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SYNOPSIS 

Two commonly suggested forms of the equation lin..lting 

head loss and velocity for flow of water through coarse 

granular media are the Forchheimer and exponential 

relations. The se have been combined with the continuity 

expression to give the differential equations applicable, 

within the limits of validity of the parent relations, to 

actual regions of flow. The resultant nonlinear elliptic 

partial differential equations have been solved by 

n~morical methods including the direct finite difference 

and finite element methods. 

Experimental results and associated e,nalytical work 

were carried out to determine the accuracy of the nonlinear 

relations as compared to the linear Darcy Law, when 

applied over an extended Reynolds number range. Solutions 

have been obtained for some examples of unconfined flow 

with boundary conditions similar to those likely to be 

encountered in practical applications. The experimental 

work in a circular tank and an open flwne has shorm that 

good agreement between observed and calculated values of 

discharge 1:md piezometric head can be obtained when the 

coefficients in the nonlinear head loss e'guations are 

accurately Imolm. The results indicate that while the 

flow patterns from the Darcy and the nonlinear solutions 
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are only significantly different for a high degree of 

curvature of the phreatic line, a nonlinear solution will 

usually be necessary for accurate predictions of discharge. 
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(Chapter 4). 

- a function of veloci-by (Chapter 2). 

= the area of a triangular element. 



CHAPTER 1 

INTRODUCTION 

1.1 Background to the Problem 

The traditional approach to problems of seepage 

in saturated porous m'edia has been based on the assumption 

of Darcy's linear relation between head loss and velocity 

(Darcy, 1856): 

V 1_ .§.E 
=-"'8s 

or V = ki •••• 1.1-1 

in which V is the superficial or average seepage velocity; 

11: is the coefficient of permeability of the medium in the 

direction s; H is the -to-Gal fluid head; s is the distance 

measured in the dire~tion of the resultant velocity at the 

puint under consideration; i is the negative total head 

gradient - ~ , and is sometimes c'alled the hydraulic 

gradient. 

Equation 1.1-1 satisfactorily describes the flow 

conditions provided velocities are small. It is usually 

considered that Darcy's Law is applicable for so-called 

"creeping flows If. For many fl011" condi tions met in 

practice, the grain size of the medium is small enough 

or the velocity of the fluid low:- enough, for Darcyl·s LaW' 

to give satisfactory results. 
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However, since the last century (Slichter, 1897), 

it has been realized that Darcy's Law fails to hold for 

high velocities of flowi, This reali zation of the limited 

validi ty- 0 f Darcy-! s- Law led to the suggestion of relations 

that wuuld be accurate over all flow ranges encountere-d. 

Forchheimer (1901) introduced the nonlinear equation: 

i = aV + by2 •••• 1.1-2 

in which a and b are constants determined by- the properties 

of the fluid and medium. Although Forchheimer later added 

a third order term cy3 to mru~e the equation fit experi

mental results more accurately, his original express-ion 

(1.1-2), has become knolm as the Forchheimer relation and 

herein 1Till be referred to as such. 

Missbach (1937) postulated an equation of the 

general form: 

...• 1.1-3 

in which c is a constant dete,rmined by the prop-ex-ties- of 

the fluid and medium; m is an exponent lying between 1 

and 2. This expression is exponential in form and will 

be referred to as the exponential reI ation. White (1935) 

had previously shovm that his experimental results 

satisfied an equation of this typ-e and other investigators 

have since used the equation specifying different values 
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of c and m to fit their experimental results. 

While many of the practical problems of flow through 

porous materials can be accurately solved on the assumption 

of Darcy's Law, there have arisen various situations 

where a more accurate relation between head loss and 

velocity must be employed to obtain realistic solutions. 

Such situations include flow" in the area adj acent to a 

pumping well in a coarse grained aquifer and flo~r through 

rockfill dams and banks. 

1.2 Regions of Interest 

Flow through porous media is of fundamental imp-ortance 

to a wide range of disciplines including civil engineering, 

hydrology, chemical engineering, nuclear physics and 

textil e technology. The flo~r conai tions actually" consid

ered in this thesis are allied to civil engineering but 

the methods outlined should be applicable to most 

nonlinear flolTS through porous materials. 

One of the most important problems facing a community 

today is the provision of adequate ,rater supplies. At 

the present time, much of the water used by man is 

derived from surface storage reservoirs, although 

actually 1 ess than 3 percent of the fluid fresh 1Ta"ber 

available at any given moment on this planet occurs in 

streams and l~~es (Johnson, 1966). The remainder is 
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underground and although not all of it is recoverable 

from the water bearing formations in ~hich it is found, 

subsurface water is destined to play an ever increasing 

role in satisfying man's demand for this important 

quanti ty. 

In addition to providing 8, source of water, 

p~rmeable underground formations m~ be used more widely 

as storage reservoirs. Such formations have the advantage 

that evaporation losses are negligible and this is of 

extreme importance in hot arid climates where the effective 

capacity of surface storage reservoirs is significantly 

reduced by evaporation. Of course, underground water 

has provided water supplies in some areas for hundreds 

of years while aquifer systems are at present used as 

effective storage systems, but this development is likely 

to become more important as man uses u¥ his available 

supply of surface run-off. 

For seepage through fine grained sediments the 

analytical methods based on Darcy's LeTr are sufficiently 

accurate for practical purposes. However, in coarse

grained sand or gravel formations, the high velocities 

which occur in the region adjacent to a pumping well may 

necessi tate the use of a nonlinear head 10 ss relation 

in an analysis. It is also feasible that gravel beds 
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may become imp'urtant in recharge and discharge areas in 

finer grained sand formations and the availability of an 

analytical approach incorporating nonlinear equations 

would then be essential. Filter beds of coarse material 

have widespread applications and, as they are subj ected 

to nonlinear flows, a better understanding of the flow' 

patterns involved would help' in formulating improved 

design practices. 

Improved economics of surface storage reservoirs 

have been possible by' utilising pnrous rockfill in 

constructions associated with the formation of the 

impounding wall. Earth and rockfill dams have been 

widely used throughout the world. In recent years 

rockfill dams with inbuil t spillways have been utilised. 

Wilkins (1956) proposed such a dam rrhere the overfloW' 

passes through the rockfill itself so that the need for 

a costly spillway structure is obviated. Subsequently, 

Parkin (19638., 1963b) carried out a de.tailed experimental 

investigation of such dams and formulated methods for 

discharge and stability calculations. 

Experience in practice, however, indicates that the 

functioning of the inbuilt spillw.ay is inhibited due to 

debris accumulation and to siltation. This reduces the 

amount of discharge which can be passed through the 
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rockfill and even with clean rockfill the discharge is 

considerably smaller than that which could flow· unimpeded 

crver an open spillway. 

An important development ~n dam construction methods 

has taken place in recent decades with the introduction 

of the techni'lue of passing flood flows over partly 

completed earth and rockfill dams. Weiss (1951) described 

actual applications of the techniaue in the construction 

of a number of dams in Mexico. The dams considered were 

conventional rockfill dams, earthfill dams and mixed 

earth and rockfill dams. Weiss outlined the problems 

encountered but showed that considerable economic 

benefits could be obtained by alleviating the need to 

construct coffer dams. It is also possible to construct 

coffer dams of earth or rockfill and rri th cui table 

protection, allow these to be overtopped in times of 

high flood. 

The increasing use of the technique of passing 

floods over partly completed dams has stimulated basic 

research on flow over and through rockfill banks and this 

will be referred to in a later chapter. 

