ROLE OF OSTEO-PROGENITORS IN THE PATHOGENESIS OF VASCULAR CALCIFICATION

Thesis submitted by

SHRIPAD NAGESH PAL

MSc. (INDIA)

AUGUST 2009

for the degree of Doctor of Philosophy (Vascular Biology)
in the School of Medicine and Dentistry
James Cook University, QLD
AUSTRALIA
CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW

INTRODUCTION 1

1. Atherosclerosis and vascular calcification 4

1.1. Clinical Background 5
 1.1.1 Prevalence 5
 1.1.2 Risk factors 6
 1.1.2.1. Smoking 7
 1.1.2.2. Diabetes Mellitus 7
 1.1.2.3. Obesity 8
 1.1.2.4. Physical inactivity 8
 1.1.2.5. Alcohol 8
 1.1.2.6. Hyperhomocysteinemia 8

1.2. Vascular calcification 8
 1.2.1. Association with atherosclerosis 8
 1.2.2. Pathogenesis 9
 1.2.3 Molecular determinants 12
 1.2.3.1. Matrix Gla Protein 13
 1.2.3.2. Osteoprotegerin 14
 1.2.3.3 Osteopontin 15
 1.2.3.4. Alkaline Phosphatase 15
 1.2.4 Clinical factors 15
 1.2.4.1. Osteoporosis 16
 1.2.4.2. Diabetes 16
1.3. Mouse models of vascular calcification

