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Abstract

Background: Helminth parasites cause untold morbidity and mortality to billions of people and livestock. Anthelmintic
drugs are available but resistance is a problem in livestock parasites, and is a looming threat for human helminths. Testing
the efficacy of available anthelmintic drugs and development of new drugs is hindered by the lack of objective high-
throughput screening methods. Currently, drug effect is assessed by observing motility or development of parasites using
laborious, subjective, low-throughput methods.

Methodology/Principal Findings: Here we describe a novel application for a real-time cell monitoring device (xCELLigence)
that can simply and objectively assess anthelmintic effects by measuring parasite motility in real time in a fully automated
high-throughput fashion. We quantitatively assessed motility and determined real time IC50 values of different anthelmintic
drugs against several developmental stages of major helminth pathogens of humans and livestock, including larval
Haemonchus contortus and Strongyloides ratti, and adult hookworms and blood flukes. The assay enabled quantification of
the onset of egg hatching in real time, and the impact of drugs on hatch rate, as well as discriminating between the effects
of drugs on motility of drug-susceptible and –resistant isolates of H. contortus.

Conclusions/Significance: Our findings indicate that this technique will be suitable for discovery and development of new
anthelmintic drugs as well as for detection of phenotypic resistance to existing drugs for the majority of helminths and
other pathogens where motility is a measure of pathogen viability. The method is also amenable to use for other purposes
where motility is assessed, such as gene silencing or antibody-mediated killing.
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Introduction

Billions of people are infected with helminths in developing

countries, resulting in many thousands of deaths annually [1,2].

Helminths also plague livestock in developing and developed

countries alike, with the global anthelmintic market for livestock

and companion animals valued at $US 3.7 billion in 2002 [3].

While chemotherapy is available for most parasitic helminths,

widespread use of anthelmintics in livestock has resulted in the

emergence of drug-resistant parasites [4,5]. Mass drug adminis-

tration campaigns to control human helminth infections are

becoming more widespread and early data are emerging

indicating the possible emergence of anthelmintic resistance, for

example in river blindness caused by Onchocerca volvulus where

ivermectin has been widely used, as well as in hookworm and

schistosome infections [6–10].

Despite the impact of helminths on the health of humans and

livestock, the anthelmintic pharmacopoeia is small. This is due

in part to the high cost and limited financial return from

drug development, particularly for human helminth infections.

Another, often overlooked impediment to drug development is the

lack of objective high throughput screening methods for assessing

drug effectiveness [7,11,12]. The current gold standard for

measuring drug effectiveness for most adult and larval helminth

parasites is in vitro assessment of worm motility, as measured

visually via microscopy and larval development assays for some

larval stages. Such an approach is laborious, subjective and

difficult to standardize [8,11]. For example, the cost and effort to

standardise testing for larval anthelmintic resistance against four

intestinal parasites of livestock across Europe was substantial [13].

In the 1980s an automated screen was developed, the micro-

motility meter [14,15]. The unit utilized light disruption to

determine helminth movement. While successful in monitoring

motility in both larval and adult stages of a range of parasites, the

inherent limitations restricted its use to small scale studies [16].

Many research programs are underway to explore the genetic

basis of anthelmintic resistance in order to develop molecular

diagnostic assays for anthelmintic resistance. However, with the

exception of the benzimidazole class of drugs [17,18], the

molecular basis of anthelmintic resistance is poorly understood,
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precluding development of widely applicable molecular diagnos-

tics at the present time. Assays based on changes in egg output

after drug treatment, the so-called fecal egg count reduction test

(FECRT), are useful only after resistance has become common-

place in the population (at least 25%). This method, however, is

confounded by density-dependent fecundity effects [19]. Further-

more, for some parasites eggs are not easily collected in quantity,

or the only developmental stage present in feces is the larval stage

(eg. Strongyloides sp.).