1. 3 Formulation of the Probl<mj 

In an isotropic homogeneous saturated medium, for 

continuous steady flow satisfying Darcy's Law, it can be 
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readily sh01'll that application of the continui ty- relation 

resul tS in a Laplace differential equation: 

- 0 •••• 1.3-1 

The total fluid head H is equal to the sum of the 

pressure, static and velocity heads: 

v2 
y+ -2g "'01.3-2 

in which p is the pressure at a point in the fluid; y is 

the distance above a datum to that point; y is the 

specific weigh-t of Trater; g is the acceleration due to 

gravity. TIle sum of the pressure and static heads is 

called the piezometric head h: 

•• 0 0 1.3-3 

Since velocity heads are negligible in Darcy flolT, the 

total head H can be replaced by the piezometric head h so 

that equation 1.3-1 becomes: 

••• 0 1 0 3-4 

The solution of this equation for various boundary 

conditions has been Trell treated in the literature. 

Analytic solutions are available for many common problems, 

for example as outlined by Polubarinova~Kochina (1962) 
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and Harr (1962). Numerical finite difference solutions 

to various- problems including "free surface" fl01Ts are also 

well documented (Shaw and Southwell, 1941; Thorn and Apelt, 

1961; Boulton, 1951; Jeppson, 1968e, 1968b). 

More recently the method of finite elements has been 

applied to -the solution of seepage problems (Zienkiericz, 

Mayer and Cheung, 1966) and has advantages in dealing 

wi th complex boundary shapes and in allowing for 

ani sotropy and non-homogeneity of the media. This 

method has also been applied to the analysis of "free 

surface" problems including i=-dimensional flow- (Finn, 

1967) and axisymmetric flovE (Taylor and Brown, 1967). 

However, until recent years, the analysis of 

practical field pToblems involving nonlinear flow

equations has been largely neglected probably because, 

prior to the introduction of high speed digital computing 

systems, the complex differential equations involved 

have been too difficult to handle by analytical 

mathematics. In vie,r of the importance of situations 

where nonlinear flow occurs, it is desirable to be abl e 

to analyse nonlinear flows in porous media. The advent 

of high speed computers and the advancement in numerical 

analysis theory now allows the analyst to obtain 

numerical solutions to a great variety of problems once-
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c'onsic1erec1 too c1ifficul t to be handled by conventional 

mathematical methods. 

The investigation in this thesis concerns the 

applic.ation of numerical methods to obtain solutions to 

problems of nonlinear flow through porous materials. 

To check the accuracy of the numerical analyses' and to 

determine where nonlinear solutions are necessary, 

corresponding experimental investigations were carried 

out with coarse grained aggregates. 

In developing the mathematical theory for nonlinear 

flOTT, the form of the equation linking head lo'ss and 

velocity must be knoTm and, in view of the diversity of 

head loss relations that have been suggested in the 

literature, a careful consideration of these relations 

was first carried out. Two of the most common nonlinear 

relations have already been given as equations 1.1-2 and 

1.1-3 and these have been used in the analyses. 

These equations are empirical when applied to 

actual media because the coefficients have to be 

determined experimentally. However, even Darcy's Law' 

remains essentially empirical in ayplication as values 

of permeability must usually be obtained from experiment. 

Thus, although it is realised that a complete understand

ing of the problems associated wi th seepage beyond the 
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range of application of Darcy's La1'1 has not been 

evolved, it has been sh01'ffi by numerous experimental 

investigetions reported in the .li terature, that 

equations of types 1.1-2 and 1.1-3 can adequately 

express the relation between head loss and velocity at 

1 east over limited ranges of flow-. 

The object of the thesis has been to apply these 

equations to analyses of nonlinear floTrs ancl, by carrying 

out associated experimental work, to determine if such 

analyses can adequately' predict the experimental results. 

In this way the range of application of the equations 

in actual flovr si tuations can be assessed. An indic

ation can also be obtained of whether or not variations

in the values of the coefficients in the equations need 

be incorporated. As a result of these investigations 

it is hoped that a clearer understanding of nonlinear 

porous media flow may be developed with relevant 

applications to practical flow problems. 

1.4 Scope of the Investigation 

The investigation carried out Tras fundamental in 

that it was concerned with the application of nonlinear 

head loss equations to analyse some specific flows in 

porous materials and involved associated experimental 

work to check the accuracy of the analysis. However, 
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the types of flow considered yrere aligned to situations 

of likely practical importance as far as possible. 

Flows to a well in a confined and an unconfined 

aquif er were investigated. In actual aquifers, although 

the permeable material is usually fine-grained compared 

to rockfill material, it is still probable that substan

tial nonlinear effects may occur, for example in coarse 

sand aquifers, in the area adjacent to a· pumping well. 

These effects may need to be considered in an analysis 

because of the great variation in velocities from the 

radius of influence of the well to the radiu.s of the 

well itself. 

The experimental work Tras carried out in a 'porous 

media tank' of 20 feet diameter and involved floTrs 

through the complete circle of material as well as through 

a sector of material. Al though the analysi s of s"teady 

confined floTT could be carried out easily, the 

unconfined floTT si tuation was analysed by numerical 

methods and Tras more complicated as it involved the 

solution of a free streamline problem. 

Flows through gravel banl{s were investigated in an 

open flume to simulate flows through rockfill dams and 

banks. The work included considerati on of Clams with an 

impervious cut-off wall as well as 'straight "through' flows on 
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a horizontal impermeable base. In the numerical analysis 

it was e,ge,in necessary to account for a free streamline 

problem. No consideration of sta,bili ty aspects of the 

ban..1{.s was contemplated al though the values of piezometric 

head, obtevined from the solutions, would be applicable 

in stability analyses wi thin the limits of accuracy of 

the solutions 0 

Application of the nonlinear head loss relations 

results in nonlinear elliptic partial differential 

equations. As the majority of the analytical work i'ms 

underta!l:.en on the TO'imsvill e Universi ty ColI ege I s IBM 

1620 9 the computer time involved in the numerical solution 

of these equations ,rs,s cOl1.siclerabl e especially as mo st 

of the si tuations investigated were of a free streamline 

type. TIle analysis of such problems virtually involves 

a number of solutions of the partial differential 

equations as the correct position of the free surface 

has to be determined by successive approximations as 

well as the correct distribution of piezometric hea,d 

under the free surface. 

It ,'Tas therefore not possible, nor was it considered 

necessarY1 to analyse 1 flows for both the nonlinear 

head loss equations 1 .. 1-2 and 1.1-3. In view of the fact 

that theoretical \fork (Irmay, 1958; Star1.: and Volker, 1967) 



13. 

has shown that the Forchheimer equation has a rational 

basis, the numerical solutions 1rere carried out chiefly 

using equation 1.1-2. Corresponding solutions for some 

particular flows ,rere then carried out using the 

exponential rela-tion (equation 1.1-3) for comparison 

purposes 0 

Two techniques commonly applied to the numerical 

solution of elliptic partial differential equations are 

the finite difference method and the finite element 

method. Both approaches have been applied in the 

solutions carried out in this thesis. For a given amount 

of computer time and a fixed number of memory locations 

it is usually possible to employ a finer grid of points 

wi th the finite difference method provided boundary 

conditions are relatively simple. Thus the finite 

difference method was used in the analysis of the well 

flOTT problem because the boundary of the flow- field was 

conveniently shaped, having vertical sides and a 

horizontal base. In addition, a fine grid Tms required 

to obtain an accurate soluJGion to the radial flow 

equations in the vicinity of the well where the draw-down 

curve is steeper and the velocities of flow larger. 