1.3.1. Matrix GLA protein knockout model

1.3.2. Osteoprotegerin knockout model- old model

1.3.3. Limitations of the current mouse models

1.3.4. Modified calcitriol induced osteoprotegerin knockout model

1.3.4.1. Need for a modified model system

1.3.4.2. Calcitriol induced calcification and mode of action

1.4. Human investigation for vascular calcification

1.4.1. Serum osteoprotegerin association with calcification

1.4.2. In vitro calcification studies of human vascular cells

1.5. Mechanism of vascular calcification: existing concept

1.5.1. Existing concepts

1.5.1.1. Loss of Inhibition

1.5.1.2. Induction of bone formation

1.5.1.3. Circulating nucleational complexes

1.5.1.4. Apoptosis

1.5.2. Circulating cells and calcification: A novel concept

1.5.2.1. Background theory

1.5.2.2. Association with vascular diseases

1.5.2.3. Evidence supporting circulating theory

1.5.2.3. a. Bone marrow transplant studies

1.5.2.3. b. Histological studies

1.5.3. Sources of circulating cells

1.5.3.1. Bone marrow

1.5.3.2. Spleen

1.6. Bone marrow and calcification: A cellular approach

1.6.1. Bone marrow

1.6.1.1. Stem cells and progenitors

1.6.1.2. Progenitor stem cells: classification and types

1.6.1.2. a. Mesenchymal Stem Cells

1.6.1.2. b. Hematopoietic stem cells

1.6.1.2. c. Endothelial Stem cells

1.6.2. Mesenchymal cells and osteoblastic lineage

1.6.3. Osteoblastic progenitor population: contribution towards calcification

1.6.3.1. Immature progenitors: from bone marrow to blood circulation

1.6.3.2. Homing and proliferation

1.6.3.3. Impact and behaviour in a diseased artery
CHAPTER 2. GENERAL MATERIALS AND METHODS

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Animal model study of aortic calcification</td>
</tr>
<tr>
<td>2.1.1. Experimental OPG<sup>-/-</sup> mice</td>
</tr>
<tr>
<td>2.1.2. Control OPG<sup>+/+</sup> mice</td>
</tr>
<tr>
<td>2.1.3. Calcitriol induced OPG<sup>-/-</sup> mice</td>
</tr>
<tr>
<td>2.1.4. Ethics approval, animal house facility and breeding</td>
</tr>
<tr>
<td>2.2. Aortic calcification assessment within the mouse model</td>
</tr>
<tr>
<td>2.2.1 Alizarin-red staining</td>
</tr>
<tr>
<td>2.2.1.1. Protocol</td>
</tr>
<tr>
<td>2.2.1.2. Standardisation of the protocol</td>
</tr>
<tr>
<td>2.2.1.3. Assessing alizarin-red staining</td>
</tr>
<tr>
<td>2.3. Extraction of aortic calcium</td>
</tr>
<tr>
<td>2.4. Quantification of aortic calcium</td>
</tr>
<tr>
<td>2.5. Protein cytokine studies using ELISA in mouse model studies</td>
</tr>
<tr>
<td>2.5.1. Sample collection, preparation and storage</td>
</tr>
<tr>
<td>2.5.2. ELISA protocol</td>
</tr>
<tr>
<td>2.5.3. Calculation of standards and estimation of cytokines</td>
</tr>
<tr>
<td>2.6. Flow cytometry analysis</td>
</tr>
<tr>
<td>2.6.1. Collection of tail bleeds</td>
</tr>
<tr>
<td>2.6.2. RBC cell lysis</td>
</tr>
<tr>
<td>2.6.3. FcR blocking</td>
</tr>
<tr>
<td>2.6.4. Primary antibody labelling</td>
</tr>
<tr>
<td>2.6.5. Secondary antibody labelling</td>
</tr>
<tr>
<td>2.6.6. Flow cytometry analysis</td>
</tr>
<tr>
<td>2.7. Quantification of extractable aortic OCN<sup>+</sup> population</td>
</tr>
<tr>
<td>2.7.1. Extraction of aortic immune cells by enzymatic digestion</td>
</tr>
<tr>
<td>2.7.2. FcR blocking</td>
</tr>
<tr>
<td>2.7.3. Primary antibody labelling</td>
</tr>
<tr>
<td>2.7.4. Secondary antibody labelling</td>
</tr>
<tr>
<td>2.7.5. Flow cytometry analysis</td>
</tr>
<tr>
<td>2.8. Human patient cohort calcification studies</td>
</tr>
<tr>
<td>2.8.1. Selection criteria for the patient study</td>
</tr>
<tr>
<td>2.8.2. Ethics approval and access to the patient details</td>
</tr>
<tr>
<td>2.9. Aortic calcium measurements on patients using CT imaging</td>
</tr>
<tr>
<td>2.10. Quantification of OCN<sup>+</sup> population using flow cytometry analysis</td>
</tr>
<tr>
<td>2.10.1. Collection of patient blood samples</td>
</tr>
<tr>
<td>2.10.2. Ficoll histopaque technique</td>
</tr>
<tr>
<td>2.10.3. Buffer solutions</td>
</tr>
</tbody>
</table>
2.10.4. Centrifugation and cell washing
2.10.5. Trypan blue cell dye exclusion test for cell viability
2.10.6. Human FcR blocking
2.10.7. Primary OCN antibody labelling
2.10.8. Secondary PE fluorescent antibody labelling
2.10.9. Anti-PE magnetic beads
2.10.10. Magnetic column separation set up
2.10.11. Flow cytometry analysis of murine and human cells
2.10.12. Flow cytometry analysis

2.11. Protein cytokine studies using ELISA for patient sample investigation
 2.11.1. Sample collection, preparation and storage

2.12. Statistical analysis

CHAPTER 3. FEASIBILITY STUDIES AND PROTOCOL OPTIMISATION

3.1. Calcium quantification
 3.1.1. Aortic calcium staining
 3.1.1.1. Aim
 3.1.1.2. Alizarin-red concentration
 3.1.1.3. Incubation condition
 3.1.2. Scion software measurements
 3.1.2.1. Intra assay reproducibility

3.2. Assay of extractable aortic calcium
 3.2.1. Aim
 3.2.2. Protocol
 3.2.3. Results and conclusion
 3.2.3.1. Intra assay reproducibility
 3.2.3.2. Inter assay reproducibility

3.3. Serum SDF-1α measurements in mouse models
 3.3.1. Aim
 3.3.2. Protocol
 3.3.3. Results and conclusion
 3.3.3.1. Intra assay reproducibility
 3.3.3.2. Inter assay reproducibility

3.4. Serum G-CSF measurements in mouse models
 3.4.1. Aim
 3.4.2. Protocol
 3.4.3. Results and conclusion
 3.4.3.1. Intra assay reproducibility
 3.4.3.2. Inter assay reproducibility
3.5. Flow cytometry standardisation for mouse model experiments 75
3.5.1. Tail bleeds time points 76
3.5.2. Lysis buffer 76
3.5.3. FcR blocking 78
3.5.4. Primary OCN antibody labelling 79
3.5.5. Secondary Phycoerythrin antibody labelling 81

3.6. Flow cytometry instrumental and data interpretation of mice OCN expression 82
3.6.1. Forward scatter (FSC) vs. Side scatter (SSC) settings 82
3.6.2. Unstained population 84
3.6.3. Establishing appropriate gates for positive staining 84
3.6.4. Positive population gating 86
3.6.5. Calculation of positive population cell percentage 87

3.7. Flow cytometry standardisation for human experiments 87
3.7.1. Ficoll histopaque technique for mononuclear separation 88
3.7.2. Human FcR blocking 88
3.7.3 Primary OCN antibody labelling 89
3.7.4. Secondary Phycoerythrin antibody labelling 90
3.7.5. Anti-PE magnetic beads 91
3.7.6. Magnetic separation columns 91

3.8. Flow cytometry instrumental settings and data interpretation for human samples 91
3.8.1. Forward scatter and Side scatter settings and unstained population 91
3.8.2. Negatively labelled fraction 92
3.8.3. Positively labelled fraction 94
3.8.4. Calculation of OCN+ MNC 95

3.9. Plasma SDF-1α measurements in human patient cohort 96
3.9.1. Aim 96
3.9.2. Protocol 96
3.9.3. Results and conclusion 97
3.9.3.1. Intra assay reproducibility 97
3.9.3.2. Inter assay reproducibility 98

3.10.1. Aim 99
3.10.2. Protocol 99
3.10.3. Results and conclusion 99
3.10.3.1. Intra assay reproducibility 99
3.10.3.2. Inter assay reproducibility 100

