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[1] The modified Richards equation (MRE) is presented by using a rotated coordinate
system to accommodate the geometry of a hillslope and a moving boundary to represent
an eroding surface on a hillslope. Exact analytical solutions of MRE are developed subject
to Fujita’s [1952] diffusivity and Sander et al.’s [1988] unsaturated hydraulic
conductivity. The mathematical analysis presented here for soil water dynamics and
infiltration in particular on an eroding hillslope deviates from the traditional way in which
infiltration has been investigated since Green and Ampt’s [1911] pioneering work. The
MRE clearly improves mathematical representation of physical reality. Field data are used
to derive parameters in a solution of MRE to illustrate the effect of erosion rates on soil
moisture profiles in a moving boundary. INDEX TERMS: 1655 Global Change: Water cycles

(1836); 1815 Hydrology: Erosion and sedimentation; 1866 Hydrology: Soil moisture; 3210 Mathematical

Geophysics: Modeling; KEYWORDS: modified Richards equation, erosion, soil water flow

1. Introduction

[2] Numerous studies have been reported on quantifying
soil water movement and infiltration since Green and Ampt
[1911] proposed the first infiltration model. These studies
regard the infiltration surface as a stable surface on which
infiltration takes place, which is reasonable only for infil-
tration on flat surfaces. On a slope, however, runoff formed
during rainfall erodes and entrains soil particles and solutes
from the slope surface and moves them downslope, and soil
erosion processes remove some of the topsoil, thus forming
a new surface for the same processes to be repeated. In this
case, the traditional infiltration theories do not apply.
[3] In this paper, we investigate soil water dynamics on a

dynamic eroding hillslope which implies that two more
concepts are introduced: one is a dynamic eroding hill-
slope, and the other is soil water movement on the dynamic
slope. With these two concepts developed for soil water
dynamics on eroding hillslopes, it is clear that the method-
ologies proposed in this presentation are more realistic and
more reasonably represent natural hydraulic phenomena
and improve mathematical representation of the physical
processes.

2. Richards Equation for Soil Water Physics on
an Eroding Hillslope

[4] Starting from Buckingham’s concept of potentials, a
nonlinear Fokker-Planck equation became the law for the
study of flow in unsaturated soils since Richards [1931],
which can be written [Philip, 1991]

@q
@t

¼ r � DðqÞrqð Þ � dK

dq
@q
@z

; ð1Þ

where
q the soil moisture content;

D(q) the diffusion coefficient;

K the hydraulic conductivity;

z the depth of soil;

t time;

r Laplacian operator.

[5] Equation (1) has been extensively investigated in
soil physics and related areas in the last seven decades
since Richards [1931] and has been used for modeling soil
water movement including infiltration subject to different
conditions.
[6] As far as infiltration is concerned, it is obvious from the

literature that the vast majority of mathematical formulations
and related various solutions published so far were developed
for infiltration on a flat surface only. Various solutions for
infiltration subject to different boundary conditions and
different forms of the diffusion coefficient and hydraulic
conductivity have been developed. For a limited number of
reviews on this topic the reader is referred to Philip [1969,
1991], Parlange et al. [1980], and Sposito [1995].
[7] In order to incorporate the effect of hillslope in

Richards equation for infiltration, Philip [1991] presented
a modified Richards equation and related solutions for
infiltration on planar slopes. However, Philip’s approach
is applicable to stable slopes only. As hillslopes are often
susceptible to erosion, infiltration and related processes
cannot be correctly interpreted using Philip’s approach
when erosion occurs.
[8] In this paper, we present procedures for analyzing soil

water relationships on eroding hillslopes. These method-
ologies and procedures are based on the Richards equation
and are linked to soil erosion processes.
[9] In order to clarify the definition to be used in this

paper, Figure 1 draws a schematic illustration of the
definitions used in the analysis. Figure 1 also highlights
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the key points of departure from the traditional theories
on soil erosion and soil water flow.
[10] In Figure 1, the following nomenclature is defined. H

is the depth of soil layer to be eroded during a rainfall event;
h is the vertical depth of the same soil layer inclined at an
angle of a; and x and z define the Cartesian coordinate,
which after a rotation by an angle of a, is defined by (x*, z*).
[11] In Figure 1 the relationship between H and h is given

