JCU ePrints

This file is part of the following reference:

Parker, Anthony Joseph (2004) Water, electrolyte and acid-base balance in transported Bos indicus steers. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/17422

Water, electrolyte and acid-base balance in transported *Bos indicus* steers

Thesis submitted by Anthony Joseph PARKER, B.AppSc (Rural Tech)

in April 2004

For the Degree of Doctor of Philosophy in the School of Biomedical Sciences at James Cook University

ABSTRACT

The objective of these studies was to investigate the physiological mechanisms involved in maintaining water, electrolyte and acid-base balance in *Bos indicus* steers placed under stress. These studies also sought to provide a novel approach to minimize the effects of stress on the physiology of *Bos indicus* steers during long haul transportation in the seasonally dry tropics.

Merino sheep provided a simulated stress response model, to evaluate the effects of the principle stress hormone cortisol on indices of water and electrolyte balance. This study indicated that stressed sheep suffer from a loss of body water in excess of that associated with a loss of electrolytes to support the hypothesis that elevated physiological levels of cortisol induce a diuresis in ruminants that contributes to dehydration.

A second pen study was performed to investigate the effects of excess cortisol on physiological mechanisms that resist dehydration in *Bos indicus* steers. The presence of excess cortisol suppressed the RAA axis but did not markedly affect plasma AVP concentrations. This reflected the complexity of endocrine interactions associated with water balance in *Bos indicus* steers that enabled homeostasis to be maintained.

A quantitative analysis of acid base balance in *Bos indicus* steers demonstrated long haul transportation or extended periods of feed and water deprivation to have no effect on blood pH. The primary challenge to a transported or feed and water deprived animal is a mild metabolic acidosis induced by elevated plasma proteins which may be the result of a loss of body water. The loss of electrolytes has little effect on the acid-base balance of the animals.

The treatment of *Bos indicus* steers prior to long haul transportation with the osmolyte glycerol provided a novel approach to conserving body water, decreasing the energy deficit and preserving muscle quality.

ii

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Anthony Joseph PARKER April, 2004

STATEMENT ON ACCESS

I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere. I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and; I do not wish to place any further restriction on access to this work.

I wish this work to be embargoed until June 2007:

Anthony Joseph PARKER April, 2004

ELECTRONIC COPY

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library is an accurate copy of the print thesis submitted, within the limits of the technology available.

Anthony Joseph PARKER

April, 2004

TABLE OF CONTENTS

	Page No.
Abstrac	tii
Declara	tioniii
Stateme	nt of Accessiv
Stateme	nt of Electronic Copyv
Table of	f Contents vi
List of F	Figuresx
List of 7	ſablesxii
List of A	Abbreviationsxiii
List of F	Publications arising from this workxiv
Acknow	ledgement xv
СНАРТ	ER ONE 1
Introdu	ction1
СНАРТ	TER TWO
2.0 Stre	ss in Cattle4
2.1 Stre	ss Theories
2.1.1	Selye's concept of stress
2.1.2	Moberg's model for stress response in animals
2.2 Defi	nition of stress
2.3 Sym	patho-adrenal-medullary (SAM) axis8
2.4 Нур	othalamo-pituitary-adrenocortical (HPA) axis8
2.5 Body	y fluid compartments
2.5.1 2.5.2 2.5.3 2.5.4 2.5.5	Measurement of body fluid compartments11Total body water (TBW)11Extra-cellular fluid volume (ECF)12Intra-cellular fluid volume (ICF)12Blood volume12
2.6 Body	y water regulation12
2.6.1	Regulation of ECF osmolarity

2.6.2	Osmoreceptor-ADH feedback system Role of thirst mechanism and sodium appetite	
2.0.5 2.7 Reg	ulation of cellular volume	
2.7.1	Ion transport systems	
2.7.2	Osmolytes	17
	Glycerol	
	Betaine	19
2.7.3	Acid-Base balance	19
	The henderson-hasselbalch equation	19
	Strong ion model	
2.8 Effe	cts of HPA axis on Water and Electrolyte Balance	
2.9 Effe	cts of Feeding Electrolytes and Water on Transport Stress	24
2.10 Im	pact of stress on animal metabolism	
2.10.1	Regulation of glucose and free fatty acids	
2.10.2	Pathology of gastrointestinal system affected by stress	
2.10.3	The effect of stress on immunocompetence	
2.10.4	The effects of stress on liveweight.	
2.10.5	Changes in body composition	
2.10.6	Rest and recovery periods	
2.10.7	' Injuries, death and disease from transport	
2.10.8	Sex differences in coping ability	
2.11 Co	nclusion	
		20
CHAPI	ER THREE	
3.1 Intr	oduction	
3.2 Mat	erials and Methods	
3.2.1	Animals and management	
3.2.2	Treatments	
3.2.3	Sample collection	40
3.2.4	Urea space measurements	41
3.2.5.	Urea and Electrolyte measurement	
3.2.6.	Statistical analysis	41
3.3 Resi	ılts and Discussion	
3.3.1	Plasma cortisol concentration	
3.3.2	Body Water	
3.3.3	Urine output	
3.3.4	Water and feed intake	
3.3.5	Urinary electrolytes	
3.3.6	Plasma electrolytes	
3.4 Imp	lications	55

