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Abstract

Conservation planners represent many aspects of biodiversity by using surrogates with spatial distributions readily
observed or quantified, but tests of their effectiveness have produced varied and conflicting results. We identified four
factors likely to have a strong influence on the apparent effectiveness of surrogates: (1) the choice of surrogate; (2)
differences among study regions, which might be large and unquantified (3) the test method, that is, how effectiveness is
quantified, and (4) the test features that the surrogates are intended to represent. Analysis of an unusually rich dataset
enabled us, for the first time, to disentangle these factors and to compare their individual and interacting influences. Using
two data-rich regions, we estimated effectiveness using five alternative methods: two forms of incidental representation,
two forms of species accumulation index and irreplaceability correlation, to assess the performance of ‘forest ecosystems’
and ‘environmental units’ as surrogates for six groups of threatened species—the test features—mammals, birds, reptiles,
frogs, plants and all of these combined. Four methods tested the effectiveness of the surrogates by selecting areas for
conservation of the surrogates then estimating how effective those areas were at representing test features. One method
measured the spatial match between conservation priorities for surrogates and test features. For methods that selected
conservation areas, we measured effectiveness using two analytical approaches: (1) when representation targets for the
surrogates were achieved (incidental representation), or (2) progressively as areas were selected (species accumulation
index). We estimated the spatial correlation of conservation priorities using an index known as summed irreplaceability. In
general, the effectiveness of surrogates for our taxa (mostly threatened species) was low, although environmental units
tended to be more effective than forest ecosystems. The surrogates were most effective for plants and mammals and least
effective for frogs and reptiles. The five testing methods differed in their rankings of effectiveness of the two surrogates in
relation to different groups of test features. There were differences between study areas in terms of the effectiveness of
surrogates for different test feature groups. Overall, the effectiveness of the surrogates was sensitive to all four factors. This
indicates the need for caution in generalizing surrogacy tests.
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Introduction

Most species have not yet been described and even for the minority

that are known, data on spatial distributions are sparse and often

unreliable. Further, knowledge of the processes that sustain

biodiversity is rudimentary for most regions. To plan for represen-

tative protected areas therefore requires surrogates for biodiversity

[1,2]. When attempting to represent patterns of biodiversity in

conservation areas, biodiversity surrogates used by planners include

some of the better-known taxonomic groups, focal species, umbrella

species, species assemblages, and various ecological classifications

[2,3,4,5,6]. Methods directed to conserving biodiversity processes,

though less common, are increasing [7,8].

Surrogates can be roughly divided into taxonomic and

environmental categories. Taxonomic surrogates are predomi-

nantly based on biological data, include the use of well-known

groups of species such as birds, and are often extrapolated

geographically using statistical techniques [9,10]. Environmental

surrogates are usually based on a mix of physical and biological

data. They can be subdivided into two types: those based on

discrete classes (often referred to as ecological classifications or

land types); and surrogates where continuous data are analyzed

directly in the selection of areas [see 11,12]. Ecological

classifications have been widely used as surrogates in conservation

planning [e.g. 13,14,15,16], often with the assumption that they

will represent large numbers of subsumed species [17]. They can

reflect factors known to be important in determining the

distributions of species and, compared with species data, can be

mapped more consistently, quickly, and inexpensively across large

areas [2]. They have been derived in many ways, the choices being
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guided by data availability, spatial scale, choice of data merging

techniques, biogeography, and perceptions about the importance

of particular variables in shaping biological distributions [e.g.

2,13,18,19]. The economy and consistency of ecological classifi-

cations are weighed against several limitations, some long

recognized by conservation planners [16]. These include patchy

distributions of species within and between classes, especially for

rare, locally endemic, and threatened taxa; the frequent absence of

large compositional changes at mapped boundaries, and lack

of information on important areas such as drought refugia

and breeding sites that occur at finer spatial scales

[16,20,21,22,23,24,25]. Many planners have compensated for

the limitations of ecological classifications by using datasets

composed of multiple surrogates [e.g. 2,15].

Testing the effectiveness of ecological classifications as surro-

gates for other aspects of biodiversity can improve methods for

developing new surrogates, and help planners to understand their

unavoidable limitations. For biodiversity patterns, effectiveness

refers to the ability of the surrogate to reflect the distribution of

some other features of biodiversity. Methods for assessing

effectiveness require measurement of surrogate performance

relative to test features (i.e. other aspects of biodiversity that the

surrogate is intended to represent), and can be loosely categorized

as either pattern-based or selection-based. Pattern-based tests [e.g.

20,26,27] directly measure the spatial relationship between the

surrogate and test features, but do not directly assess the outcomes

of alternative conservation decisions. Selection-based techniques

generally select notional conservation areas based on the

surrogate, then measure representation, or likelihood of represen-

tation, of the test features in those areas [e.g. 24,25,28]. Selection-

based methods therefore address conservation decisions [29] but

have the relative disadvantage of assuming particular configura-

tions of selected areas or probabilities of selection that are unlikely

to match conservation action as it is realized on the ground.

