.5. Multiresolution analysis is then described in
Section 5.6. Multiresolution analysis provides a neat framework for better understanding
wavelets, what they represent and also leads to éfast algorithm for estimating the discrete
wavelet transform. This is referred to as the fast wavelet transform and is discussed in
Section 5.7. Higher multiplicity wavelets are discussed in Section 5.8. Each of the sections
outlined above make reference to continuous functions (also referred to as continuous sig-
nals). Although our spectral data is discrete, we have decided to first discuss continuous
signals, because it provides a historical account of wavelet theory, which then allows us to
draw analogies between the wavelet transform for continuous functions and the wavelet

transform for discrete data.

The discrete wavelet transform of discrete signals is then introduced in Section 5.9.
If the reader wishes to avoid much of theory of wavelets in order to obtain a practical
account of wavelet transforms, then they nﬁght like to advance to this section. The discrete
wavelet transforms of (discrete) signals is introduced using ideas from filtering processes.
The traditional wavelet transform is then extended to the more general m-band wavelet
transform in Section 5.10 for a single object, and in Section 5.11 for an entire data set.
Filter coefficient conditions are discussed in Section 5.12, and Section 5.13 gives a brief
account of some boundary related issues before the idea of wavelet transforms is extended
to wavelet packet transformsin Section 5.14. Wavelet packet transforms have a tree based

structure with parent and children nodes.

In this thesis we apply wavelets which are orthogonal and have compact support, that
is, they are non-zero over a finite interval only. Much o
towards discussions on orthogonal wavelets because they are convenient and simple to
implement. However, we feel that is necessary to make the reader aware that wavelets
need not be orthogonal and that wavelets with other properties can be quite useful too.
Briefly, when using an orthogonal basis it is not straight forward to obtain a wavelet which

‘has symmetrical properties [24, 80] and allows for an exact reconstruction. That is of course
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with the exception of the trivial Haar wavelet. Biorthogonal wavelets relax the assumptions
of orthogonality, and allow for a perfect reconstruction with symmetrical wavelets. There
are also semiorthogonal wavelets which are slightly more restrictive than biorthogonal
wavelets, but may also be worthy of consideration. This thesis does not want to discuss
in great detail other forms of wavelets, but simply wishes to mention their existence, and
directs the reader to [14, 24, 70, 128, 105] for more information. Strang [128] presents a
section on the symmetry and orthogonality issue and suggests some alternative approaches
which can be éonsidered if both symmetry and orthogonality is required. Turcajovd [136]
provides an excellent discussion on the application of higher multiplicity wavelets as an
alternative approach to using wavelets with symfnetrical properties. Besides the fact that
many applications utilize wavelets which are orthonormal, we prefer to discuss orthogonal
wavelets because it provides a convenient frame in which to design wavelets, as will be

discussed in Chapter 6.

5.2 Fourier Transform

Let f(t) represent a signal from the L2(R) class of functions, that is I, fAt)dt < oo -

The continuous (integral) Fourier transform of f(¢} is then written
FeT (w) = / f(t)e_j'(ﬁdt, (5.1)

where t € R and j, = +/—1. Equation 5.1 states that in order to obtain information about
a single frequency w, it is necessary to integrate over the entire signal: Thus, any isolated
frequency changes in the signal is averaged with the frequencies across the remainder of the
signal. We would like to extract information pertaining to short bursts of high frequency
activity from a signal. This leads to the windowed Fourier transform [49, 76] which was

designed to provide localized frequency information about a signal.

5.3 Windowed Fourier Transform

The windowed Fourier transform of f(t) is defined as
FWET (UJ, b) = f f(t)G(t - b)e—j*medt t,beR (52)

for some window function G(¢). The windowing function should have a finite integral and

be non-zero over a finite interval. In general, window functions place more weight on the
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function which is central to the window, and less weight as the function nears the border
of the window. Equation 5.2 is essentially performing the Fourier transform on weighted
blocks of f(¢) in an attempt to acquire localized frequency information about f(£). The
Fourier coefficients are now a function of two variébles, w and b. The parameter & controls

the translation of the window tunction.

There are some drawbacks assnciated with the windowed Fourier transform. The preci-
sion with which the localized frequency information is obtained. is limited by the size of the
window. Choosing a window width too small may obscure effects of a slightly larger scale,
and vice versa. There exists a tradeoff between time and frequency localization which
is dependent on the window size. This tradeoff may be less apparent, if the size of the
window could be adjusted. That way, we would be able to obtain information about high
frequency events, which change quickly in time, as well as low frequency events, which
change slowly over time. This is what wavelets set out to achieve. Wavelets are windowing
functions which, as well as being translated in time, are also dilated by varying amounts

in scale.

5.4 Continuous Wavelet Transform

Wavelets are translated and dilated versions of a single wavelet, called a mother wavelet.
Figure 5.2 displays some translated and dilated wavelet basis functions from the Daubechies
family {24, 22]. Mathematically, the windowing function G(t — b), is replaced with a win-
dow function of the form G (-t;—b), where @ is the dilation parameter. The windowing
function in the continuous wavelet transform (mother wavelet) is often denoted by ¥(t),
and the children wavelets are then (t{;—b) The continuous wavelet transform

_1 [ t—b ‘
Fewr(a,b) =l a|™2 / ft)d (-——(;—-) dt a,beR,a#0
—co _
is an inner product of the signal f(t) with the wavelets. Notice that the frequency pa-
rameter w has been replaced by the dilation or scale parameter a. The factor | a I_’;' is

included so that the rescaled wavelets all have equal energy, that is, || 9 (t—gﬁ) 1= () |}

The original signal can be reconstructed using

ft) = —i-/: /: Fowr(a,8) | |3 ¢<t” 5) da db (5.3)

a a?
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Figure 5.2: Some wavelet basis functions from the Daubechies family.

where c is a constant calculated by ¢ = 27 [ | ¢ |* dw/ | w | . For ¢ to be finite the Fourier
transform of the mother wavelet should equal zero, i.e., pr(0) = 0 and %(t) oscillates so
that its integral is zero. A decaying function (¢) with [ 4(¢) = 0 is a suitable wavelet for
the continuous wavelet transform [128].

It is not necessary to perform the continuous wavelets transform for all values of a and
b, since f(f) can be reconstructed from a much sparser set of (a,b) values. In fact, it
is possible to obtain an analysis which is just as accurate, and more efficient, by using
discrete values for the parameters a and b.. This leads to thé discrete wavelet transform

(of a continuous signal).

5.5 Discrete Wavelet Transform

Restricting the parameters a and b to represent the discrete measures

a = m™7

b = m7k
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where 7, k € Z, m > 2, m € Z, then the discrete wavelet.transform is defined
[ee]
Fowr (4, k) = m]/2f ft)p(m? — k) dt LkeZ.
—00

Typically, m is set at two [42, 23, 22], in which case the mother wavelet is stretched or
compressed by factors of two. Wavelets with m > 2 are sometimes referred to as higher
multiplicity wavelets — these are discussed in Section 5.8. Our immediate discussion will

however assume that m = 2 unless otherwise stated.

5.6 Multiresolution Analysis

Multiresolution analysis (MRA) [24, 91, 92] provides a concise framework for explaining
many aspects of wavelet theory such as how wavelets can be constructed [128, 70]. MRA
provides greater insight to the representation of functions using wavelets and helps estab-
lish a link between the discrete wavelet transform of continuous and discrete signals. The
MRA also allows for an efficient algorithm for implementing the discrete wavelet trans-
form. This is called the fast wavelet transform and follows a pyramidal scheme. Of course
it should be stated that MRA still exists in the absence of wavelets, and that wavelets need
not be associated with a multiresolution. However, the wavelets which we prefer to use, i.e.
those with compact support, will, in most instances be generated from a MRA. For these
reasons it is desirable to have wavelets which satisfy the properties of a multiresolution.
Multiresolution analysis allows us to represent functions at different resolutions, which
can be likened to wavelets analysing functions through different size windows. A multires-
olution divides the space of all square integrable functions L2?(R), into a nested sequence
of subspaces {V;};ez- Each subspace corresponds to a particular scale, and this provides
the key for representing functions from L%(R) at different resolutions. The reason being,
given some function f(t) € L?(R), then f(t) has pieces in each subspace. Let fy; denote
the piece of f(t) deposited in Vj, then fy, is an approximation of f(t) at resolution 27,

There is something special about fy,, it is not just any approximation of f(t) at reso-

lution 27, it is the closest approximation to f(t) at this resolution. That is,

Va(t) e Vi, llg@®) = FOI = llfv; — FOII;

hence, fy, is an orthogonal projection of f (t) onto V. The subspace V; contains all the

possible approximations of functions in L?(R) at resolution 27.
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For the subspaces to generate a multiresolution, they must satisfy some conditions.
It has already been mentioned that the subspaces are nested, this means that V7 € Z,
V; C V;41. That is, a function at a lower resolution can be represented by a function at
a higher resolution. Another condition is lim;_ V; = (| V; = {0}. Since information
about a function is lost as the resolution deéreases, eventually the approximated function
will converge to zero. Conversely, as the resolution increases the approximated function
gets progressively closer to the original function, thus, imj. Vi = JV; = L2(R).

Where do these subspaces come from? The subspaces {V;} can be generated from each

other by scaling the approximated functions in the appropriate subspace such that,
gt)eV; < g(2t) € Vi jEL.

It can also be stated that integer translates of the approximated functions, remain in the

same subspace:

gy eViegt—-k)eV; jke L.

Summarising, the sequence of subspaces {V;}jez is a multiresolution of L*(R) if the

following conditions are satisfied:
LV € Vi, OV = {00, Ui = I2(R)
2. g(t) e V; & g(2t) € Vi
3.9t e Vi e glt—k)eV;

If {V;};ez is a multiresolution of L2(R), then there exists a unique function ¢(¢) € L2(R),
called a scaling function such that {;x(t)-= 29/2¢(27t — k)} is an orthonormal basis
of V; [92]. This then implies that any function in V; can be represented by a linear
combination of the {¢;(¢)}. Hence, the orthogonal projection of f(¢) € L%(R) into V;

can be expressed as
(o]

foi= Y cipdin(d).

k=—c0

the coeflicients ¢; ; are called scaling coefficients. Since Vo C V7,

HO=VE S b2k, 5.4

k=—c0
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S0 how do wavelets enter the picture? Wavelets are basis functions which can be used
to represent the information lost in approximating a function at a lower resolution. This
difference is called the detailed part of the function. We prefer that this error lie in
the orthogonal complement of the V;’s. Consider the difference between approximating a
function at resolution 27 and at 2711, This difference will lie in the orthogonal complement

of V; which is denoted by W; such that,

Vi = V; @ ;. (5.5)
In terms of the functions in the subspaces, then

v = v, + fw; (5-6)
where fyy, is the orthogonal projection of f(t) into W;. Further decomposing fv, produces

ipw = fvi+ fwl + fwg

J
= Z fWi

1=—00

Then for some function f(t) we have

f® = fu+(F0) - ;)
[e.e]
= fy+)_fw,
=3
and one can then understand how a multiresolution allows us to represent a function at

varlous resolutions.

Next, consider how we can represent each fy;. In order to represent the orthogonal
projection of f(t) into Wj, it is convenient if we have an orthonormal basis for W, just
as we had an orthonormal basis for Vj. It can be shown [92] that provided {¢;i(t) =
2/2(27t—k)} is an orthonormal basis for V; then there will exist a wavelet basis {1;x(t) =
27/24p(29¢ — k)} which spans Wj.

Since Wy C Vi, an expression for the wavelets can be obtained from a linear combination

of the scaling functions in the space V;. That is

D) =V2 Y heg(2t—F). (5.7)

k=-—o00
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The detail of the function obtained by decreasing the resolution from 2771 to 27 is
[o¢)
fw; = Z dj k%5 k(1)
k=—oc0

Since L*(R) = @

22 _ oo Wj, every function in L?(R) can be represented as a linear com-

bination of wavelet basis functions
oo O
= Y > dixpis). (5.8)
j=—00 k=—00
Thus we have arrived at the wavelet series representation of f(t). Alternatively, one could

write f(t) as a linear combination of scaling and wavelet basis functions as follows

[e @]

f@) = Z Cjo kP (¢ ‘I‘Z Z djphi(t

k==c0 I1=Jo k=—0c0
The c; . are referred to as scaling coeflicients and the d;; are the wavelet coefficients as

described previously. Chan [18] shows that the d;x = Fpwr(J, k).

Due to the orthogonality of the scaling and wavelet functions the scaling coeflicients

can be calculated by the inner product

Cip = / FO)634(0) dt

and the wavelet coefficients can be calculated by

djk = / Ft); k() dt.

The orthogonality conditions on the scaling and wavelet coefficients as presented in Strang [128]

are summarized as follows:

1. The scaling functions ¢(t — k) are orthonormal to each other:

/Oo $(t — K)(t — ) dt = 5(k — k).

[ee]

2. The scaling functions are orthogonal to the wavelets:

/ Pt — k) k') dt = 0.

3. The wavelets ©; x(t) = 27/29(27t — k) are orthonormal at all scales:

/ Vet — k)b w(t — ') dt = 0.
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In many cases ¢(t) and %(t) will not have a closed form, and are not straight forward to
calculate. Strang [128] discusses various procedures for calculating ¢(¢) and (¢). If the
calculation of ¢(t) and % (t) can be a tedious matter, concern may arise regarding how the -
scaling and wavelet coefficients will be calculated. In the next sectibn, we show that the
wavelet coefficients can be obtained without actually having to construct ¢(¢) and (%),

using the properties of the MRA.

5.7 Fast Wavelet Transform

The fast wavelet transform provides an efficient algorithm- for computing the discrete
wavelet transform. We will show that provided we know some function fy;, then the
scaling and wavelet coefficients can be calculated in the absence of the scaling and wavelet
functions.” An expression for the scaling coefficients will be derived first, an expression for

the wavelet coeflicients then follows.

Lets assume that we know fy;, which is expressed as follows

<o

fp= Y cixdik-

k=—co

Since the scaling basis functions in V; are orthonormal to their translates,

= | Fbnde=< fi by > (5.9)

Equation 5.9 requires some formulation of ¢;x and hence ¢(t) which may be difficult to
obtain. It is desirable that an expression for the scaling c¢;; and wavelet coeflicients d;
be attainable without the need to construct ¢(t) or 4 (t). We now set about doing this.

First, write

oo
fv, = Z ¢ kPik
k=-co
o0 (o)
= > cimbicikt Y dicik ik -
k=—oc0 . k=—c0

This is an expression for fy; which has projections in V;_; and W;_;. Now an expression

for the scaling coefficients can be written as
ci-1k = < fv;di-1k >

(oo} .
= < Z CikPik s Pi-1k > -

k=—00
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Using the fact that ¢;_1 1 = 2(j"1)/2¢(2j*1t — k) and $(271t — k) =300 o beaitbik(t), -

then the following expression for the scaling coefficients is obtained

Ci14 = Z ‘Ek__QiCj,k . (5.10)

k=-co
Essentially we are just using the scaling coefficients at the higher resolution to calculate the
scaling coefficients at the next resolution. This is sometimes referred to as the pyramidal
algorithm [92, 104]. A similar procedure is performed for obtaining the wavelet coefficients,

leading to the following expression

dj1:= Z hr—2icik - (5.11)

k=—co
Provided we know the scaling coefficients at some resolution level j, the remaining
scaling coefficients and wavelet coefficients can be found by the pyramidal filtering algo-
rithm without even having to consfruct a wavelet or scaling function. We need only work
with the coefficients £; and hr. In the sections to follow, h; will be referred to as high
pass filter coefficients, and the ¢ will be referred to as low pass filter coefficients. It will
also be shown in Section 5.12 that conditions can be placed on the filter coefficients and

independently of ¢(t) and #(t) so that a MRA and associated wavelet basis exists.

5.8 Higher Multiplicity Wavelets

In the discussion so far, we have rescaled wavelets by a factor of m = 2. In some situations
it may be advantageous to rescale by some integer m > 2. When m > 2, wavelets are
referred to as higher multiplicity wavelets [79, 81, 127, 63]. For higher multiplicity wavelets,

there exists a single scaling function defined by

$(t) =vm > lp(mt — k)

k=—co

which generates m — 1 wavelets
zb(z)(t):\/ﬁz:hf);é(mt—k) z=1,...,m—1
k

with m — 1 corresponding sets of high pass filter coefficients, hgcz). The constant +/m is

used so that the wavelets form an orthonormal basis.
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We first consider redefining a multiresolution to cater for situations when functions are
rescaled by a general factor m > 2 and then show how the fast wavelet transform (or

pyramidal algorithm) is performed for higher multiplicity wavelets.

The sequence of closed subspaces {V;};¢z is a m-multiresolution of L%(R)if the following

conditions are satisfied {136]:
1. V5 C Vi, NV = {0}, UV; = L*(R)
2. g(t) € V; & g(mt) € Vin

3.gt)eViegt—k) eV

The subspace V; contains all the possible approximations of functions in L?(R) at res-
olution m?. The orthogonal projection of some function f(¢t) € L*(R) into V; is written

as
o]

fv; = Z ¢sk Bk (t)

k=—o0

and

fW —_ Z Z (z)¢(z)

z=1 k=—o00
is the orthogonal projection of f(t) into W;. Notice that the wavelet coeflicients dg.zlz are
also indexed by z. Here,
$;x(t) = mI2g(mit — k)
where

=ym Y . $(mt— k)
k

and

) (1) \th”qut-) e=1,..,m—1

The function f(t) can also be completely described by the wavelet basis functions as

follows.

m—1 oo o
R IPIPIL e
z=1 j=—o00 k=~o00

A pyramidal algorithm can also be used for calculating the scaling and wavelet coeffi-

cients for higher multiplicity wavelets. The procedure is similar to the case when m = 2.
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That is, the scaling coefficients at some resolution are used to produce the scaling and

wavelet coefficients at the next (lower) resolution. This is done as follows

Cj-1i = Z Ok miCie - (5.12)
k=—00

A= > B i (5.13)
k=—o00

5.9 The Discrete Wavelet Transform of Discrete Data

The previous sections, have made reference to continuous signals f(t). We now diverge,
and begin to discuss the discrete wavelet transform for discretely sampled signals. There
are many similarities between the DWT of continuous signals and the DW'T of discrete
signals. The most notable feature is that the wavelet and scaling coefficients are calculated
in the same way. That is the scaling coefficients ¢; = {¢; 1} at some resolution or level
7, are used to produce the scaling coefficients ¢;_; = {¢;—1 %} and the wavelet coeflicients
d;—1 = {d;-1} at the next lower level j — 1.

The DWT of discrete signals can be likened to filtering procedures. There is one low
pass filter (L) and one high pass filter (H). The low pass ﬁlfer acts as a smoother, which
produces a smoothed version of the data sequence which it is filtering. The high pass
filter acts as a differencing operator which extracts the high frequency components of the
signal that the low pass filter did not captufe. The wavelet coefficients d; = {d;r} are
the outputs of the high pass filters and the outputis of the low pass filters are the scaling
coefficients ¢ - {¢;r}. This filtering procedure is related to the DWT with m = 2. For
any general m > 2 the filtering operations would have one low pass filter, and m — 1 high
pass filters. For the mnoment we relate our discussion to the m = 2 case only. Section 5.10

relates the filter procedure to the DWT with m > 2.

We now proceed to mathematically describe the filtering operations used for obtaining
the scaling and wavelet coefficients of some discrete data vector. To make the jump from
continuous functions to discrete data vectots less impacting, we initially consider data
vectors which have infinite length. The low pass filtering procedure is first introduced,

and is then followed by the high pass filtering procedure.
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- A general filtering operation transforms a vector x into another vector s by

o
§; = Z Leigr (5.14)

k=-co
Here, £ = (...,£_1,40,%1,...) is the vector of low pass filter coeflicients, which also has
infinite length. Let the vector of filter coefficients be stored as rows in the matrix L, such
that in the second row each element in £ has been shifted to the right by one position,
and so on for successive rows. Then, Equation 5.14 can conveniently be described as a

product of a low pa,ss.convolution matrix L and the data vector x, as follows

S_.1 120 Zl EQ T 1
s=| so |=| - 4 6 & - 2o | =Lx. (5.15)

s1 e hg Ay by - Ty

A filter as described in Equation 5.14 is a linear shift-invariant operator. This means if
our input vector x is shifted by some amount, then the output vector s is shifted by the
same amount. Another consequence of filters being shift-invariant, is that each column in
the matrix L from Equation 5.15 is a shift of the previous column. Also, the diagonals of

L are constant, with the £ filling the kth diagonal.

When there is a finite number of filter coeflicients, the filter is called a finite impulse
response (FIR) filter. Another filter of importance is a causal filter. When the filter
coefficients with negative indices are zero, that is, £ = 0 for k£ < 0, we say that the filter is
causal. In this thesis we consider filters which are both FIR and causal. Let Ny denote the
finite number of filter coefficients with nonnegative indices so that €= (£o, 41, ... ,!,Nf_l).

The convolution matrix using a filter which is FIR and causal has the form

. R

é\ e
&
ok

by e Ay, O 0 0

0
L: - 090 f() !.)1 b eNf_g fo*l -0 0
.00 0 & --- ENf_g ENf;g ENf_l 0

In our case, the input vector will be a spectrum which has a finite number of elements. The
number of elements is determined by the number of wavelengths for which the absorbance

or reflectance of a substance has been measured. Finite length data poses a problem
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near the endpoints. To understand this phenomenon consider the following example. Let
x = (2o, =1, - - .,27)T be the input vector to the filter £ = (Lo, 41, ¥€2,43) is defined by four
filter coefficients (N; = 4). The output vector will be calculated by

Np-1
S; = Z Lyivk. (5.16)
k=0

From Equation 5.16, sg, s1, 52,53 and s4 are calculated by

so = Lozo+4liz1 +lozy+ 323

s1 = Looy + £33 + bozs + Lazy

s4 = lozsa+ lizs + Loze + L3z,
Complications arise when s5 is calculated. From Equation 5.16 we then have
s5 = Loxs + L1z + Laxr + L3zs,

"but zg is not defined. In this thesis periodic (circular) boundary conditions are applied,
so that zg = zg and z; = g, or in general if our data vector has length p such that
X = (20,21, .-, Tp-1)T, then z; = z,,;. For details about implementing other forms of

boundary conditions the reader is referred to [128, 107, 14].

Periodic boundary conditions have the effect of wrapping the filter coefficients in the

convolution matrix so that

‘60 Zl ﬁQ EB NP ‘eNf-—l 0 N |
L=1| ©* @ & : : :
e oy 0 0 0 &b
O Ly o e By Iyyr 0 - 000 &
In the case above with x = (zq, z1,...,27)T and £ = (fo, f1, {2, £3) then

Lo & 0, £330 0 0 O
0 fo £ 6 £3 0 0 O
0 0 £y £ £, 43 0 O

0

L-—": O 0 0 ‘€0 ﬁ]_ Eg 23
Is 0 0 0 0 4y £ Lo
fy &30 0 0 0 & £
£y 4y 43 0 0 0 0 £
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The discrete wavelet transform is performed by passing the discrete data vector through
two filters, a low pass and a high pass filter. Together, the two filters form an analysis bank.
The low pass filter is defined by the low pass filter coefficients £ = (Eo,Elv, cooy€Np-1) and
the high pass filter is defined by the high pass filter coefficients h = (hg, hy, . . .,th_l).
The high pass filtering operations are described similarly to the low pass filtering opera-
tions. Let the output of the high pass filter be denoted by w, then

Nj-1
w; = Z hTipk
k=0

‘The high pass convolution matrix has the form

ho hi hy hs 3 T | R
H= oo | : o :
hy hs -+ -+ hy 0 0 o 0 he My
hy hy - -+ hnp2 ANy 0 oo 00 ke

The sizes of I and H are influenced obviously by the size of the input and output vectors.
Assuming the number of elements in input and output vectors is the Same, then L and H
must be square matrices with the number of rows and columns equal to the length of the

input and output vectors.

A problem evolves from passing a spectrum through a low and a high pass filter — there is
twice the amount of data, but not twice as much information. In terms of feature extraction
where our goal is to reduce the data whilst retaining the majority of information, we are
definitely heading in the wrong direction. Fortunately, this problem is easily overcome
and the solution is simple. The filtered sequences are decimated. This means every
second element in the sequence is deleted, or, stated another way, the filtered vectors are
downsampled by two. The symbol ({ 2) will be used to indicate such a procedure. For
example (| 2)s = (s, 52,54, - -, Sp—1) where p is an even number. The same effect can be
achieved by dropping every second row in the convolution matrix. In the previous example
with x = (20,21, .- ., :E7)T and £ = (Eo,El,EQ,Eg)T we would then have

by 4 £, 243 0 0 0 O

10 0 4y 4 £ L3 0O O
(+2)L= 0 0 0 0 L & £, 4
EQ 123 0 0 0 0 EO El

The low pass filter coefficients have been shifted horizontally by 2 (=m) positions from

the previous row.
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The filtering operations which have been discussed so far are

s = Lx
w = Hx
When downsampling occurs we have
12)s = (12)Lx {(5.17)
(2w = ((2)Hx. (5.18)

It is convenient if we define the following notation to avoid the (| 2) symbols

2

<)
f

(

12
~ (2L
)
)

s

(2w
= (12H

O & O
Il

then, Equations 5.17 and 5.18 become
¢ = Cx (5.19)‘

and

d = Dx, (5.20)

respectively. From here on we shall assume that the low pass and high pass filtering
procedures incorporate the appropriate downsampling routines, so that C and D are now

the low pass and high pass filter matrices.

The DWT of discrete data is obtained by iterating the low pass and high pass filtering
operations on the scaling coefficients ¢. Let J € Z™ denote an arbitrary positive integer
x = (g, %1,...,%p~1)" are considered to be the scaling coefficients ¢; at the highest level
in the DWT. When x passes through the analysis bank we have two new sequences ¢ and

d. It is convenient if the subscript J — 1 is given to ¢ and d such that

ey = Cx=Ccy

dj_1 - D.X:CCJ.
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The elements in ¢j—1 = (¢7-1,0, €J=1,1,- - .’CJ_l’:ZZZ__l) and dy_y = (dj-1,0, d7=1,1, - -» d‘]__l,g_l)
now have two subscripts. The first subscript is simply the level of the filtering procedure
and the second subscript is the element number in the vector. The number of elements
in ¢y and dy_; is p/2 which is half that from the previous level. The next level of

sequences is obtained by filtering the smoothed data sequence cy_; as follows
cj-2 = Cjyicy (5.21)
d_]__z - D_]__l Cr-1- (5.22)

Notice that subscripts have been assigned to the matrices C and D. This is necessary
since whilst C and D will follow the same basic ‘wraparound’ pattern from one iteration
to the next, their dimensions will change in accordance with the dimensions of ¢ and d.

In general the DWT from any level 7 to 7 — 1 can be defined by

c;1=Cjcy

dj-1=Dje¢;
forj=J,J—1,...,J — maxXy, + 1 where max;,, is the maximum number of levels in the
DWT.
The summation equations,
Nj—1
Cj-1,i = Z 2kCj itk (5.23)
k=0
N1
dj_15= Z hrcigivk- (5.24)
k=0

for which the DWT is based can also be used quite useful in the construction of C; and
D ;- Periodic boundary conditions as discussed earlier in this section continue to be applied
so that

Cik = Cjoit+k

i = djoipk-
Note the similarities between the DWT of discrete data using Equations 5.23 and 5.24
with the DWT of continuous functions using the recursion formulae in Equations 5.10

and 5.11. Both the discrete wavelet transforms (of continuous and discrete data) make

use of the equivalent pyramidal algorithm.
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Figure 5.3: Pictorial representation of a 2 band DWT for a signal which has
been sampled 8 times.