CHAPTE	CHAPTER FOUR		
4.1 Introduction			
4.2 Mater	ials and Methods	57	
421 A	nimals and management	57	
422 T	reatments	58	
423 S	ample collection		
424 1	Irea electrolyte and metabolite measurement		
4.2.5 S	tatistical analysis	59	
4.3 Result	s and Discussion	60	
431 P	lasma cortisol concentration	60	
432 A	Arginine vasopressin	62	
4.3.3 A	Angiotensin II	64	
4.3.4 U	Jrine output	65	
4.3.5 H	Ivdration effects	67	
4.3.6 Pla	asma electrolytes	69	
4.3.7 W	ater and feed intake	73	
4.4 Implic	ations	74	
СНАРТЕ	R FIVE	76	
5.1 Introd	uction	76	
5.2 Mater	ials and Methods	77	
5.2.1 A	Animals and management	77	
5.2.2 S	ample collection	79	
5.2.3 N	leasurement	79	
5.2.4 S	tatistical analysis	80	
5.3 Result	s and Discussion	80	
5.4 Implications		87	
СНАРТЕ	R SIX	88	
6.1 Introd	uction	89	
6.2 Mater	ials and Methods	89	
6.2.1. A	Animals and management	89	
6.2.2. S	ample collection	91	
6.2.3. N	leasurement	92	
6.2.4. U	Jrea space measurements	92	
625 S	tatistical analysis		

6.3 Results and Discussion	
6.3.1. Blood acid-base status	
6.3.2. Plasma electrolytes	
6.3.3 Metabolites	
6.3.4. Body water	101
6.3.5. Liveweight	102
6.4 Implications	102
CHAPTER SEVEN	107
General Discussion	106
REFERENCES	114
APPENDIX 1 - A comparison of urea and tritiated water space to determine total body water in <i>Bos indicus</i> steers	128
APPENDIX 2 - Cortisol response to transportation during short and long haul transportation in <i>Bos indicus</i> steers	135
APPENDIX 3 - Blood gas correlations between auricular arterial and jugular venous blood in normal <i>Bos indicus</i> steers	140
APPENDIX 4 - ANOVA Tables	147
Chapter 3 ANOVA Tables	152
Chapter 4 ANOVA Tables	157
Chapter 5 ANOVA Tables	
Chapter 6 ANOVA Tables	168

LIST OF FIGURES

	Page	No.
Figure 2.1	Moberg's model of stress in animals	7
Figure 2.2	Mechanism and consequences of anti-diuretic hormone	14
Figure 2.3	The loss in liveweight in fasted cattle	30
Figure 3.1	Plasma cortisol concentrations (mean \pm SEM) at 0, 24, 48 and 72 h for four groups of sheep in which stress was simulated by injection of cortisol (\bullet) or not (\bigcirc), and which were either water deprived (dotted line) or given <i>ad libitum</i> access to water (solid line).	42
Figure 3.2	Empty body water (mean \pm SEM) at 24, 48 and 72 h for two groups of sheep which were either water deprived (dotted line) or given <i>ad libitum</i> access to water (solid line)	43
Figure 3.3	Total urine output (mean \pm SEM) at 24, 48 and 72 h for four groups of sheep in which stress was simulated by injection of cortisol (\bullet) or not (\bigcirc), and which were either water deprived (dotted line) or given <i>ad libitum</i> access to water (solid line).	44
Figure 3.4	Total urine sodium output (mean \pm SEM) at 24, 48 and 72 h for two groups of sheep in which stress was simulated by injection of cortisol (solid line) or not (dotted line).	50
Figure 3.5	Total urine potassium output (mean \pm SEM) at 24, 48 and 72 h for two groups of sheep which were either water deprived (dotted line) or given <i>ad libitum</i> access to water (solid line).	51
Figure 3.6	Total urine magnesium output (mean \pm SEM) at 0, 24, 48 and 72 h for two groups of sheep which were either water deprived (dotted line) or given <i>ad libitum</i> access to water (solid line).	52
Figure 3.7	Plasma sodium concentration (mean \pm SEM) at 0, 24, 48 and 72 h for two groups of sheet which were either water deprived (dotted line) or given <i>ad libitum</i> access to water (solid line)	53
Figure 3.8	Plasma potassium concentration (mean \pm SEM) at 0, 24, 48 and 72 h for two groups of sheep in which stress was simulated by injection of cortisol (solid line) or not (dotted line).	54
Figure 4.1	Plasma cortisol concentration (mean \pm SEM) at 6 h intervals For 90 h in the no water/no-cortisol (\bigcirc) and water/no-cortisol (\bigcirc) steer groups. The no-water/no-cortisol group demonstrated a group x time interaction (P = 0.028) toward increasing the area under the plasma cortisol concentration curve from 60 – 90 h compared to the water/no-cortisol group.	62