Systematic selections are rarely implemented entirely and without

alteration [30]. Therefore, uncertainties in implementation could

alter the apparent effectiveness of surrogates.

Different studies have reported widely varying results on the

effectiveness of ecological classifications as surrogates [e.g.

4,6,20,21,23,24,25,31,32,33,34,35,36,37,38,39,40]. Variation in

these results might reflect differences among studies in several

key characteristics, such as, study area location, spatial extent,

spatial resolution, type of surrogate, taxa (or other test features)

used to evaluate surrogates, and analytical methods used to test

surrogates. Each of these factors can be expected to influence

results [1,41]. Importantly, previous studies that have tested

environmental surrogates have involved simultaneous variation in

most or all of these factors, making it impossible to discern the

influence of any single factor. It is therefore not surprising that a

large body of work has produced variable results and few, if any,

generalizations.

Our study used a rich data set as an opportunity to

systematically assess the influence of four key factors, alone and

in combination, in determining the apparent effectiveness of

ecological classifications as surrogates. These factors were: (1) two

study regions, (2) two surrogates, (3) five testing methods, and (4)

six groups of threatened species as test features, against which we

measured the effectiveness of the surrogates (Table 1 provides a

Table 1. Four key factors analyzed to determine the apparent effectiveness of biodiversity surrogates.

Factor Variables Description

Study regions 1) Upper north east NSW Located in north east NSW, Australia (Fig. 1)

2) Lower north east NSW Located in north east NSW, Australia (Fig. 1)

Surrogates 1) Environmental units Classes were based on 4 environmental variables. There were 37 classes in upper north east
NSW and 40 in lower north east NSW.

2) Forest ecosystems Classes were based on forest types and floristic/environmental variation. There were 96
classes in upper north east NSW and 95 in lower north east NSW.

Testing methods Method 1- Incidental representation
(measuring median target achievement)

Areas were first selected to achieve representation targets for the surrogate, then
effectiveness was measured as the median representation target achieved incidentally for
the test feature group.

Method 2- Incidental representation
(measuring percentage of features to target)

Similar to method 1 except effectiveness was measured as the percentage of test features
with targets fully achieved.

Method 3- Species accumulation index
measuring median target achievement

Areas were selected progressively to achieve representation targets for the surrogate, then
effectiveness was measured based on the increase in the median achievement of test
feature targets in relation to median target achievement by random selection of areas and
by ‘‘optimal’’ selection using the test features themselves instead of the surrogates.

Method 4- Species accumulation index
measuring percentage of features to target

Similar to method 3 except effectiveness was measured as the percentage of test feature
with targets fully achieved.

Method 5- Correlation of irreplaceability Irreplaceability is an index of the conservation value of areas in contributing to conservation
targets. Irreplaceability patterns of areas based on targets for surrogates were correlated
with those based on targets for each test feature group.

Test feature groups 1) All test features 412 species/sub-species in upper north east NSW and 298 in lower north east NSW.

2) Mammals 77 species/sub-species in upper north east NSW and 82 in lower north east NSW.

3) Birds 42 species/sub-species in upper north east NSW and 31 in lower north east NSW.

4) Reptiles 91 species/sub-species in upper north east NSW and 175 in lower north east NSW.

5) Frogs 43 species/sub-species in upper north east NSW and 31 in lower north east NSW.

6) Plants 159 species/sub-species in upper north east NSW and 79 in lower north east NSW.

The combination of these four factors generated 120 assessments of surrogate effectiveness.
doi:10.1371/journal.pone.0011430.t001
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full description of each of these factors). We used a subset of

possible selection-based testing methods that have commonly been

applied in the literature and vary in their assumptions, limitations

and advantages.

Results

In each of our two study areas (Fig. 1), we applied 60 tests of

effectiveness (see Table 1), involving 2 surrogates, 6 test feature

groups (including all groups combined), and 5 testing methods.

Overall results for the upper north-east of New South Wales are in

Fig. 2a–e and those for the lower north-east are in Fig. 2f–j.

Overall performance of surrogates
Environmental units were more effective than forest ecosystems

in 33 instances compared with forest ecosystems that were more

effective in 22 instances, and 5 had similar results (Fig. 2.).

Differences in values, however, were often relatively small. The

surrogates were more effective than random selections of areas

(methods 1–4, p,0.05) or showed significant correlations of

summed irreplaceability values (p,0.05) in 79 out of 120 cases

(Fig. 2).

Test features were generally poorly represented by, or

correlated with, surrogates (Fig. 2.). Across surrogates and test

feature groups, the highest values from Method 1 (median

percentage target achieved) were 17 in the upper north-east and

48 in the lower north-east (maximum possible values 100). The

highest values for Method 2 (percentage of features with targets

achieved) were 11 and 28 (maximum possible values 100). For

Method 3 (species accumulation index based on median target

achievement) the values were 0.16 and 0.58, and for Method 4

(species accumulation index based on percentages of targets

achieved) the values were 0.12 and 0.70 (maximum possible

values 1.0). For Method 5 (correlations of summed irreplace-

ability), the highest values were 0.47 in the upper north-east and

0.46 in the lower north-east (maximum possible values 1.0).