Assays have been developed in recent years that score worm

migration, feeding and development [8,12,20,21]. While these

approaches remove some of the subjectivity, they still require

visual scoring by skilled operators, precluding the scale up that

would for example be required for a drug discovery program.

There are regular pleas in the peer-reviewed literature for high-

throughput screening methods to facilitate drug development, and

to detect emerging resistance [11,22–24]. Indeed, the Tropical

Diseases Research network (TDR) of the WHO (http://apps.who.

int/tdr/) has developed an international resistance screening

network, but due to the limitations of available techniques, the

screening methods utilized have remained low- to medium-

throughput [8,25]. And without a scalable, automated, objective

assay for helminth viability, drug development and monitoring for

drug resistance for neglected tropical diseases will be difficult [26].

Methods

Ethics statement
All animals used were maintained in accordance with the

guidelines of the Animal Ethics Committee (AEC) of the

Queensland Institute of Medical Research (QIMR) and James

Cook University, or under the guidelines set out by the F.D

McMaster Animal Ethics Committee, CSIRO Livestock Indus-

tries. All studies and procedures were reviewed and approved by

the Animal Ethics Committees of QIMR or CSIRO (Animal

ethics approval number 09/16).

Preparation of Haemonchus L3 and eggs
Feces were collected from H. contortus infected sheep that were

housed at the McMaster Laboratory, CSIRO Livestock Industries,

Armidale, New South Wales (NSW), Australia, and then sent

by overnight courier to the CSIRO laboratory in Brisbane,

Queensland. The nematode isolates were as follows; [1] Kirby

1981 - isolated from the field at the University of New England

Kirby Research Farm in Northern NSW in 1981 - these parasites

are susceptible to ivermectin (IVM) and levamisole (LEVA) and

thiabendazole (TBZ) [27]; [2] Wallangra 2003 - isolated from the

Wallangra region of NSW [28] and resistant to LEVA,

benzimidazoles, closantel and macrocyclic lactones. To ensure

the resistance status of these parasites, sheep harbouring infections

were treated with the recommended dose of a macrocyclic lactone

5 weeks after infection; [3] LAWES – an isolate from South East

Queensland that is resistant to LEVA and benzimidazoles

(including TBZ) [29]. To ensure the resistance status of these

parasites, sheep harbouring infections were treated with the

recommended dose of LEVA 5 weeks after infection. Nematode

eggs were isolated from feces by filtration and sucrose density

gradient centrifugation as previously described [30], while L3 were

collected as they migrated from fecal cultures. For real time cell

assay (RTCA) experiments, 3,000 L3 were cultured per well of an

E-plate (Roche Inc.) in 200 ml of 0.56 PBS (25 mM sodium

phosphate pH 7.2, 70 mM NaCl) at 27uC.

Preparation of Strongyloides ratti L3

Strongyloides ratti L3 were obtained as described elsewhere [20].

For RTCA, 300 L3 were cultured per well of an E-plate in 200 ml

of 0.56 PBS at 21uC.

Preparation of adult hookworms
Adults of the canine hookworm, Ancylostoma caninum were

collected from euthanized stray dogs and cultured in vitro at

37uC with 5% CO2 as described elsewhere [31] with a

modification entailing the supplementation of 200 ml of medium

per well with 10% fetal calf serum (Invitrogen). For RTCA,

culturing was performed using a single adult worm per well of an

E-plate. Immobile worms used for dead background controls were

determined by visual inspection.

Preparation of adult Schistosoma mansoni
Adult Schistosoma mansoni pairs were collected from the

mesenteric veins of mice by perfusion in PBS and then transferred

to defined culture medium and cultured at 37uC with 5% CO2 as

described elsewhere [32]. For RTCA, culturing was performed

using one pair in 200 ml (one coupled male and female worm) per

well of an E-plate. Immobile worms used for dead background

controls were determined by visual inspection.