by

H ¼ h cos a ð2Þ

Figure 1 is a combination of the definitions developed in
this paper and the schematic illustration of Philip [1991,
Figure 1]. Figure 1 of this paper and Figure 1 of Philip
[1991] are similar in geometry except for a moving
boundary used in the present paper.
[12] With the aid of Figure 1 in this paper the coor-

dinates (x*, z*) rotated by an angle of a are given by
Philip [1991],

x* ¼ x cos aþ z sin a ð3Þ

z* ¼ �x sin aþ z cos a: ð4Þ

[13] With equations (3) and (4), equation (1) is trans-
formed to

@q
@t

¼ @

@z*
D qð Þ @q

@z*

� �
� dK

dq
@q
@x*

sin aþ @q
@z*

cos a
� �

: ð5Þ

[14] Philip [1991] argued that the relevant solution of
equation (5) is essentially independent of x*, and dependent
only on z* and t. In these circumstances, with the aid of
equations (3) and (4), equation (5) reduces to

@q
@t

¼ @

@z*
DðqÞ @q

@z*

� �
� dK

dq
@q
@z*

cos a: ð6Þ

[15] Philip [1991] presented solutions of equation (6) for
hillslope infiltration and related various flow components
for planar slopes. His formulations and solutions are appli-
cable only for hillslope infiltration on a stable surface
without material loss from the surface.

[16] In the following sections, we investigate soil mois-
ture and hillslope infiltration on an eroding surface subject
to the following initial and boundary conditions:

q ¼ 0 z* > 0 t ¼ 0 ð7Þ

q ¼ qS z* > 0 t > 0 ð8Þ

where qs is the saturated soil water content at the surface.

3. Analytical Solution for Soil Moisture Status on
an Eroding Hillslope

[17] For analyzing water movement within and on an
eroding hillslope we introduce the average surface soil
erosion rate S,

S ¼ H=T ð9Þ

From equation (2) we have

S ¼ h cos að Þ=T : ð10Þ

Now we have introduced two expressions for S. If the depth
of soil eroded in a storm is very small, one could
approximately regard H and h as equal.
[18] We further use a moving coordinate system with a

new variable x. If time is measured from the start of rainfall
and runoff and soil erosion start t0 after rainfall starts, then
we have

x ¼ z* � S t � t0ð Þ; ð11Þ

where t0 is the time to ponding. Equation (11) implies that at
the erosion rate S after each rainfall event, a new soil surface
forms with its origin starting at x.
[19] With the aid of equation (11), equation (6) can be

rewritten as

@q
@x

¼ � 1

S

@

@x
DðqÞ @q

@x

� �
þ dKðqÞ

dq
@q
@x

cos a
S

: ð12Þ

Equation (12) is the modified Richards equation (MRE),
and it generalizes the partial differential equation governing
soil water dynamics on a hillslope for both sloping and flat

Figure 1. Definitions and schematic diagram of soil water movement on an eroding hillslope.

8 - 2 SU: TECHNICAL NOTE



geometries and for both stable and eroding surfaces.
Obviously, the MRE reduces to different forms subject to
different conditions.
[20] In the present investigation, equation (12) can be

written as an ordinary differential equation,

dq
dx

¼ � 1

S

d

dx
DðqÞ dq

dx

� �
þ dKðqÞ

dx
cos a
S

; ð13Þ

and the initial and boundary conditions equations (7) and
(8) now become

q ¼ 0 x > 0 ð14Þ

q ¼ qS x ¼ 0 ð15Þ

A first integral of equation (13) with respect to x is

q ¼ �DðqÞ
S

dq
dx

þ KðqÞ cos a
S

þ C1; ð16Þ

where C1 is a constant of integration.
[21] It is obvious that the form of solutions of equation

(16) depends on the forms of D(q) and K(q). In the rest of
the section, we further investigate the solutions of equation
(16) subject to one set of functions for the unsaturated
hydraulic conductivity and diffusivity.
[22] We use Sander et al.’s [1988] unsaturated hydraulic

conductivity,

KðqÞ ¼ K1 þ K2qþ K3q2

1� nq
ð17Þ

and Fujita’s [1952] diffusivity

DðqÞ ¼ D0

1� nqð Þ2
; ð18Þ

where K1, K2, K3, D0, and n are constants determined from
soil properties.
[23] Equations (17) and (18) were used by Sander et al.