Overall, values of effectiveness were much lower than

maximum.

Overall ranking of the test feature groups showed that

surrogates were most effective for plants (Fig. 3a). This was also

the case for comparisons considering the upper north-east region

separately (Fig. 3b) whereas, in the lower north-east, mammals and

plants were equally best represented by surrogates (Fig. 3c).

Effectiveness of both environmental units and forest ecosystems

was higher for plants and mammals than for other test feature

groups (Fig. 3d–e). In all five comparisons that combined testing

methods (Fig. 3a–e), the surrogates were least effective for frogs

and reptiles.

Comparison of study areas
The two study areas showed differences in surrogate effective-

ness values overall and for environmental units and forest

ecosystems (Fig. 2). Values were generally higher in the lower

north east. For the same surrogate, testing method and test

feature, the values were higher in the lower north east in 51 out of

60 cases and 2 cases were equal. In the upper north east,

environmental units were more effective than forest ecosystems in

24 out of 30 cases and 2 cases were equal (Fig. 2a–e). In the lower

north-east, forest ecosystems were more effective than environ-

mental units in 20 out of 30 cases and 1 case was equal (Fig. 2f–j).

The two regions produced similar ranks across the test features in

a majority of the test settings. There were no examples of ranks at

opposite extremes (i.e. a rank of 1 in one study region and a rank

of 5 in the other) for the same test. We found moderately diffuse

correlations between these ranks, yielding Spearman’s correlation

rs = 0.58 (p,0.001) and Kendall’s concordance coefficient

W = 0.785 (p,0.001).

Comparison of methods
We applied each testing method to 24 combinations of study

area, surrogate type, and test feature group. Different testing

methods produced different rankings of test feature groups (Fig. 3f–j).

The methods also produced varying distributions of results (Fig. 4).

With the 24 results for each testing method ranked, Spearman

correlation coefficients for the ranks (rs) of one method against

another were mixed. There were five significant correlations ranging

from 0.44 to 0.71, with the strongest between methods two and four,

and five non-significant correlations (Table 2).

Discussion

This is the first time the individual effects of four key factors; 1)

choice of surrogate, 2) test features 3) study area, and 4) testing

method have been considered when evaluating surrogates. We

found that the effectiveness of surrogates was sensitive to all of

them. This raises important issues to be addressed if the concepts

of surrogacy and effectiveness are to contribute meaningfully to

data collection and conservation decisions.

Influence of surrogate type
We found that environmental units were more effective

surrogates than forest ecosystems in the upper north east but

this result was reversed in the lower north east. Differences in

Figure 1. Study areas showing existing reserves and public
forests in north-eastern New South Wales. Existing reserves are
shown in black. Public forests open for negotiation and further
conservation management are in grey. The configuration is from
1998, prior to the Regional Forest Agreement that extended the reserve
system. The region was divided into two study areas–upper and lower–
along the dark line, also indicated by arrows.
doi:10.1371/journal.pone.0011430.g001
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surrogate values, however, were relatively small. This contrasts

with the findings from the same region by Ferrier et al.

[6,42,43,44] who concluded that forest ecosystems were far more

effective than environmental units. These differences underline

the sensitivity of apparent surrogate effectiveness to the study

design. For example, Ferrier et al. tested surrogates against a far

wider variety of species including threatened and non-threatened

invertebrates, vertebrates and plants which necessarily included

groups of organisms that differed greatly in mobility and habitat

preferences [45]. They used the species accumulation index

(implemented as our method 4) as one of their testing methods,

but did not consider the practical constraints of existing reserves

(e.g. over representing particular species and habitats). Also, their

selections were based on survey sites rather than planning units,

and they counted species as represented if they occurred in a

single selected survey site, rather than addressing species-specific

targets.

Influence of test features
Threatened species were important as test features both because

of the need for protection and their generally restricted

distributions, making them more likely than other species to be

missed by conservation areas selected only with ecological

classifications as surrogates. Our study demonstrated the both

surrogates performed well for plants. This is not surprising given

floristic components were part of its classification. The environ-

mental units might have performed well for plants due to soil

fertility, a variable used to develop the classification, is a factor that

can also influence plants distributions [46]. Neither of our

surrogates performed strongly for our test features. Values for all

methods were generally well below their potential maxima. While

not surprising, this highlights a dual problem for conservation

planners: distribution data are often relatively poor for threatened

species [47] and ecological classifications can be relatively

ineffective as surrogates for threatened species [24,48]. This result

was also partly due to a limited number of areas being required to

achieve targets for the surrogates. When selecting areas to achieve

targets for the test features, we found that large areas are needed

for some taxa.