Automated assessment of helminth motility and egg
hatching in real time using RTCA

The motility of all helminth species and developmental stages was

assessed using an xCELLigence system (Roche Inc.) that monitors

cellular events in real time without the incorporation of labels

by measuring electrical impedance across interdigitated micro-

electrodes integrated on the bottom of tissue culture E-Plates

(see http://www.roche-applied-science.com/sis/xCELLigence/

ezhome.html). For all experiments the inter-well spaces of the

E-plate were filled with PBS to reduce evaporation. The RTCA

controller software (Roche Inc.) was used to determine how the

information was gathered from the single plate RTCA unit

(Roche Inc.). The first step consisted of a background reading

followed by regular user defined reads at 15 sec intervals for

adult and L3 stages of all helminths tested (now referred to as

‘‘worm tests’’) and 25 min intervals for H. contortus eggs (now

referred to as ‘‘egg tests’’). For worm tests, helminths were

cultured in 180 ml of their respective media per well of the

Author Summary

Parasitic worms cause untold morbidity and mortality on
billions of people and livestock. Drugs are available but
resistance is problematic in livestock parasites and is a
looming threat for human helminths. Currently, new drug
discovery and resistance monitoring is hindered as drug
efficacy is assessed by observing motility or development
of parasites using laborious, subjective, low-throughput
methods evaluated by eye using microscopy. Here we
describe a novel application for a cell monitoring device
(xCELLigence) that can simply and objectively assess real
time anti-parasite efficacy of drugs on eggs, larvae and
adults in a fully automated, label-free, high-throughput
fashion. This technique overcomes the current low-
throughput bottleneck in anthelmintic drug development
and resistance detection pipelines. The widespread use of
this device to screen for new therapeutics or emerging
drug resistance will be an invaluable asset in the fight
against human, animal and plant parasitic helminths and
other pathogens that plague our planet.
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E-plate and motility was monitored overnight to obtain a baseline

motility reading prior to addition of 20 ml of a 106solution of each

anthelmintic drug. After addition of drugs (see below), helminths

were monitored for a further 3–5 days. For egg tests, E-Plate wells

were first filled with 230 ml 0.56PBS. Then a 96 well Multiscreen

mesh filter plate (20 mm pore size, Millipore) was aligned on top of

the E-plate and filled with 200 mL of 0.56 PBS containing 3,000

eggs. Dilutions of TBZ (see below) were generated so that 100 ml of

drug was added to 100 ml of eggs. Culture was undertaken for

48 hours at 27uC with a small fluorescent light placed 60 cm above

the plate to encourage egg hatching.

Addition of anthelmintic drugs
Drugs used were prepared as stock solutions in DMSO at the

following concentrations: 5 mg/ml TBZ; 10 mg/ml IVM; 10 mg/

ml LEVA, 5 mg/ml praziquantel (PZQ). Drugs were diluted to

106 stocks in the respective tissue culture media for culturing of

each parasite and pre-equilibrated for 1 h before addition of 20 ml

of 106drug to 180 ml of media containing helminths as described

above. Final working concentrations of drugs were as follows: PZQ

for schistosomes 21.6 mg/ml and two-fold serial dilutions from

400–50 ng/ml; TBZ for adult hookworms (100, 20, 10 and 1 mg/

ml) and H. contortus eggs (three-fold dilutions from 9 mg/ml–

0.037 mg/ml); IVM for H. contortus L3 (three-fold dilutions from

30–0.4 mg/ml) and S. ratti L3 (two-fold serial dilutions from 2–

0.02 mg/ml); LEVA for H. contortus L3 resistant and sensitive

strains – two-fold serial dilutions from 50–0.4 mg/ml. Control

worms were cultured in the presence of DMSO equivalent to that

used for the highest drug concentration; this group was used to

determine 100% motility.