[1988] to derive exact solutions of the nonlinear Richards
equation for constant flux infiltration (a boundary condition
of the third type). In this paper, we use equations (17) and
(18) for K(q) and D(q), respectively, in equation (16) to
derive a set of exact analytical solutions for infiltration on
an eroding hillslope subject to the concentration boundary
condition (a boundary condition of the first type).
[24] In equations (16) and (17), if we define K1 = 0 for

q = 0 and dq/dx|q=0 = 0, we have C1 = 0 for q = 0. Then,
substitution of equations (17) and (18) into equation (16)
gives

dq
dx

þ 1

D0

S � K2 cos að Þqþ 1

D0

K2n� K3ð Þ cos a� 2nS½ 	q2

þ 1

D0

Sv2 þ nK3 cos a
� �

q3 ¼ 0: ð19Þ

Equation (19) can be solved analytically. First, we rewrite
equation (19) as

dq
dx

¼ qR; ð20Þ

where

R ¼ Aþ Bqþ Cq2 ð21Þ

with

A ¼ 1

D0

K2 cos a� Sð Þ ð22Þ

B ¼ 1

D0

K3 � K2nð Þ cos aþ 2nS½ 	; ð23Þ

C ¼ 1

D0

�Sn2 � nK3 cosa
� �

: ð24Þ

Then we integrate equation (20),

Z
dq
Rq

¼
Z

dxþ C2; ð25Þ

where C2 is a constant of integration.
[25] Following Gradshteyn and Ryzhik [1994, equations

(2.177-1) and (2.172), pp. 81, 83], equation (25) is inte-
grated to give

1

2A
ln

q2

R

� �
� B

2A

� �
1ffiffiffiffiffiffiffiffi
��

p ln

ffiffiffiffiffiffiffiffi
��

p
� Bþ 2Cqð Þffiffiffiffiffiffiffiffi

��
p

þ Bþ 2Cqð Þ

" #
¼ xþ C2;

ð26Þ

where

� ¼ 4AC � B2: ð27Þ

Equation (26) takes three different forms depending on the
values of � [Gradshteyn and Ryzhik, 1994, equation
(2.177), p. 83].
[26] Case 1 is for � < 0. In this case, equation (26) gives

1

2A
ln

q2

R

� �
þ B

A
ffiffiffiffiffiffiffiffi
��

p Arth
Bþ 2Cqffiffiffiffiffiffiffiffi

��
p

� �
¼ xþ C2 � < 0; ð28Þ

where Arth Bþ 2Cq1=
ffiffiffiffiffiffiffiffi
��

p� �
is the inverse hyperbolic tangent

function. Applying the boundary condition to equation (28) yields

C2 ¼
1

2A
ln

q2s
Aþ Bqs þ Cq2s

 !
þ B

A
ffiffiffiffiffiffiffiffi
��

p Arth
Bþ 2Cqsffiffiffiffiffiffiffiffi

��
p

� �
: ð29Þ

Substitution of (29) in (28) gives

x ¼ 1

2A
ln

q2

q2s

 !
Aþ Bqs þ Cq2s
Aþ Bqþ Cq2

� �" #
þ B

A
ffiffiffiffiffiffiffiffi
��

p

� Arth
Bþ 2Cqffiffiffiffiffiffiffiffi

��
p

� �
� Arth

Bþ 2Cqsffiffiffiffiffiffiffiffi
��

p
� �� �

� < 0; ð30Þ

where A, B, and C are given by equations (22), (23), and
(24), respectively. Equation (30) represents the relationship
between the depth of soil in a moving coordinate x,
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moisture content q, erosion rate S, and other parameters
incorporated in A, B, C, and �. With equation (11),
equation (30) can be written for the fixed coordinate
systems,