The finite el enJent method is, hOTrever, more readily 

adaptable to complex bounc1a,ry shapes and .ras used in most 
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analyses of flo11 through dams and banles. It was

particularly conveni ent when considering flO1'TS with the 

complex lower impervious boundary caused by the inclusion 

of a cut-off wall in dams. The availability of a method 

of solution by finite elements 1'I"ill be important in 

practical considerations ",here irregularly shaped dams 

and banlts of rocldill often occur. 

In summary, having established the merit of the 

Forchheimer relation, a series of computer solutions 

and experimental tests were undertalien to investigate 

the accuracy of numerical analyses of the resultant 

partial differential equation for actual flow fields. 

Considerable ;rork has previously been carried out on 

the application of the exponential relation to problems 

of nonlinear flow, including a substantial amount at 

the Uni versi ty of Mel bourne on floTT through rockfill, 

as >rill be evidenced by references in later chapters. 

Moreover Engelund (1953), using a method of solution by 

series, obtained results for some problems of Forchheimer 

flow, with simplified boundary conditions. 

However, the development presented in this thesis 

extends the analysis of the Forchheimer field equation 

to a series of problems with practical applications, by 

using the finite difference and finite element techniques 
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of numerical solution. Treatment of the exponential 

relation is incorporated for some examples, so that the 

limitations and advantages could be evaluated for 

different approaches to the solution of problems of 

nonl inear flow' in porous media o 



CHAPTER 2 

FUNDAMENTALS OF FLOW THROUGH POROUS MEDIA -- -
2.1 Regimes of Flo,'! in Porous iYledia 

It has been postulated that there are three regimes 

of incompressible continuous flolf in porous media; these 

are: 

(i) the linear laminar regime; 

(ii) the nonlinear laminar regime; 

(iii) the nonlinear turbulent regime. 

The existence of a prelinear regime has also been 

suggested by Dudgeon (1964) and Gheorghitza (1964). In 

this regime velocities may be so low that water ceases to 

act as a J:.lewtoni an fluid. Bond3,renko andNerpin (1965) 

discussed the reasons for deviations fro m Darcy's Law in 

terms of the rheological properties of water at low 

hydraulic gradients, and Menel, Bobkova and Hanzlova (1965) 

showed how the permeabili ties of sand and clay were 

affected at small hydraulic gradients. However, the 

probl ems studied in thi s thesis deal with deviations from 

Darcy's Law due to high velocities so that the prelinear 

regime is not of interest and will not be considered 

further. 

The fundamental eCJ.uations governing fluid flow, the 

Navier-Stokes equations, are applicable to the fluid flov--

ing between the grains of a porous medium. For JGhe flow 

16. 



17. 

of an incompressible constant viscosity fluid, the Navier-

Stokes equaJeions may be written in tensor form as:-

2 a u . 
.£:!1 
Ox. 

~ 

+ B. 
~ 

+ ~ 
f1 ox.ox. .... 0 2.1-1 

J J 

or writing the acceleration dUi in terms of its pe,rtial 
o.t 

derivatives: 

2 au. 
--! = ax. 

£:Q 
ox. 

~ 

+ B. + f1 
~ 

a u. 
~ 

ax. ax . ... 2.1-2 
J J J 

in which p is the density of the fluid; u. is the component 
~ 

of velocity in the i direction, t is time; x. is the 
J 

co-or dina te in the j direction; B. is the body force in the 
1 

~ direction, f1 is the co,efficient of viscosity. 

These ecuations hold on a microscopic scale; th2,t is, 

for any given element of fluid at arry instant of time. A 

macroscopic solution to a problem can only be obtained by 

solving the eouations for the relevant boundary conditions. 

Their complexity, ho"Vrever, renders them intrp_ctable to an 

exact soluJGion exceut for a few' reI atively simple boundary 

conditions, although some solutions have been obtained in 

recent years by numerical methods (Thorn 2-nd Apelt, 1961; 

Fromm, 1963; Stark, 1968). Never'cheless, a consideration 

of the basic egua tions do es allow a better une.erstanding 

of the factors causing the changes in regimes of flov. 



The effects associated with each term of equation 

2.1-2 can be nominated as: 

au. 
1 

Pat 

au. 
1 

P u. 
J a x. 

B. 
1 

£.rr ax. 
1 

2 a u. 
1 

J 

/l a x. ax. 
J J 

unsteady effects or local acceleration 
forces; 

- convective inertia forces, 

pressure forces; 

- body forces; 

viscous forces. 

The regimes of flow in porous media can now be 

considered with regard to these components of the Navier-

Stokes equations. 

2.1.1 The linear laminar r.egime 

This is simply the regime where Darcy's Law can be 

considered to apply with sufficient accuracy. It is ·the 

most widely studied and the best understood since the great 

maj 0 ri ty of analytical YlOrk in porous media has been under-

tm~en for flows in this regime. Virtually all of the 

solutions for problems of seepage of water and other fluids 

through the strEl,'ba of the earthl·s crust, for exa,mple, have 

assumed the valich ty of Darcy's Law. Because the acceptance 
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of this law 2"11017S the flow to be treated by potential 

theory, problems a~e amenable to solution by analogies; 

these include the electric analogue plo"/;te:c, the Hele-Shaw 

model and others. Mathematical treatments are also 

facili tated since complex potenti,,,,l functions can be 

employed. 

iYluskat (1946) discussed the basiC Navier-Stokes 

equations 'iri th respect to flotT in porous media and showed 

that, from dimensional considerations, Darcy's Law implied 

that the iner"bial forces are neglected. Hubbert (1956) 

showed theo:cetically that Darcy's Law is vaLic!. only for 

velocities such that inertial forces a:ce negligible 

compared with those due to viscosity. Irmay (1958) 

deri ved the line2,r Darcy Law by negl ecting the inertia 

terms in the Navier-Stokes equations, but proved that for 

higher velocities a nonlinear relation would be necessary 

to linl" head loss with velocity. 

It appears therefore, that in the linear laminar 
duo 

regime, the term d~ must be negligible. For s·t;eady flo~r, 

which is the case considered here, the unsteady component 

l' tl· t 8 u . 1·· bl 0..: "U.S erm, at 1.S neg_1.g1. e. The convective inertia 

components u
j 

oUi are only zero in strcdght, parallel 
ax. 

J 
laminar floTT. In the curved and tortuous paths of a 

porous medium these components lrill only be negligible 
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for very small velocities encountered in "creeping motions". 

Thus, the linear laminar regime can be considered as the 

one in whi ch all floWE: are "creeping flo11s ". 

At higher velocities a nonlinear relation will be 

required because of the increasing importance of the 

convective inertia terms. Many investigators have there

fore attempted to distinguish between the linear laminar 

regime and the remaining ones by defining a critical 

Reynolds number at uhich Darcy' a Law is said to break dOlm. 

Scheidegger (1960a), for example, quotes values of Reynolds 

number (p~) ranging from 0.1 to 75, above ,Thich different 

authors have stated Darcy's Lau becomes invalid. One of 

the reasons for this wide range in values is the as yet 

unsolved problem of defining a suitable representative 

length dimension for Reynolds number for actual porous 

medi>:.. Stark (1963) has shoiT!l that Reynolds number can 

be used as an exact comparison criterion for flows in 

different media, only if the arrangement of par·~icles is 

geometrically similar or if the length dimension can 

statistically account for variations in geometric arrange

ments. 