3.11. Plasma SCF measurements in human patient cohort 102
3.11.1. Aim 102
3.11.2. Protocol 102
3.11.3. Results and conclusion 102
3.11.3.1. Intra assay reproducibility 102
3.11.3.2. Inter assay reproducibility 104
<table>
<thead>
<tr>
<th>Chapter 4. Aortic Calcification in 12 Month Old OPG<sup>−/−</sup> Mouse Model and Its Association with Stem Cell Mobilising Cytokines</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. Introduction 105</td>
</tr>
<tr>
<td>4.2. OPG<sup>−/−</sup> as an experimental mouse model 105</td>
</tr>
<tr>
<td>4.3. Aortic calcium staining 106</td>
</tr>
<tr>
<td>4.3.1. Protocol 107</td>
</tr>
<tr>
<td>4.3.2. Results 107</td>
</tr>
<tr>
<td>4.4. Total extractable aortic calcium quantification 109</td>
</tr>
<tr>
<td>4.4.1. Protocol 110</td>
</tr>
<tr>
<td>4.4.2. Results 110</td>
</tr>
<tr>
<td>4.5. SDF-1α and aortic calcium 111</td>
</tr>
<tr>
<td>4.5.1. Protocol 111</td>
</tr>
<tr>
<td>4.5.2. Results 112</td>
</tr>
<tr>
<td>4.6. G-CSF and aortic calcium 112</td>
</tr>
<tr>
<td>4.6.1. Protocol 112</td>
</tr>
<tr>
<td>4.6.2. Results 113</td>
</tr>
<tr>
<td>4.7. Correlation with extractable aortic calcium 114</td>
</tr>
<tr>
<td>4.8. Discussion 115</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5. Assessment of Association between Circulating OCN<sup>+</sup> MNC, Aortic Calcium & Aortic OCN Positive Population in OPG<sup>−/−</sup> Mouse Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1. Introduction 117</td>
</tr>
<tr>
<td>5.2. Osteo-progenitors in bone marrow 117</td>
</tr>
<tr>
<td>5.3. OCN<sup>+</sup> MNC in 12 month old OPG<sup>−/−</sup> male and female mouse groups 117</td>
</tr>
<tr>
<td>5.3.1. Protocol 118</td>
</tr>
<tr>
<td>5.3.2. Analysis 118</td>
</tr>
<tr>
<td>5.4. Results for male mouse group 119</td>
</tr>
<tr>
<td>5.5 Results for female mouse group 120</td>
</tr>
<tr>
<td>5.6. Aortic calcium quantification in male and female OPG<sup>−/−</sup> and OPG<sup>+</sup> groups 122</td>
</tr>
<tr>
<td>5.6.1. Protocol 122</td>
</tr>
<tr>
<td>5.6.2. Analysis 123</td>
</tr>
<tr>
<td>5.6.3. Results for male and female mouse groups 123</td>
</tr>
</tbody>
</table>
CHAPTER 6. INVESTIGATION OF OCN⁺ MNC AND AORTIC CALCIFICATION IN A CALCITRIOL TREATED OPG⁻⁻ MOUSE MODEL

6.1. Introduction

6.2. The mode of action of calcitriol

6.3. Experimental design

6.4. OCN⁺ MNC estimation
 6.4.1. Protocol
 6.4.2. Results

6.5. Aortic calcium quantification
 6.5.1. Protocol
 6.5.2. Results

6.6. Correlative association for OCN and total calcium in calcitriol model

6.7. OPG⁻⁻ mouse model: with calcitriol vs. without calcitriol

6.8. Discussion

CHAPTER 7. ASSOCIATION BETWEEN CIRCULATING OCN⁺ MNC POPULATION, STEM CELL MOBILISING CYTOKINES AND CALCIFICATION VOLUMES IN A PATIENT COHORT

7.1. Introduction

7.2. Measurement of aortic calcification volumes in patients
 7.2.1. Ethics approval and patient selection criteria
 7.2.2. CTA analysis
7.3. Patient recruitment and blood sample collection 142

7.4. Experimental Protocol 142
7.4.1. OCN⁺ MNC analysis 142
7.4.2. SDF-1α, G-CSF AND SCF ELISA 142

7.5. Results 143
7.5.1. Association of patient age, gender and calcification volumes 143
7.5.2. Circulating OCN⁺ MNC population 145
7.5.3. Plasma SDF-1α, G-CSF and SCF concentrations 147

7.6. Correlation studies 150
7.6.1. OCN⁺ MNC population, calcification volumes and patient age 150
7.6.2. Calcification volumes with SDF-1α, G-CSF and SCF concentrations 152
7.6.3. Circulating OCN⁺ MNC with SDF-1α, G-CSF and SCF concentrations 154