Figure 4.2	Plasma concentrations of Arginine Vasopressin (AVP) in Bos indicus steers (mean \pm SEM) at 0, 24, 48, 72 and 90 h for h groups of steers in which stress was simulated by injection of cortisol (\bullet) or not (\bigcirc), and which were either water deprived (dashed line) or given ad libitum access to water (solid line). * Denotes a water-x-time interaction (P<0.05).	63
Figure 4.3	Plasma concentration of Angiotensin II (AII) in <i>Bos indicus</i> Steers (mean \pm SEM) at 0, 24, 48, 72 and 90 h for group groups of steers in which stress was simulated by injection of cortisol (\odot) or not (\bigcirc), and which were either water deprived (dashed line) or given <i>ad libitum</i> access to water (solid line). *Denotes a cortisol-x-water-x-time interaction. (P<0.01).	64
Figure 4.4	Total urine output (mean \pm SEM) at 24, 48, 72 and 90 h for four groups of steers which were given an injection of cortisol (•) or not (\bigcirc), and which were either water deprived (dotted line) or given <i>ad libitum</i> access to water (solid line).	66
Figure 4.5	Plasma osmolality (mean \pm SEM) at 0, 24, 48, 72 and 90 h For two groups of steers that were either water deprived (dotted line) or given <i>ad libitum</i> access to water (solid line).	67
Figure 4.6	Haematocrit (mean \pm SEM) at 24, 48, 72 and 90 h for four Groups of steers which were given an injection of cortisol (\bigcirc) or not (\bigcirc), and which were either water deprived (dotted line) or given <i>ad libitum</i> access to water	68
Figure 4.7	Plasma sodium concentration (mean \pm SEM) at 0, 24, 48, 72 and 90 h for two groups of steers that were either water deprived (dotted line) or given <i>ad libitum</i> access to water (solid line).	69
Figure 4.8	Plasma potassium concentration (mean \pm SEM) at 0, 24, 48, 72 and 90 h for two groups of steers in which stress was simulated by injection of cortisol (solid line) or not (dotted line).	70
Figure 4.9	Plasma calcium (mean \pm SEM) at 0, 24, 48, 72 and 90 h for two groups of steers that were either water deprived (dotted line) or given <i>ad libitum</i> access to water (solid line)	71
Figure 4.10	Plasma chloride concentration (mean \pm SEM) at 0, 24, 48, 72 and 90 h for two groups of steers that were either water deprived (dotted line) or given <i>ad libitum</i> access to water (solid line).	72
Figure 4.11	Plasma phosphorous concentration (mean \pm SEM) at 0, 24, 48, 72 and 90 h for two groups of steers in which stress was simulated by injection of cortisol (solid line) or not (dotted line).	73
Figure 7.1	Schematic of the potential beneficial effects of glycerol prophylactic treatment during long haul transportation in <i>Bos indicus</i> steers.	112