Figure 5.3 provides a pictorial description as to Row the wavelet coeflicients (and scaling
coefficients) are calculated for some discretely sampled signal x = (2o, 21, - - . z7) T . Initially,
all the data c3 are passed through the low and high pass filters to give the scaling c;
and wavelet dy coefficients at the next lower level. As one progresses down the tree,
the number of elements in each of the bands is reduced by half. The refiltering of the
scaling procedure occurs for 3 cycles, that is, the number of levels nievels, in this example
I8 Mievels = MaXje, = 3. Whilst J could be some arbitrary integer we prefer to to set
J = ceiling (log p/ log m).

For future reference, band(j, 7) will indicate the 7th band 7 € (0, m — 1) at the jth
level bf the DWT. The band at the top of the tree is band(3,0). At the next lower level,
the bands will be labelled as band(2,0) and band(2,1) and so forth until the lowest level
where the bands are denoted by band(0,0) and band(0,1) (see Figure 5.4). Note that for
the two band DWT at a given j, the scaling coefficients will be contained in band(j,0),

and the wavelet coefficients will be stored in band(j, 1).

Figure 5.5 shows the effect of performing the DWT on an artificially generated spectrum.
The spectrum contains 256 points and consists of a sine curve with a period of two, sampled

over —m to m, a block pulse, and another sine curve which has a period of 5 over the same
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rigure 5.4: Labelling of the bands in the DWT.

interval —m to 7. The DWT is shown for the first six levels (=8,7,6,5,4,3), when there are
only 8 coefficients in the bands. The origihal spectrum in band(S,O) undergoes a low pass
filtering process (which includes subsampling) to give the scaling coefficients in band(7,0).
The original spectrum also undergoes the high pass filtering (and subsampling) process to

give the wavelet coeflicients which lie in band(7,1).

- Next, the scaling coefficients in band(7,0) are then passed through the low pass and
high pass filters to give the scaling coefficients in band(6,0) and the wavelet coefficients
in band(6,1). The same procedure continues with the scaling coeflicients from band(6,0)
being filtered to give the scaling coefficients in band(5,0) and the wavelet coefficients in
band(5,1). This process could continue for 8 (=maxjey) in which case there would be one
scaling coefficient and one wavelet coefficient. For display purposes only the first six levels

are shown.

As one moves down the tree, the filtered signal in the scaling bands become smoother
and smoother. The low pass filtering process can be likened to a smoothing procedure
followed by decimation (i.e. subsampling). The wavelet bands highlight the information

which has not been captured by the scaling bands.
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Figure 5.5: 2-band DWT perforimed on a generated spectrum to level three.
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Figure 5.6: Another presentation for a 2-band DWT performed on the generated
spectrum to level three.
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The components with the highest frequency are the first to be removed from the scaling
coefficients and captured by the wavelet coefficients. Consider for example the scaling
coefficients in band(5,0) and Band(AL,O). Traces of the sine curve (which had a period of
5) are almost undetected in the scaling coeflicients, whilst the remains of the sine curve
sin(2t) are slightly more distinct. However, the most noticeable feature is the remains due

to the block pulse.

In Figure 5.5 the wavelet and scaling coefficients were plotted against their index, which
represents the element number of the coefficients in the respective ¢ and d vectors. The
plots appear somewhat continuous since the points in the plot have been joined. Figure 5.6
shows another way in which the scaling and wavelet coefficients can be displayed. Line
segments proportional to the value of the scaling and wavelet coeflicients are plotted at
there respective index.

Now that some insight has been given to the DWT performed on a generated spectra,
we present an example of the 2-band DWT applied to a spectrum which is similar to those
analysed in this thesis. Figure 5.7 shows the effect of performing the DWT on a single
spectrum for the levels j = 8,7,6,5,4,3. Again, the first six levels have been chosen for
display purposes only. The original spectrum which has been sampled 2% times lies in
band(8,0). It can be seen that the wavelet coefficients at higher levels extract information
about the smaller peaks, while the wavelet coefficients at lower levels in the tree, extract

information pertaining to the larger, more significant peaks of the original spectra.
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Figure 5.7: Two-band DWT for a spectrum to six levels.
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5.10 The m—band Discrete Wavelet Transform of Discrete
Data

Similar recursion formulae for calculating the scaling and wavelet coefficients can be de-
rived for the m~band DWT of discrete data as those derived for the DWT of continuous
function using higher multiplicity wavelets. Recall that when higher multiplicity wavelets
were introduced in Section 5.8 there was one scaling function defined by one set of low
pass filter coefficients, and m — 1 wavelet functions which were defined by m — 1 sets of
high pass filter coefficients. The DWT with higher multiplicity wavelets on continuous
data corresponds to performing the DWT on discrete data using a filter system which
contains one low pass filter and m — 1 high pass filters. This is referred to as a m—band
DWT [127] of discrete data. For the m-band DWT, the downsampling rate is by a factor
of m. This corresponds to shifting the filter coefficients in each row of the filter matrices

by m. This is explained further in the example presented next.

A 3-band DWT for the spectrum x = (zo,21,...,zs) is shown in Figure 5.8. There
is one low pass and two high pass filters producing one set of scaling (or smoothed)
coefficients and two sets of wavelet (or detailed) coefficients. As before, to go from one
level to the next, only the scaling coefficients are filtered and, the number of coefficients
in each band is reduced by one third when moving from one level to the next. For this

example, Nevels = MaXjey = 2.

Following the same notation as introduced earlier, band(j, 7) will be referred to as the
7th band 7 € {0,1,...,m — 1} at the jth level 5 € {J,J — 1,...,J — maxje, + 1 of the
DWT. The band at the top of the tree is band(2,0). At the next level the bands from left
to right are referred to as band(1,0), band(1,1) and band(1,2). Similarly, the bands in the
last level of the DWT are band(0,0), band(0,1) and band(0,2).

In previous sections, the DWT, has been described by using a single convolution matrix
for the low pass filtering operation, and a single convolution matrix for the high pass
filtering operation. Now that we have several high pass filters it is necessary to introduce
a convolution matrix for each high pass filter. For the case m = 3 and say N; = 6 the

filter coefficient matrices which decomposed the original data at level 3 to the next lower
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Figure 5.8: A 3-band discrete wavelet transform.

level 2, would be represented as follows

Lo £1 f9 £3 f4 65 0 0 O
Co = [0 0 0 2 6 & & & f
b Ly L5 0 0 0 & £ Lo
ARSI AN SO S 1S
DO = |0 0 0 AW AL ZD RO RO RO
R RP pM 0 0o o A R RN
S S A QR 3 1 O A I
DP = o 0o o AP KD AP AP pP P
RP RP KD 0 0 0 AR P A

and the scaling and wavelet coefficients at level one in each of the bands would be calculated

by

c; = Cjeq
aM = pPe,
= DgZ)Cz

In general, the m-band DWT from some level j to the next lower level 7 — 1 is performea
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using

cj-1 = Cjg

d.si)l = DEZ)C] Zzli"wm_l'

In summation notation one has

Np—1

Giori = O LiCimitk (5.25)
k=0
Np-1

i = S hPmir 2=1,.,m 1. (5.26)
k=0

(5.27)

The periodic boundary conditions have

Cik = Cimitk

%) = ¢¢)

sk = Cimitk
These operations can be considered equivalent to the discrete wavelet transform of a

continuous signal using higher multiplicity wavelets.

5.11 The m-Band Discrete Wavelet Transform of a Discrete
Data Set

Our applications involve performing the m-band DWT (m > 2) for each bbject vector
in a data set and then uéing the wavelet (or scaling) coefficients as features for some
multivariate modelling method. The m-band DWT has previously been described for
a single data vector, but it is more convenient to redefine this using a slight change of
notation. Let xU](7) be a column vector containing the coefficients in band(j,7) of the
.D_W"T, so that for a given 7, the scaling coefficients will be stored in xU1(0) and xUl(r) will
be a vector of wavelet coeflicients for 7 € {1,...,m — 1}. The DWT from level j to level

7 — 1 is then described by the matrix operations

-1y = ij[j] (0)

x-1(z) = DY) z=1,...,m—1.
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The DWT from level j to level j — 1 for each spectrum is then described by

xU-1) = C,;xXU(0)

xU-lz) = D§Z)X[j](0) z=1,....m—1.

where XUl(7), is the matrix containing the coefficients for the objects which would lie in
band(s,7). Or more specifically, if xgﬂ (1) denotes the coeflicients in band(j, 7) obtained
for object x; to level j then, this vector will form the ith column in XUI(7). The original

data matrix would be represented by X[/1(0).

It is interesting to note that when the DWT is performed on an entire data set, the
scaling coefficients tend to be more correlated than the wavelet coefficients, particularly at
higher levels. We already know that spectral data suffer from being highly correlated, and
since the scaling coefficients are similar to smoothed versions of the original spectra, then
the scaling coefficients are likely to inherent the same high correlation structure. Table 5.1
was constructed to provide the reader with some idea about the correlation structure of
the data in the scaling and wavelet bands of a 2-band DWT for a spectral data set which

contained 100 spectra and had p = 512. The columns in Table 5.1 are indicative of

Level: the level of the discrete wavelet transform. (The original data would be at

level 9).

e Number> 0.7: the number of correlation coefficients whose magnitude is greater
than 0.7.

o Mean: the mean of the absolute value of the correlation coefficients.

Variance: the variance of the absolute value of the correlation coefficients.

The number, mean and variance calculations are compared for the scaling and wavelet
coefficients at the various levels of a 2-band DWT. This information is also displayed
graphically using boxplots in Figure 5.9. The middle line indicates the positioning of the
median, and the width of the box is proportional to the number of observations. Since
the number of scaling and wavelet coefficients is reduced from one level to the next, then

so do the number of correlation coefficients which can be calculated.
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Scaling Coefficients Wavelet Coefficients
level | number>0.7 mean variance | number>0.7 mean variance
8| st 0.39  0.09 5 0.15  0.00

7 427 0.39  0.09 5 0.15 0.00
6 98 0.38 0.09 9 0.21 0.07
5 21 0.34 0.08 13 0.33 0.17
4 2 0.30 0.06 10 0.50 0.34
3 0 0.35  0.05 1 0.51 0.36°

100

Table 5.1: Summary statistics for the correlation coefficients of the scaling and
wavelet coefficients of a spectral data set.
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Figure 5.9: Boxplots obtained from the correlation coefficients discussed for

Table 5.1.

5.12 Filter Coefficient Conditions

We have shown that it is possible to obtain the discrete wavelet transform of both contin-

uous functions and discrete data points without having to construct the scaling or wavelet
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functions. We only need to work with the filter coefficients. One may begin to wonder
where the filter coefficients actually come from. Basically, wavelets with special char-
acteristics such as orthogonality, can be determined by placing restrictions on the filter
coefficients.

Let A denote the matrix of filter coefficients with the first row containing the low pass
filter coefficients and the remaining m — 1 rows the sets of high pass filter coefficients. If
Ny is the number of filter coefficients contained in each filter, then A will be a m x Ny

matrix. A can be partitioned into m x m sub-matrices as follows
14.:: (140 f11 st flq).

Here, ¢ is a non-negative integer such that ¢ = (Ny/m) — 1. If for example, there were
three filters (m = 3), with each filter containing six filter coefficients (Ny = 6), hence
g=26/3—1=1then
Lo bl Ly Ly s
A=| a" BO M AN M- RN
h(()2) h§2) hg2) h:(32) h‘(12) héZ)

could be expressed as A = (4 A;) with

Lo & 4
Ag=| A R A
ACECIEC

and
53 24 85

A= AP R
h:(32) h§2) hé2)

The restrictions which are imposed on the filter coefficients so that a MRA and orthog-

onal wavelet basis exist are summarized as follows [7§]

1. Orthogonality
ZAkA£+i = 501'—[7
k

where dg; = 1 if ¢ = 0, and zero otherwise, I is the identity matrix.

2. The basic regularity condition

ka = /m.
E
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3. The Lawton matrix
M;; = Zekelﬁ-j——mi'
o

must have 1 as a simple eigenvalue. If more sophisticated wavelet and scaling functions

are required, then more constraints need to be placed on the filter coefficients.

In practice it is common to choose a set of filter coefficients from literature such as
the Daubechies or Coiflet filter coefficients, see for example [24]. Chapter 6 considers an
approach for designing the wavelet matrix A with the goal of optimizing some multivariate

modelling criteria.

5.13 Boundary Related Issues

In the exdmples presented so far, the dimensionality of the data has been set at p =
m™3Xtev It is not necessary that the number of variables be some integer power of m.
In the case of periodic boundary conditions one requires that p/m™evels be equal to an
integer, where njeyers is the number of levels in the DWT as defined earlier. For instance,
a 2-band DWT could be performed on data vector with length equal to 20. In this case
the maximum number of levels in the DWT would be maxj, = 2. This is the largest
integer for which p/m{Ze* = 20/2[22* is also an integer. For other boundary conditions
such as zero padding and symmetrié extension this assumption can be relaxed, but in
some cases there is a penalty to pay. If for example symmetric end reflection is applied
to data whose dimensionality is not divisible by m™evels, then exact reconstruction is only
possible for biorthogonal wavelets [14]. The Splus wavelets user’s manual [14] provides a
concise summary of the advantages and disadvantages which should be considered when
implementing a boundary method. As default settings they have implemented the periodic
boundary treatment method for data which has p divisible by m™evels where njevels 1S pre-
specified by the user. When biorthogonal wavelets are implemented and p is not divisible
by m™evels then the symmetric reflection boundary condition is applied. When orthogonal
wavelets for the same scenario are used, then zero padding is applied. For more details
about boundary treatments which can be applied the reader is referred to [14, 105, 128].

Another issue which arises is when there are more filter coefficients than wavelet coef-
ficients. This will usually result at a lower level in the DWT transform. One has to ask

if it is reasonable to have more filter coefficients than data points. As a general rule you
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may wish to define maxjey to be the largest integer such that p/mi23* is an integer greater

than or equal to Ny.

5.14 The Wavelet Packet Transform of Discrete Data

So far we have only considered filtering the scaling coefficients, but it seems perfectly
viable to filter the wavelet coeflicients. The wavelet packet transform (WPT) is obtained
by filtering both the scaling and wavelet coefficients. In this section the discussion on
the wavelet packet transform assumes the m = 2 case. Although it is not necessary, this

discussion on WPT can be simplified if one assumes that p = 27.

The WPT has a tree like structure, where each band in the transform produces two
new children bands at the next lower level. The tree like structure occurs because now the
detailed (or wavelet) coefficients are filtered through a low pass and a high pass filter to
obtain the next lower level of the WPT. This is done in the same way that the smoothed
(or scaling coefficients) are filtered. Figure 5.10 presents the structure of a wavelet packet
transform for some discretely sampled signal x = (zo, 21, . .., 247_;)T = x/1(0). Here the
notation °xV](7) is used to represent the wavelet packet coefficients which occur at the jth
level in the 7th band of the decomposition. The DWT is simply the left most branches of
the WPT.

We now describe how the filtering operations depicted in Figure 5.10 are obtained
mathematically. For some X = (zq, 21, .. .,247_,)T = xI1(0), the (J — 1)st level of the
WPT would be obtained as for the DWT, that is the data is passed through a low pass
and a high pass filter so that

xM=10) = ¢y xN0)

xlV-11) = Dy xN0)

3y

J
each of the bands in the previous level is passed through a low pass and a high pass filter.
At the next level, there will be four bands of wavelet packet coefficients which are obtained

by

aX[J—Z](O) — CJ_1 oX[J——l](O)
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Figure 5.10: Wavelet packet transform with m = 2.

ox[J -2] (1)

oy J—2] (2) —

oX[J—2] (3) —
Continuing to the next level, one then has

x-3(0) =
oxli-3l(1) =
xlI-d(2) =
xlI-3(3) =
oxlI=3(g) =
oxlI=3l(5) =
oxlI-3(g) =

oX[J—S] (7) =

Dy
Cs1

Dy

| Cra

Dy,
Cr-z
Dy

oX[J—-l] (0)
oy [J-1] (1)

oX[J—~1](1).

104

The same-procedure may continue until there is one wavelet packet coefficient in each of
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the bands. As for the DWT, there can be a maximum of J levels in the WPT, the main
difference is that the WPT has 27~/ bands at each level j € J,J — 1,...,0.

When both the scaling and wavelet coefficients are filtered there is a surplus of infor-
mation stored in the wavelet packet tree. An advantage of this redundant information is
that it provides greater freedom in choosing an orthogonal basis. Coifman et al. [20, 143]
introduces a routine called the best basis algorithm which endeavours to find a basis in

the WPT which optimizes some criterion.

5.14.1 The Best Basis Algorithm

The best basis algorithm seeks a basis in the WPT which optimizes some criterion function.
Thus, the best basis algorithm is a task specific algorithm in that the particular basis
is dependent upon the role for which it will be used. For example, a basis chosen for
compressing data may be quite different to a basis that might be used for classifying
or calibrating data, since different criterion functions would be optimized. The wavelet
packet coefficients which are resultant of the best basis, may then be used for some specific
task such as compression or classification for instance.

The first step in obtaining the wavelet packet coefficients from the best basis is to
produce the wavelet packet decomposition tree to some level j,. A criterion measure
for each of the wavelet packet coefficients in each node (of band) in the wavelet packet
decomposition is calculated and is denoted by J( °xUl(r)) for 5 = J,...,,. One starts
at level j, in the tree and works up, gradually deleting the bands of coefficients in the
tree which do not produce sufficiently good criterion measures. This can be formalised.
Initially, the criterion measure for each of the bands of coefficients at level j, + 1 are
compared with the criterion measures for the bands of the coefficients in the descendants
at level j,. Here descendant nodes are used to categorize any nodes which lie beneath
a node at a higher level in the tree. The node which the descendant nodes lie under is
called a parent node. If the criterion measure of the parent node is superior to that of the
descendant nodes, then the descendant nodes are deleted. If the descendant nodes produce
a superior criterion measure, then the descendant nodes are kept and the parent node is
deleted. This procedure continues all the way to the top of the tree and the coefficients

in the best basis will lie in the bands which were not deleted in the elimination process.
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Figure 5.11 summarizes the procedure described above, i.e. how to find the wavelet packet

Obtaining the Wavelet Packet Coeflicients
From the Best Basis Algorithm

Perform WPT for x = (2,...,257_;)7 to level j,.
BB(j,,7) = band(j,, 7) for 7 =0,...,27 7% — 1
FORj=j,-1,...,J
FORT=0,...,2777 ~1
IF J (band(s,7)) < J (BB - 1,2r) UBB(j — 1,27+ 1))
BB(j,7) = band(j, 1)
ELSE BB(j,7) =BB(; — 1,27r)UBB(j — 1,27+ 1)
END
END

© P NS G

Figure 5.11: Best basis algorithm.

coefﬁcients from the best basis algorithm. Step 1 performs the WPT to some prespecified
level j, as described previously. Step 2 then initializes a current best basis or best set
of bands. Initially, the best set of bands (BB) is simply all the bands at level 7, in the
WPT. Steps 3 to 9 then begins to compare the cost measure of the parent nodes against
the current best of bands which are descendants of the parent node being examined.
Consider finding the best basis for some signal x = (2o, 21, - ..,27)T. Once the wavelet
packet transform has been calculated, the next step of the best basis algorithm is to
calculate the criterion measurement for each of the nodes in the wavelet packet transform.
This is done for some task specific criterion. The criterion measurements for each of
the nodes is shown in Figure 5.12, so that J(band(1,3) = 21). The best basis is also
highlighted in Figure 5.12 for some criterion function which is to be minimized. For this
example, jo = 0 since the WPT transform is performed to the lowest level. We now
describe how the best set of bands is formed by working our way up the tree, comparing
descendant and parent nodes.
When j=1:
BB(1,0)={ band(1,0) } since 6 < 5+ 4,
BB(1,1)= { band(0,3), band(0,4) } since 21 > 7+ 11
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43

Figure 5.12: Best basis.

BB(1,2)= { band(1,3) } since 8 < 3+ 12

BB(1,3)= { band(0,6), band(0,7) } since 13 > 7+ 2.

When j =2 |

BB(2,0) = { band(1,0), band(0,2), band(0,3) } since 29 > 64+ 7+ 11

BB(2,1) = { band(2,1).} since 15 < 8 + 7+ 2.

When 7 =3:

BB(3,0)= { band(1,0), band(0,2), band(0,3), band(2,1) } since 43 > 6 + 7 + 11+ 15.
Saito and Coifman [118] use the best basis algorithm to determine a set of wavelet

packet coefficients which are used as input to Fisher’s linear discriminant analysis. This

procedure is referred to as the local discriminant basis algorithm.

5.14.2 The Local Discriminant Basis Algorithm

The local discriminant bases algorithm of Saito and Coifman [118] extends the principles
of the best basis algorithm [20] to allow for the classification of digitized data. There are
several steps involved for selecting the wavelet packet coefficients which are to be used as

input to the particular classification procedure.

For each object x;, the wavelet packet decomposition is performed to some level 7,.

Before the best basis algorithm is applied, Saito and Coifman [118] calculate what they
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refer to as an ‘energy map’. This is done for each class » = 1,2,...,R. The energy
maps have the same structure as the wavelet packet transform, hence the same indices
will be used to locate items within the energy map (or tree). If eg]) (1) denotes the energy

coefficients in band(j, ) of the energy map for class r, then,

) . T
diag( mexll ) (xE ) )

const

This represents the sum of squares of the coefficients which occur in the same position
of the wavelet packet tree divided by a normalization constant. The energy maps were
obtained from the data objects which belong to class ». The notation OXEJ(E‘ )(T) are the
wavelet packet coeflicients band(j, ) of the WPT produced from the object vector Xi(r)-

Once the energy maps have been constructed, one can then begin to find the wavelet
packet coefficients which correspond to the best basis. Saito and Coifman describe three
criterion functions which can be used to find the best basis. These criterion functions are

based on entropy and can be used to represent how differently vectors from different classes

are distributed (see also Section 6.3.1). The criterion assigns a discriminatory measure to
0i,7) = 7 (B ey (7))

to each node or band in the wavelet packet transform. The wavelet packet coetticients
which correspond to the best basis for discrimination give the optimum measure of O

across the entire tree.

Note that in many cases it is necessary to choose a subset of the wavelet packet coeffi-
cients, since the number of wavelet pack.et coeflicients corresponding to the best basis is
still equal to the dimensionality of the original data vector. Saito and Coifman mention
that one way of selecting a subset might be to select the wavelet packet coeflicients (from
the best bands) which have the largest ratio of the between-groups variance to the within-
groups variance as described in Section 4.1.1. Alternatively, one could select the wavelet

packet coefficients based on the entropy criteria.
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Adaptive Wavelets

6.1 Introduction

There exists an abundant variety of wavelets which are defined by their respective filter
coefficients. These are readily available for the situation when m = 2, and include for
example the Daubechies wavelets, Coiflets, Symlets and the Meyer and Haar wavelets.
The fundamental problem to overcome is deciding which set (or family) of filter coefficients
will produce the best results for a particular application. In practice, several families of
filter coeflicients may be triaHéd, and the family which produces the most desirable results
is used. It can be advantageous however, to design your own task specific filter coefficients

rather than using a predefined set.

In this chapter, it is demonstrated how the filter coefficients can be designed to .suit
almost any general application. The goal is to design the wavelet matrix A which optimizes
some specified modelling criterion relevant to a given multivariate prediction model, such
as regression or discriminant analysis. Instead of optimizing over each of the m x Ny
elements in A, we make use of the factorized form [137] of a wavelet matrix and the
conditions placed therein to reduce the number of parameters to be optimized. Since the
filter coefficients gradually adapt to the application at hand, the procedure for designing
the task specific filter coefficients is referred to as the adaptive wavelet algorithm (AWA).
The adaptive wavelet algorithm forms part of an integrated feature extraction procedure
since the features are repeatedly updated so they conform better to some multivariate

statistical procedure.

109
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Previous applications involving the optimization of wavelets include the work performed
by Telfer et. al. [133] and Szu et. al. [130]. Telfer et. al. [133] consider optimizing the
shift and dilation parameters of the discretization of a chosen wavelet transform, while
3zu et. al. [130] sought the optimal linear combination of predefined wavelet bases for
she classification of speech signals. In both papers the wavelet features are updated by
adaptively computing the wavelet parameters and shape. This is a form of integrated
feature extraction which also makes use of neural networks. Sweldens [129] also considers
a lifting scheme for constructing biorthogonal second generation wavelets. Our method is
made distinct because the wavelet is designed from its humble beginnings. It also allows
for the general m-band wavelet transform to be utilized, as well as the more common
2-band wavelet transform.

Since the number of coefficients in the DWT is equal to the number of wavelengths
in the original spectra, it is necessary to select a subset of wavelet coefficients. In our
implementation, a single band of coeflicients at some level in the DWT is selected. The
band of coefficients produced for each spectrum are then supplied to the statistical proce-
dure. The modelline criterion for optimizing the wavelet matrix is also based on the same
coeflicients.

‘We now consider in more detail the factorized form of a, wavelet matrix, and show that

A can be constructed from some set of normalized vectors, denoted by uq,...,u,, and v.

6.2 Factorization of Wavelet Matrices

Recall from Section 5.11, that the wavelet matrix A can be partitioned into m X m sub-
matrices as follows A = (Ag, A1,...,A4,). Provided that the orthogonality condition:

>k AkA;‘f_,_i = 0p;I is satisfied, the wavelet matrix can also be written in the factorized

form [137]
A=QuUF;0-..0F,. (6.1)

The symbol O denotes the “polynomial product” which is defined by
(Bo B, ... Bp——l)D(CO Cyo... Os——l) = (Go Gy ... Gp-{—s——Z)
with
Gy = ZBkCi~k-
k
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The tactors
Fi=(RI-R)) (6.2)
where R; is a projection matrix and @ = ) . A; is an orthogonal matrix.

If for example, m = 3 and ¢ = 2 then A = (A A; A) with each A; having dimension
4 x 4 thus, A has size m X [m(g+ 1)] = 3 x 9. Assuming the orthogonality condition is

satisfied then

A = QOF.0F,
= QD(RI I—RI)D(RQ I—RQ)

= [QR Ry Q(R;—2RiRy;+ Ry) Q(I — Ry)(I - Ry)].

Essentially, we strive for representations of @ and each projection matrix R; (for 7 =

1,...,9). First consider the representation of Q.

The regularity condition Y, £r = +/m, places a constraint on the first row of Q. The
regularity condition is equivalent to setting the first row of @ to 1/+/m 1L where 1,,
denotes a m X 1 column vector of ones. The remaining m — 1 rows are calculated ensuring
the orthogonality of @ is maintained. This is satisfied if the last m — 1 rows are calculated
by (I — 2vvT)T ® D where v is a normalized vector, T' is an upper triangular matrix
with diagonal elements T3; = ¢ — m and off-diagonal elements equal to 1. The symbol ®
indicates a form of element by element scalar multiplication across two matrices such that
BoC =G — B;;C;; = G;;. This scalar product of T with some matrix ID normalizes

the rows of T'. The m x m orthogonal matrix @ is partitioned as follows,

17 1
Q= (6.3)
(I -2vvT)T®D

Now consider the projection matrices. A symmetric projection matrix of rank g can
be written B = UUT where U,.x, Is a matrix with orthonormal columns. For the
wavelet matrix to be non-redundant, the ranks of the projection matrices must form
a monotonically increasing sequence [137], that is the rank(R;) < rank(Rp) < --- <

rank(R,). For simplicity, we restrict the ranks of each projector matrix to be 1, and so,

Ri = uiuT (6 4)

K

where u?ui = 1.
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The following example illustrates how A with m = 3 and ¢ = 2 can be constructed.
The example begins by defining the column vector v of length m — 1 and two columns

vectors uy and wg both of length m. Let

v = (—0.7918,-0.6107)7
up = (—0.3873,-0.9097,0.1497)7

Uy = (—0.9062,0.1674,0.3884)T

First, consider calculating the symmetric projectors R; = ulu? and Ry = uqul.