Similar to our study, Araújo et al [49] found threatened frogs

and reptiles most likely to be missed by conservation planning

based on surrogates, although they tested different kinds of

surrogates. For the ecological classifications tested here, there are

at least two possible reasons why frogs and reptiles would be

missed more often than other taxa. First, on both our study

regions, the predicted distributions of frogs and reptiles were

much smaller on average than those of mammals and birds. The

differences might be real or could reflect the influence of fewer

field records and more limited observations of habitat associations

of frogs and reptiles in the region [50]. Overall, rarer features are

more likely to be missed by areas selected to represent targets for

surrogates [24,25] despite, in our study, correspondingly smaller

targets that were easier to achieve. A second possible reason for

surrogates being relatively ineffective for frogs and reptiles is that

these organisms are distributed in response to habitat character-

istics that are poorly reflected by environmental units or forest

ecosystems. Frog species, for example, are often confined to

specialised micro-habitats and have complex life histories

encompassing both aquatic and terrestrial phases [51]. Similarly,

invertebrates have been found to be generally poorly represented

by various biodiversity surrogates due to their often specific

habitat characteristics [e.g. 21], which is significant given that

they comprise the majority of biodiversity.

Influence of study area
Regions with relatively comprehensive datasets have been

proposed as test beds of surrogate effectiveness, providing lessons

for regions with poorer data [42,52]. This approach is practical

and intuitively appealing, but might be limited if the results from

one region are difficult to generalise. Our results showed some

differences between study areas. First, values produced by the

testing methods were generally higher in the lower north east.

Second, we found that the relative effectiveness of our two

surrogates differed between study areas. The two regions however,

showed only slight differences in the rankings of effectiveness

across test groups for each method and the two regions ranking

were significantly correlated. There are two likely reasons for any

study region effects. First, there were approximately 25% more test

features in the upper north-east (including almost twice as many

plant species) and they were generally more narrowly distributed,

making them more likely to be missed, despite correspondingly

smaller targets that were easier to achieve. A second reason is that

initial target achievement for environmental units varied markedly

between study areas. For methods 1–4, the number of areas

selected to achieve targets for environmental units was the

benchmark for comparing the two surrogates. Corresponding to

differences in initial target achievement, only 11% of the area

available for conservation was required to achieve targets for

environmental units in the upper north-east, but 30% in the lower

north-east. This large difference directly affected values of

incidental representation of test features, measured at the end of

selections, with values generally lower in the upper north east.

Any differences between these regions are noteworthy given the

proximity of the study areas, and their close similarity in terms of

patterns of tenure and land use, physical environment, biota, and

methods and scales for mapping surrogates, surveying the biota,

and predicting species distributions. These differences also

highlight potential inaccuracies of predicting species and habitat

distributions outside of their dataset range.

Methods for quantifying ‘effectiveness’
Previous studies have shown that the choice of testing method

can influence the apparent effectiveness of surrogates [e.g. 28,39].

Our methods produced different distributions of values, and hence

convey more or less optimistic pictures of surrogate effectiveness.

More importantly, we found that some methods had different rank

orders of results in relation to their effectiveness for different test.

Previous work points to further factors that might interact with

testing method to influence the apparent effectiveness of

surrogates. These include the extent of the study region and size

of planning units [41] and the size of surrogate targets which

change patterns of irreplaceability and selections of areas [e.g. 53].

Figure 2. Summary of all results, showing effectiveness estimates (absolute values) arranged by study area and testing method.
Note that absolute values are not comparable between testing methods. Asterisks indicate significance levels (*** p,0.001; ** p,0.01; and * p,0.05)
for comparisons of the surrogate’s effectiveness versus a null-distribution of randomly selected areas (for methods 1–4) randomly paired planning
units (for method 5). Method 1-incidental representation measuring median target achievement; method 2- incidental representation measuring
percentage of features with targets fully met; method 3- species accumulation index (SAI) measuring median target achievement; method 4- species
accumulation index (SAI) measuring percentage of features with targets fully met; and method 5- correlation of summed irreplaceability values.
doi:10.1371/journal.pone.0011430.g002
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Several studies have argued that measuring the performance of

surrogates requires the selection of notional conservation areas

based on a surrogate, followed by measuring species representa-

tion compared with that obtained from selections generated at

random [29,54,55]. For example, Rodrigues et al. [55] state that

‘‘The relevant question in a surrogacy test is, therefore, what is the

extent to which areas selected for surrogates capture the target

features?’’ We are less confident that conservation science has

converged on a single, effective method. There are three main

reasons. First, the respective assumptions, strengths and limitations

of selection-based and pattern-based testing methods remain

poorly understood. Second, different plausible methods produce

different and sometimes conflicting results. For example, even

within the species accumulation index, the extent of ‘representa-

tion’ relative to targets can be quantified in alternative ways

(median % of targets reached and percentage of features with

targets reached in this study; or, as employed in its simplest form,

as a binary target of represented or not as employed by Rodrigues

et al. [55]). Rankings of values from the two forms of species

accumulation index used here were imperfectly correlated. Third,

the data-dependence of results from different methods has been

poorly explored by applications to multiple regions and planning

situations.