7.7. Discussion 157

CHAPTER 8. GENERAL DISCUSSION AND FUTURE DIRECTIONS 160

8.1. Discussion 160

8.2. Limitations 164

8.3. Conclusion 165

8.4. Future directions 165

BIBLIOGRAPHY 166

APPENDIX 1. ETHICS APPROVAL FOR MOUSE MODEL STUDIES 187

APPENDIX 2. AMENDMENT FOR MOUSE MODEL STUDIES 188

APPENDIX 3. ETHICS APPROVAL FOR HUMAN INVESTIGATION 189

APPENDIX 4. REAGENTS AND SOLUTIONS 190

APPENDIX 5. COMMUNICATIONS ARISING FROM THIS WORK 193

1. Conferences 193
2. Papers 193
3. Awards 194
DECLARATION

I, the undersigned declare that this research investigation is carried out on my own and it has not been previously submitted anywhere for another degree or diploma at any university or institution of tertiary education in or out of Australia. Information derived from the published or unpublished works of others has been acknowledged in the text and a list of references is given.

Shripad Nagesh PAL,

August 2009

STATEMENT OF ACCESS TO THESIS

I, the undersigned, author of this thesis, understand that James Cook University will make this work available for use within the university library and, by microfilm or other photographic means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement.

'In consulting this thesis, I agree not to copy or paraphrase it completely in whole or in part without written consent of the author, and to make proper written acknowledgement for any assistance which I have obtained from it.'

Apart from this, I do not wish to place any restriction on access to this research thesis.

Shripad Nagesh PAL,

August 2009
DECLARATION ON ETHICS

The research presented and reported in this thesis was conducted within the guidelines for research ethics outlined in the *National Statement on Ethics Conduct in Research Involving Human* (1999), the *joint NHMRC/AVCC Statement and Guidelines on Research Practice* (1997), the *James Cook University Policy on Experimental Ethics. Standard Practices and Guidelines* (2001), and the *James Cook University Statement and Guidelines on Research Practice* (2001). The proposed research methodology received clearance from the James Cook University Experimental Ethics Review Committee (approval number H-2196).

Shripad N. Pal

August 2009
ACKNOWLEDGEMENTS

The completion of this research thesis would have remained an unfulfilled dream without the untiring and selfless support from a number of people throughout my research student tenure. It is to all of them that I wish to extend my heartfelt gratitude without which this task would not have been possible.

First and foremost, I thank the Almighty Lord for providing me the opportunity, determination and perseverance which I could invest bit by bit, day by day to reach this stage. Secondly, I owe a lot to my parents (Nagesh K Pal and Mangala N Pal), my younger brother Pratik, my dearest wife Rucha and her family who loved, cared, supported, and believed in me in the toughest of times. This journey would not have been possible without their love, prayers and blessings.

In Australia, I am sincerely thankful to my supervisor Professor Jonathan Golledge, co-supervisors Dr Lynn Woodward and Dr Mirko Karan. I am grateful for their able supervision, professional guidance, and many words of thought during my research. I really appreciate them for their continuing belief in me which kept on reigniting the lamp of hope throughout the PhD candidature, especially during the darkest of research moments. Professor Golledge also provided me with all the necessary financial support required for my research candidature and survival in Townsville for which I am deeply indebted.

Sincere thanks and thoughts go towards Dr Catherine Rush and Dr Ann Van Campenhout for their willingness to pass on their research experience. It’s their patience and selfless guidance that helped me to efficiently focus on the candidature. I extend my appreciation to Dr Monsur Kazi, Dr Paula Clancy, Mrs Frances Wood and Ms. Simone Mangan for their friendship, words of support, guidance and technical assistance throughout my tenure. The time and efforts of Dr Bradford Cullen and Dr Julie Mudd in their work with the mouse model which provided me with tissue samples is gratefully acknowledged.

A warm and a heartfelt thanks goes towards my fellow PhD colleague, office buddy and partner in crime, Venkat Vangaveti, for his company, tolerance, and support. Very special thanks go to Dr. Adam Parr, Ms Barbara Bradshaw from the Townsville General Hospital and Sullivan and Nicolaides Pathology, Townsville for assisting me in arranging the patient samples without which the research investigation would not have been complete. I also
extend my gratitude towards the Biomedical and Tropical veterinary sciences faculty for providing all the required facility for undertaking mouse work.

I am also obliged to thank my faculty, The School of Medicine and Dentistry and Graduate research school, James Cook University for all financial and administrative support that assisted me in completing my research candidature.