R = 0.3523  0.8276 -—0.1362 —-0.1517  0.0280  0.0650

0.1500 0.3523 —0.0580 0.8212 -0.1517 —0.3520
and R2 =
—0.0580 —0.1362  0.0224 -0.3520 0.0650 0.1509

Now consider calculating @. The first row of Q is (1/v/3,1/+/3,1/+/3), and the remaining
two rows are calculated by (I — 2vv?)(T ® D) where
-2 11 1/+/(6) 1//(6) 1/4/16) )
TOD =
© (7o 2 1) (Uive We ve

B —0.8165 0.4802 0.4802
- 0 —0.7071 0.7071

o p [ —02539 —0.9671
I 2w “(—0.9671 0.2541 )

which together give

Q=1 02073 0.5802 —0.7875

0.5774  0.5774  0.5774
0.7896 -0.5745 —0.2151

Now consider forming the wavelet matrix A. Using the factorized form of the wavelet

matrix one has

A = QOF,0F,

then substituting for @, Ry and R, one arrives at the following result for A.

0.1542 -0.0285 —0.0661 0.1316  0.6257 —0.0456  0.2917 —0.0198

A= 0.1690 -0.0312 -0.0724 0.3027 0.6566 -—0.1179 -0.2643 -0.0451 -0.5972

—0.0430  0.0079  0.0184 0.8258 —0.3336 —0.3569  0.0069 —0.2488
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or
0.1542 —0.0285 -0.0661
Ag= 0.1690 -0.0312 -0.0724
—-0.0430 0.0079 0.0184
0.1316  0.6257 —0.0456 0.2917 -0.0198  0.6891
Ay = 03027 0.6566 —0.1179 Ay =1 —0.2643 -0.0451 —0.5972
0.8258 -0.3336 —0.3569 0.0069 —0.2488  0.1234
We have now discussed how A can be constructed from the normalized vectors uy, .. ., uq
and v. Initially, uy,...,uq and v are randomly assigned elements from the uniform dis-

tribution. The optimization routine then proceeds to update the elements of these vectors
so that some modelling criterion can be optimized. We describe the different modelling

criteria for discriminant and regression analysis in Section 6.3.1 and 6.3.2, respectively.

6.3 Criteria Measures for Optimization

The adaptive wavelet algorithm can be used for a variety of situations, and its goal is
-reflected by the particular criterion which is to be optimized. In this thesis, we apply the
filter coefficients produced from the adaptive wavelet algorithm for discriminant analysis
and regression analysis. It was stated earlier, that the dimensionality is reduced by select-
ing some band(j,,7,) of wavelet coefficients from the discrete wavelet transform. It then
follows that the criterion function J will be based on the same coefficients i.e. XUel(r,).
Some suitable criterion functions which are to optimized for the various statistical proce-

dures are discussed next.

6.3.1 Discriminant Criterion Functions

If the filter coeflicients are to bev used for discriminatory purposes, then the criterion
function (which is referred to as a discriminant criterion function) should strive to reflect
differences among classes. In this section three suitable discriminant criterion functions
are described. These discriminant criterion functions are Wilk’s lambda (J4), entropy

(JE), and the cross-validated quadratic probability measure (Jevqpm)-
Wilks Lambda

The Wilks’ A criterion can be used to test the significance of the differences between group

centroids [132]. A smaller value for A is preferred since this indicates a larger significance.
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Wilks’ A is the ratio of the determinant of the within covariance matrix to the determinant

of the total covariance matrix and is defined to be

| Sw |
| St |

| Sw |
| S+ Sw |

A

where the total covariance matrix Sy = Sp + Sw is the sum of the between (SB) and

within (Sw) covariance matrix.
Entropy

Saito and Coifman [118] discuss a cross entropy measure which can be used to measure
how differently vectors are distributed. Let ((;y and {(;) be vectors from classes 1 and 2
respectively. If the elements in ¢ (and ¢ (2) @re nonnegative and sum to unity, then cross

entropy is-defined by

V4
| G
Ecross(C(l)a C(z)) - § gz(l) log E% (65)
=1 *

where p = 1engfh(§ (1)) =length({()), i.e. dimensionality of vectors. Equation 6.5 is not
symmetric, that is the measure of discrepancy for Ecross(C(l),C(z)), will be different to
that for Eiross(C (2) e (1)). For our purposes we prefer to use a symmetric criterion which

is defined in [118] as

Esym (C(l); C(Q)) = Ecross(C(l)a C(z)) + Ecross (C(2)7 C(l))

Measuring the distinctness of several vectors from different classes, involves calculating
Esym for each combination of vectors. Call this entropy measure the total entropy Frios.

For example, the total symmetric entropy for { (1) C(z) and C(3) is calculated as follows
Erot(C1): €(2), €(3)) = Boym(C1)s C(2)) + Boym(€1): C(3)) + Boym(C(2)r $(3))-

It is necessary to construct a single vector which in some way is representative of
the classes, this could for instance be a mean vector. In Saito and Coifman [118], the
represéntative vector from each class is an energy vector. More specifically, define the
class energy vector of the wavelet coefficients from band(j, ) as

. diag (XY} (r)) (xV! (r))T
P () r)

e (1) =
(r) const
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and if the wavelet packet coefficients are being used then

P (xGn) (xBn)”

€

r=1,...,R.
const B

The denominator is a normalization constant. The numerator is'simply the sum ot squares
of the wavelet coeflicients from either the DWT or WPT which occur in the same position
of the wavelet trees, where the DWT or WPT has been performed for objects belonging

to the same class. The discriminatory criterion function is then

To (eB)(r) = Buoe (B (1), relly()
= 33 Bayml(e(), el ()
I rird#l

Cross-Validated Quadratic Probability Measure (CVQPM)

The cross-validated quadratic probability measure (CVQPM) assesses the trustworthiness
of the class predictions made by the discriminant model. The CVQPM ranges from 0 to
1. Ideally, larger values of the CVQPM are preferred, since this implies the classes can be
differentiated with a higher degree of certainty. The CVQPM was previously discussed in
greater detail in Section 2.8. The CVQPM criterion function based on a band of coefficients
XUl(r) would be defined as follows

: 1< ; .
Jovapm (Xm(T)> = > ag (), ).
=1
where

aq (), i) = 5+ i (v | (- )—~zp_l( ).

6.3.2 Regression Criterion Functions

A suitable criterion function for regression analysis should reflect how well the response
values are predicted. In the adaptive wavelet algorithm, the criterion function considered
for regression is based on the PRESS statistic and is then converted to 4 cross-validated

R-squared measure as discussed in Section 3.6.
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Cross-Validated R-Squared
The cross-validated R-squared criterion function is defined as
Jovesq (XV/(r)) = 1 — PRESS/TSS
where the TSS and the PRESS statistic are calculated by
1SS = S (i - 77
i=1

and

PRESS = » (v — §-4)°,
i==1

respectively. The actual regression model used for predicting the response is
. T
7= (xU(n) b,
6.4 The Adaptive Wavelet Algorithm

The algorithm shown in Figure 6.1 summarizes the adaptive wavelet algorithm. Step 1 of
the algorithm sets values for the parameters m,q, 7, and 7, and Step 2 initializes v and
U, ..., Ug. Steps 3-6 go about constructing the filter coefficient matrix A, so that the m-
band DWT can be performed based on the filter coefficients in A. This is done in Step 7
to level j,. The coefficients XUel(7,) are then extracted in Step 8, and the multivariate
modelling criterion J (XUa] (7o) is calculated for the extracted data. Step 9 assesses if the
stopping criterion of the algorithm has been reached. The stopping criterion are discussed
further at the end of this section. If the stopping criterion has not been reached, then
the parameters v and {u;}7_, are updated and the algorithm proceeds to Step 3. If some
stopping criterion has been reached, then the algorithm proceeds to Step 10 where the
Lawton matrix condition is verified. Provided Conditions 1 and 2 of Section 5.12 hold,
then the Lawton matrix condition will not be satisfied for exceptional degenerate cases,
thus the Lawton matrix is verified after the adaptive wavelet has been found. Finally,
the multivariate statistical procedure can be performed using the coefficients X bel (70)-
The optimizer used in the adaptive wavelet algorithm is the unconstrained MATLAB
optimizer [4], for which the default algorithm is the quasi-Newton method which alsc

incorporates a mixed quadratic and cubic line search procedure.
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Figure 6.1: The adaptivé wavelet algorithm.

Before applying the adaptive wavelet algorithm, values for m, ¢, j, and 7, need to be
specified. There is no empirical rule for determihing these parameters. In fact, the only
way to know which values will be the best is to try all of them. To reduce the labour
of this intensive task, some heuristics for choosing appropriate parameter values can be

suggested.

First consider some heuristics for choosing the values m and ¢. The value of m deter-
mines the number of bands in the DWT and the downsampling factor, so m is chosen such
that p/m{/=4o+1) is an integer value. Since m combines with ¢ to determine the number
of the filter coefficients (N = m(g + 1)) another constraint is placed on m so that Ny
does not become too large. Similarly, a constraint is placed on ¢ for the same reason. It is
preferred that the number of filter coefficients be less than 25. The analyses which follow

in proceeding chapters typically use 12 or 16 filter coefficients, since experimentation has
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revealed this to be adequate.

Now, consider selecting values for j, and 7,. These parameters simultaneously deter-
mine the band(j,,7,) and hence the coefficients X[j"](*ro) for which optimization of the
discriminant criterion is based. The coefficients Xl (7,) are later used as inputs to the

multivariate statistical method.

The valﬁe for j, determines the level of the DWT that the spectra are to be decomposed.
A value for j, should be chosen such that p/m(J‘j°+1) which is the number of coefficients in
band (j,, 70), is suitable (not too large) for classification. Each of the appropriate values of
Jo should be tested. To perform this task, a value for 7, is also required. To ensure the best
Jo énd 7 combination, each of the appvropriate values of 7, should be individually tested
with each value of 75. To reduce this computational burden, we have chosen to select 7, as
the band which gives the largest J <XU°] (’7’0)> at initialization. It is recommended that if
one suspects the basic shape of the data will be useful for classification, then optimization

over the scaling band may prove worthwhile.

The discussion so far has not eluded to the various criterion which can be used for
deciding when the adaptive wavelet algorithm should cease updating the parameters
v, Uy, ..., U;. Based on tolerance settings which control the convergence of the algo-
rithm, the algorithm may halt when the optimal value for the modelling criterion has
vbeen achieved or when a preset number of iterations of fhe optimization routine has been
reached — which ever occurs sooner. Of course stopping the algorithm after a prespecified
number of iterations does not ensure an optimal value will be produced, but does assist
in the practicai experimentation of the model.

When searching for optimal values, there is always the issue of whether or not a global
or local optimal solution has been found. Unless the problem is continuous and has only
one optimal point, there can be no guarantee that a global optimal value has been found.
It is suggested in [4] that starting the optimization routine from different starting values

may assist in overcoming this problem.

6.5 Example

To obtain a better understanding of the adaptive wavelet algorithm, we apply its concepts

to a spectral data set. The goal is to assign the spectra to one of several predefined
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categories. 'I'he adaptive wavelet is then designed for a discriminant analysis task. In this
example the classifier used is Bayesian linear discriminant analysis. The training spectral
data [118] contains 20 spectra in each of five classes and the test set also contains 20
spectra per cla,ss.’ The dimensionality p of the data (i.e. number of variables) is 512. The
five classes represent different kinds of minerals, and this data set is subsequently referred

to as the mineralogical data set and is discussed in greater detail in Section 7.2.2.

In this example, the parameters m,q and j, were set at 4,3 and 3, respectively. Op-
timization was based on the coefficients X[*}(7) which gave the maximum J (XBI(r)) at
initialization where 7 € {0,1,2,3}. Three discriminant criterion functions were considered,
these were Jp, Je and Jevgpm- The results for each of the criterion functions are displayed
in Tables 6.1. Here the classification rates of the individual bands at initialization and at
completion of the algorithm are shown. Note that the same starting parameters for v, u;
and ug have been used for the implementation involving the different modelling criteria,
hence the same results occur at initialization for each of the criterio_n functions Ja, J¢

and Jevqpm- The asterisk indicates which band optimization was based upon.

T 0 1 2 3 J
Initialization Train 97 96 97 97 In,Tey Tevgpm
Test 90 90 91 88
Termination Train 98 96 95 100* Tn
Test 91 89 88 90*
Termination - Train 97 94 94* 97 Je
Test 86 -89 90* 87
Termination Train 100* 98 96 95 Tevapm
Test 96* 92 89 87

Table 6.1: The percentage of correctly classified spectra, using the coefficients
{XBl(1)} for 7 = 0,...,3 at initialization and at termination of the adaptive
wavelet algorithm. The discriminant criterion functions were Wilk’s Lambda,
symmetric entropy and the CVQPM.

For the Wilk’s Lambda criterion, optimization was based on band(3,3), while the en-
tropy criterion optimized over band(3,2). The CVQPM criterion optimized over the scaling
band(3,0). Some features which we might expect from the adaptive wavelet algorithm, is
that at termination, the band which optimization was based would outperform the other

bands, at least in terms of the percentage of correctly classified training objects. This is
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the case with the CVQPM and A criterion, but is not so, for the symmetric entropy cri-
terion. In defence however, band(3,2) for the symmetric entropy does produce the largest
percentage of correctly classified objects for the testing data, and has not overfitted as
significantly to thé training data as perhaps the A criterion function. Overall, for the
results presented in Table 6.1, the CVQPM seems to be performing most adequately. It
is the only criterion function which has improved the test classification rate from those
obtained at initialization. One reason for the success of the CVQPM, maybe due to the
fact that optimization and hence classification is based on scaling coefficients. Since one
can observe from Figure 7.2 which shows some sample spectra of the mineral data, that
perhaps information about the basic shape of the data might be potentially useful. For
this reason, the optimization routine using the Wilk’s Lambda, and symmetric criterion
functions was repeated, this time forcing optimization over'the scaling band. These results
are summarized in Table 6.2, where for ease of comparison, we have reproduced the same

results from Table 6.1 for the percentage of correctly classified objects for Jovqpm.-

T = 0 1 2 3 J
Initialization Train 97 96 97 97 I JEy Tevapm
Test 90 90 91 88
Termination Traln 100* 95 96 96 T
Test 91* 89 36 90
Termination Train 96* 94 85 91 JIE
Test 92* 90 76 37
Termination Traln - 100* 98 96 95 Tevapm
Test 96* 92 89 87

Table 6.2: The percentage of correctly classified spectra, using the coefficients
{XBl(r)} for 7 = 0,...,3 at initialization and at termination of the adaptive
wavelet algorithm. Optimization was based on {XF(0)} and the discriminant
criterion functions were Wilk’s Lambda, symmetric entropy and the CVQPM.

Optimization over the scaling band did improve the results slightly for the Wilk’s
Lambda and symmetric entropy criterion, but these criterion functions were not able

to improve upon the results previously obtained with the CVQPM criterion function.



Chapter 7

Classification Applications

7.1 Overview

In this chapter, different strategies are investigated for classifying spectral data. A strategy
may refer to the particular classifier utilized such as Bayesian linear discriminant analysis,
or a feature extraction technique. A strategy may even refer to the combination of feature
extraction techniques with a particulaf classifier.

As an initial step to a discriminant analysis, one would generally experiment with the
original variables, and then perhaps try other kinds of features. In this chapter we initially
supply the original data to the classifiers and then investigate the performance of the
discriminant techniques using wavelet coefficients as features. We use standard wavelet
filter coefficients from the Daubecvhies family and filter coefficients which are derived from
the é,da,ptive wavelet algorithm (AWA).

It should be mentioned that the goal of this chapter is not necessarily to find the best
discriminant model. Rather, we would like to investigate the effect of wavelet coefficients
when used as features for discriminant techniques, as opposed to the original variables. The
application of the AWA involves the use of an integrated feature extraction method. Whilst
much emphasis will be placed on numerical measures which reflect the assignment accuracy
of the discriminant strategies, we will also qualitatively assess if wavelet coefficients can
help us understand more about the group structure of the data as well as regions which

may contain useful discriminatory information.
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Data Set Class1 Class2 Class3 Class4 Class 5 | Total
Seagrass Train 55 55 55 - - 165
Test 34 34 34 - - 102

Mineral Train | 20 20 20 20 20 100
Test 20 20 20 20 20 100

Paraxylene  Train 25 25 25 - - 75

Test 25 25 25 - - 75

Butanol Train 21 7 - - - 48

Test 21 - 26 - - .- 47

Table 7.1: Description of the spectral data sets used for classification.

7.2 The Data Sets

Four spectral data sets will be used for investigating the various classification procedures.
Each data set initially contains 512 variables (i.e. p = 512). The data sets will be referred
‘to as the seagrass (s), mineral (m), paraxylene (p) and butanol (b) data. The number of
training and testing spectra in the group categories is listed in Table 7.1 for each set of

data. A further description about the data is now presented.

7.2.1 Seagrass Data

The training seagrass data set contains 165 digitized spectra, for which log 1/reflectance
was measured for the 512 wavelengths 400,404, ...,2444 nm. The data consists of three
classes of seagrass species — Halophila ovalis (class 1), a mixture of Halodule uninervis
and Halodule pinifolia (class 2) and Halophila spinulosa (class 3). The training data
comprises of 55 spectra in each group and the testing data has 34 spectra in each class.
Figure 7.1 shows five sample spectra from‘ each of the classes. This data is particularly
relevant to environmental scientists investigating the eating habits of dugongs,A a whale
like mammal, whose diet. constitutes a substantial proportion of seagrasses. The same
data is also important for taxonomic purposes. The seagrass data was provided by Lem

Aragones and Dr Bill Foley, from the Department of Zoology at James Cook University.
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Figure 7.1: Five sample spectra from the seagrass data.
7.2.2 Mineral Data

Thé mineral data was provided by Dr Danny Aswen, from the Department of Earth
Sciences at James Cook University. Thermineral data set which has undergone the hull
quotient transformation as described in Section 4.2.1, contains 100 digitized spectra, for
which absorbance was measured at the 512 wavelengths 1478,1480,...,2500 nm. The data
consists of five mineralogical groups — amphﬂolites (class 1), calsilicates (class 2), granite
(class 3), mica (class 4) and soil (class 5). The training and testing data comprise Qf.
20 spectra in each of the classes. rFigure 7.2 shows five sample spectra from each of
the classes. With the exception of the soil spectra the rock daf:a, exhibit some within
variation particularly at the peaks of the spectra. Whilst it could be worthwhile to seek
some transformation such as the SNV transformation which may assist in dampening the
variation, we elected to leave the data in the hull quotient format only, and compare the

discriminant techniques on this data as it is presented.

The development of automated classification models for the discrimination of miner-
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alogical spectra is important to geologists for obvious practical and economic reasons.
-Experienced geologists may be able to distinguish among various minerals by observing
the position and shapes of certain peaks at different wavelengths. The presence of noise
and lack of experience can however, distort ones judgement. In these situations, an auto-

matic discriminant model could be of great value to a geologist.
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Figure 7.2: Five sample spectra from the mineral data.

7.2.3 Paraxylene Data

The paraxylene data was kindly provided by Professor Massart at the Pharmaceutical
Institute, The Free University, Brussels. The data was produced by Dr Wim Penninckx
at the same institute. The training paraxylene data set contains 75 digitized spectra, for
which absorbance was measured at the 512 wavelengths 1289,1291,...,2311 nm. The data
consists of three groups. Pure paraxylene (class 1), paraxylene plus 10% orthoxylene (class
2) and paraxylene plus 20% orthoxylene (class 3). The training and testing data comprise
of 25 spectra in each of the classes. Figure 7.3 shows five sample spectra from each of the

classes.
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This data set is important for quality control procedures in pharmaceutical science.
When drugs are being devised, it is possible for impurities to form in the substance.
Production rates of such drugs can be increased if there are relatively quick, nondestructive
techniques which can be implemented for detecting levels of impurities which have formed

in substances.
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Figure 7.3: Five sample spectra from the paraxylene data.

7.2.4 Butanol Data

The butanol data was accessed from Professor Massart and Wu Wen at the Pharmaceu-
tical Institute, The Free‘University, Brussels. The training butanol data set contains 48
digitized spectra, for which absorbance was measured at 512 wavelengths in the range
of 1200 nm to 2400 nm. The data consists of two groups. Pure butanol (class 1) and
butanol containing different concentrations of water (class 2). Class 1 in the training set
contains 21 spectra and class 2 in the training set contains 27 spectra. Class 1 in the test
set contains 21 spectra and class 2 in the test data has 26 spectra. As for the paraxylene

data, this data set also relates to the detection of impﬁrities. Figure 7.4 shows five sample
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spectra from each of the classes. The exact wavelength number for each absorbance value

is unavailable. For this reason the horizontal axis is labelled with wavelength indices.
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Figure 7.4: Five sample spectra from the butanol data.

7.3 Discriminant Analysis Based on the Original Variables

In this section, the original variables are the features which are inputted to the discrim-

inant techniques BLDA, BQDA, FDA, PDA and RDA. For PDA and RDA, no feature

selection (i.e. dimension reduction) was performed. The set of grid values representing

the combination of (a, b) pairs trialled are listed below. Recall that a € [0, 1], controls the

degree to which the pooled covariance matrix should be used, and b € [0, 1] determines

the degree to which S, (a) is shrunken toward a multiplier of the identity matrix in the

RDA model.
a
0.00 0.25 0.50 0.75 1.00
0.00 | (0.00,0.00) {0.00,0.25)  (0.00,0.50) (0.00,0.75)  (0.00,1.00)
0.25 | (0.25,0.00) (0.25,0.25)  (0.25,0.50) (0.25,0.75)  (0.25,1.00)
b 0.50 | (0.50,0.00) (0.50,0.25)  (0.50,0.50)  (0.50,0.75)  (0.50,1.00)
0.75 | (0.75,0.00) (0.75,0.25)  (0.75,0.50)  (0.75,0.75)  (0.75,1.00)
1 (1.00,0.00)  (1.00,0.25)  (1.00,0.50) (1.00,0.75). (1.00,1.00)

The default settings (described in the code of Hastie [60]) were used for PDA and FDA,

where the regression model used in FDA was BRUTO which accommodates a variable
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selection routine. The variables selected for BLDA and BQDA were based on a forward
stepwise selection strategy and will be now referred to as SBLDA and SBQDA, respectively.
Throughout this section, bold type setting will be used to identify the highest classification

rates calculated from the testing data for the various models in a particular table.

Before presenting the results for FDA, PDA and RDA based on the original data, we
would first like to explain how the stepwise procedures were implemented. Three forward
stepwise strategies which will be referred to as CF1, CF2 and CF3 were applied to each

of the data sets, and are described in greater detail below.

e CF1: The CF1 procedure starts with an empty subset and at each step adds the
variable (or wavelength) which produces the largest increase in the correct classi-
fication rate (CCR). Since the CCR is a discrete measure, there may be instances
when several variables give the same significant increase in the CCR. Should such
a situation arise, then the variable (from the set of tied variables) which gives the

largest quadratic probability measure (QPM) will enter the model.

o CF2: The CF2 procedure starts with an empty subset and at each step adds the
variable (or wavelength) which produces the largest increase in the quadratic proba-
bility measure. Since the QPM is a continuous measure, the event of a tie is unlikely
to occur. In the event of a tie you could randomly select the variable, but for con-
venience we chose to use the variable which had the smallest wavelength, since this

is automatically done in the Matlab programming language.

e CF3: The CF3 procedure starts with an empty subset and at each step adds the
variable (or wavelength) which produces the largest increase in the cross-validated
quadratic probability measure. The same tie-breaking mechanism as CF2 is imple-

mented.

The same stopping rule was used for each of the stepwise strategies CF1, CF2 and CF3.
The procedures cease to enter variables into the model when one of the following stopping

¢riterion is reached:

o The change in the correct classification rate is less than 1/n where n is the number

of samples in the data set. That is, from one iteration to the next of the stepwise
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routine, the inclusion of another variable does not improve the correct classification

rate by more than 1/n.

e The correct classification rate reaches 100%. At each iteration, both stopping criteria
are checked, and if one of the stopping criteria has been met, the stepwise procedure

will not enter any more variables.

Data SBLDA _ SBQDA
CF1 CF2 CF3 CF1 CE2 CF'3
Seagrass Train 99.39 100 99.39 100 100 100
Test 100 100 100 - 97.06 97.06 97.06
dimension 3 8 6 6 6 6
Mineral Train 99 100 100 100 100 100
Test 86 87 88 92 90 93
dimension 5 5 5 3 3 3
Paraxylene | Train 98.67 100 100 100 100 100
Test 78.67 89.33 87.33 80 68 78.67
dimension 9 7 7 6 6 7
Butanol Train 87.50 87.50 87.5 100 93.75  89.58
Test 78.22 72.39  72.39 86.60 68.09 76.60
dimension 3 3 3 7 3 4

Table 7.2: Correct classification rates (%) for the stepwise procedures.

Table 7.2 shows the correct classification rates the stepwise procedures. The numbers
which appear in bold face identify the highest classification rates based calculated from
the testing data for each for the stepwise procedures CF1, CF2 and CF3. The correct
classification rates have been separately highlighted for SBLDA and SBQDA. In the event
that two strategies produce the same (highest) testing classification rate, the forward
method which utilizes the least number of variables is highlighted. If the strategies then
have the same number of variables, the particular method highlighted will have the highest
testing quadratic probability measure. Also shown is the resulting dimension or number
of variables in the stepwise modes. Table 7.3 shows the variables in the order which
they were selected by the stepwise models. For the seagrass data it is reasonable for
one to be skeptical about the selection of variables 1 and 3 by SBQDA-CF2. Concern
arises since these variables (or wavelenghts) lie close to the ends of the spectra, and also

because, SBQDA-CF1 and SBQDA-CF3 did not select these same wavelengths. Likewise,
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Seagrass Mineral Paraxylene Butanol

SBLDA || CF1 CF2 CF3 || CF1 CF2 CF3||CF1 CF2 CF3| CF1 CF2 CF3

153 149 148 || 458 458 458 || 236 417 417 || 377 405 405
476 - 6 6 |l 265 266 266 || 497 380 380 || 470 402 402
416 30 30 | 467 410 411 || 227 464 464 || 127 263 263
8 9 314 444 282 || 63 414 414 '
124 102 || 264 281 445 || 143 187 187

69 66 135 113 198
400 -214 161 472
506 512

259

CFl1 CF2 CF3| CF1 CF2 CF3 | CF1 CF2 CF3|CF1 CF2 CF3

SBQDA || 141 148 148 | 458 458 458 || 471 417 417 || 145 405 406
69 232 232 | 359 357 356 || 234 380 380 39 402 417
231 70 71 199 424 351 || 470 226 226 || 405 420 402

182 1 181 411 198 198 | 423 276

71 3 91 413 464 363 38 405

392 221 122 432 227 355 || 402 419
420

Table 7.3: Original variables selected by SBLDA and SBQDA.

some concern may arise from variable 6 being selected by SBLDA-CF2 and SBLDA-CF3.
However, since two stepwise methods selected this variable at an early stage in the stepwise

routine, i.e. in the first three steps, there is perhaps less cause for concern.