In spite of the uncertainty concerning the limit of 

validity of Darcy's Law, it is evident that for flows in 

coarse granular materials the inertial effects are likely 
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-bo cause considerable discrepancies from the linear relation, 

and a nonlinear regime of flo'7 will occuro 

2.102 The nonli~!-laminar regime 

In this regime De.rcy' s Lavr is no longer sufficiently 

accurate to describe the velocity-head loss relationship 

al though the flotT remains laminar. Schneebeli (1953) 

suggested that the breakdovrn of Darcy's Law was not 

necessarily associated wi >.;h the onset of actual turbulence 

but W2.S probably due to -bhe emergence of the nonlinear 

inertia terms in a floTT that remains laminar. Subsequent 

experimental work (Schneebeli, 1955) on flow through three 

dimensional packings showed visually that Darcy's Law did 

become inaccurate before the start of fluctuations in the 

lines of flow which \'fould indicate the commencement of 

turbulence. 

A number of authors have supported these conclusions. 

Computations by Tamade. and Fujika.ra (1957) of the drag on 

an array of cylinders in a two-dimensional fl01'T inc.icate 

this effec°.; and Philip (1958) suggested from theoretical 

considerations that similar results could be expected for 

floTT through an actual porous solid. Ward (1964) intro

duced the idea of tTTO effective transi hon regimes between 

fully laminar a..1"J.~'t fully turbulent floTT. These l1ere the 

laminar transition regime in "hich mo st of the floTT 



22. 

remained laminar but wi th some turbul ent areas and the 

turbulent transition regime in 17hich the majority of the 

flo,7 1ms turbulent but ~7here some pockets of laminar flow 

still existed. I-IO'iTeVer, Ward obtained no direct experi-

mental verification of the existence of these regimes 

either by visual observations or by measurement of the 

onset of turbulence in different areas of the flow. 

Chauveteau and Thirriot (1967) reported experimental 

measurement.s and observations of flow· through va.rious 

geometrical arrangements in 2-dimensional models and 

indicated the existence of four regimes of flow. These 

iTere the linear 10JIline,r, the nonlinear laminar, the 

mixed laminar and turbulent, and the turbulent regimes. 

Wright (1968) used hot-;Tire anemometers to measure the 

onset of turbulence in the passage of air through a coarse 

grained gravel. By using gravel in th a particle size of 

1 inch, the pore space WiJ.S large enough to allo17 the 

insertion of the anemometers within the porous medium 

itself. Al though the measurements recorded from the hot-

wire anemometers l'Tere not accurate at 10<1 air velocities, 

the results did indiceie when the flo1'T became unsteady as 

a result of the initiation of turbulence. By carrying out 

head loss measurements on coarse sands of similar shane 
~ 

and size distribution to the gravel, Wright shOrTed that 
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deviations from J"he linear resistance law occurred at 

Reynolds numbers below that at TThich turbulence commenced 

in the gro,vel. 

Stark and Volker (1967) reported the results of 

experimental work on the flo";! of "'i'{3ter around arrays of 

ideal ised partiel es in ::'. horizontal parall el p18.te model. 

By using a transparent upper sheet on the model, observ

ations of flow lines were carried. ou·(j ;"ith -'Ghe aid of dye 

inj eeted into the flow. Corres1)onding head loss and 

velocity measurements in the model showed that Ds,rcy's 

Law TTaS valid for only J0he 10,'Test veloci ti es measured, 

while the onset of turbuLmce occurred at substantially 

higher velocities. 

Advs,nces in numerical analysis techniques and in 

computer technology have enabled solutions of the thvier

Stokes equations to be obtained even when the nonlinear 

inertia terms are retained. Thom and Apel t (1961) solved 

some problems of 2-dimensional flo" around circular 

cylinders. \7o,tson (1963) a2plied the methods of Thorn 

and Apel t to solve the Navier-Stolo:es equations for floVF 

through an idealised arrangement of square cylinders. 

Stark (1968) revised and extended this approach to include 

variations in particle size and spacing and solved the 

equations for a comprehensive range of Reynolds numbers. 
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pressure calculations from these results have shorm 

conclusively that the linear Darcy La", is subject to 

error at any Reynolds number greater than zero although 

the error is small for small Reynolds numbers. 

F-'.com -the foregoing discussion, it is apparent that 

the increasing importEmce of the inertia effects rill 

necessi tate the use of a nonlinear relation even though 

the flo'7 may not be -burbulent in the commonly accepted 

fluid dynamic sense. It should be cle&rly understood 

that the tUTbulent regime referred to here implies the 

occurrence of actual turbulence. 

2.1.3 The nonlinear turbulent regime 

The problem of turbulence is by no means completely 

understood even for simple flow conditions such as flow 

through pipes and regular channels. In porous media 

there have been no reDortcd attempts at a theoretical 

analysis of turbulence. It is logical, therefore, to 

refer again to the fundamental flow equations in the 

discussion of this regime. 

The eddies or instantaneous fluctuations about the 

mean velocity which occur in turbulent flow give rise to 

adc1i tional terms in the Navier-Stokes equations. Thus, 

"imil e these equations in their original form (eg:uation 

2.1-2) still hold for any particular element of fluid at 
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any instant of time, they do not hold for properties 

aVGraged over a finite period of time as they do in 

laminar flo1'T. The various terms involved must bG averaged 

with respec·t to time to obtain the equations for turbulent 

floTr. Hinze (1959) gave these equations in tensor form as: 

Bu. 
(Bt 

1 
+ 

au. 
- 1) u.~ 

J ux. 
J 

= 

-----'-
r ou! 

+ pu. --1. 
J ox. 

J 

2 a u. £.J2 
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1 

+ B. + /1" g 
1 ux. Jr.. 

J J 
. " .. 2.1-3 

in which u. is the instantaneous vD.lue of the velocity 
1 

comnonent in the direction i', ~. is thG mGan val ue of 
• 1. 

velocity in the i direction; u! is thG instantaneous 
1 

variation of the actual velocity from the mGan velocity; 

and the bar over any term indicates averaging with respect 

to time. 

Thus u.=u.+u! 
2 1. 1 

.0 .. 201-4 

The extra term due to turbulence in equation 2.1-3, 

as compared to 0s.un.iion 2.1-2, is 

p u~ 
J 

au! 
--1. 
ax. 

J 

and is similar in form to the steady convective inertia 

terms except tho.t its magni·~ude is e;overned by variations 

from the mean velocities instead of by the mean velocities 

themselves. 
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Equa'tion 2.1-3 is sometimes written as 

-au. 
p (ol' + u. 

J 

-au. 
a/) = 

J 

aT> 
ax. 

1. 

+ B, + 
1. 

a -a Jt. 
( f1 

J 

ail. 
-.!. 
ax. 

J 

• 00 •• 

u! ) 
J 

2.1-5 

In this form the extra terms due to turbulence are 

.L (pu!7); and then the terms pu!7 can be interpreted 
ax. 1. J 1. J 

J 
as stresses on the fluid element due to turbulence. These 

are called Reynolds stresses. Equation 2.1-5 is even more 

difficul t Joo solve than the corresponding steady floTT 

equation and resee,rch is still being carried out on its 

application to £1017s 1'Ti th rele,ti vely simpl e bouno.ary 

condi tions such as flow in str2>ight pipes and challi"lel s, 

However, the form of the Reynolo.s stress term indicates 

that the extra head loss it causes would, as a first 

approximation, be proportional to the square of velocity 

deviation from the mean; and if the deviation were linearly 

related to the mean velocity itself then the extra heD>d 

10 ss due to turbul ence would be a function of the square 

of the macroscopic velocity. Experimental work on flow 

through straight parallel pipes has shovm that the head 

loss per uniJG length is proportional to the square of the 

veloci ty for turbulent flow. However, even experimental 

studies on porous media are much more difficult than with 

pipe flow and few conclusive results regarding truly 
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turbulen-b flo,7 have been reported, although it is 

generally agreed that the head loss \Till approach a val ue 

proportional to the square of the macroscopic velocity for 

very high velocities. 

j~~anyan (1965) carried out a theoretical and an 

experimental study of turbulent flow through bends of 

conduits. A. consideraiion of tr8,nsverse circulation and 

of the turbulent viscosity coefficient was undertaken. 