Determination of IC50 values for anthelmintic drugs
Motility index was used to determine IC50 values of drugs for

adult and L3 stages of the helminths tested, and was calculated as

the standard deviation (SD) over 800 data points (i.e. 4 readings

per min for 200 min) of the cell index (CI) difference from the

rolling average over 20 data points (10 proceeding and preceding

CI values- 5 min total). One hundred percent motility was

determined from the average motility index of the untreated

wells, while 0% motility was determined as an average of when the

lowest readings flatten out. The motility index averaged over 100

data points (25 min) was converted to percent motility and this

figure was used in Graphpad prism 5.0 to calculate and compare

IC50 values. We used a log (drug concentration) vs normalised

response (100%–0%) formula with variable slope and automatic

removal of outliers (with default ROUT coefficient used:

Q = 1.0%). For analyses where there were insufficient samples

for a complete drug dilution series (Haemonchus L3 vs IVM and

hookworm) a standard hill slope (-1) was used with the previously

described non-linear analysis. Determination of IC50 values for

TBZ with H. contortus eggs utilized the raw cell index values that

were converted to percent hatching from an average of 100%

hatching (no drug) and 0% hatching (9 mg/ml TBZ). All other

analyses were as stated above for adult worm and L3 stages.

Statistics
Statistical analyses were undertaken using Graphprism 5.0.

When data were sufficient to use the variable slope analysis (all

except hookworm and H. contortus L3 vs IVM) the Hill Slope and

the LogIC50 value were together compared for significant

differences using an extra sum-of squares F-test. Hookworm and

H. contortus L3 vs IVM were analysed with a set Hill Slope value of -

1 (described above) and subsequently only the LogIC50 was

compared with the F-test.

Results

Cell Index readout
The Real Time Cell Assay (RTCA) unit can differentiate

between live and dead parasites at multiple developmental stages

for a range of different helminths (Figure 1). The gold electrodes

embedded in the base of the wells (Figure 1A) monitor electrical

resistance and generate an output presented as a cell index. Larval

and adult helminth developmental stages were monitored every 15

sec and the resulting amplitude of the cell index output was

proportional to the motility (visual) of the worms (Figures 1B and

C). When eggs were monitored using a modified version of the

larval migration assay (without the agar overlay) [12,20,33] the cell

index output was for the most part proportional to the number of

hatched larvae that crawled through the nylon mesh and came

into contact with the electrodes covering the base of the E-plate

(Figure 1D).

Motility Index and IC50

For generation of IC50 values the cell index output was

converted to a motility index (Figure 2A) which is a measure of the

amplitude of the curve scatter. The optimal combination for

helminth species and developmental stage was determined as the

standard deviation (SD) over 800 data points of the cell index (CI)

difference from the rolling average (over 20 data points). The

motility index was subsequently converted to a percentage of

maximum motility to generate a dose response curve for

traditional IC50 calculations (Figure 2B). As data is continually

monitored, any time point can be selected for IC50 analysis. To

visualise the effects over time, numerous time points were selected

for IC50 calculations (Figure 3). As evident from Figure 3, each

different helminth and developmental stage exhibited different

responses to the drugs tested. For example, the IC50 of

praziquantel (PZQ) for paired adult schistosomes increased over

time and stabilised at 48 hrs (Figure 3A). This is in contrast to the

response of female adult hookworms to thiabendazole (TBZ)

where the IC50 decreased over time but then stabilised at 24 h

(Figure 3B), and the response of H. contortus egg hatching to TBZ

which did not significantly change (Figure 3C).

Use of RTCA for assessing drug resistance
The motility index analysis clearly differentiates between

resistant and sensitive strains of H. contortus (Figure 4A and B).

The IC50 values over time (Figure 4C) further demonstrate the

differences between motility in levamisole (LEVA) -resistant versus

-sensitive lines of H. contortus L3. Twelve minutes after adding the

drug significant (P,0.01) differences were detected between

motility of sensitive and resistant lines, and from 6 hours onwards

the difference was highly significant (P,0.0001). The curves

displaying the IC50 over time demonstrated that the LEVA-

resistant strain became less motile in a consistent manner, while

the motility of the LEVA-sensitive strain decreased after the first

reading and then remained steady. The technique also allowed

clear differentiation between ivermectin (IVM)-resistant and -

sensitive H. contortus L3 (Figure 4D), where the curves displayed

different trends over time. Significant differences in the IVM IC50

values between sensitive and resistant lines were apparent over the

first 12 hour period but thereafter lost significance.