We now compare the performance of each of the classification methods SBLDA, SBQDA,
FDA, PDA, and RDA. The correct classification rates and quadratic probability measures
for the training and festing data are displayed in Table 7.4 and Table 7.5, respectively.
The best results based on the performance of the test sets have been typed in bold face.
Figure 7.5 was produced to facilitate interpretation of Tables 7.4 and 7.5. Only the
classification rates and quadratic probability measures based on the testing data have
been displayed in this figure.

The seagrass data tends to have better classification results than the remaining data

“sets. The mineral data are the next easily classified. The butanol and paraxylene data

seem to be more difficult to assign the spectra into their appropriate classes.
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Data SBLDA SBQDA FDA | PDA RDA
Seagrass Train 100 100 98.18 | 96.97 99.39
Test, 100cp; 97.06 ¢cpa | 99.02 | 95.10 99.02
Mineral Train 100 100 100 100 100
Test 88 ¢r3 93 crs 95 100 95
Paraxylene  Train 100 100 100 86.67 100
~ Test 89.33 cr2 | 80.00 ¢p: 86.67 | 81.33 100
Butanol Train 87.5 100 75 43.68 87.50
Test || 78.22 cp1 | 86.60 cpy | 70.21 | 43.75 | 87.23
Table 7.4: Correct classification rates (%)
Data SBLDA | SBQDA | FDA PDA RDA
Seagrass Train 0.990 1.000 0.987 | 0.978 0.994
Test 0.997 0.973 0.990 0.968 0.986
Mineral | Train 0.997 0.997 1.000 1.000 1.000
Test 0.904 0.942 0.990 | 1.000 0.956
Paraxylene  Train 0.997 0.984 1.000 0.706 1.000
Test 0.908 0.837 - | 0.876 0.699 1.000
Butanol Train 0.906 0.994 0.826 0.767 0.888
Test 0.845 0.779 0.828 0.765 0.881

Table 7.5: Quadratic probability measures

In terms of the actual discriminant methods, no method performs the best for all of the
data sets, although RDA performs quite well overall. PDA produces the highest test CCR
for one data set — the mineral data. For the butanol data, PDA performs quite poorly.

The performance measures for the low dimensional classifiers is much more diverse.

Analysis of the quadratic probability measures reflect a similar outcome as that of the
correct classification rates. One interesting feature to note however, is that, for the seagrass
and mineral data, FDA and RDA produce the same test classification rate, but in both
instances the QPM for FDA is higher than that for RDA. This indicates that perhaps
the class assignments made by FDA have been made with greater certainty than the class
assignments for RDA. Another point of interest arises from the seemingly optimistic QPM
value for the application of PDA to the butanol data. The correct classification rates are
quite low, yet the QPM measures whilst smaller compared to the other QPM measures

for butancﬂ, may still seem a little high. It is a phenomenon that the QPM can have a
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Figure 7.5: Correct classification rates (CCR) and quadratic probability mea-
sures (QPM) for the seagrass (s), mineral (m), paraxylene (p) and butanol (b)

data.
tendency to produce overly optimistic values [1]. Another issue arises for PDA, with the
paraxylene data. Now the QPM measures are quite low especially when compared to the

QPM measures for SBLDA, which produced similar test classification rates to PDA.

Not shown in Table 7.4 are the grid values which produced the results for RDA. The
setting (1.00,0.25) was used for the seagrass, mineral and butanol data. For these data,
this indicates that a ‘pooled covariance matrix is preferred to one that is not pooled.
Conversely, the combination (0.25,0.25) used for the paraxylene data which weighs more
heavily the individual class covariance matrices as opposed to the pooled class covariance

matrix.

The next section explores the use of wavelet coefficients as features for discriminant

analysis.

7.4 Discriminant Analysis Based on Wavelet Coefficients

In this section we investigate the use of wavelet (and scaling) coefficients as features for
classification. Before embarking on the feature extraction procedure we explore the effects
of the DWT when applied to the spectral data sets described in Section 7.2. Here, the
DWT is applied using filter coefficients from the Daubechies family.
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After examining the wavelet and scaling coefficients (and their backtransformations)
of our data, feature selection techniques will be applied to the coefficients of the DWT
where the filter coefficients are again, from the Daubechies family. Filter coefficients from
the adaptive wavelet algorithm (AWA) will also be be used for calculating the coefficients
from the DWT.

7.4.1 Exploring the DWT

One item of interest when using wavelet based features for classification, is whether the
wavelet coeflicients or the scaling coefficients should be used. Sometimes, a combination
of the two may also prove to be worthwhile. To help us better understand what the
wavelet and scaling coefficients represent, Figures 7.6-7.9 have been produced. For reasons
outlined in Section 5.11, it is worthy to remember that the scaling coefficients, particularly

from a higher level in the DWT, exhibit strong collinearity.

Figures 7.6-7.9 show two components — (i) the scaling and wavelet coefficients from
DWT and (ii) the reconstructed spectra produced for the respective bands of coefficients
in the DWT. In each of the figures, the wavelet transformation has been performed on a
sampled spectrum from each group category. The sampled spectra used are the same as
those in Figures 7.1- 7.4 and are overlayed in the plots. The DWT has been performed
using the Daubechies filter with Ny = 16 to level 3, which is when 8 coefficients remain
in the scaling and wavelet bands. The scaling coefficients for each of the levels (8 through
to 3) are shown in the first column. The next column shows the reconstructed spectra
produced by backtransforming the scaling cqeﬁicients (the wavelet coefficients at the same
level have been set to zero). Column 3 shows the wavelet coefficients for each of the spectra
for the levels 8 through to 3. The final column, displays the reconstructed spectra produced
by backtransforming the wavelet coefficients (the scaling coefficients at the same level have

been set to zero).

Consider the fourth row of plots in Figure 7.6. The fourth row corresponds to level
5 of the DWT. The coefficients in band(5,0) are the scaling coefficients which have been
plotted against their index. The reconstructed spectra in the next column were obtained
by thresholding the wavelet coefficients in band(5,1) to zero and then performing the

inverse DWT on the scaling coefficients and the thresholded wavelet coefficients. The



CHAPTER 7. CLASSIFICATION APPLICATIONS 133

original (unthresholded) wavelet coefficients at level 5 in the DWT are shown in the third
column of row 5 in Figure 7.6. The final column of the same row shows the reconstructed
spectra which results when the inverse DWT is performed on the wavelet coefficients from
band(5,1) and on the thresholded scaling coefficients frofn band(5,0) which have been set
to zero. The reconstructed spectra, illustrate in an approximate sense, the spéctra which
would be obtained, when the coefficients are linearly combined with their respective basis

functions.

Coefficients potentially useful for classification should display some (between class) vari-
ability for the sampled class spectra. For the seagrass data this is visible for the scaling
coefficients at most levels and the wavelet coefficients at lower levels in the DWT. Likewise,
for the mineral data, it would appear that both the scaling and wavelet coefficients may
provide useful information to the classification procedure. -The variation with the paraxy-
lene and butanol data are very slight. Some minor differences in the scaling and wavelet
coeflicients can however be detected for‘the butanol data. It is important to remember
when inspecting these figures, that only a single spectrum from each class has been used
in the construction of the plots, and that spectra from the same class can exhibit some
slight within-class variability.

The aim of this section was to allow the reader to visualize what the various scaling and
wavelet coefficients from the different levels represent. The next section applies various

wavelet based feature selection strategie

7.4.2 Banded Discriminant Analysis

In this section weiconsider two banded approaches. The first which we refer to as BBLDA is
banded Bayesian linear discriminant analysis (BBLDA), and the second which we refer to
as BBQDA is banded Bayesian quadratic discriminant analysis. Both banded procedures
use all of the coefﬁcients from the same band in the wavelet transform, as input to the
particular discriminant method, i.e. BLDA or BQDA. The discriminant analysis is then
based on some set of coefficients XVI(r) at some level j, belonging to some band 7. The
number of coeflicients in band(j, 7) should be small when compared to the sample size so
that an ill- or poorly-posed situation is avoided. The banded approach is a very simple

procedure for feature selection of the wavelet coefficients. Previously, Bos [8] has used a
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Figure 7.6: The DWT and inverse DWT performed on the seagrass data.
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Figure 7.7: The DWT and inverse DWT performed on the mineral data
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Figure 7.8: The DWT and inverse DWT performed on the paraxylene data.
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Figure 7.9: The DWT and inverse DWT performed on the butanol data.
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similar approach, except that the bands of coefficients were supplied to neural networks.

In the banded procedure for this section the scaling X[I(0) and wavelet XBI(1) coef-
ficients from level 3, and the scaling X[(0) and wavelet X[4(1) coeﬂicienfs from level 4
have been used for classification. At level 3, there are 8 coefficients in each of the bands,
while level 4 has 16 coefficients in each of the bands. The classification results for BBLDA
and BBQDA when applied to the wavelet coefficients produced for each of the data sets

of Section 7.2 are summarised in Tables 7.6 and 7.7, respectively.

Data xBloy  xBl)  xMo)  xH(1)
Seagrass Train 98.79 99.39 100 100
Test 100 98.04 100 99.02
Mineral Train 97 95 97 98
Test 87 90 94 98

Paraxylene | Train 62.67 68.00 81.33 80.00
Test 50.67 58.67 56.00 61.33
Butanol Train 85.42 87.50 93.75 87.50
Test 82.98 82.98 76.60 87.23

Table 7.6: Classification results for BBLDA.

We first comment on the results for BBLDA. The figures typed in boldface have the
highest (test) classification rate for each of the data. If the same test classification rate
appears for two or more bands, then the figure fyped in bold will have the highest (test)
quadratic probability measure. For the seagrass data each of the scaling bands have out-
performed the wavelet bands, while for t.he mineral, paraxylene and butanol data wavelet
bands have produced better classification results than the respective scaling bands. For
the butanol data the performance between band(3,0) and band(3,1) is relatively marginal

however.

For BBQDA, numerical instabilities arose for the mineral data when 16 coeficients
were supplied to the dassiﬁer. This can be attributed to the fact that for BQDA, the
czlass sample size should be large compared to the dimensionality. For the minéra,l data
there are 20 objects per class which is only marginally larger than 16, hence it was not
possible to 'produce accurate results for this setting. When only 8 wavelet coefficients were
used however there is a 6 per cent improvement in using BQDA as opposed to BLDA.

This is seen for both the scaling (band(3,0)) and wavelet bands (band(3,1)). There is
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Data xBloy xBl1) xH@) xME(1)
Seagrass Train 100 100 100 100
Test 100 99.02 100 100
Mineral Train ||~ 100 100 - -
Test 93 96 - -
Paraxylene | Train 88 86.67 100 100
Test || 66.67 72.00 81.33 76.00
Butanol Train || 89.58  87.50 100 100
Test 74.47 7234  63.83 57.45

Table 7.7: Classification results for BBQDA.

also an improvement in results for the paraxylene data as well. For the seagrass data the
results are comparable to those obtained by BBLIDA. The results for the butanol data
using BBQDA are not as favourable as those obtained using BBLDA.

7.4.3 Stepwise Feature Extraction from the DWT

The DWT will be performed to level 3 using a Daubechies wavelet defined by 16 filter
coefficients. The total set of features consists of the scaling coefficients at level 3, and the
wavelet coefficients at level 3 up to and including the wavelet coeflicients at level 8. These

coefficients constitute the commonly used Mallat’s right hand pyramidal tree.

In this section the stepwise methods SWBLDA and SWBQDA are applied to the wavelet
and scaling coefficients produced from the seagrass, mineral, paraxylene and butanol data.
Fach of the forward stepwise strategies CF1, CF2 and CF3 are applied. The classification

results of the forward stepwise strategies are summarized in Table 7.8.

The boldface type identifies the stepwise procedure producing the highest CCR. If two
or more strategies produce the same “highest” CCR, then the number marked in bold
will have fewer variables. Should both the strategies have the same number of variables,
then the method giving the largest QPM for the testing data will be highlighted. This
procedure is much the same as that performed on the original data, and is done separately
for SWBLDA and SWBQDA. The CF3 procedure tends to be outperforming the CF1 and
CF?2 strategies.

Also of interest is the coefficients which have been selected by the stepwise procedures.

Table 7.9 shows the indices of the coefficients from the DWT which have been selected
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Data SWBLDA SWBQDA
CF1  CF2 CF3 CF1 CrF2  CF3
Seagrass Train 99.39 100 - 99.39 100 100 100
Test 95.10 97.06 98.04 | 97.06 97.06 97.06
: dimension 3 4 3 4 4 4
Mineral Train 99 100 100 100 100 100
Test 97 93 93 89 92 90
dimension 6 5 -6 4 3 4
Paraxylene | Train 100 100 98.67 i 100 100 97.33
Test 69.33 81.33 81.33 | 77.33 78.67 82.67
dimension 7 7 6 6 5 6
Butanol Train 100 85.42 85.42 100 100 91.67
Test 72.34 85.11 85.11 || 68.09 65.57 74.47
dimension 6 6 . 5 5 5 4
Table 7.8: Correct classification rates for SWBLDA and SWBQDA.
Seagrass Mineral Paraxylene Butanol
SWBLDA || CF1 CF2 CF3 ) CF1 CF2 CF3) CF1 CF2 CF3 | CF1 CF2 CF3
62 205 205 51 51 51 209 299 299 || 217 217 217
201 201 201 20 2 2 423 423 381 || 465 155 155
56 419 2 12 6 7 476 282 476 || 318 257 318
265 66 340 456 || 324 75 368 | 427 471 465
501 459 116 || 460 344 389 | 309 260 313
2 358 i 123 486 170 || 257 334
457 409
SWBQDA || CF1 CF2 CF3 | CF1 CF2 Cr3j CrFl CF2 CF3|CF1 CF2 CF3
204 204 204 51 51 51 299 299 299 y 217 217 217
34 34 34 40 3 3 491 491 192 | 465 155 77
202 202 202 | 374 54 164 || 168 197 168 || 118 257 411
14 14 171 § 482 23 243 17 191 || 130 133 334
368 257 450 | 467 433
197 45
L

Table 7.9: Coefficients selected by the forward schemes
SWEBQDA.

for SWBLDA and
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by each of the forward stepwise schemes, for each of the sets of data. The data has been

stored as follows

band(3,0) | band(3,1) | band(4,1) band(5,.1) band(6,1) | band(7,1) | band(8,1)
1:8 " 9:16 17:32 33:64 65:128 | 129:256 257:512

so that the first 8 coefficients are from the scaling band at level 3, while the next 8
coefficients are the wavelet coefficients at level 3. The next 16 coefficients are wavelet
coefficients from band(4,1) and so on. The only set of scaling coefficients which formed
part of the feature set were those contained in band(3,0). Consider for example SWBLDA-
CF'3 applied to the seagrass data. This technique selected coefficients with index labels
of 205, 201 and 2. The indices 205 and 201 refer to the position of the coefficients in
the DWT. Using the table above, we can see that these coefficients are from band(7,1),
while the coefficient with an index of 2, is the second scaling coefficient in band(3,0). Note
that instead of using indices we could have used the two subscipts (7, k) to identify their
positions in the wavelet tree. Instead we chose to use a single number so that one can

quickly compare the indices which were selected.

There is a some variation between the coefficients which have been selected for SWBLDA
by the forward selection schemes CF1, CF2 and CF3, although by examination of Table 7.9

one can see, that the coefficients generally pertain to similar regions of the DWT. A similar

observation can be made for SWBQDA.

Figure 7.10 was produced to help provide some idea where the coefficients in Table 7.9
lie in relation to the bands of the DWT. This was done for each of the data sets, but for
SWBLDA usin.g one selection scheme — CF1, CF2 or CF3. The coefficients selected from
the CF3 forward strategy have been shown for the seagrass, paraxylene and butanol data,

while the coefficients displayed for the mineral data were produced using the CF1 strategy.

 For the paraxylene and butanol data where discrimination appears to be somewhat
challenging, selection of the wavelet coefficients pertaining to a higher level in the DWT
is more predominant. For the mineral data, SWBLDA (CF1) has selected a range of
coefficients from the DWT. With the exception of band(7,1) a coefficient has been selected
from each of the bands constituting the DWT. This indicates that a range of high and low
frequency information is utilized by the stepwise discriminant techniques. There are only

three features which have been selected by the stepwise method SWBLDA (CF3) for the
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Figure 7.10: Coeflicients selected from the DWT by SWBLDA.

seagrass data, where a coefficient from the scaling band and two wavelet coefficients both

from band(7,1).

Next we present the results which were obtained from the LDB algorithm.
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7.4.4 Local Discriminant Bases

In this section a feature extraction method is applied to wavelet packet coefficients. This
procedure is referred to as the local discriminant bases (LD B) algorithm and was previously

discussed in Section 5.14.2.

The wavelet packet transform was calculated to level 3 using the Daubechies filter
coefﬁcients with Ny = 16. Once the wavelet packet decomposition has been formed, it is 4
necessary to determine the best basis from the energy maps. The criterion which we have
used to form the best basis is the symmetric entropy criterion. Figure 7.11 marks the best
basis selected by the LDB algorithm for each of the sets of data. For the paraxylene data,

the selected best basis is the original data.

Once the best basis has been found, it is then necessary to select a subset of wavelet
packet coefficients from the best basis. It was decided to select the 16 wavelet packet
coefficients based on the same discriminant measure which produced the best basis, i.e.
symmetric entropy.

The asterisks in Figure 7.11 show the positions of the 16 wavelet packet coefficients
which were selected frorn‘the best basis and supplied to the classifier BLDA. There is a
tendency for the wavelet packet coefficients to be selected from band(4,0) and band(4,1)
of the WPT. These bands will contain the same coefficients as those in band(4,0) and
band(4,1) from Vthe»DVVT. The wavelet packet coefficients are quite clustered, which is a
likely consequence of selecting the coefficients by a univariate strategy, that is without

consideration given to previously selected features.

The sixteen wavelet packet coefficients with the largest symmetric entropy measures
were then supplied to the classifier BLDA in a top-down approach, that is, the first
1,2,...,16 coefficients were used for classiﬁcation. That is, initially a single wavelet packet
coefficient (with the largest discriminant measure) is supplied to the classifier. Then, the
two wavelet packet coeflicients with the largest discriminant rneasﬁres are supplied to the
classifier. This procedure continues until all 16 coefficients have formed part of the BLDA

model.

Table 7.10 gives the classification rates for the training and testing data for each of

the discriminant data sets where the first 1,..., 16 wavelet packet coefficients have been



CHAPTER 7. CLASSIFICATION APPLICATIONS 144

Seagrass

9

8

7

6

5 ¥

4 % X

sULLLI T T T T T T T T IENNERERRRRRREERENE
Mineral

9

8

7

6

5

4 pmmEc

RN RN AR EEE ERRR AN IR RRRRENRRNARERANR RN RRRREEEENY
Paraxylene

9 = =K O

8

7

6

5

4

s UL T T e L e e e e e e e P e
Butanol

9

8

7

6

5

4 X -

SULLTRL It T LT TRy L T TV TR LTt

Figure 7.11: Selected wavelet coefficients (asterisks) from the best bases.

selected from the best basis, and supplied to BLDA. The numbers highlighted in bold type

have the largest (test) CCR and the fewest terms in the discriminant model.

This application of the LDB approach has followed closely that outlined in [118], the
main difference is that we have used BLDA as opposed to FLDA. There are some issues
final set of coefficients for classification from the best basis, as opposed to searching through
the entire wavelet packet transform. Walczak et. al [141] have compared performance of

feature selection from the LDB and the full WPT using a univariate feature selection
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Number. Seagrass Mineral Paraxylene Butanol

of WPC || Train  Test Train Test || Train  Test | Train  Test
1 74.55  76.47 67 72 || 42.67 41.33 || 72.92 74.47
2 73.33  69.61 87 89 1 48.00 65.33 || 75.00 76.60
3 86.67  86.27 88 90 | 54.67 53.33 || 79.17 80.85
4 93.94 94.12 93 87 || 68.00 62.67 || 81.25 80.85
5 90.91 89.22 93 87 | 69.33 57.33 || 83.33 87.23
6 93.33 91.18 94 85 | 72.00 57.33 || 83.33 80.85
7 98.18  97.06 94 88 || 78.67 77.33 || 83.33 80.85
8 100.00 100.00 96 88 || 78.67 78.67 || 83.33 85.11
9 100.00 100.00 96 88 || 78.67 77.33 || 8542 85.11
10 100.00 100.00 96 88 || 84.00 73.33 || 83.33 82.98
11 99.39  99.02 97 93 | 84.00 72.00 } 83.33 80.85
12 99.39  99.02 97 93 | 84.00 77.33 || 85.42 82.98
13 100.00 100.00 98 91 || 88.00 76.00 }} 85.42 82.98
14 100.00 100.00 98 92 || 89.33 77.33 || 83.33 78.72
15 100.00 100.00 98 92 | 89.33 77.33 || 87.50 76.60

16 100.00 100.00 99 93 || 92.00 73.33 || 87.50  76.60

Table 7.10: Classification performance of the LDB algorithm.

method based on Fisher’s criterion (see Section 4.1.1). For their data, they concluded
that no gain was bought about by the LDB algorithm. On-e advantage for the LDB
algorithm without taking into consideration the time to calculate the best basis, is that
it will be computationally quicker to select coefficients from the bést basis as opposed to
selecting them from the larger set of wavelet packet coefficients. The other advantage is
that it does help to reduce the inter-dependencies that exist between the coefficients in
the parent nodes with the coefficients in the children nodes. Although, a feature selection
procedure which looked at combinations of features, such as stepwise procedure, would

also take into consideration the inter-dependencies between the coeflicients.

7.4.5 Adaptive Wavelet Algorithm

In the previous sections, the DWT has been performed using the filter coefficients from
the Daubechies family. There are many filter coefficients which we could have chosen,
but the Daubechies filter coefficients were chosen since they tend to be documented quite

frequently. There is no reason however, that another set of coefficients could not have
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been used. Of course, the problem which we face is deciding whether or not we might
obtain better results using other filter coefficients. In this section we design our own task
specific filter coefficients using the adaptive wavelet algorithm of Chapter 6. The idea
behind the adaptive wavelet algorithm is to avoid the decision of which wavelet basis we
should select and design our own wavelets to suit the current task at hand, which in this

case is discriminant analysis.

The adaptive wavelet algorithm is applied using several settings of the m,q and 7,
parameters. The particular (m, g, j,) triplets used were (4,3,2), (4,2,2) , (8,1,1), (2,5,3),
(2,5,4), (2,7,3), and (2,7,4). These settings were chosen because (i) they provide suitable
ratios of the dimensionality of the wavelet bands to the sample size and, (ii) so that the

number of filter coefficients is Ny = 12 and Ny = 16. Section 6.4 describes some heuristics

for choosing values for these parameters as well as 7.

The discriminant criterion function implemented by the adaptive wavelet algorithm is
the CVQPM criterion function. A form of banded selection is performed, whereby the
criterion function is calculafed from a band of coefficients Jovopm (X[j](’/")). The same
coeflicients are later supplied to the classifier.

The value 7 is chosen as the band which gave the highest CVQPM value at initialization
for a particular (m,q, j,) triplet. The coefficients in band(j, ) are then supplied to the
classifier. In some cases the aigorithm chose to optimize over a scaling band. This would
occur if the discriminant criterion for a scaling band was higher than that for the wavelet
bands (at initialization). We have discussed earlier that the scaling coefficients may proi/e
to be useful when the basic shape or low frequency event contains discriminatory informa-
tion. If a scaling band (i.e. 7 = 0) were selected for a particular setting, then for the same
(m, g, Jo) settings it was decided to repeat the experiment and optimize over the wavelet
band iiaving the Jargest discriminant measure at initialization.

8 B . L D
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Some stopping rules were applied to the optimization routine.
halted if 2000 iterations of the optimization routine had been performed or sooner if an
optimal value was obtained. For the seagrass data we found it was necessary to have
only 500 iterations, since the discriminant measure was already quite high in the early
stages of the AWA. Whilst having a preset number of iterations does not allow for the

best optimal value to be found, from an applied point of view it is more practical. In
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our experimentations we generally found that the classification rates did not improve very

much, if at all, after 1500 iterations.

The results of the adaptive wavelet algorithm are presented in Table 7.11, also shown
is the number of filter coefficients (Ny), used in computing the DWT and the number
of coefficients (Ncoef) in each of the bands for the respective (m, g, j,) settings. For each
data set the highest CCR based on the testing data, obtained with the least number of
coeflicients is typed in boldface. The adaptive wavelet algorithm performs quite well for
each of the settings for the seagrass data and eventually, the setting (4,3,2) produced the
best results using fewer coeflicients. Quite good results are also obtained for the mineral
data with the setting (2,7,4) for band(4,1). For this setting optimization was initially based
on the scaling coefficients, but when optimization for the (2,7,4) setting was performed
on the wavelet coefficients the results were further improved. For the paraxylene data the
classification performance was generally improved when optimization was based on the
wavelet coefficients. This was not necessarily the case for the butanol data, where for the
settings (2,5,4) and (2,7,4) cla,ssiﬁcationv based on the scaling coefficients improved the test
CCR. by more than 10% when compared to their respective wavelet bands.
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Seagrass |m q j, Nj Neoet 7 || Train  Test
4 3 2 16 8 1] 100 100
4 2 2 12 8 0y 100 99.02

11 99.39 97.06
8 1 2 16 8 11 99.39 99.02
2 5 6 12 8 0y 100 99.02
11 99.39 99.02
25 5 12 16 01 100 100
1} 100 100
2 7 6 16 8 14 99.39 99.02
2 7 5 16 16 1} 100 100
Mineral m q Jo Ny Neer 7| Train Test
4 3 2 16 8 0} 100 96
1 100 92
4 2 2 12 8 0 97 89
1 98 89
8 1 1 16 8 4 96 90
25 3 12 8 1 98 90
2 5 4 12 16 1 99 95
2 7 3 16 8 1 100 95
2 7 4 16 16 0} 100 93
1 99 99
Paraxylene | m ¢ j, Ny Neer 7 | Train Test
4 3 2 16 8 2 )} 94.67 76.00
4 2 2 12 8 2 il 88.00 68.00
8 1 1 16 8 21 97.33 74.67
2 5 3 12 8 0 || 84.00 58.67
11 85.33 66.67
2 5 4 12 16 0y 70.67 50.67
1] 94.67 86.67
2 7 3 16 8 01 7867 61.33
1 il 84.00 74.67
2 7 4 16 16 11 96.00 81.33

Butanol |m ¢ j, Nf Neoer 7 || Train Test
4.3 2 16 8 31 97.92 61.70
4 2 2 12 8 11 97.92 57.45
8 1 1 16 8 211 97.92 7447
2 5 3 12 8 114 93.75 87.23
2 5 4 12 16 01 93.75 82.98

11 95.83 70.21
2 7 3 16 8 1019375 65.96
2 7 4 16 16 0 97.92 85.11
1 97.92 74.47

" Table 7.11: Classification results for the adaptive wavelet algorithm.
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Figure 7.12: Discriminant measure versus iteration for the adaptive wavelet
algorithm.