In our study, incidental representation (methods 1 & 2)

demonstrated how a notional conservation system based on

surrogates might contribute to the protection of biodiversity such

as threatened species, considering the existing conservation system

and its associated environmental bias. A limitation of this

approach was its inability to measure effectiveness progressively

as more areas were selected. The species accumulation index

(methods 3 & 4) overcomes this limitation by integrating the

relative performance of surrogates and ‘‘optimal’’ selections as

areas are progressively added to the conservation system. Both

methods, however, involve two important assumptions. The first is

that the selected areas are indicative of the composition and

configuration of future conservation areas on the ground. This is

very unlikely given the socio-economic and political forces that

shape actual conservation systems in our study areas [56] and

elsewhere, even when systematic methods underpin planning. A

second assumption is that single sets of selected areas are adequate

indicators of incidental representation or the species accumulation

index. In most regions, there are many possible ways of assembling

areas into representative systems [57,58]. It is therefore important

to know how the results of selection-based methods might change

between alternative sets of areas.

We attempted to overcome this second limitation by using

correlations between patterns of summed irreplaceability (method

5) based on the surrogates and test features, effectively considered

all possible ways of assembling systems of conservation areas

[25,28,59]. This method assumes that irreplaceability indicates the

likelihood of areas being selected for conservation, or that choices

between optional areas with similar irreplaceability values will be

resolved randomly. Given real-world constraints and preferences

this is unlikely and the actual resolution of options will probably be

region-specific and determined to some extent by socio-economic

factors. Also, it may be helpful to consider features of the two

distributions of irreplaceabilities beyond only their single linear

correlation coefficient, for example, if conservation actions can

only cover a small proportion of sites, then we may be more

concerned with the performance of the surrogate in identifying or

ranking the sites with highest irreplaceability for the test feature,

which could coincide with either low or high correlation across the

vast majority of locations.

A further critical aspect of selection-based methods is signifi-

cance testing of the results. Like other authors, we used random

selection of areas as a null model to compare the outcomes of

incidental representation and the species accumulation index.

Random selections are useful as a baseline because they are likely

to sample the physical and biological variation within a region and

provide a neutral baseline for comparison with representation of

biodiversity from deliberate selections [see 55 for discussion].

However, an alternative null model might involve simulating

conservation involving realistic forms of bias, for example,

selecting areas least valuable for extractive uses to approximate

widely observed residual conservation systems [60]. Another

informative baseline might be a conservation system designed by

expert-opinion rather than data sets in conservation planning

software [61]. There appear to be no studies of the relative

performance of selection-based methods against these alternative

null models.

A future for environmental surrogates?
Our results demonstrate that ecological classifications have

some, albeit limited, value as surrogates for threatened species, as

others have found in earlier studies [e.g. 24,48]. Ecological

classifications are often used in conservation planning as

generalized, coarse filter surrogates. Their perceived role is to

compensate for the spatial and taxonomic biases inherent in any

species-based data sets [62], the lack of congruence between many

taxa [e.g. 63,64], the likelihood of missing higher-level interactions

between species and their environments [33], the large cost of

obtaining new species data [65], and other limitations [66].

However, some authors have strongly advocated the use of

taxonomic surrogates instead of environmental surrogates, even in

light of their expense and limitations, if alternatives (environmental

surrogates) are too coarse or lacking in biological justification [67].

Surprisingly, we are only aware of a few studies that have

compared taxonomic and environmental surrogates. Carmel &

Stroller-Cavari [31] found the two types to be similarly effective.

Rodrigues & Brooks [55] applied a meta-analysis of 27 studies and

found stronger support for taxonomic surrogates. Nonetheless,

their selection of testing methods was limited to species

accumulation indices, which they considered to be most robust a

priori. Our study suggests the relative merits of different testing

methods are unresolved. Further, most of the tests of environ-

mental surrogates in their meta-analysis came from one region

(north-eastern New South Wales) following the work of Ferrier and

Watson [44]. Our results from the same area have demonstrated

the potential for these results to be region-specific. We therefore

consider the choice between environmental and taxonomic

surrogates to be an open question. Perhaps this debate also

over-emphasises the distinction between taxonomic and environ-

mental surrogates, rather than acknowledging the extreme

heterogeneity of surrogacy value offered by choices within these

Figure 3. Mean rankings of test feature groups (with 95% confidence intervals). A rank of 1 indicates highest surrogate effectiveness and 5
indicates lowest. Results are grouped across (a) all tests, (b and c) two study areas, (d and e) both surrogates and (f–j) each method. Method 1-
incidental representation measuring median target achievement; method 2- incidental representation measuring percentage of features with targets
fully met; method 3- species accumulation index measuring median target achievement; method 4- species accumulation index measuring
percentage of features with targets fully met; and method 5- correlation of summed irreplaceability values.
doi:10.1371/journal.pone.0011430.g003
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two broad classes, and the need for any choice to be based on

ecological and biogeographic understanding of the relationship

between a surrogate and the underlying conservation objectives.

New methods are emerging that make the best use of all available

data in a region when developing surrogates for biodiversity, such

as, generalised dissimilarity modelling [12].