The data generated from the RTCA unit is summarised and

compared to previously published drug sensitivity data in Table 1.

In each case the IC50 values for the RTCA were lower than those

obtained by standard worm motility or egg hatch assays. The

differences ranged from 4-fold up to 50-fold.

Real-Time Monitoring of Helminth Motility
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Discussion

The RTCA unit was developed for automated monitoring of

cell growth, from rapid responses over a few minutes to long

term studies over a period of weeks [34,35]. With the ability to

monitor adherent cells in a label-free fashion in real time,

datasets containing substantially more information than previ-

ously obtainable are now being generated. While the system can

measure growth of cells in suspension, it requires many more

cells than it does for adherent cultures due to the requirement

for contact with the electrodes in the bottom of the wells to

generate a signal. In fact, any change in the conductivity across

the gold electrodes, such as contact, will result in a change in the

cell index reading. Live helminth parasites writhe in culture (as

they do in vivo), and constantly come into contact with the

electrodes on the E-plate surface, making the RTCA system

ideal for monitoring helminth motility for high-throughput

studies. The initial purchase price of the unit might prove an

impediment for some laboratories, but the wide ranging of cell

based applications and the associated e reduction in manual

labour to conduct medium- to high-throughput required will

make the system an attractive proposition in the future.

Additionally, once the initial RTCA unit and E-plates are

purchased, the costs are no greater than those for conventional

assays that are currently used for manual monitoring of parasite

motility, as the plates are durable and readily reusable. After

parasites have been killed by freezing the plates, they can be

easily rinsed, sterilized with ethanol and reused many times with

minimal reduction in sensitivity and less than 0.2% well failure

(data not shown).

Figure 1. RTCA unit differentiates between live and dead parasites from different developmental stages using the cell index
readout. Panel A: Micrograph of adult Ancylostoma caninum hookworms - females in the top two wells and magnified image on the left, and males
in the bottom two wells. Note the gold circular electrodes covering the base of the E-Plate in the magnified image. Panel B: Cell index output
generated by a single adult female A. caninum with and without exposure to thiabendazole (TBZ)*. Panel C: Haemonchus contortus L3 cell index
output in the presence of varying amounts of levamisole (LEVA)*. Panel D: H. contortus egg hatching in the presence of varying amounts of TBZ -
curves show the average of duplicate experiments. Note that increasing drug concentrations result in less egg hatching and a corresponding lesser
cell index output. * The cell index numerical value is not relevant to this analysis - the curves have been manually repositioned to assist with
visualization of the data. The amplitude within each curve is the important feature of the data for this experiment.
doi:10.1371/journal.pntd.0000885.g001
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Because the RTCA system measures changes in worm motility

with a high level of precision, it is widely applicable to a range of

helminth species and developmental stages. While we have only

tested this technique for the species tested herein (Table 1), it is highly

likely that any motile developmental stage from any species that will

rest at the bottom of a 96 well microtiter plate can be monitored us-

ing minor adaptations of the techniques that we describe here.

The ability to directly assess multiple developmental stages for

susceptibility to a drug or other intervention is a distinct advantage.

For example, PZQ is much more effective against the adult stage of S.

mansoni than it is against the schistosomulum, the developmental stage

that is usually the focus of in vitro drug assessments [8]. H. contortus

displays drug susceptibility differences between infective larval and

adult stages, which poses a problem for drug screening and resistance

detection that can be overcome by utilizing the RTCA assay for

assessing motility of adult worms [36,37].