Last but not the least; I would convey a heartfelt thankyou to all the friends in Townsville, both compatriots and local fellows who supported me socially throughout my candidature. Without their first-hand social and emotional support it would have been tough to survive and thrive in Townsville.
LIST OF ABBREVIATIONS

µg/kg: Microgram/kilogram
µl: Microliter
A.A: Aortic arch
AAA: Abdominal aortic aneurysm
ACI: Aortic calcification index
ACK: Ammonium chloride and potassium chloride
ALP: Alkaline phosphatase
ApoE: Apolipoprotein E
BL/6: Black 6
BM: Bone marrow
BMP-2: Bone matrix protein-2
BMT: Bone marrow transplantation
COV: Coefficient of variation
CT: Computed tomography
CTA: Computed tomography angiogram
CVC: Calcifying vascular cells
D/W: Distilled water
DAPI: 4', 6-diamidino-2-phenylindole
dL: Deciliter
EDTA: Ethylene diamine tetra-acetic acid
ELISA: Enzyme linked Immunosorbent assay
EPC: Endothelial progenitor cells
ESRD: End stage renal disease
FC: Flow cytometry
FCS: Fetal calf serum
FSC: Forward scatter
G-CSF: Granulocyte colony-stimulating factor
GFP: Green fluorescent protein
GM-CSF: Granulocyte-macrophage colony-stimulating factor
HDL: High density lipoprotein
HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
hMSC: Human mesenchymal stem cells
HSC: Hematopoietic stem cells
hVSMC: Human vascular smooth muscle cells
I. R: Infra renal
I-CAM-1: Intercellular adhesion molecule-1
IL- 6: Interleukin 6
IL-1β: Interleukin 1- beta
IL-8: Interleukin 8
IQR: Inter quartile range
LDLR: Low-density lipoprotein receptor
MACS: Magnetic assorting cell separator
mg: Milligrams
MGP: Matrix gamma-carboxyglutamic acid protein
Min: Minutes
ml: Milliliter
mM: Milimolar
mm³: Cubic milimeter
Mmol/L: Milimolar/liter
MNC: Mononuclear cells
MS: Magnetic separation
MSC: Mesenchymal stem cells
ng/ml: Nanogram/milliliter
nm: Nanometer
O.D: Optical density
°C: Degrees centigrade
OCN⁺: Osteocalcin positive
OPG⁻/: Osteoprotegerin deficient
OPG⁺/+: Osteoprotegerin present
OPN: Osteopontin
PBS: Phosphate buffered saline
PDGF: Platelet derived growth factor
PE: Phycoerythrin
pg/ml: picogram/milliliter
PPI: Pyrophosphate
R.T: Room temperature
RANK: Receptor activator of nuclear kappa
RANK-L: Receptor activator of nuclear kappa ligand
RBC: Red blood cells
rpm: Revolutions per minute
S.D: Standard deviation
S.R: Supra renal
SCF: Stem cell factor
SDF-1α: Stromal cell derived factor 1 alpha
SMC: Smooth muscle cells
SNP: Sullivan Nicolaides pathology
SSC: Side scatter
T.A: Thoracic arch
TGF-β: Tumor growth factor-beta
TNF α: Tumor necrosis factor- alpha
V-CAM-1: Vascular cell adhesion molecule-1
VEGF: Vascular endothelial growth factor
VSMC: Vascular smooth muscle cells
ABSTRACT

Vascular calcification, until recently, was considered to be a passive process which occurred as a nonspecific response to tissue injury or necrosis. Since the severity of vascular calcification has been correlated with that of atherosclerosis and its risk factors, it was postulated that the process is linked to these events. However recent findings from a number of mouse model studies suggest that the mechanisms involved in vascular calcification may be distinct from those underlying atherosclerosis.

Current theories regarding the pathogenesis of vascular calcification suggest a number of possible mechanisms. These include passive models in which vascular calcification is observed as a result of loss of molecular inhibitors and those where active cell mediated process is involved. Calcification has also been reported as result of apoptosis or death of vascular smooth muscle cells (VSMC). Current evidence favours a cell mediated mechanism of vascular calcification.

The origin of the cells responsible for vascular calcification is not clearly defined. One novel source of cells controlling vascular calcification is from the bone marrow (BM). A circulating immature BM-derived population has been identified. A small subset of this BM population has been reported to possess bone forming properties in vitro and hence called osteo-progenitors. In the present investigation, it was hypothesized that these circulating osteo-progenitors contribute to vascular calcification. It was postulated that the osteo-progenitors are recruited from the BM environment under the influence of stem cell mobilising cytokines such as stromal cell derived factor-1 α (SDF-1α), granulocyte-colony stimulating factor (G-CSF) and stem cell factor (SCF). Further, it was suggested that these stem cell mobilising cytokines facilitate the homing of immature circulating osteo-progenitors to vascular lesions and contribute to calcification.

These hypotheses were tested in two mouse models and one human patient cohort. The aims of the investigation included:

a) To establish a suitable mouse model for vascular calcification studies.

b) To assess the association of the circulating osteo-progenitor population with the severity of aortic calcification in mouse models.

c) To identify if the osteo-progenitor population was deposited within the vasculature at sites of vascular calcification.
d) To assess the relationship between the circulating osteo-progenitor population and aortic calcification in a human patient group suffering from peripheral artery disease.
e) To assess the relationship between the stem cell mobilising cytokines and the severity of vascular calcification in a mouse model and a human patient cohort.