How to understand surrogate effectiveness?
How can we learn from surrogacy tests? Meta-analysis across

surrogate tests might yield generalizations and identify the main

factors underlying variability in results, thereby refining predic-

tions about surrogates and methods for testing them. To identify

the influence of any one factor on the effectiveness of

environmental surrogates, meta-analysis will have to draw on

sufficient studies to adequately represent variation in other factors.

The difficulty here is highlighted by the number of possible

combinations of study area, extent, resolution, surrogate type, test

features, and analytical method. For example, we are aware of

perhaps 20 different testing methods currently applied to

environmental surrogates. Complementary to meta-analysis, we

identified the individual influence of four factors; study area,

surrogate type, test features, and testing method, likely to influence

surrogate effectiveness by systematic explorations of their varia-

tions within a well-studied system. The importance of this case

study is in its rigorous demonstration that all these factors

influence the measured effectiveness of surrogates. Yet none of

these factors was taken into consideration in the only meta-analysis

applied to environmental surrogates to date [55]. Rodrigues &

Brooks [55] standardized their comparisons by using a single

version of the species accumulation index, and therefore restricted

their analysis to 27 studies out of several hundred. Any future

meta-analysis should attempt to broaden the number of factors

considered. Furthermore, we believe there is a clear need for more

research to better understand the alternative methods for

quantifying effectiveness, in terms of their advantages, limitations

and assumptions. We also recommend that insights into surrogates

could be gained from reviewing aspects of the ecology and

Figure 4. Histograms of 24 absolute values for each testing
method. Method 1- incidental representation measuring median
target achievement; method 2- incidental representation measuring
percentage of features with targets fully met; method 3- species
accumulation index measuring median target achievement; method 4-
species accumulation index measuring percentage of features with
targets fully met; and method 5- correlation of summed irreplaceability
values.
doi:10.1371/journal.pone.0011430.g004

Table 2. Relationships between effectiveness estimates from
five alternative testing methods.

Method 2 Method 3 Method 4 Method 5

Method 1 0.44* 0.72*** 0.50* 20.1

Method 2 0.46* 0.71*** 0.14

Method 3 0.61** 0.36

Method 4 0.07

Effectiveness values were ranked on their native scale for each method (for each
method n = 24 based on different combinations of study area, surrogate, and
test feature group) and compared using Spearman’s rank correlation
coefficient. Asterisks indicate significance levels (*** p,0.001; ** p,0.01; and
* p,0.05).
doi:10.1371/journal.pone.0011430.t002
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biogeography of species that both support the use of surrogates

and explain their inevitable limitations.

Conservation planning is a dynamic process and planners must

continually make decisions about the allocation of scarce

resources. In relation to biodiversity data, planners are faced

with questions including: what decisions to make using existing

data; which data to ignore; and what might be the most cost-

effective types of additional data. Planners also have to choose

between making decisions with available data or waiting for

better data while risking the loss of important areas [68]. Further

choices concern the marginal benefits of data collection in

different regions. Conservation science has provided few solutions

to these practical problems [69]. Addressing this gap requires

studies that place surrogacy measures firmly in the context of

decision-making processes and resources available. We need new

novel methods that explicitly trade-off the value of new data and

knowledge against the implementation of more decisive conser-

vation action.

Materials and Methods

Study areas
Our study areas were in north-eastern New South Wales,

Australia (Fig. 1): the upper and lower north-east. These were the

boundaries used for a conservation planning process in 1998,

called the Regional Forestry Agreements, that established

extensive new conservation reserves [2]. We used the configura-

tion of tenures as they existed in 1998 (before the establishment of

new reserves), because this enabled us to consider a large number

of potential areas for conservation management, and to assess the

effectiveness of surrogates against actual conservation targets used

in the forestry reform process. At that time, nearly 20% of the

study area was covered by some sort of conservation management

with around 10% in strict reserves. The two study regions are very

similar in their patterns of tenure, land use, physical environment

and biota. Any differences that we find in apparent effectiveness of

surrogates in these highly similar regions will therefore have large

implications for our ability to generalise from one region to

another, considering that differences between most study regions

are far greater.

Biodiversity surrogates
Our two biodiversity surrogates, forest ecosystems and environ-

mental units, have both been used extensively for conservation

assessments in the study areas but differ strongly in their derivation

and resulting spatial distributions. Consequently, they are not

merely subdivisions of one another and their boundaries rarely

coincide [5,70]. Eighty-one environmental units classes were

previously derived by combining four environmental variables:

mean annual rainfall, mean annual temperature, soil fertility

(based on geology) and slope [60]. These were mapped across all

tenures and land uses, so pre-deforestation extents were known,

and then intersected with remaining vegetation. They were also

derived across a larger extent than our study regions, so only 37

classes were analyzed in the upper north east and 40 in the lower

north east. Some 157 forest ecosystems classes were originally

derived by subdividing or amalgamating forest types [71]

according to variation in floristic composition and environmental

variables. Their occurrence was predicted across gaps in mapping

of forest types, including deforested land, in relation to

environmental variables [6]. After trimming the extent of forest

types to our study regions we analyzed 96 classes in the upper

north east and 95 in the lower north east.