Figure 2. Motility Index of Schistosoma mansoni paired adult worms generated from the cell index output. The Motility Index is relative
to the amplitude of the cell index curve. Panel A: Drug dilution series with praziquantel (PZQ); each curve is an average of minimum 3 experiments,
error bars not shown to enhance clarity. Panel B: PZQ dose response curves used to generate IC50 values generated from Motility Index analysis.
doi:10.1371/journal.pntd.0000885.g002
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Figure 4. IC50 values from RTCA unit can differentiate between LEVA-resistant and -sensitive lines of H. contortus L3. Panels A and B:
Motility Index with selected LEVA concentrations, resistant and sensitive lines respectively. Curves are means of triplicate experiments. Error bars not
shown for clarity of the figure. Panel C: Real time IC50 curves of LEVA-resistant and -sensitive lines with 95% confidence interval error bars. Panel D:
Real time IC50 curves of IVM-resistant and -sensitive lines with 95% confidence interval error bars magnified to aid visualisation; inset shows the entire
data set. * P,0.05, ** P,0.01, *** P,0.001.
doi:10.1371/journal.pntd.0000885.g004

Figure 3. Real time IC50 curves with 95% confidence interval error bars for a range of developmental stages of different helminths.
Panel A: Schistosoma mansoni paired adult worms with praziquantel (PZQ). Panel B: Adult female Ancylostoma caninum hookworms with TBZ
magnified to aid visualisation; inset shows the entire data set. Panel C: Haemonchus contortus eggs with TBZ.
doi:10.1371/journal.pntd.0000885.g003
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Defined skills and experience are generally required to assess

worm motility by visual scoring using microscopy. The automated

motility index method described herein lends itself to consistency

and reproducibility between experiments, between researchers and

between laboratories [38–40], and thus obviate the requirement

for challenging quality assurance programs [13]. The objective

nature of the testing removes the subjectivity that afflicts that the

majority of current testing methods.

The IC50 values obtained by the RTCA were in all cases lower

than those obtained from standard motility and egg hatch assays.

This is most likely a reflection of the greater sensitivity of the

RTCA unit in being able to detect subtle changes in motility that

would be missed by the standard methods. The relative ability to

detect resistance was mixed - the RTCA more readily detected

LEVA resistance than a standard motility assay, while the latter

more readily allowed quantification of IVM resistance levels. This

highlights an issue which exists among the current suite of

phenotypic assays, namely, that a single assay may not be the most

suitable for resistance diagnosis for all drugs and helminth species

(for example, [39]). Importantly though, the real-time nature of

the RTCA readout in Figure 4D does allow for discrimination in

the responses to IVM, however the variability seen in the data at

these time points would suggest that such an assay would require a

deal of careful standardisation before it could adequately quantify

IVM resistance levels.

Recent programs to screen large libraries consisting of

thousands of currently available drugs and other compounds have

shown some promise for identifying new anthelmintics. For

example, Abdulla et al. screened more than 2000 compounds in

vitro against S. mansoni schistosomula and then progressed to

screening 105 initial hits against adult stage parasites [8]. They

used 200–300 schistosomula and 4–8 adult pairs per replicate and

numerous additional screens when different time points were

required. While robust data were generated, the program required

a large scale effort. Even ignoring the time, effort and animal work

required to produce the large number of worms, the screening

alone took two full time researchers one month of training to

identify phenotypes, three months to complete the primary screen

with schistosomula and another month to screen the adult

parasites. This laboratory and industry-based groups are develop-

ing automated video motility monitoring to improve scalability

[41]. Initially developed for monitoring C. elegans sinusoidal

movement the technique is now being adapted for parasites

[42]. Currently, these systems require extensive mathematical

modelling in the analysis programming that has to be customised

by experienced personnel to each parasite and life cycle stage.

While promising, this limits the applicability for the use of video

monitoring for lab scale testing and development at this time.