Ananyan formulated the relevant equo,tions governing ihe 

turbulent flow and introduced (1 variational method of 

solution for the equations. It appears that approaches 

of this Joype may eventually be extended to theoretical 

analyses of turbulent flow in porous media. Advances in 

the methods of numerical analysis may also allow the 

solution of ~(,he turbulent floTT equations for idealised 

model s of porous medi "'" A correspond.ing increase in the 

understanding of the macroscopic flow conditions would 

follow as has been obtained from the solution of the 

steady form of the Navier-Stokes equations for laminar 

flow .. 

2.2 The Linear Darcy Law 

Darcy (1356) first postulated the equation 1.1-1 as 

a result of experimental work on the d01'illward flow of water 

through sands, but it ha.s since been applied to the flow 
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of numerous fluids through all types of medi~. The 

constant of proportionality k as defined by equation 1.1-1 

involves the properties of both t,he fluid =d the porous 

medium and in order to seuarate the effects of the fluid ,. 

propert,ies, Muskat, (1946) suggest,ed the relation: 

k )I 

lc == ~ •••• 202-1 

in which k is the s-pecific permeability of the medium and 
s 

has dimensions of length2 ; )I is tho spocific weight of thG 

fluid; p is tho coefficient, of viscosity. 

Since -the experimGntal formulation of Darcy's Law-

there he.;ve been numerous attempts to justify it on 

thoorGt,ical grounds, Hazen (1893), Slichter (1897) and 

King (1899) were runong thG first to carry out analyses. 

Slichter, for exampl e, derived an equation of the Darcy 

typG from a study of the pore space existing within a 

mass of uniform spheres packed in a dGfinite arrangGmGnt. 

Slichter's approach was probably thG first of a soriGs 

which have beGn based on a capillary bundle modGl for 

porous media. This approach considers t,he pore space of 

a porous medium to be reurosented by a sorios of capillary 

tubes, but although some quite complicated variations of 

the approach have been devised (Adzumi, 1939; Childs fu"d 

Collis-George, 1950), the capillary bundle model doos not 
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adequately explain the relationship be-1;ween va,riables 

invol ved in flo-" through actual media. In the devious 

pa,ths travelled by the fluid, it is obvious that fluid 

ps,riicles ;rill suffer inertial acceler<">tions due to 

curva.ture of the pa-bhs ana. these inertial effects are 

ignored by even the most complica-~ed capillary moctels. 

Another approach which has been used in the 

-bheoreJGical analysis of flo11s in the linear la!ninar 

regime is the hydraulic radius theory which is based on 

the representation of a porous medium by a series of 

channels through lihich the fluid flows. A representative 

dimension called the hydraulic radius is defined for each 

channel llild this dimension is of direct significance in 

evaluating the permeability of the medium. One of the 

best knorm of -I;he hydraulic radius theories is that due 

to Kozeny (1927) who considered the medium 2"S an 

assemblage of channel s of fixed 1 ength but of varying 

section. With simplifying assumptions, ICo zeny solved the 

Navier-Stokes egua tions simultaneously for flow in these 

channels, e"nd by averaging across a section normal to the 

flo~r, he obtained the following expression: 

v = 
3 

CP grad I! 
/1 S2 

• • •• 2G 2-2 

in which C is a dimensionless constant; P is the porosity; 
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S is specific surface or the s~rface area per unit volume. 

The hydraulic radius theories are usually more 

elegant -!;han the capillary bundl e model s but they cannot 

fully explain all the characteristics of flow through 

porous media and they still contain some ill-clefined 

factors so that, as Scheidegger (1960b) points out, little 

more than a quali tati ve description should be expec-bed from 

them. 

Hubbert (1956) derived the Dn,rcy egua-oion by a 

method somewhat 2J:lalogous to that of Kozeny (1927) and 

showed th2>t Darcy's Law is valid only for velocities such 

that inertial forces are negligible. Irmay (1958) derived 

a microscopic form of Laplace's equation by neglecting 

the inertia terms in the Navier-Stokes equations. The 

agreement between this microscopic form of the La:ulace 

equation and the macro scopic form (equation 1. 3-4) derived 

from Darcy's Law is superficial because the microscopic 

equation is in terms of the piezometric head at a 

particular point in the fluid at any time, rrhereas the 

macroscopic form contains thQ value of piezometric head 

averaged over a considerable volume of fluid and medium 

surrounding the point in question. Nevertheless, Irmay's 

analysis showed that the form of Darcy's L':n-r is correct 

provided inertial effects are negligible, although a 
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complicated averaging process is necessary in order to 

obtain a value for tile permeability coefficient from 

theoretical considerations. 

The foregoing discussions indicate that a completely 

theoretical analysis of even linear laminar flow in porous 

media is not always possible and. coefficients of permea

bili ty mus-b often be ob~:;ained from experiment. However, 

it has been established that Darcy's L:ow is applic8"ble for 

creeping flol'ls such as <70ulc[ occur in the seepage of 

fluids -chrough clays e"l1ct fine silts and even through sands 

in unr.1erground aouifers at very lo'\! hycJ.raulic gradients. 

These linear 1'10-;'- conditions have been extensively 

investigated both theoretically and experimentally and it 

is nOTT proposed to consider the relevant flo17 equations 

which apply at :i.eynolds numbers above the limit of 

valiili-by of Darcy's Law, 

2,3 li££linear Head 10ss Relations 

A number of relations have been suggested to replace 

Darcy's LaT, at high velocities of flo1'T. The relations 

suggested have boon of a wide variety, bo~~h in the form 

of the expression, and in the values of the constants in 

any particular ex:,>ression. 
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2 3 1 The Forchheimer relation ". . . 

Forchheimer (1901) suggested tho nonlinoar equation 

given as equation 1.1-2 ancl repeated here for convenience: 

2 i = aV + bV ... Q 0 2 0 3-1 

Forchhoimer postulated this equation as a result of semi-

theoretic 2.1 reasoning by an ans,logy with flotT in tubes. 

It has beon modified to: 

2 OV 
i = aV + bV + c l at .• cr.203-2 

(in which c1 is a constant and t is time) by Irmay (1958) 

and Polubarinova-Kochina (1962), .rho stated, hOoTever, that 

the time dependent term was small end could be neglected 

for steady flo17. 

Muskat (1946) and Harr (1962) each suggested a 

relation: 

i = aV + bvll1 ...• 2.3-3 

where m has values between 1 and 2 and approaches 2 as 

turbulence of flow increases. Aravin and Numerov (1965) 

observed thS/0 t,he soundest law both from theoretical and 

experirnent2.1 viewpoint.s Q,1JDeared to be of the form of 
,!. "-

.,.. 2°' equa 3J1.on • 0--.L" 

Lindquist (1933) reported the results of a series 

of experiments on the floTT of' 17ater through uniform lead 

shot contained in a vertical pipe of 4 inches diameter. 
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He compu-tec. two variabl es, a fric-bon factor: 

f = 2gdJ,l • • •• 2.3-4 
V2L 

in which d is the diameter of th" lead shot; h is the 

head loss over length L; and a Reynolds number: 

RH = Vde 
Jl 

••• 02.3-5 

From the experimental results, Lindquist reported the 

following relation bet"een f and RN: 

f RN = 2500 + 40 EN •••• 2.3-6 

On substituting for f and EN ane. rearranging, the result is: 

i = h = 1250yV 
L 2 

pgd 
• • •• 2.3-7 

This is a Forchheimer relation wi th the coefficients a 

and b given by the equations: 

a = 1 250[,! 

d 2 
pg 

• • •• 203-8 

b = ~ gd • . •• 2.3-9 

Engelund (1953) carried out experiments on flow 

through a uniform sand and found that his resul-~s plotted 

as a straight line on a graph of fEN against RN. This 

result again leads to a Forchheimer equation linking i and 

V. Engelund ' s expressions for Johe coefficients were 

slightly different to those obtained by Lindquist because 
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of the difference in the media used. For -the sand he used, 

Engelund showed that: 

s. 2000!,! 
= ,,2 

· • .. 2.3-10 
pgu 

b 
35 

== -go. · . o. 2.3-11 

Morcom (1946) by semi-theoretical reasoning deduced 

an equ~tion of the Forchheimer type and produced experi-

mental results to justify it. He discussed work by 

Chilton and Colburn (1931) who had pointed out that the 

resistance to flow in a granular material is made up of 

two parts: 

(a) frictional resistance at the surface of solids; 

(b) loss of head due to successive expansions and 

contractions of channels through vhich fluid 

is passing. 