To demonstrate convergence of the adaptive wavelet algorithm in at least a local sense,
the values of the criterion measure Jocvorm (X[ﬂ (7‘)) have been plotted against the iter-
ation number of the optimization routine as shown in Figure 7.12. This was done for the
setting (m, g, jo, 7) = (4, 3,2, 1) for the seagrass data, the (2,7,4,1) setting for the mineral
data, the (2,5,4,1) setting for the paraxylene data and the (2,5,3,1) setting for the butanol
data. The CVQPM values were initially very high. This is especially the case for the
seagrass data, which is why a maximum of 500 iterations were used in the optimization
routine. For the mineral data the optimization routine halted after approximately 700
iterations. When comparing the output for the paraxylene and butanol data against that
of the seagrass and mineral data, one can see that more work was required by the opti-
mizer to improve the CVQPM measures for the paraxylene and butanol data and both
data sets used 2000 iterations of the optimization routine. The optimization routine will
make several evaluations of the discriminant criterion function before choosing a search

direction. Some of the trialled discriminant criterion values will be quite small and this
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contributes to the sharp drops in Figure 7.12.

In the next experiment we decided to optimize over a scaling band, and a wavelet band,
since sometimes information is needed about the low and high frequeﬁcy events. The aim
was to use at least a 3 band DWT and optimize over a scaling and wavelet band, with the
aim of ‘pushing’ the information which is not useful for discrimination into the remaining
band(s). We opted to use the m =4 band DWT for this experiment With the m = 4 band
DWT, it was anticipated that the noise would be pushed into the two remaining bands.
The adaptive wavelet algorithm was applied to the (m, ¢, j,)=(4,3,2) setting. Now that
optimization involves a scaling and wavelet band (at the same level), we need only to select
the wavelet band at initialization. The discriminant measure was formulated based on the
coefficients from the scaling and wavelet band which produced the highest measurement
at initialization. For the mineral data, the wavelet coefficients X[21(1) were combined with
the scaling coefficients X[?!(0) from the 4 band DWT. For the paraxylene data, the wavelet
coefficients X[?1(2) were combined with the scaling coefficients and for the butanol data,

the wavelet coefficientsX!?(3) were used together with the scaling coefficients.

Data T Train Test

Mineral X[(0) and X™(1) | 100 96.00
Paraxylene X[(0) and X[(2) | 92.00 69.33
Butanol X[P(0) and X(3) | 100 61.70

Table 7.12: Classification results for the adaptive wavelet algorithm where op-
timization was over a scaling and wavelet band for the (4,3,2) setting.

The results from this combined approach are shown in Table 7.12 for the mineral,
paraxylene, and butanol data. The seagrass data was not applied, since the adaptive
wavelet algorithm on a single band already performs quite adequately for this data. Despite
the attempt of using low and high frequency information, the combined approach was less
effective than using the single band approach. This may simply be due to the data not

performing as well for the m = 4 scenario.
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7.4.6 Summary of the Wavelet Feature Extraction Strategies

In the previous sections we have investigated different feature extraction procedures which
involve the application of wavelet (and scaling) coefficients for classification. We have
considered, the banded feature selection procedures BBLDA and BBQDA, the stepwise
methods SWLBDA and SWBQDA, and the LDB and AWA algorithms.

In this section we summarize the results of these strategies and compare how these
methods performed on our discriminant data sets. The correct classification rates for
these procedures are listed in Table 7.13. In the previous sections we elected not to
present details about the quadratic probability measures so as to avoid presenting too many
details. In this section we present the quadratic probability measures for the corresponding
models whose correct classification rates are listed in Table 7.13. The quadratic probability

measures are in Table 7.14. The classification rates and quadratic probability measures

(for the testing data only) are also displayed in Figure 7.13.

Data BBLDA | BBQDA | SWBLDA | SWBQDA | LDB | AWA

Seagrass Train 100 100 99.39 100 100 100
Test 100 | 100 | 98.04cps | 97.06crs | 100 | 100

Dimension 16 16 3 4 8 8

Mineral Train 98 100 99 100 97 99
Test 98 96 97¢cr1 92¢cr2 93 99

Dimension 16 8 6 3 11 16
Paraxylene | Train 80.00 100 98.67 97.33 78.67 | 94.67
Test 61.33 81.33 81.33¢crs 82.67¢crs 78.67 | 86.67

Dimension 16 16 6 6 8 ‘16
Butanol Train 87.50 89.58 | 85.42 91.67 83.33 | 93.75
Test 87.23 74.47 85.11cr3 74.47crps 87.23 | 87.23

Dimension 16 8 5 4 5 8

Table 7.13: Correct classification rates for the wavelet based feature extraction

strategies.

The tabulated results for BBLDA correspond to the largest test CCR for each of the

data sets, similarly for BBQDA. This information was taken from Tables 7.6 and 7.7,
respectively. The results for SWBLDA and SWBQDA were extracted from Table 7.8. For
SWBLDA the results for the CF3 strategy were tabulated for the seagrass, paraxylene and

butanol data, and the results for the CF1 strategy were tabulated for the mineral data.
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Data BBLDA | BBQDA | SWBLDA | SWBQDA | LDB | AWA
Seagrass Train 1.000 1 0.994 1 1 1
' Test 1.000 | 1.000 0.985 0.973 1.000 | 1.000
Dimension 16 16 3 4 8 8
Mineral Train 0.987 |- 0.997 0.991 0.993 | 0978 | 0.99
Test 0.980 0.960 0.973 0.941 0.941 | 0.932
Dimension 16 8 3 3 11 16
Paraxylene | Train 0.866 1 0.982 0.973 0.834 | 0.954
Test, 0.751 0.819 0.866 0.853 0.838 | 0.876
Dimension 16 16 6 6 8 16
Butanol Train 0.918 0.927 0.869 0.957 0.88 | 0.935
Test 0.905 0.866 0.879 0.789 0.883 | 0.890
Dimension 16 8 5 6 5 8

Table 7.14: Quadratic probability measures for the wavelet based feature ex-
traction strategies.
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Figure 7.13: Correct classification rates (CCR) and quadratic probability mea-
sures (QPM) for the wavelet based methods applied to the seagrass (s), mineral
. (m), paraxylene (p) and butanol (b) data.

For SWBQDA the results for the CF3 strategy are presented for the seagrass, paraxylene
and butanol data, and the results for the CF2 scheme are listed for the mineral data. The
results for the LDB model were taken from Table 7.10 and the results for the AWA were
taken from Table 7.11.

‘Whilst the results presented in this section are based on the largest testing correct clas-
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sification rates, in practice it will not be known in advance which particular model will
give the best test CCR, and such solutions require further investigation. Since we are
fortunate enbugh to have independént test sets available, we have decided to compare the
results based on the performance of the testing data but are aware that further investiga-
tion is required to determine, based on some procedure involving the training data only,
which model will have the best test classification rates. Since our desire is to compare
the performance of the best possible models, we feel that the approach adopted herein is

satisfactory.

In Tables 7.13 and 7.14 the largest CCR and QPM based on the testing data have
been typed in boldface. Despite the somewhat limited feature extraction procedure imple-
mented by the AWA as opposed to the more flexible feature extraction procedures which
can be implemented when a predefined family of filter coefficients is used for calculating
the DWT, the results for the adaptive wavelet algorithm are consistently favourable across
each of the data sets and, in terms of both the classification rates and quadratic prbba,bility

measures.

The SWBLDA routines based on the Daubechies scaling and wavelet coefficients also
performs qhite well. The LDB algorithm -performs well for the seagrass and butanol data,
and the BBLDA performs well for the seagrass and mineral data. The only data set which
seemed to perform well under SWBQDA was the paraxylene data.

then examining Figure 7.13 it is interesting to note if the profiles for the CCR, are
followed closely b‘y the profiles for the QPM (for each data set individually). The profiles
for each data set are mostly the same with the exception occurring for the QPM for
SWBQDA on the paraxylene data. The ranking then, of our models with respect to the
classification rate based estimates are similar to the ranking of the models with respect to

their probability based estimates.

7.5 Which Classification Strategy?

This chapter has presented several classification strategies which can be applied to spectral
data. Of course such strategies extend to similar forms of data. Three main approaches

have been presented:
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1. Classification using all of the original data and a high dimensional classifier,

2. selecting features from the original data and applying a low dimensional classifier,

and
3. selecting wavelet coefficients as features and applying a low dimensional classifier.

In the first approach, PDA and RDA were applied to the original data without any prior
feature selection. The second approach applied SBLDA, SBQDA and FDA to the original
data. The third approach which supplied the wavelet coefficients to the classifiers included
BBLDA, BBQDA, SWBLDA, SWBQDA, the LDB and AWA algorithms.

This section investigates which of the these approaches might be more suitable for the
classification of spectral data in general, and particularly to the seagrass, mineral, paraxy-
lene and butanol data. This will be done in two stages. Firstly, the correct classification
rates and quadratic probability measures will be examined for each of the classification
procedures. This performance based assessment is presented in Section 7.5.1. We are also
interested in what a particular classification strategy can tell us about our data. This

qualitative assessment will be given in Section 7.5.2.

7.5.1 Performance Based Measures

In this section a summary of the previous classification results obtained for the original
data and the coefficients from the wavelet transforms is given. Figure 7.14 displays the
correct classification rates for each of the classification strategies, again the information
displayed is calculated from the testing data. The results for the high dimensional methods
PDA and RDA appear at the top of the graphs for each of the data sets. Following
this the results for the low dimensional classiﬁers SBLDA, SBQDA and FDA are shown.
For these methods the features have been selected from the original data. The last six
classification strategies have extracted features from the wavelet coefficients. The methods
shown are BBLDA, BBQDA, SWBLDA, SWBQDA, LDB and AWA. To enable easier
interpretation of Figure 7.14, crosses have been used to indicate the results of the high
dimensional methods likewise, circles have been used to indicate the low dimensional
classification performed on the original data, and the asterisks are indicators for the low

dimensional classification methods based on the coefficients from the DWT. To further
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enhance interpretation of Figure 7.14, the line types have also changed accordingly with

the marker indicators.
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Figure 7.14: Correct classification rates for each of the discriminant strategies.

There are three main items which can be noted from the classification summary.

e RDA tends to outperform the other high dimensional classifier PDA, with the excep-

tion being for the mineral data where PDA outperforms RDA. If one compares RDA

against the low dimensional methods which entail some form of feature extraction

(or selection), then one can clearly notice that RDA also consistently produces high

classification results across each of the sets of data. For the mineral data however,

RDA is outperformed by three of the wavelet based approaches (and PDA).
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o For the classification methods which are based on a subset of the original variables,

there does not appear to be any one approach which consistently performs well.

e Of the classification methods which are based on a selection of the wavelet coeffi-
cients, the adaptive wavelet algorithm consistently produces high test classification
rates. The AWA also tends to produce higher classification rates than the classifi-
cation strategies which involve feature selection on the original variables. The only
exception occurs for the paraxylene data where SBLDA on the original data assigns
89.33% of the observations for the test data to their correct class. ‘The AWA also

compares favourably with the high dimensional classification methods.

e There is no method which clearly outperforms the other methods, although the
AWA does consistently classify a large proportion of the testing objects into their

appropriate class categories.

In deciding which discriminant approach should be applied to the classification of spec-
tral data it is important to identify the main goals of the discriminant procedure, that is
the kind of information which is required. From the results presented in this section, if one
is purely interested in assigning objects to their appropriate classes, then RDA and the
AWA tend to consistently perform well. Sometimes, information other than the percent-
age of correétly classified objects is required. For instance, a common question relating to
the discriminant analysis of spectral data is often posed — “which features are important
for classification?” Some of the cla,ésiﬁcation strategies which have been discussed in this
chapter can assist in answering such questions, while other methods are really only useful
for assigning spectra; to their particular classes. The next section examines any additional
information apart from correct classification rates that can be provided by each of the

discriminant approaches.

7.5.2 Qualitative Assessment

This chapter has focused predominantly on the classification of spectral data. Discriminant
analysis can involve more than just assigning an object into a particular class. In terms of
description there are two main items which are often of interest in discriminant procedures.

One item of importance is to determine which parts of the spectra are most useful for
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discriminating among the various classes. Another item of interest is understanding how
the different groups relate to one another as a whole. This can most easily be visualized

with the aid of discriminant plots.

Some of the discriminant strategies discussed previously will be able to assist in uncov-
ering such information while others will not. We proceed to investigate the qualitative

information which can be obtained from the lower dimensional methods.

For deducing which variables may be important for classification, one typically relies on
the features extraction strategies to determine such information. For example, BLDA may
provide little knowledge as to ﬁhich variables are important, but this classifier combined
with a stepwise procedure can help to identify which variables contain discriminatory
information. |

If feature selection is being performed on the original variables, then it is possible to
deduce the variables which are likely to contain discriminatory information by simply
observing‘ the variables which have been selected. When features other than the original
- variables are used then interpretation of important wavelengths becomes more involved.
For instance, if we are to use wavelet coeflicients, then it becomes slightly more difficult to
say if a particular wavelength is important or not. What one can deduce from wavelet (and
scaling) coefficients is (i) the kind of information which is useful e.g. the high frequency
components or the low frequency components, and (ii) which regions of our original spectra
are usefgl for classification. We now investigate the different approaches which can be used
to highlight information about the discriminatory regions of our spectra. We consider each

approach separately to highlight the capabilies of each strategy individually.
Low Dimensional Classification Using the Original Data

As previously mentioned when feature selection is based on the original data it is interest-
ing to examine the actual features, i.e. wavelengths which have been selected. Figure 7.15
superimposes the wavelengths which have been selected by the stepwise routines SBLDA
and SBQDA. The spectra shown in Figure 7.15 are the same sampled class spectra used
previously in this chapter. Although, SBLDA and SBQDA will often select wavelengths
perta,ining to the same region of the spectra, there exists some variability with respect to

the variables selected. This is not surprising since the variables selected by SBLDA will
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classify using linear boundaries, and SBQDA will dassify using quadratic decision bound-
aries. Recall from Section 7.3 that the classification strategies used for each of SBLDA
and SBQDA is as follows:

Data SBLDA SBQDA

Seagrass CF1 CF3
Mineral CF3 CF3

Paraxylene { CF2 CF1

Butanol CF1 CF1

Also shown in Figure 7.15 is the variables selected by FDA.
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Figure 7.15: Wavelengths selected by SBLDA, SBQDA and FDA.

For the seagrass data in the approximate range of 500 nm to 1300 nm, FDA has selected
variables similar to those selected from SBQDA. It has also selected variables nearer to
the peak occurring around the 1900-2100 nm range. SBLDA selects variables from a
similar region. For the mineral data, there seems to be two main areas of interest — those

around the peak at 1800 nm (FDA, SBLDA) and in the range of 2100 — 2300 nm (SBLDA,
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SBQDA, FDA). The wavelengths selected by SBLDA and SBQDA for the paraxylene data
tend to concentrate around the region of approximately 2100 to slightly over 2200 nm,
while FDA selects wavelengths pertaining to the peaks occurring in the vicinity of 1400
nm, 1600 — 1800 nm and 2150 — 2250 nm. It seems that for the butanol data, SBQDA has
concentrated a selection of wavelengths pertaining to the index near 400. Both FDA and
SBLDA do not concentrate heavily on this region and each select only a single wavelength
from this region. Other areas of interest for the butanol data include the trough near

index 130 (SBLDA, SBQDA) and the minima at index 300 (FDA).

With the exception of the butanol data, FDA had the tendency to select more variables
than either SBLDA or SBQDA. There seems to be some slight differences to the particular
wavelengths selected by SBLDA, SBQDAvand FDA, although the variables selected by

each of the methods often pertain to similar regions of the spectral data.

With FDA it also possible to obtain information about the segregation of the group
cétegories. Since FDA stems from a Fisher-based method, it is possible to obtain dis-
criminant plots. The discriminant plots for the FDA models are displayed in Figure 7.16
where the points in the plots are based on the testing data. The numerals represent their
respective group categories. The seagrass and paraxylene data each have two discriminant
variables, the butanol data has a single discrifninant variable, the mineral data has four
discriminant variables but we have only displayed the first three discriminant variables.

The discriminant plot of the seagrass data forms a v-shape. The discriminant plot for
mineral data has reasonably separated each of the mineral groups. Whilst the discriminant
plot for the paraxylene data show some separation of the three groups, there is obviously |
a great deal of spread in the plot, one can also observe the overlap in the classes for the

butanol data.

We now proceed to discuss the qualitative information which can be determined from
the classification strategies based on the wavelet (and scaling) coefficients. We discuss
separately the output from the banded procedures BBLDA and BBQDA, the stepwise
methods SBLDA and SBQDA, and the LDB and AWA algorithms.

Banded Discriminant Analysis

The banded approach is rather limited in what it can identify as important from the

original variables. This is because the way in which we select the bands is based purely on
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Figure 7.16: Discriminant plots produced by FDA.

the number of coefficients iﬁ the bands. It is necessary that the number of coefficients in
the bands will not make the situation ill- or poorly-posed. What we can of course compare
is if the scaling or wavelet bands produce more desired results, and one can then gain some
information as to whether the low frequency or high frequency information may be more
useful for classification. The coefficients from the bands which were supplied to BBLDA
and BBQDA are shown in Figures 7.6-7.9.

Stepwise Discriminant Analysis .

As for the stepwise methods based on the original data, it is interésting {o determine
which variablés, or wavelet (and scé,ling) coefficients in this case, have been selected. We
now present a figure Whiéh identifies the wavelet and scaling coefficients selected by the
stepwise methods SWBLDA and SWBQDA when the following forward stepwise searches

were implemented:
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Data SWBLDA SWBQDA
Séagrass CF3 CF3
Mineral CF1  CF2
Paraxylene CF3 CF3
Butanol CF3 CF3

For each of the discriminant data sets, Figure 7.17 shows the wavelet coefficients at levels
7 =8 to 7 = 3, and the scaling coefficients at level 7 = 3 of the discrete wavelet transform
for the same sampled class spectra presented earlier. The coefficients selected by the
stepwise procedures are then superimposed on the figures. The dotted lines shows the
coefficients selected by SWBLDA and the dashed lines identifies the coefficients selected
by SWBQDA. Sometimes both methods selected the same coefficients, so to make this
more visible asterisks have also been plotted for the coefficients selected by SWBLDA,
and circles at the coefficients selected by SWBQDA..:

The original sampled spectra are shov&n in the top row of Figure 7.17 where the hor-
izontal axis is labelled in nanometers (this information is not available for the butanol
data). The reason for plotting the original data is to relate the regions of the original data
with the selected wavelet and scaling coefficients. In an approximate sense, if vertical lines
are extended from the asterisks and circles to the original spectra, then where the lines
meet the original spectra will indicate the approximate region which is represented by the
coefficients. This region is wider for the coefficients selected at lower levels of the DWT,

and narrower for the coefficients selected at higher levels in the DWT.



band(8,1)

band(7,1)

pand(s,1) band(4,1)

wanags,y)

band(9,0)

band(6,1)

band(5,1)

CHAPTER 7. CLASSIFICATION APPLICATIONS

162

Seagrass Mineral Paraxy!ene Butanol
o) ) SV
2 2 2
ko] T T
c oy c
@ © ®
el Ke] 0 .
500 1000 1500 2000 1400 1700 2000 2300 ’\1300.1600 ”1900 200 109 200300 409 500
5 oy i PeR! ™ <) BEEYRR I
el T k9] .
C c C
@ - ® © e [ .
0 ¥ 0 Q2 GG
50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
I g o I
. o T 7 g :
[ T T @ : l
-Gt 2 2 2k B
20 40 60 80100120 20 40 60 80 100120 20 40 60 80 100120
N gt g’ g' ‘
WV“ 2 5 G bt
cr c c
g | T g |
Q Ko} o] S
N R 20 40 60
ko) T T
c c c
® 4] ®
Q Q Q
_ . 1020 30
: : W g Mm
T T T
c < oy
®© @ [}
Ko Q 0
510 15 5 10 15 5 10 15
T ko] T
c C c .
® ® o]
0 £ Q - -
2 4 8 8 2 4 6 8 2 4 6 8
S SN /\ S N
ko] . T T :
jy . c cC
g . | g @
o] ¥—0— Q O
2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

Figure 7.17: Coefficients from the DWT which were selected by SWBLDA (as-
terisk) and SWBQDA (circle}.
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Another interesting procedure which can be performed, is to reconstruct the spectra
by backtransforming the coefficients which were selected by the stepwise procedures. The
reconstructed spectra can however be a little difficult to interpret. For instance, the recon-
structed spectra produced from the coeflicients selected by SWBLDA for the seagrass and
mineral data are similar. Their similarity can be attributed to the presence of a scaling
term. If one examines the magnitudes of the reconstructed wavelet terms one can see the
wavelet terms are quite small, and will have a minor effect on the reconstruction process,
if a scaling term is present. When no scaling terms are present, the reconstruction proce-
dure produces spectra which reflect the high frequency components of the spectra. The
reconstructed spectra highlight the information represented by the selected coefficients.
In an approximate sense, the classifiers will utilize the information from the regions of
the reconstructed spectra that are not zero. For instance, SWBQDA performed on the
paraxylene data tends to utilize information around the 1900 nm region (between the two

major peaks) while SWBLDA utilizes the information nearer the two peaks at the regions

1700 nm and 2200 nm.
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Figure 7.18: Reconstructed spectra produced from the coefficients selected by
SWBLDA and SWBQDA.



CHAPTER 7. CLASSIFICATION APPLICATIONS 164

The LDB Algorithm

Another wavelet feature extraction procedure applied is the LDB algorithm. The LDB
algorithm utilizes a wavelet packet transform. Since the coefficients from the wavelet
packet transfor_rn are obtained by passing the data in each of the bands through a low
pass and a high pass filter, it can be more challenging to interpret the coefficients from
the bands in the wavelet packet transform. With the exception of the coeflicients selected
from the paraxylene data (which were the original variables) the coefficients selected from
the best basis produced from the LDB algorithm were mostly from the left hand tree (i.e.
the DWT). Similar methods for displaying and interpreting the coefficients from the best
basis can still be performed. That is the coefficients can be plotted against their index, and
the nonzero coefficients can be backtransformed to produce the reconstructed spectra. To
avoid reiteration we have elected not to produce such plots. Since most of the coefficients
are from the DWT, coefficients from the LDB algorithm can be visualized by the use of
Figures 7.11 and Figures 7.6-7.9.

The AWA Algorithm

We now proceed to the interpretation of the adaptive wavelet algorithm. The AWA
performs a kind of banded selectibn process whereby coefficients pertaining to the band
of the DWT are supplied to the classifier. The high pass (or low pass) filter coefficients
are also constructed based on the classification of these ‘banded coefficients’. We have
previously mentioned that the banded approach is rather limited in what it can identify
as important from the original variables, although it is interesting to identify if the scaling
or wavelet bands produce more‘results that are more desirable.

Figure 7.19 shows the adaptive wavelet coefficients which pr‘oduced the highlighted
results in Table 7.11. Also shown are the reconstructed spectra, which were obtained by
setting the coefficients in the remaining bands to zero, and then backtransforming the

thresholded data.
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Figure 7.19: The wavelet coefficients and reconstructed spectra produced from

the AWA.

The reconstructed spectra are vefy difficult to interpret for the AWA. When the re-
constructed spectra are plotted in colour, the reconstructed spectra for the sampled class
spectra from the mineral data are more distinguishable than presented here. The same

can not be said however for the reconstructed seagrass, paraxylene and butanol data.

Here, one can look for the positions of the wavelet coefficients where they differ the most
for the individual class spectra, and then see where these differences relate (approximately)
~ to the original data. For instance with the butanol data, there appears to be some visible
difference in the 2nd, 3rd and 4th coefficients produced from the sampled spectra. This
indicates that useful discriminatory information might be in the approximate indices of 50
— 250. Again, only a vague interpretation can be provided, because only the coefficients
from a single sampled spectra from each of the classes is shown, and there is likely to
be some variability of the spectra within each of the classes. So whilst some separdtion
is evident for the spectra which we have selected, there is no guarantee that this same

separability can be visualized if other spectra were selected.
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Discriminant plots were obtained for the adaptive wavelet coefficients which produced
the highlighted results in Table 7.11. These are displayed in Figure 7.20. Although the
classifier used in the AWA was BLDA, it was decided to supply the coefficients available
upon termination of the AWA to FLDA, so we could visualize the spatial separation
between the classes. The discriminant plots are produced from the testing data. There
is a good deal of separation for the seagrass data, while for the paraxylene there is some
overlap between ‘the objects of class 1 and 3. The distinctness of the paraxylene data
" appears more evident for the AWA discriminant plots than in the FDA plots of Figure 7.16.
Also, by comparison with Figure 7.16 we can see that Figure 7.20 achieves slightly more

separation for the butanol data.
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Figure 7.20: Discriminant plots produced by from the coefficients produced by
the AWA.

High Dimensional Classification Methods

Consider now the high dimensional classifiers, PDA and RDA. Since RDA stems from
Bayesian classification theory, the main information which can be extracted from a RDA

model is how accurately it can assign objects into the respective classes. Also, by exam-
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ining the parameters (a,b) chosen for the RDA model one can determine how much the
pooled covariance ma,frix has been utilized as opposed to the class covariance matrix, and
thus whether the RDA model is closer to a BLDA model or a BQDA model.

With PDA it also difficult to obtain information about which variables may contribute
significantly to the discrimination of the various groups, but since PDA stems from a
Fisher-based method, it is possible to obtain discriminant plots. The discriminant plots
for the PDA models are displayed in Figure 7.21. The points in the space represent the

testing objects from their respective classes.
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Figure 7.21: Discriminant plots produced by PDA.

For the mineral data, more groups appear to be easily recognized than those obtained
from FDA when applied to the same data. Another interesting features which can be
observed from the PDA discriminant plots is that for the seagrass data, the objects from
class 3 appear in subclusters. The PDA discriminant plots for the paraxylene data is more

scattered than that produced for FDA and AWA.
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7.6 Summary

In this chapter we have investigated several discriminant approaches which can be applied

to spectral data sets. The discriminant approaches which we have considered are:

1. classification using all of the original data and a high dimensional classifier,
2. applying a low dimensional classifier to a selection of the original variables, and

3. applying a low dimensional classifier to a selection of the coefficients from the DWT.

In practice, the particular discriminant method which is to be implemented, will ultimately
depend on the goal of the discriminant analysis. The goals of discriminant analysis are
twofold — to assign objects into a predeﬁned group category, and to understand more
about our data. This may include determining which regions are more important for
discriminating, or how the groups are related, for instance one group maybe much easier
to distinguish from the remaining classes.

We have mentioned that if assignrhent a,ccufacy is the foremost goal of the discriminant
| procedure, then it could be worthwhile to apply RDA and the adaptive wavelet algorithm.
In terms of extracting and interpretting information, the stepwise methods using either
the original data or wavelet coefficients are relatively easy to understand. FDA is also
relatively easy to interpret and has the added advantage of producing discriminant plots.

PDA, RDA, BBLDA, and the LDB and adaptive wavelet algorithms seemed to be less
trivial to investigate which regions contain discriminatory information. PDA however was
able to provide some information about the group structure of the data with the aid of
discriminant plots. Discriminant plots were only available for FDA and PDA since these
methods were based on Fishers linear discriminant analysis. It should be noted however,
that in instances where BLDA was the classifier, discriminant plots may |
duced if the same data which was supplied to BLDA, was also supplied to Fishers linear

discriminant analysis. This was done in Figure 7.20 for the adaptive wavelet coeflicients.