LIST OF TABLES

	Р	age No.
Table 3.1	Water and feed intake by the four treatment groups of sheep at 24, 48 and 72 h after stress was simulated by injection of cortisol	49
Table 4.1	Water and feed intake at 0, 24, 48, 72, and 90 h for four groups of steers after stress was simulated by infusion of cortisol or not and which were either water deprived or given <i>ad libitum</i> access to water	75
Table 5.1	Least squares means \pm SEM for blood pH, blood gases, plasma lactate, electrolytes, albumin, total protein, anion gap (AG), strong ion difference (SID) and total weak acids (A _{total}) in <i>Bos indicus</i> steers subjected to 48 h of transportation and fasting (Transported), or fasting alone (Water and feed deprived), or offered <i>ad libitum</i> feed and water (Control)	82
Table 6.1	Least squares means \pm SEM for acid-base parameters from venous blood in <i>Bos indicus</i> steers treated with osmolytes and subjected to road transportation for 48 h	95
Table 6.2	The effects of osmolyte treatment or not prior to transit on serum electrolytes after 24 h and 48 h of transit	97
Table 6.3	Least squares means \pm SEM for TBW, cortisol, glucose, lactate, hematocrit, albumin and total protein in <i>Bos indicus</i> steers treated with osmolytes or not and subjected to road transportation for 24 h	104
Table 6.4	Least squares means \pm SEM for TBW, cortisol, glucose, lactate, hematocrit, albumin and total protein in <i>Bos indicus</i> steers treated with osmolytes or not and subjected to road transportation for 48 h	105
Table 6.5	Least squares means ± SEM for liveweight, and % body weight (BW) loss <i>Bos indicus</i> steers treated with osmolytes or not and subjected to road transportation for 48 h	106

LIST OF ABBREVIATIONS

ACTH	-	adrenocorticotrophic hormone
ADH	-	anti-diuretic hormone
AG	-	anion gap
AII	-	angiotensin II
AVP	-	arginine vasopressin
CRH	-	corticotrophin releasing hormone
d	-	day/s
FFA	-	free fatty acids
GIT	-	gastrointestinal tract
h	-	hour/s
HPA	-	hypothalamo-pituitary-adrenocortical
ICF	-	Intra-cellular fluid volume
min	-	minute/s
MSH	-	melanocyte stimulating hormone
POMC	-	pro-opiomelanocortin
RAA	-	renin-angiotensin-aldosterone
SAM	-	sympatho-adrenal-medullary
SID	-	strong ion difference
TBW	-	total Body Water
THI	-	temperature-humidity indices

LIST OF PUBLICATIONS ARISING FROM THIS WORK

- Parker AJ, Hamlin GP, Coleman CJ and Fitzpatrick LA (2004) Excess cortisol interferes with a principal mechanism of resistance to dehydration in *Bos indicus* steers. *Journal of Animal Science* **82**: 1037-1045
- Parker AJ, Hamlin GP, Coleman CJ and Fitzpatrick LA (2003) Quantitative analysis of acid-base balance in Bos indicus steers subjected to transportation of long duration. *Journal of Animal Science* 81: 1434-1439
- Parker AJ, Hamlin GP, Coleman CJ and Fitzpatrick LA (2003) Dehydration in stressed ruminants may be the result of a cortisol induced diuresis. *Journal of Animal Science* 81: 512-519

"Work, Finish, Publish" *M. Faraday*

ACKNOWLEDGEMENT

I am grateful to the Australian Live Export Corporation for the financial assistance in carrying out this work and for the encouragement of the Research and Development Committee members throughout my candidature.

I wish to thank my supervisor Assoc. Professor Lee Fitzpatrick for his encouragement, support and guidance throughout my studies at James Cook University. I have appreciated his honesty and dedication toward these studies. His mentoring and research philosophies will always stand in my mind as a bench mark for high achievement.

I wish to thank my associate supervisor Dr Gary Hamlin for his advice and technical input into my studies, Assoc. Professor Geoffrey Dobson for his advice and academic discussions on comparative physiology, and the remainder of the academic staff at the School of Biomedical and Tropical Veterinary Sciences for their advice, assistance and support.

The technical and animal husbandry assistance offered by Chris and Sandy Coleman, Peter, Ann, Fran and Tom Finlay of *Fletcherview*, Charters Towers and Geoffrey Palpratt, Scott Blyth and Donna Martin during the course of these studies was invaluable; for this I am forever grateful. I appreciate the generosity of Mr Tom Mann, *Hillgrove*, Charters Towers for the use of his cattle in the transportation studies. Without his generosity my studies would not have been as fruitful.

A special thanks to my fellow post-graduate student and laboratory master, Donna Rudd, for her assistance with the operation of laboratory analytical equipment and quality control in the assaying of samples. My appreciation also extends to Mrs Lorraine Henderson, for the typing and editorial work on this manuscript and for her support and smile throughout my candidature.

Finally, to my beautiful wife Elizabeth and our children Mary, Lachlan and Patrick. Thank you for your patience and encouragement. These studies could not have been done without your understanding, love, and support. It is to the four of you that I dedicate this thesis.