Microfluidic chips have also recently been developed and are

showing great promise for screening of C. elegans. With innovative

micro-channels to direct worms and micro-suction valves that trap

individual worms, this device can sort whole worms depending on

phenotype [43,44]. This live, whole worm sorting is combined

with florescence and digital imaging and permits phenotypic

screening down to sub-cellular resolution. The limitations are that

the microfluidic chambers are limited by size and adult parasites of

many species are too large to be screened. While currently

behaviour and neural function of C. elegans have been the focus of

microfluidics research, it is feasible that these units could be

adapted to monitor drug effects on larval parasites [45]. As with

video-based monitoring,all these new technologies will have a

place with the RTCA unit at various stages of the drug screening

and resistance detection pipeline in the future.

As previously described, the E-plates contain 96 wells in a

standard microtiter plate format, with up to 96 wells being

monitored at any one time. The ease of experimentation enables

the simultaneous monitoring of different species or developmental

stages on the same plate. The RTCA unit that we used was the

original single plate xCELLigence model (RTCA SP instrument).

However, Roche Inc. recently released a multi-plate unit that can

monitor up to six plates (576 samples) simultaneously. Addition-

ally, a soon to be released 384 well model will assist scale up of

larval assays, allowing for testing of additional samples with fewer

larvae per well. These larger scale applications could be adapted to

incorporate robotic handling for use with helminth eggs or larvae

to streamline the scale-up in drug discovery programs. Post-

genomic methods to determine the function of parasite genes and

proteins are being developed [46,47], and in time this will result in

a suite of druggable targets. However, the lack of a high

throughput objective tests for anthelmintic effectiveness represents

a significant bottleneck that hampers the exploitation of this new

post-genomic information [1,8,11,22–24,26]. Other xCELLigence

Table 1. Summary of IC50 values for a range of drugs and developmental stages of parasitic helminths as measured by RTCA.

Parasite drug IC50 (ng/ml) 95% CI (ng/ml) Time to stable IC50 Previous data (95% CI) (ng/ml)

female A. caninum # TBZ 13.4 6.3–28.5 6 hrs unknown

S. mansoni adult pairs PZQ 188 161–221 48 hrs Varies depending on methodology

S. ratti L3 IVM 174 103–296 4 hrs 1032 (946–1204) [20]

H. contortus L3 IVM resistant
strain

IVM 310 240–390 24 hrŝ 2950 (1910–4550) (pers. comm. Andrew Kotze
2010)

IVM sensitive strain 280 230–330 1040 (860–1250) [12]

LEVA resistant strain LEVA 1710 1480–1990 6 hrs ** 24 000 (1810–3200) (pers. comm. Andrew
Kotze 2010)

LEVA sensitive strain 410 380–440 20 000 (1890–2110) (pers. comm. Andrew
Kotze 2010)

H. contortus eggs (TBZ
resistant strain)

TBZ 704 525–946 12 hrs 4400 (3980–4870) [66]

#Male hookworms were successfully tested but too few worms were available to calculate IC50 values.
‘ IVM resistant strain does not show significant IC50 difference after stabilisation (24 hrs), but does show a significant difference up to 12 hrs (minimum P,0.01).
**Significantly different to sensitive strain at all time points (minimum P,0.01).
doi:10.1371/journal.pntd.0000885.t001
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models, such as the RTCA dual plate unit, are small, portable and

powered by a laptop computer via USB connection. Such units

may enable assessment of anthelmintic activity in field settings

where drug efficacy studies are undertaken.

The high sensitivity of this motility assay allows for detection of

subtle differences following drug application with relative ease. Subtle

drug effects are often overlooked when existing methods are used. For

example, the effect of low PZQ concentrations on schistosomes we

observe has until now gone unnoticed (Figure 4A). The ability to

measure parasite motility with enhanced sensitivity in a user-friendly

manner will prove valuable in the detection of emerging drug

resistance, a rapidly growing area of concern for human helminth

infections [48–50], thereby facilitating early intervention.