Another item which should be addressed when considering the kind of discriminant pro-
cedure to be implemented is the computational expense which is inherited by the various
methods. Although a comprehensive analysis of the computational complexities for the

classification strategies was not undertaken, we would like to comment about our expe-
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rience with run times of the various procedures. It is our experience that RDA and the
AW algorithm tended to be more computatidnally expensive than the remaining meth-
ods. Perhaps this extra expense, contributed to the models performing quite well overall.
These t§v0 methods involved some form of optimization routine. For RDA, this entailed
finding the optimal (a,b) pairs, and for the adaptive wavelet algorithm this involved the
development of a wavelet basis. The stepwise procedure which used the CF3 forward
stepwise searéh was also computationally burdensome, even when fast updating formulae
were implemented. If the computational time is an issue, then perhaps FDA, or one of the
stepwise methods using a CF1 or CF2 approach could be applied. The DWT is relatively
quick to calculate (faster than the fast Fourier transform), so the stepwise methods could
be applied to the wavelet coefficients with minimal fuss (if a standard wavelet basis is
used).

The next chapter applies regression methods to spectral data sets and follows a similar

format to this chapter.



Chapter 8

Regression Applications

8.1 Overview

This chapter investigates various regression strategies when applied to spectral data of
relevance to the agricultural industry. As for the previous chapter, the word strategy may

refer to a regression method, a feature extraction technique, or a combination of the two.

Following an introduction to the data sets which are analyzed in this chapter, some
regression methods which are commonly applied for the regression of spectral data will
be investigated. This includes the application of partial least squares regression and two
stepwise strafegies. The first stepwise strategy simply enters the original variables into
the multiple linear regression model, while the second is a stepwise procedure applied to
the principal components and is referred to as stepwise principal component regression
(SPCR). Regression analysis using features from the DWT is also investigated. We apply
the DW'T using the defined filter coefficients from the Daubechies family, as well as derived

filter coeflicients produced from the adaptive wavelet algorithm.

The structure and goals of this chapter will follow much the same format as that for the
previous chépter on classification applications. The goals of this chapter are not necessarily
to find the very best regression model, but to investigate the various regression approaches
applicable to spectral data, and to assess quantitatively and qualitatively the advantages

of each.
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8.2 The Data Sets

Two data sets and three responses were used for evaluating the performance of the various
regression procedures. These data sets will be referred to as the sugar and wheat data.
A summary of each of these data sets are presented in Table 8.1. Here the number of
spectra in each training and test set is displayed, as well as the response(s) which are to
be modelled by each spectral data set. Further details about the sugar and wheat data are
provided in Sections 8.2.1 and 8.2.2, respectively. The dimensionality of both data sets is
p=512.

Data Set | Train Test Responses
Sugar 1006 89  brix (b), fibre (f)
Wheat 60 40  protein (p)

Table 8.1: Description of the spectral data sets used for regression.

8.2.1 Sugar Data

The sugar data was supplied by Dr Nils Burding at the Bureau of Sugar Experiment
Station in Gordonvale. The training sugar data contains 100 digitized spectra for which
log 1/reflectance was measured at the 512 wavelengths 916,918,...,1938 nm. The test set
contains 89 spectra. Figure 8.1 shows five sample spectra from the sugar training data
which were used to model the responses, brix and fibre. At 1100 nm there is a distortion
which arises from a changevin instrumentation. One detector is used to measure the
radiation reflected for wavelengths less than 1100 nm and another detector is used to
measure the radiation reflected for wavelengths greater than 1100 nm (inclusively). The

change in receptors gives rise to the jump.
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Figure 8.1: Five sample spectra from the sugar data.

8.2.2 Wheat Data
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Figure 8.2: Five sample spectra from the wheat data.

The wheat data set was accessed from Professor Philip K. Hopke and has previously been
discussed in literature, see for example [77]. The training wheat data contains 60 spectra

for which log1/reflectance was measured at the 512 wavelengths 1100,1102,...,2122 nm.
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The test set contains 40 spectra. Figure 8.2 shows five sample spectra from the wheat

training data which were used to model protein content.

8.3 Common Approaches for the Regression of Spectral Data

This section considers the performance of several regression methods. Multiple linear re-
gression (MLR) is applied using the original variables. Since MLR is considered to be a
low dimensional regression method, it is first necessary to reduce the dimensionality of
the data. This is done by selecting the original variables by a stepwise routine. Principal
component regression (PCR) is also applied where again, a stepwise routine is used to
reduce the dimensionality of the problem by selecting a smaller set of the principal com-
ponents. The stepwise routine implemented for SPCR . is similar to that used for selecting
the original variables for MLR, the main difference for SPCR, is that the stepwise routine
is now selecting principal components as opposed to the original variables. This is essen-
tially MLR using the principal components as features. Much of the literature refers to
this technique as ‘principal component regression’ and this thesis adopts the same termi-
nology. Partial least squares (PLS) regression is also applied. The regression strategies in
this section have each been applied to centered data. That is, the independent variables

and response variables have all been mean centered (see Section 4.2.1).

Table 8.2 shows the R-squared scores based on the training and test set for each of the
regression strategies applied to all three responses. The figures typed in bold, highlight
the largest RZ., score for each of the regression procedures. Some clarification is now

given for the column headings.

e SMLR-S1: stepwise MLR where stopping rule ‘S1’ is applied. The variable which

2

¢ ain €Nters the model. At each iteration all the

gives the largest increase in the R
variables in the model are tested for removal. Variables are removed if their t-
statistic is less than 0.674. Since variables are removed from the model when their
t-statistic is less than 0.674, this value is also referred to as the t-to-remove statistic.
The procedure stops when no more variables can be retained in the model, or, when

there are 16 variables in the model, which ever occurs sooner. In Table 8.2 all the

models for SMLR-~S1 had 16 variables.
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o SMLR-52: stepwise MLR where stopping rule ‘S2’ is applied. As for SMLR-S1, the
t-to-remove statistic for a variable remains at 0.674, but the procedure stops when
the change in RZ_, from one iteration to the next is less than 0.005 or when 16
variables have been entered into the rﬁodel, which ever results sooner. Stopping

rule ‘S2’ tended to produce simpler models which contained fewer variables, at the

expense of a slight decrease in performance.

Comment: the t-to-remove statistic of 0.674 may seem very low. Traditionally de-
fault values in statistical packages are set much higher. For the spectral data sets
in this chapter, setting higher values for the t-to-remove statistic, tended to halt
the algorithm with only 3-5 terms in the model, consequently the prediction perfor-
mance of the model for both the training and test set was very‘ poor. Setting the
t-to-remove statistic at 0.674 reduced this effect and produced more superior results

since it allowed for more contributing terms to be included in the model.

e SPCR: stepwise principal component regression. At each step, the principal com-

2

train €0ters the model. At each

ponent which produces the largest increase in R
iteration, all the principal components in the model were tested for removal. Princi-
pal components with a t-statistic less than 2.71 were removed from the model. The
SPCR routine stops, when no more variables can be retained in the model, or, when

16 principal components are in the model, which ever occurs sooner. Note that we

only consider selecting from the first 50 principal components.

Comment: It was considered appropriate to have a higher t-to-remove value for
SPCR, than for SMLR-S1 and SMLR-S2. When the t-to-remove value for SMLR
(0.674) was used for the selection of principal components, the model tended to
involve more terms than necessary. Consequently, it was decided to use a larger t-
to-remove statistic of 2.71 for SPCR since this resulted in fewer terms being included

in the model which produced equal or better measures of prediction.

e PLS-S3: performs partial least squares regression where the number of components
is chosen by method ‘S3’. That is, the number of PLS components to be retained in
the model corresponds to the minimum PRESS statistic for the first 16 components

only. For example, if for the first 16 components, the PRESS statistic was minimum
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when 12 components were used, then the PLS model would have 12 components.

PLS-54 : performs partial least squares regression where the number of components

s chosen by method ‘S4’. This method simply chooses the number of PLS compo-

1ents which corresponds to the highest R2,_,. As for PLS-S3, the maximum number

>f components which can be in a PLS model is 16. This is not a traditional ap-

sroach for choosing the number of PLS components, since this approach would not

de possible if an independent test set was unavailable. PLS-S4 was simply included

n the table to show the very best results that could be obtained by PLS.

Data, 'SMLR-S1 | SMLR-S2 | SPCR | PLS-S3 | PLS-S4
Brix Train 0.981 | . 0.964 | 0.966 | 0.976 | 0.977
Test 0.963 0.960 | 0.953 | 0.971 | 0.972

dimension 16 11 12 14 15
Fibre Train 0.908 0.885 | 0.876 | 0.898 | 0.898
Test 0.820 0.800 | 0.796 | 0.805 | 0.805

dimension 16 12 11 15 15
Protein | Train 0.991 0.962 | 0.954 | 0.983 | 0.966
Test 0.808 0.792 | 0.799 | 0.800 | 0.832

dimension 16 6 | 13 16 14

Table 8.2: Training and test R-squared values.

Brix Fibre Protein
SMLR=ST}--oeevree- DG P b ol b S
SMLA-S2 b3 L S L S e

SPCR S o
PLS-S3 S -
PLS-S4 -t S~
0.95 ngsquar'oé37 0.78 Ro_'sg,quared 0.82 0.79 Oi‘?szl:r:c? 0.83

Figure 8.3: Test r-squared values corresponding to the brix, fibre and protein
responses.
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To facilitate interpretation of Table 8.2, Figure 8.3 was produced. In this figure, the
RZ, valués obtained using SMLR-S1, SMLR-S2, SPCR, PLS-S3 and PLS-S4 have been
plotted. The crosses indicate the results for both SMLR methods and the circles indicate
the results for SPCR and the two PLS procedures. In the previous chapter, plots were
produced which overlayed the results for each of the data sets. With the regression results
for brix being much higher than those for fibre and protein, such an overlay of plots made
interpretation less precise. Hence, this chapter presents the plots displaying the regression

results for each response separately.

Consider first the stepwise MLR methods. Here, SMLR-S1 tends to produce higher RZ..
values than SMLR-52. This is a likely consequence of SMLR-S1 having more terms than
SMLR-S2. The simplified SMLR-S2 model usually outperforms SPCR, with the model
for the protein response being the exception. Here, SPCR outperforms SMLR-S2, but not
SMLR-S1. Both procedures for partial least squares consistently produce a higher RZ.,
value than that obtained by SPCR. For the modelling of the protein response however,
SPCR cbmpares favourably with PLS—SS, but not with PLS-S4. Overall, the SMLR. and
PLS models are performing quite adequately.

Table 8.3 shows the variables which were included in each SMLR model as well as the
principal components which were selected by SPCR.

Some of the variables selected by SMLR-S2 are not necessarily selected by SMLR-S1.
This result occurs for the brix response because SMLR-S1 has allowed more terms to enter
the model. It is possible that a variable which was part of the SMLR-S1 model at an early
stage of the algorithm, ‘mvaybe removed at a later stage. Conversely, the SMLR-S2 routine
has the tendency to stop earlier, thereby retaining terms that the SMLR-S1 routine may

remove. The wavelengths selected in Table 8.3 are examined further in Section 8.5.2.

It can be worthwhile to pursue other feature extraction strategies which may help to

improve the performance of MLR. In the next section we investigate if the performance of

MLR can be improved when the features are coefficients from the DWT.

8.4 Regression Analysis Using Features From the DWT

This section considers different procedures for selecting coefficients (both wavelet and

scaling) from the DWT which are then supplied to MLR. The feature extraction methods



CHAPTER 8. REGRESSION APPLICATIONS 177

which are applied include banded multiple linear regression (BMLR). This procedure is
similar to BBLDA and BBQDA, but instead of supplying coefficients to a classifier, BMLR
supplies the coefficients to MLR. Another feature extraction method which involves the
use of the DWT, is stepwise MLR. Here, the variables selected are the scaling and wavelet
coefficients from the DWT. This technique will be referred to as SMLRW. A stepwise pro-
cedure which involves the selection of principal components will also be investigated. Here,
PCA is first performed on a selection of the coefficients from the DWT. This technique
will be referred to as SPCRW. For BMLR, SMLRW and SPCRW the DWT is performed
using a Daubechies filter defined by 16 coeflicients. For SMLRW and SPCRW, the DWT is
performed to level 3, for BMLR, the scaling and wavelet coefficients from level 3 and 4 are
extracted. The adaptive wavelet algorithm will also be applied using a criterion function

of relevance to regression. Prior to implementing the wavelet feature extraction methods,

Brix » Fibre Protein
SMLR-S1 SMLR-S2 SPCR || SMLR-S1 SMLR-S2 SPCR || SMLR-S1 SMLR-S2 SPCR

1880 1880 2 1114 1114 1 1178 1178 1
1136 1136 8 1410 1410 2 1254 1254 4
1324 1324 6 1128 1128 19 1300 1300 3
1506 1506 10 1324 1324 4 1280 1280 13
1840 1840 3 1098 1098 9 1878 1878 6
1758 1758 1 1276 1276 18 1934 1934 16
1674 1674 12 1080 1080 13 1306 14
1028 1028 9 1066 1066 8 - 1932 2
1448 1448 14 1082 1082 20 2078

1630 1630 11 1456 1456 17 2092 5
1878 13 1884 1884 29 2098 21
1678 16 1516 1516 2108 11
1822 1428 1930 20
1778 1398 1162

1748 1388 1172

1638 1274 1314

Table 8.3: Wavelengths selected by the SMLR routines, and the principal com-
ponents selected by SPCR.
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we first examine the coefficients from the DWT obtained for the sugar and wheat spectral

data sets.

8.4.1 Exploring the DWT

Figures 8.4 and 8.5 were constructed by applying the DWT to a single spectrum from
the sugar and wheat data. At the time the DWT was performed, these spectrum were
in their original (uncentered) form. The scaling and wavelet coefficients from each of the
bands in the DWT are plotted against their index. The reconstructed spectra are shown
in the second and fourth columns. Here the inverse DWT has been applied to the bands
of scaling and wavelet ycoe‘fﬁcients, respectively. One distinguishing feature in Figure 8.4
is that the wavelet coefficients have detected the change of instrumentation which occur
at the 1100 nm mark of the original spectra. For a more detailed description about the
construction of Figures 8.4 and 8.5, the reader is referred to Section 7.4.1 where similar

figures were constructed for the classification of spectral data sets.
8.4.2 Banded Multiple Linear Regression (BMLR)

Banded multiple linear regression (BMLR) uses all of the coefficients from the same band in
the wavelet transform, as input to the regression technique, MLR. The particular bands
of coefficients which are supplied to MLR. are the scaling X[El(0) and wavelet XPI(1)
coefficients from level 3, and the scaling XM(0) and wavelet X (1) coefficients from level
4. Here, the wavelet transform was produced using the Daubechies wavelet with 16 filter
coefficients (Ny = 16). The DWT was performed on the original (uncentered data), but the
coefficients and response variables were centered, prior to them entering the MLR model.

The R? and R?

train test Values for each of the responses are displayed in Table 8.4 where the

largest RZ,.. for each of the responses has been highlighted. Due to numerical instabilities,
it was not possible to obtain regression results for the protein model when the scaling
coefficients from band(4,0) were supplied to MLR. This problem arises from the condition
number of the matrix (XM (0)7X[4(0)) having a large condition number (3.133e+17).
Care should also be taken when interpreting the results for the scaling coefficients from
the wheat data in band(3,0). Here, the coefficients (X[3](0)TX[3](0)) also had a relatively
large condition number (2.0937e4-16). (The condition number of {XEBI(1)TXEl(1)) was

5.5276e+03).
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Figure 8.4: The DWT and inverse DWT performed on the sugar data.
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Figure 8.5: The DWT and inverse DWT performed on the wheat data.
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Data | XM(0) XHM(1) XB(0) XB(1)
Brix | Train || 0.975 0.961  0.740  0.525
| Test 0.973 0.949 0.753 0.530 -
Fibre Train 0.781 0.797 0.647 0.707
v Test 0.692 0.723 0.533 0.569
Protein | Train - 0.952 0.763 0.795
Test, - 0704 0.263  0.108

Table 8.4: Classification results for banded BLDA.

8.4.3 Stepwise Feature Extraction

In this section, two stepwise strategies are investigated. The first will involve stepwise
selection of wavelet coefficients from the DWT, and the second will involve stepwise selec-
tion of principal components, where the principal components have been calculated from

a selection of wavelet and scaling coefficients.

Stepwise Feature Extraction from the DWT (SMLRW)

SMLRW applies a stepwise strategy which selects coefficients from the DWT. The DWT is
applied to the original (uncentered) spectral data sets to level 3 using a Daubechies wavelet
defined by 16 filter coefficients. The total set of features consists of the scaling coefficients
at level 3, and the wavelet coeflicients at level 3 up to and including the wavelet coefficients
at level 8. The wavelet and scaling coefficients, along with the response variables are mean
centered. SMLRW will be applied using two stopping rules. These are the same stopping
rules previously implemented by SMLR (see Section 8.3) except, the t-to-remove value for
SMLRW is now set at 2.71. The two SMLRW applications will be referred to as SMRLW-
S1 and SMLRW-S2, the results for which are displayed in Table 8.5. Both SMLRW-
S1 and SMLRW-S2 produce the same results, since the same model for each technique
. was produced. SMLRW producés reasonable results for the training response values but
performs much less adequately when predicting the test response values, particularly for
fibre and protein.

Table 8.6 shows the indices of the coefficients which have been selected from the DWT.

Figure 8.6 identifies where the selected coefficients lie in relation to the DWT. For each
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Data SMLRW-51 SMLRW-52

Brix Train 0.886 0.886
Test 0.767 0.767

dimension | 6 6
Fibre Train 0.765 0.765
Test 0.45i 0.451

dimension 6 6
Protein Train 0.958 0.958
Test 0.500 0.500

dimension 6 6

Table 8.5: R-squared values for SMLRW-S1 and SMLRW-S2.

Fibre

SMLRW-S1 SMLRW-S2

SMLRW-S1 SMLRW-52

Protein

Brix
SMLRW-S1 SMLRW-S2
23 23 25
50 50 111
18 18 107
293 293 214
211 211 241
153 153 449

25
111
107
214
241
449

43
44
65
135
212
286

43

Table 8.6: Coefficients selected from the DWT by SMLRW-S1 and SMLRW-S2.

of the models no coefficients were selected from level 3 in the DWT. Another common

occurrence is that each of the response models contained 6 terms. After this, no more

variables (coefficients) could be entered into the model which had a t value greater than

the specified t-to-remove value of 2.71.
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Figure 8.6: Coeflicients selected from the DWT by SMLRW.
Stepwise Feature Extraction from the Principal Components (SPCRW)

This section applies a stepwise procedure which involves the selection of principal com-
ponents where the principal components are formed from a reduced subset of coefficients
from the DWT. This technique will be referred to as SPCRW. Principal component anal-
ysis is performed on the coefficients from the DWT which have an absolute correlation
coeflicient of more than 0.5 with the response. Stepwise PCR is then performed using
methods ‘51’ and ‘S2’ as described for SMLRW (also with the same t-to-remove value of
2.71).

The SPCRW procedure is summarized as follows:

1. Perform the DWT on the original (uncentered) data to level 3 of the transform.

2. Measure the correlation between the coefficients indexed for each ;7 € {3,...,8}
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ke {0,...,27 — 1} pair.

3. Perform PCA on the the coefficients which have an absolute correlation of more than

0.5 with the response.

4. Select the principal components using a stepwise routine. Selection is from the first

50 principal components only.

The results of the SPCRW routines are presented in Table 8.7, where again both stop-
ping rules produce the same model. For each response variable SPCRW stops at the
tenth iteration with 10 principal components in each of the models. Table 8.8 shows the

principal components which enter the models.

Data SPCRW-51 SPCRW-52

Brix Train 0.936 0.936
Test 0.891 0.891

dimension 10 10
Fibre Train 0.825 0.825
Test 0.664 0.664

dimension 10 10
Protein Train 0.934 0.934
Test 0.656 0.656

dimension 10 10

Table 8.7: R-squared values for SPCRW-S1 and SPCRW-S2.

8.4.4 Adaptive Wavelet Algorithm

We also apply the adaptive wavelet algorithm (AWA) to the regression spectral data sets.
The AWA is applied with similar settings as those used in Section 7.4.5 of the previous
chapter. The (m, g, j,) settings for which the AWA is applied, are again (4,3,2), (4,2,2),
(8,1,1), (2,5,3), (2,5,4), (2,7,3), and (2,7,4). The most conceivable difference between the
AWA when applied for regression (as opposed to classification) is the criterion function

which is implemented. Here, the cross-validated R-squared criterion which is based on the
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Brix Fibre Protein
SPCRW-51 SPCRW-52 SPCRW~SI SPCRVV—SQ SPCRW-S51 SPCRW-52

1 1 1 1 1 1

4 4 2 2 3 3

5 5 4 4 6 6

8 8 23 23 4 4

6 6 21 21 16 16

3 3 9 9 13 13

2 2 8 8 2 2

7 7 22 22 17 17
11 11 19 19 12 12
18 18 32 32 10 10

Table 8.8: Components selected from the DWT by SPCRW-S1 and SPCRW-S2.

PRESS statistic is the regression criterion which is iimplemented by the AWA. A similar
banded selection strategy used for classification is used for regression. Here, each band
at some level j, in the DWT, the band (i.e. 7) which produces the largest regression
criterion measure (Jovrsq (XV!(r))) forms the basis of the optimization routine. The
same coeflicients are later supplied to MLR. If the algorithm chose to optimize over a
scaling band (i.e. 7 = 0), then for the same (m, g, j,) settings the experiment was repeated,
where optimization was over the wavelet band producing the largest CVRSQ measure
at initialization. The optimization routine halted if 2000 iterations of the optimization

routine had been performed or sooner if an optimal value was obtained.

The results of the adaptive wavelet algorithm for each setting are presented in Table 8.9.
For each response, the largest RZ_, is typed in boldface. For the brix response the (2,5,4)
setting produced the same results (to 3 decimal places) for both the scaling and wavelet
bands, indicating that low frequency énd high frequency components perform well for this
setting. When the fibre response was modelled using the AWA, the best setting in terms
of the RZ.., measure was (2,5,4). The best results for the wheat data were also obtained

with the (2,5,4) setting where optimization was over a wavelet band.
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Brix m q Jo Nf Neer 7| Train Test
4 3 2 16 8 11 0.955 0.949
4 2 2 12 8 31 0.977 0.967
8 1 1 16 3 31 0972 0.968
2 5 3 12 8 140927 0.930

210971 0.969
2 5 4 12 16 010975 0.971
1| 0.975 0.971
2 7 16 8 1)1 0.950 0.946
2 7 4 16 16 11 0.976 0.968
Fibre |m ¢ J, Ny Neer 7 | Train  Test
4 3 2 16 8 2 11 0.791 0.676
4 2 2 12 8 01 0721 0.636
2 11 0.855  0.799
& 1 1 16 8 54 0.872 0.801
2 5 3 12 8 01 0.718 0.638
10731 0.603
4 12 16 1 i 0.869 0.814
7 16 8 0 4 0.703 0.612
1 0.777 0.641
2 7 4 16 16 00863 0.794
14 0.868 0.737
Protein q Jo Nf Neger 7| Train  Test
4 3 2 16 8 0] 0.677 0.260
311 0.959 0.671
4 2 2 12 21 0.937 0.781
8 1 1 16 6| 0.970 0.797
2 5 3 12 110781 0.369
2 5 4 12 16 14 0.975 0.825
2 7 3 16 8 11 0.838 0.365
2 7 4 16 16 114 0.974 0.790

Table 8.9: Regression results for the adaptive wavelet algorithm.

186
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Figure 8.7 plots Jcvrsq (X[j] (7)) against the iterations of the optimization routine.
This was done for the (2, 5,5,2) setting for the brix response, the (2,7,5,2) setting for the
fibre respohse and the (2,5,5,2) setting for the protein response. The CVRSQ values at
initialization (and completion) were lower for fibre, than those for the brix and protein
responses. The same can be said when comparing the RZ., measures for fibre, implying
that the AWA performed more adequately for the brix and protein responses, as was the

trend with most of the regression applications.

Brix (2,5,4,1) Fibre (2,5,4,1) Protein (2,5,5,2)
1 : 1 1
i
0.98 0.9 0.9 {r !
3 0.96 il 0.8 0.8
<
0 0.94 0.7 0.7t
0.92 0.6 0.6
- 0.5 - 0.5
500 1000 1500 500 1000 1500 500 1000 1500
iteration iteration iteration

Figure 8.7: Regression criterion measure versus iteration for the adaptive
wavelet algorithm. ‘

One noticeable feature for the protein response in Table 8.9 is the extremely low RZ.,
values occurring for the (4,3,2,0), (2,5,3,1), and (2,7,3,1) settings. This is a consequence
of the extremely high condition numbers for the matrices XU()TXUI(7) for each of these
(m,q, jo,7) settings. The condition numbers of the matrices for the (4,3,2,0), (2,5,3,1),
and (2,7,3,1) settings are 2.9260e+16, 4.9224e+16 and 1.7691e+16, respectively.

8.4.5 Summary of Wavelet Based Feature Extraction Strategies

In this section we summarize the results which were obtained by the wavelet based regres-
sion approaches. This is done in Table 8.10. The first application of.a regression procedure
involving the DWT was the banded multiple linear regression procedure (BMLR). The re-
sults which have been tabulated for BMLR are when the coefficients from band(4,0) were

used for modelling brix, and when the coefficients from band(4,1) were used for the fibre
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and protein responses. Also shown in Table 8.10 are the results from each of the stepwise
procedures — SMLRW and SPCRW. Recall from Section 8.4.3 that each of the stopping
procedures which were applied in conjunction with SMLRW and SPCRW, broduced the
same model. The results which have been presented for the AWA correspond to the

highlighted values in Table 8.9.

Data BMLR SMLRW SPCRW AWA
Brix Train 0.975 0.886 0.936 0.975
Test | 0.973 0767  0.891  0.971

dimension 16 6 10 16
Fibre Train 0.797 0.765 0.825 0.870
Test 0.723 0.451 0.664 0.814

dimension 16 16 10 16
Protein Train 0.952 0.958 0.934 0.975
Test 0.704 0.500 0.656  0.825

dimension 16 6 10 16

Table 8.10: Training and test r-squared values for the wavelet based regression.
approaches.

Based on the R?

t.¢ measures, most of the regression procedures produce reasonable

results when modelling the brix response, particularly BMLR, and the AWA. For the
modelling of the fibre and protein responses, the AWA appears to outperform the other
wavelet, based regression methods, in terms of the RZ, value. This is more clearly seen

in Figure 8.8 which displays the RZ,, values from Table 8.10 for each response separately.

8.5 Which Regression Strategy?

This chapter has presented several regression strategies for calibrating spectral data. Some
traditional approaches have been explored as well as some modern feature extraction
techniques. In this section we wish to elaborate further on the regression procedures
applied thus far. This will be done in two parts for each of the response models. The first

part will involve an assessment of some performance based measures. The second part
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Figure 8.8: Test r-squared values for the wavelet based regression methods.

will explore the additional descriptive information which can be obtained about our data
from each of the regression strategies. Particular attention is focused on which regions of

the spectra maybe informative for regression purposes.

8.5.1 Performance Based Measures

In' this section we summarize the R, measures for each of the regression strategies
presented in this chapter. We will also examine the p-values associated with each of the
models and their coefficients. Plots of the residuals and fitted versus observed values will

also be examined.

R-squared Values (Test)

Brix Fibre Protein
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Figure 8.9: Test r-squared values each of the regression strategies.