Species data and test features
To test the effectiveness of the surrogates, we used data on

forest-dependent plant and animal species listed as threatened

under the New South Wales Threatened Species Conservation Act

(1995) or the Commonwealth Endangered Species Protection Act

(1992) or nominated by experts as requiring conservation action

[72]. Data for a given taxon consisted either of locality records

alone (point data), or predicted distributions from previous

modeling in relation to physical variables and vegetation structure

[5]. Distribution models yielded probabilities of occurrence, and

the previous work converted these to predicted densities in two

steps, both with involvement of experts on each taxon [72]. First,

the ranges of predicted probabilities were subdivided into four

habitat qualities: core, intermediate, marginal, and unsuitable.

Second, an estimated density, such as number of breeding females

per km2, was assigned to each quality class for each species. Most

animal species and some plant species were divided into

geographically distinct populations, on the basis of putative

dispersal barriers likely to prevent re-colonization of vacant

habitat. These populations were treated as separate ‘species’ in

subsequent analyses. We removed from consideration any species

for which conservation targets were already achieved, or that

occurred only in planning units excluded from our analyses (see

below), leaving 159 plant and 235 animal species in the upper

north-east (total 394), and 79 plant and 219 animal species in the

lower north-east (total 298). Animals had much larger distributions

than plants. To enable comparisons among alternative sets of test

features, we grouped species into six test feature groups: all species

combined, mammals, birds, reptiles, frogs, and plants.

Our test features provide insights into the effectiveness of

ecological classifications as surrogates for species of conservation

interest, based on data quality that is rarely available for

threatened species. Tests of ecological classifications as surrogates

for target taxa that are threatened or of conservation concern

might yield lower estimates of effectiveness than for more widely

distributed test features, as expected intuitively and seen in

empirical studies [e.g. 24,25]. However, these are the species that,

if missed by conservation areas focused on surrogates, will have the

poorest prognoses for persistence, so are justifiably a focus of

surrogate testing. In any case, the general relevance of this study is

underlined by our test features varying widely in distribution from

highly restricted to widespread species within each taxonomic

group. Also, each group contained species only with locality

records (systematically under-estimating true presence) and others

with distribution models that balanced errors of omission and

commission [62].

Conservation targets
Our three analytical approaches for testing surrogates, below,

were based on reserve selection procedures and required

conservation targets for both surrogates and test features. For

the surrogate features, we set targets at 15% of the estimated pre-

deforestation extent of each forest ecosystem and environmental

unit, consistent with national policy for forestry reform when the

data were compiled [73]. Targets for each threatened animal and

plant species had previously been established [72,74]. Targets for

animals were calculated with a formula that related life-history

parameters to area requirements for viable populations [72]. For

plants with distribution models, area targets were based on

demographic traits, likelihood of stochastic events, and expert

opinion [74]. Plant species without distribution models were given

targets for numbers of locality records according to listed threat

status and assessments of conservation priority [72].
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Established reserves and planning units
Given the focus of the forest reform process on unreserved

public lands, our analyses excluded both private land and existing

reserves. The unreserved public lands had previously been

subdivided into polygons forming planning units-the building

blocks of potential conservation areas that are assessed and

compared by decision support software [30]. Most of the planning

units were defined as forestry management compartments,

averaging 200 ha [2]. For each planning unit, we recorded the

extent or number of locality records of each forest ecosystem,

environmental unit, and species. We excluded planning units that

were not fully covered by all surrogate data (environmental units

were less extensively mapped than forest ecosystems). The

planning units defined as ‘available for conservation management’

numbered 6,712 in the upper north-east and 7,021 in the lower

north-east. If our exclusions of planning units made some targets

unachievable, we reduced targets to match the extent or number

of records in our data set. All analyses below were based on the

portions of targets not already achieved in established reserves.

Therefore the analyses consider the relative effectiveness of

surrogates in achieving the remainder of species targets, given

the fixed contribution from existing reserves.

Testing methods
All five methods (Table 1) were based on selection, or likelihood

of selection, of planning units as notional conservation areas to

complement established reserves. We used the C-Plan software

system [75] to: (1) select sets of planning units that met the targets

for surrogates and test features; and (2) estimate the summed

irreplaceability value of each planning unit [57]. The five methods

represent three alternative analytical approaches to measuring the

effectiveness of surrogates: incidental representation, species

accumulation index, and correlation of summed irreplaceability

values. For the first two of these approaches, the level of

representation was quantified in two ways: (1) median %

achievement of targets from the distribution of target achievement

values of all taxa in the test set: and (2) % full achievement of

targets, giving the percentage of taxa in the test set for which

targets were fully achieved.

When selecting reserves based on the surrogates within each

study area, we first performed iterative selection of planning units,

based on summed irreplaceability [57], until all targets were met

for environmental units. Achieving the targets for forest ecosystems

required more planning units. However, for comparability of

effectiveness at the same level of conservation ‘effort’, we

terminated selections for forest ecosystems in each study area at

the number of planning units required to achieve targets for

environmental units (687 in the upper north east, 1666 in the

lower north east).