The findings of this work suggest, for the first time, an association between circulating osteocalcin positive mononuclear cells (OCN\(^+\) MNC) and aortic calcification in two mouse models and a human patient cohort diagnosed with peripheral artery disease. It was found that the severity of vascular calcification was increased in 52 week old osteoprotegerin knockout (OPG\(^{-/-}\)) mice and even more elevated in younger (14 week old) OPG\(^{-/-}\) mice receiving controlled doses of calcitriol. It was further observed that in both mouse models the percentage of circulating OCN\(^+\) MNC was correlated to the aortic calcium content. These results suggest a possible role for BM-derived osteo-progenitors in vascular calcification. It was also observed that OCN\(^+\) population deposited within the vasculature was directly associated with the severity of extractable aortic calcium in the OPG\(^{-/-}\) mouse model. These results suggest a three-way association between osteo-progenitor population in circulation, its cellular deposition within vasculature and the severity of aortic calcification.

The investigation undertaken in the human patient cohort also supported the initial hypothesis and confirmed the research findings obtained from the two mouse models. In the patient study the percentage of circulating OCN\(^+\) MNC was observed to be associated with the severity of infra-renal aortic calcification.

The present study also supported the hypothesis that the stem cell mobilizing cytokines could be involved with the release of osteo-progenitors and may facilitate their homing to the vasculature. The concentrations of SDF-1\(\alpha\), G-CSF and SCF were associated with the percentage of circulating OCN\(^+\) MNC and the severity of aortic calcification in the mouse models and patient cohort investigated. These results suggest that the BM-derived osteo-progenitors are mobilised into the peripheral circulation from the marrow environment under the influence of these cytokines. Further, the circulating osteo-progenitors may home to vascular lesions and differentiate into bone-forming cells. This process may contribute to the pathogenesis of vascular calcification.
Further work, however, is necessary to confirm the role of these BM-derived immature cells in vascular calcification as there are a number of limitations of the present investigation. Firstly, both mouse models employed were based on OPG deficiency. Thus it is possible that the increased OCN$^+$ MNC was related to this rather than the aortic calcification in these animals. Secondly, the role of OPG within the vasculature is also not entirely clear. While depletion of OPG in mouse models is reported to induce vascular calcification, in patients serum OPG levels are positively associated with peripheral artery disease. This difference in results between mouse models and human patient illustrates the current uncertainty regarding the role of OPG in cardiovascular disease. The patient group investigated in this study was small. A larger group would be ideal to confirm the association between circulating osteoprogenitors and aortic calcification. The absence of a healthy control group is a further limitation of the human investigation.

Overall, the current research suggests an important new mechanism underlying vascular calcification with implications for treatment. Results obtained from this study may also be useful in the investigation of other pathology types, and may assist in establishing collaboration with external groups. Since vascular calcification is also linked to other clinical conditions such as atherosclerosis, diabetes, obesity and bone related disorders, this investigation can build on those areas within research groups with broader clinical perspectives.
LIST OF TABLES

Table 1.1 Risk factors of vascular calcification 7
Table 1.2 Characteristics of intimal vs. medial calcification 11
Table 1.3 Molecular determinants for vascular calcification and mode of action 13
Table 1.4 Vascular calcification phenotypes in mouse strains 26
Table 1.5 Characteristics of stem cells and progenitor cells 35
Table 3.1 Intra-observer coefficient of variation for alizarin staining area measurements in different aortic regions in experimental OPG^{−/−} and control OPG^{+/+} mouse models 63
Table 3.2 Inter-assay assessment of reproducibility for calcium assay in 12 month old mouse groups 68
Table 3.3 Inter-assay assessment of reproducibility for calcium assay in 12 month old mouse groups 68
Table 3.4 Inter-assay assessment of reproducibility for SDF-1α standards in 12 month old mouse groups 71
Table 3.5 Inter-assay assessment of reproducibility for SDF-1α standards in a human patient cohort 98
Table 3.6 Inter-assay assessment of reproducibility for G-CSF standards in a human patient cohort 101
Table 3.7 Inter-assay assessment of reproducibility for G-CSF standards in a human patient cohort 104
Table 4.1 Comparison of alizarin red-staining and calcium quantification in OPG^{−/−} and OPG^{+/+} mouse groups 111
Table 4.2 Comparison of SDF-1α and G-CSF serum concentrations in OPG^{−/−} and OPG^{+/+} mouse groups 113
Table 5.1 OCN^{+} MNC were estimated by calculating the median of results from tail bleeds analyzed from each group and gender of mice obtained at 50, 51, 52 and 53 weeks of age 121
Table 5.2 Total extractable aortic calcium comparison between OPG^{−/−} and OPG^{+/+} (males and females) mouse groups 124
Table 5.3 Association between circulating OCN^{+} MNC percentage and aortic calcification in OPG^{−/−} and OPG^{+/+} (males and females) mouse groups 128
Table 6.1	Effect of calcitriol on circulating OCN\(^+\) MNC in experimental OPG\(^{-/-}\) and control OPG\(^{+/+}\) male mouse groups	134
Table 7.1	Comparison of risk factors for patients who did or did not have an AAA	143
Table 7.2	Comparison of the OCN\(^+\) MNC population in patients with high and low amounts of aortic calcification	146
Table 7.3	Comparison of plasma stem cell mobilizing cytokine concentrations in patients with in relation to aortic calcification	149
Table 7.4	A summary of the correlation coefficient for the amount between aortic calcification volumes and circulating OCN\(^+\) MNC or age	151
Table 7.5	A summary of the correlation coefficient for the association between the number of circulating OCN\(^+\) MNC population and stem cell mobilizing cytokines	157
LIST OF FIGURES