A unique aspect to RTCA for monitoring helminth motility is its

ability to continuously assess movement in real time. While the full

analysis requires conversion of raw data into a motility index,

effects on parasite motility can be easily monitored as the

experiment progresses (Figure 1). Moreover, live data can be

simply exported for motility index analysis during the experimen-

tation period. This is particularly useful for experimental design

using adult stage worms which are less amenable to long-term

culture than are larval stages. The ability to measure motility (and

set baseline parameters) prior to addition of drugs ensures that

adequate replicates of healthy motile worms are recorded for each

treatment condition, a consideration that assists data interpreta-

tion and statistical power.

The added benefit of real time, intervention-free monitoring is

that IC50 values can be generated for any number of time points

within a single sample. Firstly, this allows fewer parasites to be

used with less set-up time required. Secondly, this enables greater

insight into defining the optimal time points for the detection of

resistance (for example, Fig 4C) and timing of treatment. Thirdly,

combination treatments can be more easily analysed, either with

concurrent or successive applications. The real time nature of the

assay allows multiple factors that affect resistance to be assessed,

such as the kinetics of LEVA resistance [51–53], or early and/or

late effects that may be overlooked when defined time points are

recorded. For example, when we cultured schistosomes in 50 and

100 ng/ml PZQ (Figure 2A), there was an immediate effect on

motility upon addition of drug, followed by a gradual recovery of

motility from approximately 15–72 hours. A second example is

the difference between the IC50 values of LEVA- and IVM-

resistant Haemonchus L3 over time (Figures 4C and 4D), where

significant differences in motility were detected between resistant

and sensitive lines until 12 hours following addition of both drugs.

Thereafter the difference in motility between resistant and

susceptible parasites was maintained for LEVA resistant L3. In

contrast, IVM-treated parasites showed similar motility between

resistant and sensitive lines after 24 hours. Many anthelmintic

drugs are metabolised within hours, so this data will be critical in

designing treatment programs to maximise drug effectiveness and

reduce costs. One drawback of monitoring slow acting drugs with

this technique, such as IVM and TBZ (Figures 3B and 4D), is that

the IC50 95% confidence intervals can be substantial in the early

period of the experiment. The reasons for this are unclear but we

suspect that it reflects the slow induction of paralysis, hence the

increased variability between samples.

The versatility of this RTCA technique for measuring motility

of microorganisms may result in a wide range of applications. It

could be used to assess the effects on helminths of treatments other

than drugs, including antibodies and other immune interventions,

or gene silencing approaches where the phenotype affects motility

[54,55]. Modification of the RTCA method for use with a range of

other difficult to assess organisms is feasible. The free-living

nematode Caenorhabditis elegans is widely used as a model for

parasitic nematodes due to its functional and biotechnological

tractability [56–59]. Adult C. elegans range from 1–2 mm in length,

so it is likely that their motility in liquid culture could be easily

measured using a modified RTCA approach [57–62]. The range

of potential species that may be monitored with this technique is

extensive, including agricultural, medical and veterinary pests and

pathogens such as ticks, fleas, aphids, mites and dipteran larvae

[63–65].

In conclusion, we present a novel use of a Real Time Cell Assay

device (xCELLigence) that can simply and objectively assess the

effectiveness of anthelmintic drugs in real time by measuring

motility in a high-throughput, reproducible fashion with minimal

effort and training required. While originally designed for real

time measurement of cell growth, the device is amenable to high

throughput screening of a range of developmental stages of

different human and livestock helminth parasites. This method is

envisaged to be applicable for the majority of helminth species and

developmental stages where egg hatch assays or motility is

accepted as a measure of worm viability. We predict that the

method could be applied to other large pathogens or pests that can

survive and be motile in liquid culture in a 96 well plate (or

smaller). Moreover, new models of the xCELLigence are soon to

be released by Roche Inc, displaying improved sensitivity and

increased scale-up potential. The widespread use of this device to

screen for new therapeutics or emerging drug resistance will be an

invaluable asset in the fight against the wide range of biomedical

and veterinary helminths that plague our planet.
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