Figure 8.9 displays the RZ values for each regression strategy. The wavelet based

stepwise procedures, SMLRW and SPCRW produce reasonably low RZ ., values for each
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of the response models. To allow for easier interpretation of the remaining methods Fig-

ure 8.10 has been produced without the RZ, values displayed for these techniques. The

Brix Fibre Protein
SMLR=S1f----vrvvvee- PO e - B e
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0.855 0.96 0.965 0.97 0.720.740.760.78 0.8 0.82 0.7 0.75 0.8
R-squared R-squared R-squared

Figure 8.10: Test r-squared values each of the regression strategies (SMLRW
and SPCRW not shown).

following information can be conveyed:

e There is no method which consistently produces the highest RZ., measures across

all reéponse models.

e For the brix response, the wavelet methods BMLR and AWA, perform well as does
the PLS-S4 procedure.

o The stepwise techniques (SMLR-S1) for fibre seem to perform the most adequate (in
terms of the test measure) and again, the PLS method produces the next highest

2
R, score.

o PLS-S4 gives the highest RZ,, measure closely followed by the AWA for the protein

models.

e The PLS approaches consistently perform well as does the AWA method.
Model Assessment

An extensive summary of regression diagnostics for most of the models discussed through-
out this chapter are presented in Appendix A. All regression models with the exception
of PLS-S4 have been presented, since these results will resemble closely those for PLS-S3.

The statistics which are presented for the overall model include the residual standard error,
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the F-statistic and the corresponding p-value. The statistics which are presented for the
individual terms in the models include the regression coeflicients (coef), the standard error
of the coefficients (std.err), the t-statistic (t.stat) and corresponding p-value (p.value) for

each of the coeflicients.

All of the regression models are shown to be significant, but the same can not be said
for all of the regression coefficients in the model. There are some regression coefficients
which are not considered to be significantly different from zero, if we use a significance
level of 0.05. Table 8.11 summarizes the p-values for each of the terms for the models
shown in Appendix A. The notation ‘V¢’ means the 7th term (or variable) in the model.
Note that both AWA models for brix have been shown. The first column is for the model
when optimization was over the scaling band, and the second column is for the model
when optimization was over the wavelet band. The p-values in Table 8.11 which are larger
than 0.05 have been shaded.

Table 8.11 presents the p-values separately for the non-wavelet (top) and wavelet (bot-
tom) based regression methods. For the non-wavelet based methods, the SMLR-S1 con-
tains several insignificant terms for Brii, two insignificant terms for fibre and one insignif-
icant term for protein. One of the effects of changing the stopping rule for SMLR-S1 to
SMLR-S2, is a reduction in the number of insignificant terms. For SMLR-S2 there is only
one insignificant term at the 0.05 level, this is for the brix response.

For the wavelet .based strategies, insignificant terms are apparent for the procedures
which involve some banded selection process. Many of the coefficients for BMLR are not
significant. This phenomenon can be attributed to the problems which we have previously
discussed about band selection. That is, we are selecting the band not because we know.
it contains useful information for regression, but rather because the number of coeflicients
in the band is convenient for regression purposes. For the adaptive wavelet algorithm, this

problem is also present.

When there are insignificant terms in the model, a common procedure is to refit the
model in absence of these variables. This is performed in an attempt to obtain a simpler,
yet just as effective model (or more effective in some cases) for explaining the sample
variability. This can be seen as a second-stage procedure to the regression analysis. In this

thesis we are primarily concerned not with finding the very best model, but investigating
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SMLR-S1 SMLR-S2 SCPR PLS
TERM [BRIX JFIBRE[PROT |BRIX [FIBRE[PROT |BRIX |FIBRE [PROT |BRIX [FIBRE [PROT
Vi [0.000 s 0.000 | 0.0000.000] 0.000 | 0.000}0.000] 0.000 | 0.000
V2 {0,001/ 0035 | 0.000 [0.000] 0.000 | 0:000{0.000] 0.000 | 0.000 {0,000 0.000 | 0.000
V3 10.000] 0.000 | 0.002 J8#13 0.000 | 0.000]0.000] 0.000 | 0.000 {0.000] 0.000 | 0.000
V4 [0.000] 0,000 0.000 |0.000] 0,000 | 0.000]0.000] 0.000 | 0.0000.000] 0.000 | 0.000
0.0000.000] 0.000 | 0.000{0.000] 0.000 | 0.000 {0.000] 0.000 | 0.000
0.0150.000] 0.000 | 0.002 {0.000| 0.000 | 0.000 | 0.000{ 0.000 | 0.000
0.0020.000] 0.000 0.000| 0.000 | 0.000 | 0.000] 0.000 | 0.000
0.00110.000 0,000 0.000{ 0.000 | 0.000 | 0.000 0.000 | 0.000
0.000{0.000] 0.000 0.000] 0.000 | 0.0000.000] 0.000 | 0.000
0.0000.000{ 0.006 0.000{ 0.000 | 0.000]0.000{ 0.000 | 0.000
0.0000.000] 0.000 0.000] 0.000 | 0.0010.000] 0.000 | 0.000
0.000 0.001 0.000 0.001 {0.000{ 0.000 | 0.000
000 0.008 0.001 0.002 | 0.000{ 0.000 | 0.000
vi4 10.001] 0.000] 0.000 0.033] 0.000 | 0.000
V15 [0.009] 0.009]0.003 0.039 | 0.000
Vi6 |0.015:0155¢ 0.012 0.000
BMLR SMLRW SPCRW AWA
TERM BR!X FIBRETPROT [BRIX [FIBRE]PROT BRIX [FIEREPROT [BAIX BRIX [FIBRE|PROT
7 e 0.000 | 0.000{0.000[ 0.000] 0.000 }§:824: 0.000
0.000]0.000{0.000] 0.000] 0.000{0.000] .
0.000 | 0.0000.000{0.000{ 0.000] 0.000 0.
0,000 0.000§0.000] 0.000] 0.000{0.001 0.
0.000 | 0.000]0.000] 0.000{ 0.0000.000} 0.
0.003 | 0.0000.000/0.000] 0.000
0.000/0.000] 0.000
0.000]0.001] 0.000
0.002] 0.001] 0.000{0.
0.007]0.004] 0.006

Table 8.11: Summary of p-values for the regression models.

192
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the performance of the various regression strategies on a first-stage basis, that is without
modifying the regression model. Whilst this thesis does not consider the removal of terms
and refitting the various models (at a second-stage level), we wish to make the reader
aware, that if it is necessary to find the ‘best’ regression model, then such a procedure is

worthy of investigation.

Residual and Fitted Value Plots

A residual analysis is another procedure which can be useful for determining which changes
might be useful to make to a model. If the residuals are plotted against the independent
variables, or the vector of fitted (i.e. estimated/predicted) response values, then some
clues can be given about the suitability of the model, or if additional terms should be
incorporated into a model. For example if some second degree curvature is present when
the residuals are plotted against some variable, then it might be worth adding a quadratic
term for that variable to the model. For a more detailed review of residual analysis, the
reader is referred to [29, 106]. We do not actually plot the residuals against each of the
variables in the model, since with so many models, this would be quite cumbersome. Here

we will examine:

1. Plots of the residuals versus the fitted values.
2. Histogramé of the residuals.

3. Plots of the fitted values versus the observed values.

Figures 8.11-8.13 show the residuals versus the fitted values for each of the responses
(brix, fibre and protein), separately. A plot which has observations scattered about the
horizontal line passing through the origin (that is the line y = 0) is preferred to one
that has any structure. To help visualize if any structure is present in the data, a line
has been superimposed on the residual plots. This line represents a smoothed version
of the residuals and is called a smooth. If there is little structure in the residuals, then
the smooth should resemble closely the horizontal line y = 0. The residual plots for the
brix response hint at some slight curvature, but in general, there is little evidence of any

structure among the residuals.
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Figure 8.11: Residuals versus fitted values for the brix response models.

Figures 8.14-8.16 shows histograms of the residuals. Ideally, the residuals should follow
a normal distribution with a mean of zero and constant variance. Generally the histograms
produced for the brix response in Figure 8.14, appears to be normal, with the exception of
the residuals from the SMLRW model, which has many values spread relatively constant
in the tails of the distribution, and some clustered around the zero point. The residuals
for both the SMLRW and SPCRW models exhibit are larger degree of variability, than
the remaining models. The histograms shown in Figure 8.15 for the residuals of fibre
are less symmetric than those in Figure 8.14, though some bell-shaped appearance is
present in most.plots.' Histograms in Figure 8.16 for protein portray a similar outcome to

the histograms in Figure 8.14, with the residuals from the SMLRW and SPCRW models

o Wivll u L SRR VIR SRS

having a wider range of residuals than the remaining methods.

The next selection of plots show the fitted values versus the obtained values. Although
plotting the fitted values against the actual values is not technically considered to be part
of a residual analysis, it is interesting to observe how close the predicted values are to the

actual values. The closer the objects conform to a straight line the better the predicted
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Figure 8.12: Residuals versus fitted values for the fibre response models.

alues. Figures 8.17-8.19 plot the fitted training response values against the actual training

:sponse values. One can observe again, that the scattering for the SMLRW and SPCRW

10dels appears to be greater than those for the remaining models.
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Figure 8.13: Residuals versus fitted values for the protein response models.
8.5.2 Qualitative Assessment

This section investigates the additional information that can be obtained from our data by
using each of the regression strategieé which have been discussed throughout this chapter.
of particzﬂa,r_ interest, are the regions or features which are important for regression.
Of course there are no fixed guidelines for determining such information, and indeed
she different regression strategies may even utilize different information. It is possible
1owever, that some regression methods may suggest that similar regions or features are
nore useful than others. From this some subjective conclusions can be drawn regarding

vhich wavelengths, regions or particular features maybe more important than others.

The additional information which can be obtained from SMLR, SPCR and PLS are
liscussed. We also consider the qualitative information which can be obtained by the
vavelet based regression strategies. The regression methods which have been applied in
onjunction with the DWT are BMLR - banded MLR, SMLRW - stepwise MLR. on the

:oeflicients from the DW'T, where the DWT consisted of the scaling and wavelet coefficients
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Figure 8.14: Histograms of the residuals from the brix response models.

1t level 3, the wavelet coefficients at level 4 up to and including the wavelet coefficients at
evel 8, SPCRW - SPCR where PCA has been applied to the coefficients from the DWT
ind the final wavelet based regression method which was applied is the AWA - a,dapﬁve
vavelet algorithm. We consider each of the wavelet based strategies separately, a.nd note
;hat much of the same techniques as those discussed in in Section 7.5.2 in the chapter on
lassification applications have been used here for extracting information of relevance to

‘egression analysis.
SMLR

We consider first the stepwise methods applied to the original data. Here, it is of i
;0 simply observe which variables have been selected by the SMLR models for each of
‘he data sets. In Section 8.3 two SMLR models were investigated SMLR-S1 and SMLR-
32. The variables selected by SMLR-S1 and SMLR-S2 are displayed in Figure 8.20. The
vavelengths selected for tﬁe modelling of brix are spread widely across the spectrum while

wreas for the fibre and protein responses are more concentrated at particular features. For
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Figure 8.15: Histograms of the residuals from the fibre response models.

the modelling of fibre several wavelengths prior to and following the sharp discontinuity
at 1100 nm have been selected as well as the region near the peak at 1400 nm. Unlike the
wavelengths selected for the brix response, the fibre response does not utilize information
from the 1600-1800 nm region. The concentrated regions for the protein stepwise models

occur in the trough around the 1300 nm mark,
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Figure 8.16: Histograms of the residuals from the protein response models.
SPCR

Stepwise PCR was also applied where PCA was performed on the original data, and the
principal components were then selected by a stepwise routine. Since PCA involves linearly
combining the original variables it is slightly more difficult to directly link which variables
or wavelengths are important. Of course if we only had two principal components, we
could simply examine biplots to note which variables had high loadings, but with several
significant principal éomponents in the model, this becomes less of an option. What
could be done however is to establish which variables have a strong dependence on the
principal components, and then if it is known which principal’ components are important
for regression, we can deduce which variables form an irhporta,nt role in the SPCR model.

To achieve this, an average absolute correlation measure has been calculated. This
involves calculating the correlation between each variable with the each of the selected

principal components. If j;; denotes the correlation between the ith variable and the jth
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Figure 8.17: Plots of the residuals versus the fitted values for each of the models
for brix.

principal component, then the éwerage absolute correlation (AAC) is determined by,

) > 1pis]
AAC = average(|5;]) = m

where the dimensionality is the number of selected principal components. Figure 8.21,
plots the average absolute correlation measure against each of the 512 wavelengths indices
for each of the responses. Also shown is the absolute correlation measures (AC—:— |p:l)

against each wavelength, for each principal component selected by the stepwise routine.

If one considers only the AAC and assumes that a large AAC measure infers a more
significant attribute, then .essentially all we can conclude by examining the middle row of
plots in Figure 8.21 is which regions are not important. These occur where the local minima
appear. If one considers the absolute correlation (AC) measure separately for eaéh of the
seleéted principal components, then oﬁe can see that sometimes a variable may produce
a large AC value for one component but a small AC value for another component. This
makes the interpretation of important variables or regions of our spectra quite difficult to

aSsess.
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Figure 8.18: Plots of the residuals versus the fitted values for each of the models
for fibre.

PLS

Before discussing how one might deduce which variables are significant from a PLS model
we first note that in Section 8.3 two PLS models were considered, PLS-S3 and PLS-S4. In
this section we search for the significant variables from the PLS-S4 model. If one makes
the assumption that a large regression coefficient implies a more significant variable, then
one can examine the size of the regression coefficients from the PLS model. If the data
are not standardized then a large coefficient may indicate an important 'va,riabl_e but may
also reflect a variable which has a small magnitude and large variance [50]. If the data
are standardized, then this problem relating to the interpretation of important variables
can be somewhat lessened. Here, we standardize our original data, and then calculate the
regression coefficients for each of the responses, using the same numbe; of PLS componenté
that were used in PLS-S4, that is 15 for the brix and fibre responses, and 14 for the protein
response. Figure 8.22 plots the absolute values of the regression coefficients obtained from

PLS-S4, for each of the responses.
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Figure 8.19: Plots of the residuals versus the fitted values for each of the models
for protein.

The PLS model for the regression of brix has larger coefficients at approximately
1400 nm and between 1600-1800 nm. The larger (in magnitude) PLS coefficients for
the modelling of fibre occur around the 1100 nm mark, around the 1400 nm position, the
1600 nm position and in the vicinity of 1850 nm. These regions are similar to those uti-
lized by SMLR for predicting fibre. The exception however occurs for the 1600 nm mark
which appears important for the PLS model, but not for the SMLR model. The larger
PLS coefficients for the protein model lie predominantly between the 1200-1300 nm range.
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Figure 8.20: Wavelengths selected by SMLR-S1 and SMLR-S2.
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Figure 8.22: Regression coefficients obtained from PLS, when the data has been
standardized.
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Figure 8.21: Absolute correlations between each wavelength and the principal
components selected by SPCR.

BMLR

For BMLR, one can observe the coefficients from the bands which were supplied to MLR.
These can be seen in Figures 8.4-8.5 for the sugar and wheat data, respectively. For reasons
discussed in Section 7.5.2, it is difﬁcultv to draw any conclusions about the important
regions of the spectra from BMLR. This is because, we have preselected the bands of
coefficients without any consideration of the data, but rather, so that the number of

coefficients in the bands allows for a well-posed regression problem.
SMLRW

The results for SMLRW-S1 and SMLRW-S2 are identical since the different stopping rules |
produced the same models, we will subsequently refer to either SMLRW-S1 or SMLRW-S52
as SMLRW. Figure 8.23 (page 206) shows the coefficients from the DWT which have been
selected by SMLRW for each response. The original sampled spectra are shown in the
top row of Figure 8.23. Recall from Chapter 7, that if vertical lines are extended from
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the asterisks to the original spectra, then where the lines meet the original spectra will

indicate in an approximate sense, the region which is represented by the coefficients.

The main areas of focus for the SMLRW-brix model appears to be prior to the 1100 nm
jump and around the central peak of 1400 nm. For the SMLRW-fibre model, information
prior to the peak at 1400 nm and between 1600-1800 nm appears to be represented by the
wavelet coefficients which were supplied to MLR. The coefficients for the SMLRW-protein
model relate to the peaks at approximately 1200 nm, 1400 nm and the small elevation at

approximately 1750 nm.

We also consider backtransforming the wavelet coefficients which were selected by the
SMLRW models for each of the responses to visualize the spectra which would be obtained
when the selected wavelet coefficients are linearly combined with their respective basis

functions. Figure 8.24 presents these reconstructed spectra.
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Figure 8.24: Reconstructed spectra produced from the coefficients selected by
SMRILW.

If were to assume that the regions which are not equal to zero contain the useful informa-

tion for regression, then there would appear to be some disagreement with the information
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Figure 8.23: Coefficients from the DWT which were selected by SMLRW.
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‘presented in Figure 8.24 (page 205) to that in Figure 8.23 (page 206). Take the protein
response for example. From Figuré 8.23 we conjectured that infbrmation around the peaks
at approximately 1200 nm, 1400 nm and at 1750 nm contain useful information for regres-
sion. However, in Figure 8.24 there seems to be one main area which has been extracted for
regression, thdt is around 1600 nm. One problem which arises from superimposing each
of the backtransformed‘spectra associated with each of the wavelet coefficients, is that
the magnitude of some of the backtransformed spectra will be larger than others, hence
impeding the visibility of the backtransformed spectra with smaller magnitudes. This is
especially fhe case when we produce a reconstructed spectra from coefficients from differ-
ent levels in the DW'T. The next series of plots shows the reconstructed spectra produced
by backtransforming the coefficients from the individual bands in the DWT. That is if
two coefficients were selected from the same band by SMLRW, then both coefficients will
be backtransformed to produce a reconstructed spectrum. These reconstructed spectra
are shown in Figure 8.25. Now, the reconstructed spectra with a smaller magnitude can
be more clearly visualized, and the informative regions are now in agreement with that
in Figure 8.23. Note that some of the axes do not contain any plots. These ‘blank’ axes
have simply been shown so that direct comparison with Figure 8.23 is made easier. Also,
at the expense of having less ‘cluttered’ plots, the scales on the vertical axis have been
omitted. Generally though, the higher up the transform, the smaller the scale, since at
the higher Ieyels in the transform, the wavelet coefﬁcients contain information about the

high frequencv events.
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Figure 8.25: Reconstructed spectra produced from the coefficients selected by
SMRLW that pertain to the same band.
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SPCRW

The process for determining which features are utilized is not straight forward to calculate
fof SPCRW. We note that both SPCRW-S1 and SPCRW-S2 produced the same models
so we can speak of SPCRW in general. In order to determine which features are more
predominantly involved in the SPCRW models there are several steps which need to be
performed. First, it is necessary to consider the wavelet coeflicients for which PCA was
performed. Here we selected the wavelet coefficients which had an absolute correlation
of more than 0.5 with the response. Next we need to consider which of the selected
coeflicients are more significant to the principal components which were selected by the
stepwise routine. This could be done as before by measuring the correlation between the
reduced set of wavelet (and scaling) coefficients with the selected principal components.
If we could determine whiéh wa%/elet coefficients were important, then this information
could be translated to determine which regions of the spectra are important. We believe
that such an approach would be too subjective. When SPCR. was applied to the original
data we previously mentioned that interpretdtion was difficult, since some variables are
more important for certain principal components and less important for other principal
components. Now that an intermediate step has been included i.e. performing the DWT,

the level of subjectivity is further enhanced.
AWA

In this section we investigate the information which was extracted from the original spec-
tra by the AWA. Here we will examine the adaptive wavelet coefficients {Figure 8.26)
which produced the highlighted resu.lts in Table 8.9 as well as the reconstructed spectra,
which were obtained by setting the coefficients in the remaining bands to zero, and then

backtransforming the thresholded data.
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Figure 8.26: The wavelet coefficients and reconstructed spectra produced from
the AWA.

Interpretation of the adaptive wavelet coeflicients is not straight forward. One might
immediately assume that a larger coefficient implies a more important variable. From
the p-values in Table 8.11, we see tﬁis is not necessarily true. Take for example the brix
model. When optimization was over the wavelet band the 12th and 13th coefficients are
quite large, but have quite high p-values (see Table 8.11) indicating that these coeflicients
are not sigﬁiﬁcant terms in the model. Perhaps what is more interesting is if we could
examine the reconstructed spectra which would be obtained if all the adaptive wavelet
coeflicients which were used for regression are backtransformed. The reconstructed spectra
are shown in the bottom row of plots‘in Figure 8.26. As was the case in the previous
chapter, intefpretation of the reconstructed spectra is not straight forward. One interesting
feature to note however, is that when the scaling coefficients from the brix response are
backtransformed, we obtain a spectrum similar to the original spectrum, which is typical

of backtransformations involving the scaling terms.

One might assume that for the backtransformed wavelet coefficients, a region which
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deviates from the horizontal line y= 0 contains information which is represented by the
adaptive wavelet coefficients and hence contains useful information for regression. Based
on this assumption, then one might conclude that the information extracted by the AWA
comes from the 1000 nm and 1300-1600 nm regions for the brix response, the region
prior to 1000 nm and the region after 1700 nm for the fibre response, and for the protein

response, from the 1100-1300 nm and 1900-2000 nm regions.

8.6 Summary

This chapter has explored several regression procedures which can be applied to spectral
data. We have considered using features which are the original data such as SMLR,
and features which involve some (linear) combination of the original variables, such as
SPCR and the PL‘S routines. Wavelet coeflicients which can also be thought of as a linear

combination of the original variables have also been used as features for the regression

procedures BMLR, SPCRW, SMLRW and the AWA.

In terms of performance measures namely the RZ., measure, the two techniques Wllich
tended to produce higher measures than the remaining methods were PLS, the AWA
and SMLR-S1, while SMLRW and SPCRW tended to produce lower values. If one then
considers the proportion of insignificant terms in the three models mentioned above, we
can see from TableA8.11 that the SMLR-S1 and AWA models tended to have a higher
proportion than the PLS models which did not have any insignificant terms at the 0.05
level. Tt is interesting to note that despite the poor performance of SMLRW and SPCRW,

all terms in this model were significant.

If one is interested in discovering any additional information about our data such as,
which regions might be pofentially useful for regression, then one would conclude that of
the methods presented here, such information was more easily accessible by the SMLR
routines applied to the original data as well as the wavelet coeflicients. By examining the
PLS coefficients 1t was also possible to make some decisions about the regions which the
PLS model paid particular attention to, though the PLS coefficients were rather ‘jagged’ in
appearance, thereby making such judgements more difficult. Some attempt was made with
the AWA algorithm for deducing similar information, but as for the PLS method, such
information was not well defined, unlike the SMLR and SMLRW strategies. The SPCR
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methods for the original and wavelet coefficients were also found to be quite difficult to

interpret.

With the exception of the AWA, most regression methods considered in this chapter
were not computationally laborious, unlike several of the discriminant procedures. One of
the major factors which contributes to the relatively fast implementation of the regression
procedures is the use of the PRESS statistic which does not actually require the removal

of the validation object to obtain a cross-validated estimate of the regression performance.

This is the final chapter which requires the analysis of data. The next chapter summa-

rizes the work presented throughout the thesis, and makes some concluding remarks.



Chapter 9

Concluding Remarks

9.1 Original Contribution

This thesis has investigated several strategies that can be used for the discrimination and
regression of spectral data. A problem which frequently occurs when modelling spectral
data, is that the dimensionality (i.e., number of variables) is usually quite large, especially
when compared to the number of spectra that are available. This leads to a substantial
deterioration in performance of traditionally favoured classifiers and regression methods.
There are basically two approaches that can be implemented to help overcome this prob-
lem. One option is to apply a high dimensional technique which is capable of handling a
large number of variables. An alternative procedure, and perhaps more commonly applied,
is to first reduce the dimensionality by some feature extraction preprocessing method, and

then use an appropriate low dimensional classification or regression technique.

This thesis has introduced some novel dimension reducing techniques as well as some low
and high dimensional multivariate methods which have evolved quite recently (e.g. FDA
and PDA). The original part of this thesis comes in the exploration of wavelet coefficients
as features for the multivariate analysis of spectral data. In particular, the discrimina-
tion and regression of near infrared spectral data. The discrete wavelet transform was
introduced as a method for extracting features. Wavelets were considered as features for
discriminant and regression analysis because of their ability to detect local changes in a
spectrum. Whilst, there have been previous applications of the discrete wavelet trans-
form as a feature extraction procedure for classification and regression, this field remains

relatively unexplored and any work performed in this area is of much interest.

o
ot
[S5]
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This thesis has considered two main approaches where wavelets form the foundation of
the feature extraction procedure. The first procedure selected wavelet coefficients from
the discrete wavelet transform that was produced using standard wavelet bases. A new
and innovative feature extraction scheme was also proposed, which avoids the need to
preselect a wavelet basis. We demonstrated how wavelets can be designéd to suit almost
any general application, but we focused on designing wavelets for the classification and re-
gression of spectral data. The wavelet gradually adapts to the é,pplication at hand, and is
therefore referred to as an ‘adaptive wavelet’. The adaptive wavelet methodology simulta-
neously reduces the dimensionality and attempts to find the wavelet which optimizes some
multivariate modelling criteria. The adaptive wavelet methodology stems from ‘the work
peformed by Kautsky and Turcajova (1995) [78] who introduce a procedure for designing
wavelets for removing disturbances in signals. The adaptive wavelet algorithm applied in
this thesis is based on a similar algorithm to that in [78]. The main difference between
the two algorithms is the criteria which are to be optimized and the particular application

that the adapﬁve wavelets are designed for.

9.2 Summary of Results

This section provides a summary of the results obtained using the various classification
and regression strategies. Since a summary was provided at the end of Chapters 7 and 8,

only a brief summary will be provided here.

Each of the discriminant and regression applications can be divided into into one of

three main categories.

1. High dimensional multivariate statistical methods using all of the original variables.

2. Low dimensional multivariate statistical methods which have selected from the orig-

inal data.

3. Low dimensional multivariate statistical methods which have selected wavelet coef-

ficlents as features.
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The multivariate methods that were employed for discriminant analysis include:

PDA: penalized discriminant analysis

RDA: regularized discriminant analysis

SBLDA: stepwise Bayesian linear discriminant analysis
SBQDA: stepwise Bayesian quadratic discriminant analysis
FDA: flexible discriminant analysis

BBLDA: banded Bayesian linear discriminant analysis
BBQDA: banded Bayesian quad.ratic discriminant analysis

SWBLDA: stepwise Bayesian linear discriminant analysis applied to the wavelet

coeflicients

SWBQDA: stepwise Bayesian quadratic discriminant analysis applied to the wavelet

coeflicients
LDB: local discriminant bases algorithm

AWA: adaptive wavelet algorithm.

The multivariate methods which were applied for the regression of spectral data include:

SMLR: stepwise multiple linear regression

SPCR: stepwise principal component regression

PLS: partial least squares regression

BMLR: banded multiple linear regression

SMLRW: stepwise multiple linear regression applied to wavelet coefficients

AWA: adaptive wavelet algorithm.
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Throughout the previous two chapters we have discussed the advantages and disadvan-
tages of each of the strategies listed above. This was done by taking into consideration

two main objectives:

1. how well the model performed in terms of specified performance measures, and

2. consideration was also given to the descriptive information which could be provided

by each of the approaches.

In terms of the performance based measures for classification it was noted that RDA
and the AWA consistently performed well, and for regression, PLS tended to dominate,

although the AWA with a simpler regression model often produced comparable results.

The high dimensional methods RDA and PLS tended to give quite reasonable per-
formance measures, but were relatively difficult to convey infomation about the spectral
regions which were important for either discrimation or regression. The AWA also per-
formed well but also seemed to be difficult to extract information about the useful features
of the spectra. This is a consequence of the banded selection procedure. However, the
AWA is able to provide more information about the spectra than RDA. If one is inter-
ested in a technique that produces average performance measures and is relatively easy to
interpret or to extract additional information, then one might like to pursue some of the

strategies involving stepwise feature selection.