z* ¼ S t � t0ð Þ þ 1

2A
ln

q2

q2s

 !
Aþ Bqs þ Cq2s
Aþ Bqþ Cq2

� �" #
þ B

A
ffiffiffiffiffiffiffiffi
��

p

� Arth
Bþ 2Cqffiffiffiffiffiffiffiffi

��
p

� �
� Arth

Bþ 2Cqsffiffiffiffiffiffiffiffi
��

p
� �� �

� < 0: ð31Þ

[27] Case 2 is for � = 0. In this case, equation (26) gives

1

2A
ln

q2

R

� �
þ B

A Bþ 2Cqð Þ ¼ xþ C2 � ¼ 0; ð32Þ

and applying the boundary condition yields

C2 ¼
1

2A
ln

q2s
Aþ Bqs þ Cq2s

 !
þ B

A Bþ 2Cqsð Þ ; ð33Þ

and substitution of equation (33) in equation (32) gives

x ¼ 1

2A
ln

q2

q2s

 !
Aþ Bqs þ Cq2s
Aþ Bqþ Cq2

� �" #

þB

A

1

Bþ 2Cqð Þ �
1

Bþ 2Cqsð Þ

� �
� ¼ 0 ð34Þ

for a moving coordinate system, or with equations (11) and
(34), we have

z* ¼ Sðt � t0Þ þ
1

2A
ln

q2

q2s

 !
Aþ Bqs þ Cq2s
Aþ Bqþ Cq2

� �" #

þB

A

1

Bþ 2Cqð Þ �
1

Bþ 2Cqsð Þ

� �
� ¼ 0 ð35Þ

for a fixed coordinate system.

Figure 2. Sander et al.’s [1988] unsaturated hydraulic
conductivity as a function of moisture content.

Figure 3. Fujita’s [1952] diffusivity as a function of
moisture content.

Figure 4. Effect of erosion rate on moisture profiles in a
soil on an eroding hillslope.

8 - 4 SU: TECHNICAL NOTE



[28] Case 3 is for � > 0. In this case, equation (26) gives

1

2A
ln

q2

R

� �
� B

A
ffiffiffiffi
�

p arctg
Bþ 2Cqffiffiffiffi

�
p

� �
¼ xþ C2 � > 0: ð36Þ

Applying the boundary condition yields

C2 ¼
1

2A
ln

q21
Aþ Bqs þ Cq2s

 !
� B

A
ffiffiffiffi
�

p arctg
Bþ 2Cqsffiffiffiffi

�
p

� �
ð37Þ

Substitution of equation (37) in equation (36) gives

x ¼ 1

2A
ln

q2

q2s

 !
Aþ Bqs þ Cq2s
Aþ Bqþ Cq2

� �" #

� B

A
ffiffiffiffi
�

p arctg
Bþ 2Cqffiffiffiffi

�
p

� �
�arctg

Bþ 2Cqsffiffiffiffi
�

p
� �� �

� > 0 ð38Þ

for a moving coordinate system, or with equations (11) and
(38) we have

z* ¼ S t � t0ð Þ þ 1

2A
ln

q2

q2s

 !
Aþ Bqs þ Cq2s
Aþ Bqþ Cq2

� �" #

� B

A
ffiffiffiffi
�

p arctg
Bþ 2Cqffiffiffiffi

�
p

� �
�arctg

Bþ 2Cqsffiffiffiffi
�

p
� �� �

� > 0 ð39Þ

for a fixed coordinate system.
[29] The analytical solutions of the generalized Richards

equation presented above are subject to the first type
boundary condition (or concentration boundary condition).
With the diffusivity and unsaturated hydraulic conductivity
functions described by Fujita’s [1952] and Sander et al.’s
[1988] functions, respectively, these solutions given in both
moving and fixed coordinate systems describe the relation-
ships among soil moisture and other physical parameters on
an eroding hillslope.