<p>| Figure 1.1 | Prevalence of vascular calcification and cardiovascular diseases in males and females with age progression | 6 |
| Figure 1.2 | Risk factors leading to the disease progression | 10 |
| Figure 1.3 | Formation of apatite in vasculature | 12 |
| Figure 1.4 | Elevated serum OPG levels in cardiovascular patients undergoing haemodialysis | 23 |
| Figure 1.5 | Schematic illustration summarizing four current theories regarding molecular mechanisms of vascular calcification | 25 |
| Figure 1.6 | Tissue calcification initiated by apoptosis and cell nucleation complex | 28 |
| Figure 1.7 | Contribution of bone marrow-derived vascular progenitors towards vascular diseases | 30 |
| Figure 1.8 | Examination with haematoxylin and eosin staining to identify calcified lesions | 31 |
| Figure 1.9 | BM cells differentiating into various cell types | 33 |
| Figure 1.10 | Multiplication characteristics of a stem cell and a progenitor cell | 35 |
| Figure 1.11 | Multipotency characteristics of MSC | 36 |
| Figure 1.12 | A transdifferentiation model of human MSC | 38 |
| Figure 1.13 | Mobilization, homing and recruitment of vascular progenitor cells | 40 |</p>
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Segments of a murine aorta</td>
<td>44</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Schematic diagram illustrating the magnetic enrichment technique for quantification of OCN$^+$ MNC</td>
<td>55</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Flow cytometry protocol for mouse model and human patient cohort</td>
<td>56</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Pictures of aortas stained with different concentrations of alizarin red</td>
<td>61</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Comparison of different staining conditions of mice aortas with alizarin red</td>
<td>62</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Intra-assay assessment of reproducibility for calcium standard assays for 12 month old mouse groups</td>
<td>66</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Intra-assay assessment of reproducibility for calcium standard assays for calcitriol mouse group</td>
<td>67</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Intra and inter-assay assessment of reproducibility for Quantichrom calcium bioassay for study 1 and 2</td>
<td>69</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Intra-assay assessment of reproducibility for SDF-1 α standard measurement in 12 month old mouse groups</td>
<td>71</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Intra and inter-assay assessment of reproducibility for Quantikine mouse SDF-1α ELISA standards in 12 month old mouse groups</td>
<td>72</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Intra-assay assessment of reproducibility for Quantikine G-CSF standard measurements in 12 month old mouse groups</td>
<td>73</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Intra and inter-assay assessment of reproducibility for Quantikine mouse G-CSF ELISA standards in 12 month old mouse groups</td>
<td>75</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Optimisation of ACK lysis buffer using different incubation time and conditions</td>
<td>77</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>Optimisation of appropriate FcR blocking concentration using variable titres</td>
<td>78</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>Optimisation of appropriate primary OCN antibody dilution using variable titres</td>
<td>80</td>
</tr>
<tr>
<td>Figure 3.13</td>
<td>Optimisation of appropriate secondary antibody dilution using variable titres</td>
<td>81</td>
</tr>
</tbody>
</table>
Figure 3.14 Schematic diagram of the basic FSC vs. SSC dot plots acquired during the experiments 83
Figure 3.15 Dot plots for an unstained sample gated on SSC vs. FSC plot 84
Figure 3.16 Dot plots for isotype controls 85
Figure 3.17 Dot plots analysing OCN+ stained samples 86
Figure 3.18 Examples of flow cytometry readouts for blood samples from OPG+/+ and OPG-/- mouse blood samples. 87
Figure 3.19 Mononuclear cell separation by the ficoll histopaque method 88
Figure 3.20 Optimisation of primary OCN antibody dilution using variable titres 89
Figure 3.21 Optimisation of fluorescent secondary PE antibody dilution using variable titres 90
Figure 3.22 Dot plots for unstained samples 92
Figure 3.23 Dots plots for negatively labelled samples 93
Figure 3.24 Dot plots of OCN positively stained population 94
Figure 3.25 Intra-assay assessment of reproducibility for Quantikine SDF-1α standard measurements in human patient samples 97
Figure 3.26 Intra and inter-assay assessment of reproducibility for Quantikine SDF-1α standards in human plasma samples 98
Figure 3.27 Intra-assay assessment of reproducibility for Quantikine G-CSF standard measurements in human plasma samples 100
Figure 3.28 Intra and inter-assay assessment of reproducibility for Quantikine G-CSF standards in human plasma samples 101
Figure 3.29 Intra-assay assessment of reproducibility for Quantikine SCF standard measurements in human plasma samples 103
Figure 3.30 Intra and inter-assay reproducibility assessment for Quantikine SCF standards in human plasma samples 104
Figure 4.1 Examples of aortic arch calcium staining in OPG−/− and OPG+/+ mouse groups