Morcom concluded that the frictional resistance 

accounts for most of the head. loss in tho viscous range 

of flo\7 ,n.1il e -the expansion and contraction 10 sses 

predominate in the higher flo17 range. As a resul t, 

Morcom obtained the relation: 

~ = !:.JiY. 1-
(JV2 

2.3-12 L pd2 pd • ••• 

in which IIp is the uressure drop over length L· , d is -bho 
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effective mean particle ctiameter; a and f3 are experimental 

const2~nis 0 This again is of the form i - aV + b V2 

provided P, P and d are constants and provided horizontal 

flow is considered so that i h ilu 
= L = L . 

~rgun and Orning (1949) extended the Kozeny theory 

to the nonlinep.r flO~T regimes. For fluid flow through 

fine p01'Tders at, 10-;., veloci tics it was sholn:l th2.t viscous 

forces CDJn account for the yressure drop, but -that for 

higher velocities, kinetic effects become more important 

aI-though they do not alone account for all the pressure 

drop. Li:rgun <:md Orning suggested that the transition 

from the dominance of viscous effects to kinetic effects 

was smooth for most packed systems and Johis hldicated that 

a single continuous relation could be used for velocity 

head loss correlations. Their extension of the Kozeny 

approe.ch led to the equation: 

2a fJ (l-tl 
8 3 P 

.0 •• 2.3-13 

in which a and f3 are coefficients depending on the 

properties of the system and which Ergun and Orning stated 

should be obtained from experiment. For any particular 

:?101'T system, equation 2.3-13 recluces to a Forchheimer 

relation. 

Tek (1957) derived "a generalised Darcy equn/oion" in 
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which the coeffici ent of permeability is a function of the 

Reynolds number of the flo-iT 00 d is not a constant. Tek, 

although considering the porous medium as a succession 

of capillary passages, s'Gated that an approximate relation 

between inertial and viscous losses could be obtained; 

however, a 'lithology i8,ctor' ,.,as then necessary to relate 

this expression to easily measured physical properties of 

the flow,. From the relation be'vween inertial and viscous 

losses, Tek derived a friction factor in terms of Reynolds 

number, the friction factor being that defined by the 

Fanning equation which may be simplified to: 

Ci 
f = V2 . • .• 2.3-14 

in which f is the friction factor and C is a constant 

depending on the properties of the fluid and medium. The 

equation derived for the friction factor was: 

C 
f :: ~ (1 

a 
+ p RN) •••• 2.3-15 

in which Cl is a constant depending on the properties of 

the fluid and medium; ~T is Reynolds number; a is a 

dimensionless 'lithology factor'; and P is porosity. 

A combination of equations 2.3-14 and 2.3-15 gives: 

.. II. 2.3-16 
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• DeN = Vde and s~nce ",'-
J1 

••• 2.3-17 

in which d is the average grain diameter, then equation 

2.3-16 may be written as: 

i = aV + bV
2 

in Wllich a and b are properties of the fluid and medium. 

That is, equation 2.3-16 is a Forchheimer relation. 

Tek's analysis is restrictive in application however, 

because it relies on an approximate expression for 

relating the viscous to the inertial losses and does not 

hold as Tek points ou·t, for truly turbulent flo". 

Chauveteau and Thirriot (1967) carried out an 

experimental study on 2-dimensional models in which the 

floTr patterns could be observed visually. They postUlated 

four regimes of flow and distinguished between the regimes 

on a plot of fRN against EN similar to that used by 

LincJ.quist (1933). Thus in the first or linear laminar 

regime fEN is a constant. In the following three regimes, 

the nonlinear laminar, the mixed laminar and turbulent, and 

the turbulent regimes the plot of fRN against EN was given 

as three slightly different straight lines. This is 

equivalent -1;0 an hypothesis of three Forchheimer equations 

ITi th slightly different values of the coefficients a and 

b in each of the three nonlinear regimes. The experimental 

results, for flows above the linear regime, given by 
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Chauveteau and Thirriot plot as tvo straight lines ,rith 

only a very slight change in slope betveen them. Although 

the values of the coefficients a and b will probably change 

in the nonlinear regime, with increasing Reynolds number, 

-the results plotted by Chauveteau and Thirriot indicate 

that this change is very slight for the Reynolds number 

range they have used and one single straight line, and 

therefore one Forchheimer equation, would fit all their 

resul ts, above a Reynolds number of 20, quite accurately. 

Rumer and Drinker (1966) considered flow through a 

gravel bed from the vie,~oint of the resisting forces of 

the ino.ividual particles. For cree!)ing flow, con"es-

poneling to the linear laminar regime, the resist~nce of 

a single particle "as assumed to be given by Stokes' law 

vhich expresses a linear relation bet1Teen the resistance 

and the local average velocity of flow around the particle. 

After allowing for the presence of other particles in the 

region, by including effects due to the geometry of the 

pore system and due to the porosity, Rumer and Driru~er 

obtained the macroscopic Darcy Lavr. 

For higher velocities, corresponding to the nonlinear 

laminar regime, the resistance of a single particle ,ras 

expressec1 in terms of a "drag coefficient": 

2 
F = C a d 2 e.Y.... 

p D 1 2 • • •• 2Q 3-18 
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in i7hich Fp is the resistance of a particle; a 1 is the 

area shape factor, and CD is the coefficient of drag. 

Rumer and Drinker quoted a formula given by Goldstein 

(1938) for the coefficient CD: 

•••• 2.3-19 

in ,rhich Cl is a constant, C
j 

are coefficients that depend 

only on the geometry of the obj ect, and the index j takes 

values 1, 2, 3, •.•• If the first te:r-iTI only of the series 

is retained, the analysis can be sIlO,m to yield a 

Forchheimer equation as an end result. If more terms of 

the series are included, a higher order e(Iuation is 

obtained. However, as Rumer and Drinker mention, equation 

2.3-19 is only an approximate expression and is not 

applic2,ble for Reynolds numbers greater than 2. The 

approach is therefore limited to only the lowest floTTs 

in the nonlinear regime. 

Ward (1964) obtained a relation of the Forchheirner 

type from a dimensional analysis; this relation was: 

£E= 
dL •• 414 2.3-20 

in which ~ is the pressure drop per unit length; ks is 

the specific permeability of the medium; and C is a 
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dimensionless constant 1Thich Ward stipulated should be 

consta.nt for ell porous media. 