The first analytical approach is termed ‘incidental representa-

tion’ [28]. We selected sets of planning units to achieve targets for

each surrogate, and then measured how well species targets had

been achieved incidentally in these planning units. For each test

feature group, we used two alternative measures of incidental

representation. For method 1 we used the median percentage

target achievement for test features. For method 2 we used the

percentage of test features with targets fully met. Higher values

indicated greater effectiveness of the surrogates. We tested the

significance of the results by randomly selecting 1000 times the

same number of planning units needed to achieve surrogate targets

and then measuring incidental representation based on each of the

1000 random sets (median percentage target for method 1 and

percentage of features with targets fully met for method 2). We

then compared the observed surrogate value to the distribution of

values from random selections to determine significance [see 76].

The comparisons to random distributions of values were

performed as post-hoc tests, and did not enter into the calculation

of the reported value for effectiveness of the surrogates. Also, the

calculations did not involve comparison to the best-possible values

of surrogacy given N planning units selected to meet the targets for

the surrogate (but see below).

The second analytical approach was the species accumulation

index [6,44]. We selected planning units iteratively, again using

summed irreplaceability, to achieve targets for each surrogate,

terminating selections for both surrogates at the number of areas

needed for environmental units. This produced surrogate

accumulation curves, relating targets of features incidentally

achieved within each test feature group (vertical axis) to the

number of planning units selected (horizontal axis). For method 3

we measured median target achievement within the test feature

group. For method 4 we used the percentage of features in the test

feature group with targets fully met. We then produced ‘‘optimal’’

accumulation curves by iteratively selecting planning units to

achieve targets for the test features directly, ignoring surrogates.

These curves represent hypothetical, best-possible results for the

surrogate curves.

The species accumulation index reflects the closeness of the

surrogate derived curve to the optimal curve and its distance from

a random curve. It is calculated as (s–r)/(o–r), where s is the area

under the surrogate curve, o the area under the optimal curve,

and r the area under a mean random curve. We derived 1000

random curves by iteratively selecting areas at random up to the

number required to achieve targets for environmental units, and

repeating this 1000 times. For each of these sets of random

selections, we measured the median target achievement and

percentage of targets achieved for each test group and used the

mean of these values across the 1000 randomisations to calculate

the respective version of the index. Higher values indicate more

effective surrogates [42]. Negative values occur when the

surrogate curve is generally lower than the random curve, i.e.

when planning units selected based on the surrogate achieve

smaller gains for test feature targets than do randomly selected

planning units. For each surrogate and test feature group, we

calculated the significance of the area under the surrogate curve

as the proportion of the 1000 random curves that had larger

areas under them. This approach therefore directly incorporates

comparisons to both: (1) optimal or best-possible results based on

the test features themselves; and (2) null surrogacy values based

on random selections.

The third analytical approach (implemented in Method 5) used

the correlation of summed irreplaceability values. For each

surrogate and test feature group, we estimated the summed

irreplaceability [57] of each planning unit. This is a measure of the

importance of each planning unit to achievement of targets for a

feature group. Specifically, it estimates the sum, across all features,

of the planning unit’s irreplaceability with respect to achieving the

target for each of the features separately. Minimum values were

zero. The maximum value was equal to the number of features

found in each planning unit. We calculated the Spearman

coefficient of rank correlation between summed irreplaceabilities

of all planning units for surrogates and groups of test features.

Stronger correlations indicated more effective surrogates or,

specifically, more spatial overlap between areas important for

achieving surrogate targets and those important for achieving

targets for test features. We tested for significance by pairing X

and Y variables at random 10,000 times. Analytically, this

involved randomizing the order of observations in the second

column for each comparison. The null hypothesis was that the
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observed coefficient was zero [76]. For all comparisons, we used

comparable combination sizes [57] for surrogates and test features.

Ranking of test feature groups
We ranked mammals, birds, reptiles, frogs, and plants relative to

each other (giving rankings from 1 to 5), according to surrogate

effectiveness in the 2 study areas, for the 2 surrogates and for each

of 5 testing methods. A rank of 1 indicated the group for which the

surrogate was most effective. For comparison of test features, this

gave us overall 20 sets of rankings, 10 sets for each study area, 10

sets for each surrogate, and 4 sets for each method. For a

comparison of study regions it gave us 50 sets of rankings. Across

all rankings and for subsets of rankings we compared test feature

groups according to their mean ranks and 95% confidence

intervals. For the study region comparison the 50 sets of rankings

were paired according to each method, each surrogate and each

test feature group. We used the Spearman’s rank correlation

coefficient to compare the relative ranks and tested the significance

of correlations with randomization, as for Method 5, above. We

also compared the ranks using Kendalls concordance coefficient.

Comparison of methods
Comparisons of testing methods involved 24 sets of rankings

(each method applied to 2 study areas, 2 surrogates and 6 test

feature groups, including all groups combined). We used the

Spearman’s rank correlation coefficient to compare the relative

ranks across methods and tested the significance of correlations

with randomization, as for Method 5, above.
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