4. Illustrative Examples

[30] Now we illustrate the analytical solutions with data
from the field (C. H. Roth, personal communication, 2000).
The details of the data used in the analysis are given by Roth
et al. [1995].
[31] The data on volumetric moisture content, q (%), and

hydraulic conductivity, K (mm/hr) are used to determine the
parameters in the hydraulic conductivity function in equa-
tion (17). Then diffusivity, as defined by

D qð Þ ¼ K qð Þdy=dq ð40Þ

is computed on the basis of data for the moisture potential y
(mm) and content q (%).
[32] When the data on q and K(q) are fitted to equation

(17), the parameters appearing in the expression are derived,
namely, K1 = 0, K2 = �0.1158, K3 = 0.5424, and v =
2.93744. Once D(q) is computed using equation (40), fitting
the data to equation (18) gives the values for D0 = 55.8290
and v = 2.73725. The results are shown in Figures 2 and 3.
[33] It should be noted that the two curves fitted auto-

matically using a computer program shown in Figures 2 and
3 have different values of v. In the subsequent simulations
presented in Figures 4 and 5, an average value of v = 2.855
is used.
[34] With this set of parameters, it is found that � < 0 in

equation (27), thereby by making equations (30) and (31)
applicable to this soil. Equation (30) is used to generate
Figures 4 and 5 to illustrate the effects of erosion rate and
slope on moisture distribution in the soil profile during
simulated storm events.
[35] The curves with different erosion rates S (mm/hr)

and slopes a (degrees) are moisture profiles below the
moving surface in the moving coordinate x (mm). In other
words, the x versus q relationship defines the distribution of
soil moisture content below the moving surface for different
erosion rates and a given slope.

5. Discussion

[36] In the preceding analysis, we have presented the
modified Richards equation (MRE), exact solutions of the

Figure 5. Effect of slope on moisture profiles in a soil on
an eroding hillslope.
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MRE for water movement on an eroding hillslope, and an
example illustrating these solutions applied to a real soil.
The following issues have been addressed in the presenta-
tion
1. The analysis presented in this paper establishes a

realistic model for soil moisture physics on an eroding
hillslope. With the aid of a transformation into a rotated
coordinate and by introducing a new variable, x, the
Richards equation, which is a nonlinear Fokker-Planck
equation, reduces to an ordinary differential equation. The
MRE generalizes the partial differential equation governing
soil water dynamics on both sloping and flat geometries and
for both stable and eroding surfaces. The following is a
summary of the different forms of MREs: (1) a 6¼ 0 in
moving and rotated coordinates, MRE (i.e., equation (12) in
this paper); (2) a = 0 in moving coordinates, MRE (i.e.,
equation (12) if a = 0 in this paper); (3) a 6¼ 0 in fixed
rotated coordinates, MRE [i.e., Philip, 1991]; and (4) a = 0
in ordinary coordinates, RE [Richards, 1931].
2. With Fujita’s [1952] diffusivity and Sander et al.’s

[1988] unsaturated hydraulic conductivity functions, exact
analytical solutions of the MRE have been derived subject
to a first type boundary condition. With these solutions,
various properties of soil water dynamics on an eroding
surface can be conveniently investigated. When the
coordinate system is fixed, the analytical solutions are
complementary to those presented by Sander et al. [1988]
whose solutions are for the boundary condition of the third
type or flux boundary condition.
3. Deviating from traditional ways in which infiltration

has been investigated since Green and Ampt [1911] put
forward the first infiltration model, this presentation
establishes a model for two realistic physical phenomena
taking place in nature, i.e., infiltration on a hillslope with
soil erosion developing on the surface. The approach clearly
improves the mathematical representation of the natural
processes by taking into account a moving infiltration
surface. The analysis implies that some of the present well-
accepted methodologies for quantifying soil water move-
ment, solute transport in soils on hillslopes, and sediment
transport on eroding hillslopes may have to be modified.
4. In the preceding analysis, we used a spatially

averaged erosion rate S over a rainfall event T in order to
simplify the presentation and highlight the major technical
points. To apply the approach initiated in this presentation
to a more complex system consisting of a variable erosion
rate, variable hydraulic conductivity of the soil, etc.,

appropriate numerical methods have to be used, which
would be a more realistic implementation of the MRE.
Further analysis should also consider the distinction
between rill erosion and sheet erosion. It is clear that when
more processes are included such as heterogeneity, hyster-
esis, multiphase transport etc., the analysis will certainly
become sophisticated. This paper is not intended to address
all these issues.
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