Experimental results for a substantial ra.nge of 

porous media indicated that a value of .550 for C TTould 

gi ve good a.greement l'Ti th equation 2.3-20. However, there 

is some scatter of the experimental measurements about the 

theoretical curve. It should be noted also, that \'Tard 

plotted his results of friction factor against Reynolds 

number on 10g2ori-thmic paper, and the use of such a 

logarithmic scale sometimes tends to indicate better 

agreement visually, than is actually obtained "hen 

percentage deviations from the theoretical curve are 

calculated. 

Ward's analysis is probably more restricted than he 

indicated because it does not allow for all possible 

variables of the flow system. For eXffilpl e, individual 

changes in such properties as porosity and particle shape 

w-ere ignored and, instead, it w-as assumed that these could 

all be taken into accoun-t in the one factor cE'olled 

permeabili ty. This would suggest that the dimensionless 

constant C may vary for different media and should not be 

expected to have a unique value for all systems. Vlard 

employed a Reynolds number based on a length dimension 

equal to the square root of the specific permeability. 
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Although ihe highest value of ~"his Reynolds number was 

less than 20 for the experimental results, the Reynolds 

number ctefined in the usual ,ray (in terms of the average 

particle diameter) ?Tould have ai"l equivalent value of over 

700. The agreement of the experimGl1ial results i7ith the 

Forchheimer rGlation over this range of Reynolds numbers 

is therefore significant, especially as better agrGement 

could probably be expected for one particular medium when 

errors due to particle shape e'Gc. would be avoided. 

Sunada (1965) also used a dimensional approach in 

approximating the terms of thG NaviGr-Stokes Gquations, 

The analysis incluclGd both the steady laminar '"erms and 

the averagG -tGmporal componGnts of the NaviGr-Stokes 

Gquations. Using thG approximations for the hydraulic 

gradient, as dirGctly proportional to velocity for ve~J 

small vGlocities, and proportional to the square of 

velocity for vGry high VGlocitiGs, Sunada concludGd from 

his dimensional analysis that an equation of the 

ForchheimGr type 1Tould govern flow in porous media and 

that the form of -[;he equation would hole'- for nonlinGar 

laminar as 17ell as nonlinear turbulent flow·, 

As wi t1-1 all dimensione,l EmalysGs, eXPGrime;J."~al data 

were invoked to GvaluatG tnG cOGfficienis in th.G head 

loss equation. Sunada's experimen-!;e,l work on flow through 
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glass spheres covered three orders of magnitude of 

velocity (0.01 cm/sec to 14 cm/sec) and a Forchheimer 

equation 172"S fittecl to all results by a proportional 

least-squares analysis. A standard error of estimate, 

defined as the root-mean-square of the average percentage 

deviation about the fitted curve, was evaluated in order 

to determine the 2,ccuracy of fit. For the compl ete 

range of velocities used the s-bandard error of estimate 

was 4.4 percent, indicating that a Forchheimer curve can 

adequately describe -bhe velocity head loss relation for 

a considerable range of ?oeynolds numbers. 

Irmay (1958) derived a Forchheimer relation from the 

fundamental Navier-S>wkes equations for the general case 

when inertia terms are included. The Navier-Stokes 

equations, for fl OTr in the x-direction, were Trri tten in 

the form: 

gH x 

+ ~ (u i u + U ) 
P xx TJ zz 

u, 
"{; 

•• .• 2.3-21 

in 17hich a subscrip>G implies differentia>Gion lTi th respect 

to that subscript; double subscripts imply corresponding 

second derivatives; u, v and Tr are the components of 

velocity in the x, y &~d Z directions respectively. 
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Irmay analysed equation 2.3-21 with respect to a 

volume ,{hich was sufficiently large to contain a great 

number of grains so -Ghat overall homogeneity and isotropy 

were satisfiec1, and yet was small enough so that the 

overall properties did not vary much within it. The 

spatial avere,ge of terms in the Navier-Stokes equations 

over this volume were -;;hen computed by an essen-Gially 

dimensional approach. For example, the spatial average 

of the term (v 2 + w2) was obtained as: 
x 

2) _ 
w - -x •.•• 2.3-22 

in which the bar denotes a spatial averaging; ex is a 

numerical "shape factor "; L I is -Ghe dis -Gance between 

grains of the medium. By approximating the spatial average 

of all terms in this way, Irmay showed that the energy 

grg,diant could be represented by -bhe sum of a viscous head 

loss term (proportional -1;0 velocity) and an inertial head 

108S term (proportional to velocity squared). 

stark and Volker (1967) have shO\m that Irmay's 

analysis basically assumes a constant velocity profile 

for all flows and so the values of a and b in his 

resul ting Forchheimer equation will only be constanJG 

provided the velocity profile does not vary appreciably. 

In practical applications it is likely that a particular 
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veloci -by nTofile lTill e,pply over a substantial range of 

Reynolds numbers and so Irmay r s result 17oulo. give good 

correlation with experiment. 

Stark (1968) solved the Navier-Stokes equations 

numerically for 2-dimensional flo,l through arrays of 

square cylinders. The numerical approach used was based 

on that outlined by Thom and Apelt (1961) in TThich the 

inertia terms are included in -the analysis. The results 

apply only to the laminar regimes because no allolrance 

was made for unsteady turbulent effects and, because of 

the complexity of the numerical alwlysis, only idealised 

particle arrays vere investigated, 

S-bark's resul-bs shoTled that the coefficients in any 

hes,d loss relation ,Iould not be strictly constant for 

different Reynoltls numbers, as he had predicted from 

theory. HOi'rever, he showed that macroscopic head loss 

equaJvions could be applied over extended. ranges of 

Reynolds number 1'lith small error. For example, -bhe 

numerical solutions for the arrangement sho,ill in Fig. 

2-3-1 indicate that a Forchheimer relation, with constan-b 

values of -bhe coefficien-bs a and b, will depict -bhe head 

loss wi -bhin an accuracy of 2 percent for the Reynolds 

number range 0 to 50. 
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FIG. 2-03-1 SQUARE C"ILIND!!;R Ai:l.RAHGElvlEl'IT 
_0 (After Stark, 1968) 
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Assuming the length of the side of a square cylinder 

is .01 ft and assuming a fluid wi-th a kinetic viscosity 

0 - 5 t 2/ S 1 r d - 1 coefficient v = 1.0 x 1 f sec, tar~ s imens10n ess 

resul ts can be converted into actual velocities and 

hydraulic gradients. A macroscopic flow relation can 

then be fitted to these results by a proportional least-

squares analysis. The proportional least-squares fit is 

necessary because an ordinary least-squares fit places 

too much emphasis on the higher Reynolds number values 

compared to the lower values. 

A Forchheimer curve fitted by proportional least-

squares, in the Reynolds number range 0 -/;0 50, gave :'t 

value of a = .05853 see/ft. and a value of b = .13636 

2 2 sec /ft. The maximum discrepancy of any curve value of 
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hydraulic gradient from the corresponding numerical 

solution vms 1. 5 percent and this is in accordance .":lth 

the value of 2% given by Stark. The standard error of 

estimate of the curve vas .86 percent. An exponential 

relation =s fitted in the same vray and showed a 

maximum cliscrepancy of 3.3 percent and a standard error 

of estimate of 1.76 percent. 

The minimum Reynolds number used (above zero) was 

.05 so that the range .05 JGO 50 represents three orders 

of magnitude. If curves are fitted to all results in the 

Reynolds number range 0 to 150, the Forchheimer curve 

shows a maximum discrepancy of 3.4 percent and a standard 

error of estimate of 1.82 percent while the exponential 

curve has a maximum discrepancy of 5.5 percent and a 

standard error of estimate of 2.25 percent. 

It appears therefore that over the range of Reynolds 

numbers ° to 150, macroscopic flow equations -;rith constant 

coefficients will depict the velocity head loss re1ation-

ship with sufficient accuracy for practical calculations 

under prototype conditions. 