In terms of the wavelet based methods, the AWA seemed to be more superior than
the remaining wavelet based strategieé which were investigated. This is despite the some-
what restrictive procedure of basing optimization over an entire band. The success of the
adaptive wavelets can be attributed to their ability to adapt to different tasks. This is
a primary advantage of using adaptive wavelets as opposed to predefined Wavelets‘ Of
course pvredeﬁned wavelets are more readily available and generally do not require the use

of optimization procedures.
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9.3 Future Work and General Remarks About the AWA

There are several items regarding the adaptive wavelet algorithm which warrant further

discussion. These items are now considered separately.

e Number of Iterations
One can argue that using a prespecified number of iterations in the AWA (as we
have done) does not necessarily allow for a optimal value to be found. This is quite
true, but from a practical perspective it is more convenient. We have also noted
that generally there is little improvement to the model after 2000 iterations. It is
important to mention however, that this was not rigorously tested, and is simply an
observation which has been made. It is possible however that with more extensive
experimentation on additional real and simulated data, that a more suitable number

of maximum iterations could be found.

e Local and Global Minima
If the AWA algorithm does converge to an optimal value prior to reaching the maxi-
mum number of iterations then one can query if it is indeed a local or global minima.
As we have discussed previously in Chapter 6 unless the problem is continuous and
has only one optimal point, there can be no guarantee that a global optimal value
has been found. One suggestion offered in [4] is that starting the optimization rou-
tine using different values for parameters at initialization may assist in overcoming
this problem. Due to time constraints this was not done for every model produced
by the AWA. It was however trialled for a few settings where the criterion function

did converge to the same optimal value.

e Constrained Optimization Versus Unconstrained Optimization
In the the adaptive wavelet algorithm, it was possible to avoid using constraints
which ensured orthogonality. This is due to some cléver algebraic factorizations of
the wavelet matrix for which much credit is due to [79]. However, one constraint
which we have not discussed in very much detail is that the vectors v, uq,...,u,
are required to have unit length. This normalization procedure occurs during the
optimization routine. An alternative strategy which could be employed, is to place

constraints on these vectors requiring them to be normalized.
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e Choosing the best (m,gq,!,7) settings
Selecting the (m, g, !, 7) combination involved trialing several suitable combinations
of these values. Presenﬂy, it is unknown how one might be able to predetermine
with any degree of certainty which setting combinations may produce more preferred
results. One general observation however, is that the case m = 2 does seem to be
producing a higher proportion of larger correct classification rates as well as higher R-
squared measures. In order to determine which settings are more preferable remains

to be further explored.

e Validation without an independent test set
Fach of the data sets applied in this thesis have consisted of a training and indepen-
dent test set. Assessment of the various techniques often involved an analysis of the
prediction accuracy for the testing data. It was previously mentioned in Section 2.8
and in Section 3.6 that if there are two few observations to allow for an independent
testing and training data set, then cross-validation could be used to assess the pre-
diction performance of the discriminant or regression method. Should this be the
situation, it is necessary to mention that it would be an extremely computational ex-
ercise to implement a full cross—validatioﬁ routine for the AWA. That is, it would be
too time consuming to leave out one observation, build the AWA model, predict the
deleted observation, and then repeat this leave-one-out procedure for each observa-
tion separately. In the absence of an independent test set, a more realistic approach
would be to perform cross-validation using the wavelet produced at termination of

the 'AWA} but it is important to mention that this would not be a full validation.

The tasks discussed above remain the work of future investigations for further exploring
and enhancing the adaptive wavelet algorithm. In conclusion we wish to further highlight
the potential of wavelets as methods for feature extraction and their interesting way of

viewing data through different windows.
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SMLR-S1 BRIX
Residual Standard Error = 0.2075, Multiple R-Square = 0.9812 N = 100, F-statistic = 273.412 on 16 and
84 df, p-value = 0

coef std.err t.stat  p.value

V1 -413.3916  82.8005 -4.9926  0.0000
V2 331535  9.1333  3.6300  0.0005
V3 -44.0129  7.2449 -6.0750  0.0000
V4 -140.0819  16.6898 -8.3933  0.0000
V5 -557.4451  76.8799 -7.2509  0.0000
V6 1853640 100.2743 1.8486  0.0680
V7 -474.5068 217.0552 -2.1861 0.0316
V8  -14.0633  7.7300 -1.8193  0.0724
V9 81.2956  12.9722  6.2669  0.0000
V10 -169.9041 144.8098 -1.1733  0.2440
V11 4855299  88.4825  5.4873  0.0000
V12 228.1292 222.8518  1.0237  0.3089
V13  476.8709 103.2429  4.6189  0.0000
V14 -276.0465  78.8086 -3.5027  0.0007
V15  206.1745  76.7681  2.6857  0.0087
V16  387.5836 155.2515  2.4965  0.0145
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SMLR-S1 FIBRE
Residual Standard Error = 0.5372, Multiple R-Square = 0.9077 N = 100, F-statistic = 51.6229 on 16 and
84 df, p-value = 0

coef std.err t.stat p.value

V1 -947.1048 120.1131 -7.8851 0.0000
V2 368.3170 171.4882 2.1478 0.0346
V3 898.3101 128.9032 6.9689 0.0000
V4 -981.5167 108.2112 -9.0704  0.0000
V5 -1686.1420 288.5763 -5.8430 0.0000
Ve 814.6825 91.7905 8.8755  0.0000
V7 6949.1739  1464.5789 4.7448 0.0000
V8 -1224.5805 245.0395 -4.9975 0.0000
Vo 229.4859 184.1823 1.2460 0.2162
V10 -4092.2697 1473.1539 -2.7779 0.0067
V11 393.2618 73.5601 5.3461 0.0000
Vi2 33.6203 16.0073 2.1003 0.0387
V13 -59.1393 ‘ 21.8135 -2.7111 0.0081
Vi4d ~-526.9223 139.3476 -3.7814  0.0003
Vls -561.1551 208.7378 -2.6883 0.0087
Vi1é 443.1769 287.0874 1.5437 0.1264
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SMLR-S1 PROTEIN

Residual Standard Error = 0.1387, Multiple R-Square = 0.9905 N = 60, F-statistic — 287.6991 on 16 and
44 df, p-value = 0

coef std.err t.stat  p.value

V1 -103.4695 69.6912 -1.4847  0.1448
V2 -589.0466 47.6506 -11.9421  0.0000
V3 -575.0757 170.2500 -3.3778  0.0015
V4  760.8207 128.3992 5.9254  0.0000
Vs 33.4229 6.1876 5.4016  0.0000
V6 140.9795 55.6816 2.5319  0.0150
V7  506.3303 149.5141 3.3865  0.0015
V8 -320.0526 88.2420 -3.6270  0.0007
V9 178.1800 V3O.8989 5.7665  0.0000 -
V10 -298.5406 55.4835 -5.3807  0.0000
Vil 298.7727 59.3241 5.0363  0.0000
V12 -150.1197 36.2051 -4.1464  0.0002
Vi3 195.9§57 54.2381 3.6136  0.0008
V14 -159.2740 - 37.0052 -4.3041  0.0001
V1is 325.7624 102.4385 3.1801  0.0027
V16 -242.6675 92.9929 -2.6095  0.0123

SMLR-S2 BRIX _
Residual Standard Error = 0.2785, Multiple R-Square = 0.9641 N = 100, F-statistic = 216.9789 on 11 and
89 df, p-value = 0

coef  std.err t.stat p.value

Vi 24.6889 8.6760 2.8457  0.0055
V2 59.7694 12.3162 4.8529  0.0000
V3 14.1401 8.8403 1.5995  0.1132
V4 -47.7623 8.6337  -5.5321  0.0000
V5 -241.7219 18.4566 -13.0968  0.0000
V6 1A36‘4132 22.3162 6.1128  0.0000
V7 1449032 18.0175 8.0424  0.0000
V8 -167.3372 12.4628 -13.4269  0.0000
V9  251.2473 26.8518 9.3568  0.0000
V10 -114.9007 17.5833 -6.5347  0.0000
V11 -50.2653 10.9866 -4.5751 . 0.0000
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SMLR-S2 FIBRE
Residual Standard Error = 0.5866, Multiple R-Square = 0.8847 N = 100, F-statistic = 56.2599 on 12 and
88 df, p-value = 0

coef std.err t.stat p.value

V1 -818.3904 92.1510 -8.8810 ~ 0.0000
V2 -213.7444 45.0951 -4.7399  0.0000
V3 802.9916 93.7831  8.5622  0.0000
V4  -831.1576 106.5776 -7.7986  0.0000
V5 -1234.9175 268.0046 -4.6078  0.0000
Vé 673.1537 78.2243  8.6054 0‘000_0
V7  6576.0327 1584.2692  4.1508  0.0001
V8  -914.5712 229.8370 -3.9792  0.0001
V9 350.6474 59.4780  5.8954  0.0000
V10 -4475.4210 1602.1541 -2.7934 0.0064
Vi1l 104.1997 24.7005 4.2185 0.0001
V12 56.4568 15.7666  3.5808  0.0006

SMLR-S2 PROTEIN
Residual Standard Error.= 0.2525, Multiple R-Square = 0.9615 N = 60, F-statistic = 224.6625 on 6 and
54 df, p-value =0

coef  std.err t.stat p.value

V1 84.8764 8.9748 9.4572  0.0000
‘ V2 -624.9640 34.2107 -18.2681  0.0000
V3  -362.7573 38.0906 -9.5235  0.0000
V4 873.3815 60.8132  14.3617  0.0000
V5 24.7410 . 4.9389 5.0094  0.0000
V6 13.6638 4.1881 3.2625  0.0019
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SPCR BRIX ‘
Residual Standard Error = 0.2726, Multiple R-Square = 0.9659 N = 100, F-statistic = 208.0096 on 12 and
88 df, p-value = 0

coef std.err t.stat p.value

V1 4.2093 0.1358  30.9984 0.0000
V2 33.5693 1.3521  24.8276  0.0000
V3 9.7738 0.6385  15.3069  0.0000
V4 -27.3959 2.1091 -12.9894  0.0000
Vs 2.8332 0.2325 12.1868  0.0000
V6 0.2003 0.0215 9.3183  0.0000
V7 -29.1912  3.2209 -9.0629  0.0000
V8 -17.8065 2.0230 -8.8021  0.0000
V9 -29.7696 4.7879 -6.2177  0.0000
V10 16.9209  2.9502 5.7356  0.0000
V11 -22.2199 4.0771 -5.4499  0.0000
V12  39.3850 8.9062 4.4222  0.0000

SPCR FIBRE
Residual Standard Error = 0.6047, Multiple R-Square = 0.8761 N = 100, F-statistic = 57.1892 on 11 and
89 df, p-value = 0

coef  std.err t.stat p.value

V1 . 0.8967 0.0477 18.8058  0.0000
V2 2.0134 0.3012 6.6845  0.0000
V3 -211.0782 32.1852 -6.5582  0.0000
V4 -4.4383 0.7670 -5.7868  0.0000
Vs -24.9685 4.4873 -5.5642  0.0000
V6  132.1473 23.8125 5.5495  0.0000
v7 47.1311 9.0437 5.2115  0.0000
V8 14.0427 2.9992 4.6822  0.0000
V9  135.6085 35.2008  3.8524  0.0002
V10 80.5381  20.9538 3.8436  0.0002-
V11  300.4022 80.8993 3.7133  0.0004
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SPCR PROTEIN

Residual Standard Error = 0.2951, Multiple R-Square = 0.9542 N = 60, F-statistic = 75.361 on 13 and 47
df, p-value = 0

coef  std.err t.stat  p.value

V1 -0.6344 00339 -18.7189  0.0000
V2 52481 03930 -13.3245  0.0000
V3 27032 02363 -11.4395  0.0000
V4 -34.3020  4.0530  -8.4636  0.0000
V5 -7.3966  0.9420  -7.8445  0.0000
V6 41.3803 6.5338  6.3332  0.0000
V7 27.4129 44115 6.2140  0.0000
V8 06697 01131 59221  0.0000
V9 71017 14912  -4.7624  0.0000
V1o  2.9666 07775  3.8157  0.0004
V1l  64.4310 17.3055  3.7232  0.0005
Viz  -7.8878  2.2502  -3.5053  0.0010
V13  48.8068 15.0334  3.2466  0.0022

PLS BRIX
Residual Standard Error = 0.2287, Multiple R-Square = 0.9766 N = 100, F-statistic = 256.0153 on 14 and
86 df, p-value = 0

coef std.err t.stat p.value

V1 0.1393 0.0023 59.8683  0.0000
V2 0.4696 0.0081 58.1210  0.0000
V3 8.1823 0.1869 43.7777  0.0000
V4 12.4374 0.3068 40.5358 . 0.0000
Vs 19.3918 0.6230 31.1256  0.0000
V6 9.9626 0.3726  26.7346  0.0000
V7 55.2129 3.1950 17.2812  0.0000
V38 51.9918 3.2378 16.0578  0.0000
V9 53.0374 4.6422 11.4250  0.0000
Vig  197.7996 20.7199 9.5464  0.0000
V11 508.6738 81.6619 6.2290  0.0000
V12 354.9034 74.9618 4.7345  0.0000
V13 555.0606 141.6994 3.9172  0.0002
V14 231.6885 107.1771 2.1617  0.0334
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PLS FIBRE
Residual Standard Error = 0.5614, Multiple R-Square = 0.898 N = 100, F-statistic = 49.8674 on 15 and
85 df, p-value = 0

coef std.err =~ t.stat p.value

V1 0.0113 0.0004 27.3498  0.0000
V2 1.4776 0.0807 18.2986- 0.0000
V3 12.3480 0.7483 16.5023  0.0000
V4 85.5599 5.5652 15.3742  0.0000
V5 20.5716 . 1.3794 149130  0.0000
Ve 81.4700 5.8077 14.0280 . 0.0000
v7 373.0133 28.7931 12.9549  0.0000
V8 219.4928 17.8641 12.2868  0.0000
V9 186.2217 15.5385 11.9845  0.0000
V1o 482.4133 41.4357 11.6425  0.0000
V11 1308.8532 130.9792 9.9928  0.0000
V12 313.4975 53.7439 5.8332  0.0000
V13 1386.8892 277.8799 4.9910  0.0000
V14 1584.8630 341.7175 4.6379  0.0000
V15 1384.0165 659.6079°  2.0982  0.0389
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PLS PROTEIN
Residual Standard Error = 0.1865, Multiple R-Square = 0.9829 N = 60, F-statistic = 157.8145 on 16 and
44 df, p-value = 0

coef std.err t.stat p.value
Vi 0.0372 0.0007 50.2497  0.0000
V2 1.2601 0.0314 40.1534  0.0000
V3 1.4897 0.0422 35.2642  0.0000
V4 6.9472 0.2371 29.2957  0.0000

V5 36.5421 1.4108 25.9013  0.0000
V6 122.7007 5.5415 22.1421  0.0000
V7 80.8912 4.0994 19.7325  0.0000
V8 110.8226 6.5049 17.0368  0.0000
V9 249.5727 20.3698 12.2521  0.0000
V1o 435.0110 42.3651 10.2681  0.0000
V1l = 501.2799 51.3976 9.7530  0.0000
Viz 239.3746 26.5649 9.0108  0.0000
V13 437.6089 54.7417 7.9941  0.0000
V14 742.7086 104.5505 7.1708  0.0000
V15 1040.0230 158.0652 6.5797  0.0000
V16 384.9349 95.5418 4.0290  0.0002
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BMLR BRIX ,
Residual Standard Error = 0.2396, Multiple R-Square = 0.9749 N = 100, F-statistic = 203.7632 on 16 and
84 df, p-value = 0

coef std.err t.stat p.value

Vi 1.0592 -3.5050 0.3022 0.7633
V2 -6.2497 3.0676 ‘ -2.0373  0.0448
V3  23.1697 5.1022 4.5411  0.0000
V4 22,6871 8.5814 -2.6437 0.0098
Vs 15.5482 3.9389  3.9474 0.0002
V6 -22.7034 2.4196 -9.3832  0.0000
V7  24.0416 2.4895  9.6572  0.0000
V& -20.6519 4.4916 -4.5979  0.0000
V9 -20.3396 7.3185 -2.7792  0.0067
V10  46.5804 6.4574 7.2135  0.0000
V1l -50.8380 5.1534 -9.8650  0.0000
Vi2 42.4398 6.4154 6.6153  0.0000
V13 1.9550 ° 5.0120 0.3901  0.6975
V14 -16.1397 2.4828 -6.5005  0.0000
V15 -0.2121 2.6536 -0.0799  0.9365
V16  -6.3390 3.5085 -1.7616  0.0818
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BMLR FIBRE
Residual Standard Error = 0.796, Multiple R-Square = 0.7973 N = 100, F-statistic = 20.6499 on 16 and
84 df, p-value = 0

coef std.err t.stat  p.value

Vi1 15.7990 33.8356  0.4669  0.6418
V2  -187.2881 91.8747 -2.0385  0.0446
V3 -288.6024 102.5862 -2.8133 0.0061
V4 -163.6692 105.0642 -1.5578  0.1230
V5 -94.2978 124.2972 -0.7586  0.4502
V6 -678.7155 160.8204 -4.2203  0.0001
V7 -472.9067 133.2914 -3.547%  0.0006
V8 62.8721 38.9508 1.6141  0.1102
V9 12.6681 35.5259  0.3566  0.7223
V1o -17.6691 74.3150 -0.2378  0.81%6
V11 -33.6705 62.8214 -0.5360  0.5934
Viz -156.1085  37.7196 —4.1387 0.0001
V13 -427.7977 138.5851 -3.0867 . 0.0027
V14 -243.5802 149.0532 -1.6342 - 0.1060
V15 -66.3361 197.8717 -0.3352  0.7383
V16 29.7571 43.4330 0.6851  0.4952
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BMLR PROTEIN
Residual Standard Error = 0.3128, Multiple R-Square = 0.9518 N = 60, F-statistic = 54.3503 on 16 and
44 df, p-value = 0

coef  std.err t.stat p.value

V1 2347303 86.1259  2.7254  0.0092
V2 157.9888 38.7069  4.0817  0.0002
V3 26,0952 38.2142 © 0.6829  0.4983
V4 89.0377 45.0397  1.9769  0.0543
Vs 21.0500 16.5506  1.2719  0.2101
V6 5.1615 5.9630 0.8656  0.3914
V7 33.5142 12.5365  2.6733  0.0105
V8 12.7502 18.6861  0.6823  0.4986
V9 -26.7414 13.5606 -1.9720 0.0549
V10 -19.5341 16.6508 -1.1732  0.2470
Vi1 38.5200 21.5308 1.7891  0.0805
Vi2 58.5335 31.6643 1.8486  0.0712
V13 -20.2556 22.3299 -0.9071 0.3693
V14 4.1250 7.5704  0.5449  0.5886
Vis 9.5707 19.0961  0.5012  0.6187
V16 112.6701 64.4422 1.7484 0.0874

SMLRW BRIX
Residual Standard Error = 0.4823, Multiple R-Square = 0.8861 N = 100, F-statistic = 121.9396 on 6 and
94 df, p-value = 0

coef std.err t.stat p.value
Vi 112.0421 12.6864 8.8317  0.0000
V2 -587.7874 47.5490 -12.3617  0.0000
V3 -18.7954 3.0312 -6.2007 0.0000

V4 36749.8410 10050.2465 3.6566  0.0004
V5  -3334.3371 755.7048 -4.4122  0.0000
Ve 6452.2226 1921.0921 3.3586 - 0.0011
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SMLRW FIBRE
Residual Standard Error = 0.811, Multiple R-Square = 0.7645 N = 100, F-statistic = 50.8587 on 6 and 94
df, p-value = 0

coef std.err t.stat p.value

V1 -4.3691 0,8745 -4.9963  0.0000
V2 2592.0318 399.9554  6.4808  0.0000
V3 2233.2707 397.1550  5.6232 . 0.0000
V4 7700.8274 1322.0250  5.8250  0.0000
Vs 2341.1482 502.1983  4.6618  0.0000
V6 -19969.2631 6635.5992 -3.0094  0.0034

SMLRW PROTEIN
Residual Standard Errer = 0.2643, Multiple R-Square = 0.9578 N = 60, F-statistic = 204.2821 on 6 and
54 df, p-value = 0

coef std.err t.stat p.value

V1 517.8027  27.4632  18.8544  0.0000
V2 -163.2285  14.2193 -11.4794  0.0000
V3 -615.1766 1354928  -4.5403  0.0000
V4 -1542.8087 303.7776  -5.0787  0.0000
V5 1200.0862 266.8916  4.4965  0.0000
V6  -957.3443 242.8538  -3.9421  0.0002
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SPCRW BRIX
Residual Standard Error = 0.3694, Multiple R-Square = 0.936 N = 100, F-statistic = 131.7058 on 10 and
90 df, p-value == 0

coef std.err t.stat p.value

V1 6.3170  0.2925  21.6000  0.0000
V2 76.7129 5.6634  13.5454  0.0000
V3  -105.4595 8.6689 -12.1653 0.0000
V4 385.0874 32.2931  11.9248  0.0000
V5  -132.5143 13.1893 -10.0471  0.0000
V6 27.5505 2.7619 9.9752  0.0000
V7 13.4658 1.3743 9.7986  0.0000
V8 228.5009 28.8609 7.9173 b.OOOO
V9 304.0115 96.1552 3.1617  0.0021
V10 1594.3647 575.1809 2.7719  0.0068

SPCRW FIBRE
Residual Standard Error = 0.7143, Multiple R-Square = 0.8251 N = 100, F-statistic = 42.4544 on 10 and
90 df, p-value = 0

coef std.err t.stat p.value
V1 0.8973 0.0563 15.9230  0.0000
V2 -2.0412 0.3669 -5.5636 0.0000

V3 4.6783 0.9291 5.0356  0.0000
V4 -393.1734 82.8737 -4.7442 ° 0.0000
V5 301.7367 64.5316 4.6758  0.0000
'S -24.1737 5.4611 -4.4265  0.0000
V7 -15.3318 3.6534 -4.1966  0.0001
V8  271.2654 77.0088 3.5225  0.0007
V9  181.8684 52.5139 3.4632  0.0008
V10  886.4472 300.3162 2.9517  0.0040
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SPCRW PROTEIN

Residual Standard Error = 0.3437, Multiple R-Square = 0.9339 N = 60, F-statistic = 70.677 on 10 and 50
df, p-value = 0

. coef  std.err t.stat . p.value

V1 0.6465 0.0399 16.1893  0.0000
V2 -4.0626 0.3446 -11.7898  0.0000
V3 12.8359 1.4676 8.7461  0.0000
V4 -4.7927 0.5881 -8.1490  0.0000
V5 -138.8301 21.0014 -6.6129 0.0000
V6 -49.2715 8.5493 -5.7632  0.0000
V7 0.8674 0.1560 5.5611  0.0000
V8 -117.9042 22.8729 -5.1548  0.0000
V9 -22.0719 4.9422 -4.4660  0.0000
V10 8.0787 2.7894 2.8963  0.0056

AWA - band(2,5,0) BRIX
Residual Standard Error = 0.2381, Multiple R-Square = 0.9752 N = 100, F-statistic = 206.4704 on 16 and
84 df, p-value = 0 '

coef std.err t.stat p.value

- V1 0.9624 4.3145 0.2231 0.8240
V2 16.8904 3.6243 4.6603  0.0000
V3 -37.4660 8.8290 -4.2435  0.0001
V4  28.6036 8.2427 3.4702  0.0008
V5 -25.5626  2.9157 -8.7674  0.0000
V6  23.7097 2.7388 8.6571  0.0000
V7 -35.9495 3.2954  -10.9091  0.0000
V8 12.1630 6.2623 1.9423 0.0555
V9  35.41290 7.6807 4.6106  0.0000
V10 -50.2272 6.0778  -8.2641  0.0000
V11  57.8430 6.7563 8.5613  0.0000
Vi2 -31.1792 5.9031 -5.2819  0.0000
V13 -10.0719 4.0500 -2.4869  0.0149
V14 3.7706  2.6101 1.4447  0.1523
Vis  -5.1649 2.5863  -1.9970  0.0491
Vie 3.7216  4.0358 0.9221  0.3591
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AWA - band(2,5,1) BRIX
Residual Standard Error = 0.2388, Multiple R-Square = 0.975 N = 100, F-statistic = 205.154 on 16 and
84 df, p-value = 0

coef  stderr t.stat p.value

V1 52.0331 12.6395 4.1005 0.0001
V2 -59.6844 21.3923 -2.7900  0.0065
V3 35.5449 12.9744  2.7396  0.0075
\'Z! -54.8479 6.9832 -7.8542  0.0000
V5 37.0434 11.7281  3.1585  0.0022
V6 -43.8805 11.3191 -3.8767  0.0002
V7 -54.8110 12,9727 -4.2251  0.0001
V8 71.8989 16.7222  4.2996  0.0000
V9 -113.2040 14.8415 -7.6275  0.0000
V10 79.3447 14.6540 5.4146  0.0000
V11 -13.7873 9.3965 -1.4673  0.1460
Viz -24.6244 15.2165 -1.6183  0.1094

V13 8.6526 46731 1.8516 0.0676
Vi4 -33.7096 22.3995 -1.5049  0.1361
V15 9.3147 5.2253  1.7826  0.0783

V16 -39.6199 19.7891 -2.0021  0.0485
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AWA FIBRE
Residual Standard Error = 0.6407, Multiple R-3quare = 0.8687 N = 100, F-statistic = 34.7199 on 16 and
84 df, p-value = 0

coef  std.err t.stat p.value

V1 287.1120 41.5706 6.9066  0.0000
V2 -14.6522  46.2303 -0.3169  0.7521
V3 -30.4353 32.5657 -0.9346  0.3527
V4 162.7707 53.7136 3.0303  0.0032
V5 -162.0510 37.4868 -4.3229  0.0000
Vé 197.5076 51.6857  3.8213  0.0003
V7 -29.3467 42.1692 -0.6959  0.4884
V8 -156.3376 46.9818 -3.3276 0.0013
V9 96.7725 36.7527  2.6331 0.0101
V10 51.9793 42.1593  1.2329  0.2210
Vi1 -9.5745 49.5830 -0.1931 = 0.8473
V12 35.6617  34.5059 1.0335 0.3043
V13 35.2423 42.0055 0.8390  0.4039
V14> -115.3310 45.2348 -2.5496  0.0126
V15 329.3379  45.1346 7.2968 0.0000
V16 -435.9561 73.5939 -5.9238 0.0000
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AWA PROTEIN
Yesidual Standard Error = 0.2241, Multiple R-Square = 0.9753 N = 60, F-statistic = 108.4756 on 16 and
t4 df, p-value = 0

coef  std.err t.stat p.value

V1  -2.8615 8.2078 -0.3486  0.7290
V2  52.8530 15.5264  3.4041 0.0014
V3 -5.6918 19.9444 -0.2854 0.7767
V4  31.1330 20.5265  1.5167 0.1365
V5  61.1461 14.3145  4.2716  0.0001
V6  -6.0746 11.2027 -0.5422  0.5904
V7  78.5630 10.5020  7.4808  0.0000
V8 300703 6.1721  4.8720  0.0000
V9 -11.3970  7.5945 -1.5007  0.1406
V10  60.8383 10.7431  5.6630  0.0000
V1l  62.6580 7.7381  8.0974  0.0000
V12  -5.5753  3.3728 -1.6530 0.1054
V13 122.4131  9.9775 12.2689  0.0000
V14 748368  9.5503 -7.8360  0.0000
V15  25.7174  4.8644  5.2869  0.0000
V16 931781 8.0314 11.6018  0.0000
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