Figure 4.2 Box plot representing the alizarin red-staining percentage in the whole aorta of OPG−/− and OPG+/+ mouse groups

Figure 4.3 Box plot representing the alizarin red staining percentage in the aortic regions of OPG−/− and OPG+/+ mouse groups

Figure 4.4 Box plot representing total extractable aortic in experimental OPG−/− and control OPG+/+ male mouse group

Figure 4.5 Box plot representing serum SDF-1\textalpha concentration comparison between experimental OPG−/− and control OPG+/+ mouse groups

Figure 4.6 Box plot representing G-CSF concentration comparison between experimental OPG−/− and control OPG+/+ mouse groups

Figure 4.7 Scatter plot illustrating that serum SDF-1\textalpha (A) and G-CSF (B) concentration was statistically correlated with total extractable aortic calcium in OPG−/− and OPG+/+ mouse groups

Figure 5.1 Experimental design for quantification of circulating OCN+ MNC in OPG−/− and OPG+/+ mouse groups

Figure 5.2 Box plot representing percentage of circulating OCN+ MNC in male OPG−/− and OPG+/+ mouse groups

Figure 5.3 Box plot representing the percentage of circulating OCN+ MNC population between experimental OPG−/− and control OPG+/+ mouse groups

Figure 5.4 Box plot representing the percentage of total extractable aortic calcium in 12 month old male experimental OPG−/− and control OPG+/+ mouse groups

Figure 5.5 Box plot representing the total extractable aortic calcium in 12 month old female experimental OPG−/− and control OPG+/+ mouse groups

Figure 5.6 Box plot representing the aortic OCN+ percent population comparison between experimental OPG−/− and control OPG+/+ mouse groups

Figure 5.7 Box plot representing the association between circulating OCN+ MNC and total extractable aortic calcium in male OPG−/− and OPG+/+ mouse groups
Figure 5.8 Box plot representing the association between circulating OCN\(^+\) MNC and extractable aortic calcium in female OPG\(^{-/-}\) and OPG\(^{+/+}\) mouse groups

Figure 6.1 Experimental design for calcitriol administered vascular calcification studies

Figure 6.2 Box plot representing the circulating OCN\(^+\) MNC between experimental OPG\(^{-/-}\) and control OPG\(^{+/+}\) mouse groups receiving calcitriol

Figure 6.3 Box plot representing the circulating OCN\(^+\) MNC population comparison between experimental OPG\(^{-/-}\) and control OPG\(^{+/+}\) mouse groups receiving calcitriol

Figure 6.4 Box plot representing the total extractable aortic calcium comparison between experimental OPG\(^{-/-}\) and control OPG\(^{+/+}\) male mouse groups

Figure 6.5 Scatter plot illustrating the association of total aortic calcification with circulating OCN\(^+\) MNC percentage in OPG\(^{-/-}\) and OPG\(^{+/+}\) mice obtained 1 week after the 1\(^{st}\) calcitriol dose

Figure 6.6 Box plot representing the total aortic calcium for 12 month old OPG\(^{-/-}\) male mice without calcitriol model and the 14 week old OPG\(^{-/-}\) male group with calcitriol

Figure 7.1 Scatter plot illustrating a positive correlation between infra renal aortic calcification volumes and patient age

Figure 7.2 Box plot representing the percentage of circulating OCN\(^+\) MNC for the two calcification groups

Figure 7.3 Box plot representing the number of circulating OCN\(^+\) MNC/ ml patient blood in the two calcification groups

Figure 7.4 Box plot representing the circulating plasma SDF-1\(\alpha\) concentrations in patient with peripheral artery disease in relation to aortic calcification

Figure 7.5 Box plot representing the circulating plasma G-CSF concentrations in patients with peripheral artery disease in relation to aortic calcification

Figure 7.6 Box plot representing the circulating plasma SCF concentrations in patients with peripheral artery disease in relation to aortic calcification

Figure 7.7 Scatter plot illustrating the correlation between circulating OCN\(^+\) MNC percentage and infra renal aortic calcification volumes
Figure 7.8 Scatter plot illustrating the correlation between ages of patients and percentage of circulating OCN+ MNC

Figure 7.9 Scatter plot illustrating the correlation between plasma SDF-1 α concentration and infra renal aortic calcification volumes

Figure 7.10 Scatter plot illustrating the correlation between plasma G-CSF concentration and infra renal aortic calcification volumes

Figure 7.11 Scatter plot illustrating the correlation between plasma SCF concentration and infra renal aortic calcification volumes

Figure 7.12 Scatter plot illustrating the correlation between plasma SDF-1 α concentration and percentage of circulating OCN+ MNC

Figure 7.13 Scatter plot illustrating the correlation between plasma G-CSF concentration and percentage of circulating OCN+ MNC

Figure 7.14 Scatter plot illustrating the correlation between plasma SCF concentration and the percentage of circulating OCN+ MNC

Figure 8.1 Circulating cell theory