Above a Reynolds number of 150, it is doubtful if 

the numerical solu-bions are relevant for comnarisons with 
" 

floTTs in actual media. The numerical results are 

applicable only for laminar flow and assume that no 
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turbulence is initiated. Jollsand Hanratty (1966) sho.red 

experimentally that the tra,nsition from laminar to 

turbulenoG fl01'T in a dumped bed of spheres occurred in the 

Reynolds number range 110 to 150, and it is therefore 

likely that turbulent inertia effects i'dll be evident in 

actual media above a Reynolds number of 150. 

The numerical results are particularly useful in an 

analysis of the accuracy of the macroscopic flolf equations 

in the 10Tr· Reynolds number range, however, because they 

are not affected by difficulties of accurate measurement 

of lo,r velocities and low hydraulic gradients. The 

lOT/est hydraulic gradient in 

-6 

Stark's results (above zero) 

is 2.92 x 10 at a velOCity -5 / of 5.C x 10 ft sec. With 

present day equipment, it would be extremely difficult, 

if not impossible, to measure accurately such low 

magnitudes of velocity and hydraulic gradient. The 

numerical solutions do contain errors resulting from the 

numerical analysis but Stark has shown these errors are 

small for lo,{ Reynolds numbers. 

Experimental >fork by HO,T Lum (1966) on flolT of water 

through glass beads showed that a Forchheimer relation 

1'TOuld depict the head loss over wide ranges of ReynOlds 

numbers (50 -bo 30,000) 11i.-bh a standard error of estimate 

of less than 6 percent. His results ho,rever, showed th,,"t 
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better accuracy of fit could be obtained by allowing for 

2 or 3 separate groups of Reynolds numbers and allowing 

a e,nd b to vary between these groups. Each group 

incorporated a considerable range of velocities and, as 

an example, for flow through 15 mm beads in the Reynolds 

number range 5000 to 30,000 the standard error of estimate 

of the fitted Forchheimer curve was less than 2 percent. 

Stark and Volker (1967) obtained results for flo" 

through arrays of idealised particles in a parallel plate 

model. Velocity and hydraulic gradient measurements in 

this model mowed that a Forchheimer relation fitted the 

experimental results accurately. For open arrays of 

squares, cylinders and hexagons in an arrangement similar 

to that sh07m for Stark's square cylinders in Fig. 2-3-1 , 

the results indioated thcot best acouracy of fit could be 

obtained by alloiTing for three groups of Reynolds numbers 

in the range 500 to 160,000. HOTTever, for a lOiTer porosity 

arrangement using two sizes of square particles, as 

depicted in Fig. 2--3-2, it i'TaS shol'm the,t a single 

Forchheimer relation Trith constant coefficients Tlould 

adequately cover a similar range of Reynolds numbers. 

2.3.2 The exponential relation 

Missbach (1937) postulated the exponential head loss 

equation of the general form given f\,S equation 1.1-3 and 

repeated here for convenience: 

i =: cvm •• •• 2.3-23 
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YThi -be (1935) ~'[&S chiefly concerned. TTi tIl the flow of 

gases through packed towers in which l), countercurrent of 

liquid is circulated over the pacldngs. However, for the 

case of flow of gases through dry packings, White shoved 

that his own results, together with others obtained by 

previous researchers, satisfied an equation of the form 

of 2.3-23 with m approximately equal to 2. Better 

correlation for some results could have been obtained 

with a value of 1.88 for m, but ,,Ihite considered this 

refinement unnecessary in view- of the changes caused by 

poro si ty variations on repacking a J,;ower vri tIl the san e 

material. 

Bakhmeteff and Feodoroff (1937) suggested that for 
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hiI'll flow velocities the head loss relation could be o 

either a Forchheimer relation or an exponential relation 

with m increasing from 1 for Darcy flow to "somewhere near 

2", j:!i;cperimental results obt8,ined from flow through leael 

sho·& indicated a gradua.l increase in m from 1 to an 

apparently stable upper limit of 1.8. By plotting the 

reaul ts on a graph of fRN against RN, Bal,hmeteff and 

Feodoroff 2,lso indica-ted that two Forchheimer relations 

would adequately depict the head loss in the Reynolds 

number range 0 to 2600. 

Escande (1953) reported the results of experiments 

using crushed rocl~ p2xticles of a:;:rproxima"0ely 2 inch 

mean size. I-Ie assumed that for particles of this size, 

the flow must be fully turbulent and suggested that the 

value of m must egual 2. However, Wilkins (1955) carried 

out tests on crushed roel.;: of a number of sizes and 

obtained a value of m = 1.85 for all sizes. Wilkins 

used particles of u:p to 3 inch mean size in a tube of 9 

inch diameter and ,ri th this arrangement there is likely 

to be a significant wall effect although he claimed that 

the use of a 22 inch diameter tube gave no significant 

difference for one or two measurements he checked. In 

another series of tests, -iTilkins used larger particles 

which passed an eight-inch sieve and which were retained 
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on a 7 inch sieve" These tes..'Gs were carried out in a 

3 ft. diameter pipe and a significant wall effect could 

again result. ':TiEdns used a comparatively limited range 

of velocities in all experiments anet included only about 

ten points on his graphs. However, his experiments 

represent one of the feT{ aJGtempts to obte.in velocity 

head loss correlations for particles of d.iameters approach-

ing the size which can be expecJGed in prototype rockfill 

constructions. More ",ork on these larger part-icle sizes 

"II' "0.0 1" J< .... .nl t" t 1H oe requlre :Lor app lca (dOnS OI .( o'ir equa lons 0 

aciual rockfill although an alternative experimental 

approach may be necessary to eliminate '/rall effects. 

Van der Tuin (1960) also used large particles (mean 

size 15 inches) but he conducted his experiments in an 

open channel. He suggested. a value greater than 2 for 

the exponent m for one series of tests, although 

researchers have often postulated an upper limit of 2 for 

fully 'turbulent flo-:-r. The values of m given ,'rere 1.92 

and 2023 .. 

Slepicka (1961) indicated that an exponential head 

loss relation "1I"Oul<1 apply to flo" in porous materials 

.nth different values of the exponent for the prelinear, 

linear and post linear regimes. Anandakrishnan and 

Varadarajulu (1963) reported the results of tests on a 
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number of sizes of sands and showed that a number. of 

different values of m were required to cover the regimes 

of flow. For coarse sands three different values of m 

were necessary to ':tepict the head loss relation even 

though all flo-CTS .rere above the linear laminar regime. 

Parkin (1963a) obtained results for two aggregate 

sizes from tests in circular pipes and in a tilting flume 

and obtained a value of m = 1.85 for all results. Dudgeon 

(1966) used a special permeameter to eliminate Trall effects 

in a study of floT[ through coarse granular materials for a 

wide r8,nge of hydraulic gradients. '£he results when 

plotted to a logarithmic scale indicated a number of flow 

regimes with different values of m an.:t with reasonably 

abrupt changes between the regimes. No theoretical 

explanation of a number of abrupt changes in flow regimes 

has been formulated 8,t this time. 

2.3.3 Other head loss relatiolll! 

A great variety of correlations betireen head loss 

and velocity have been given in the literature as a 

result of work in a wide range of disciplines. For 

example, Rose (1951) and Rose and Rizll: (1949), by 

dimensional analysis, obtained an equation in terms of a 

resi stance coefficien-~ together with functions of other 

c1imensionl ess groups. '!!i th 8,1l factors held constant 
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except the hea.a loss and velocity of flow, -the eg_uation 

can be reduced to the form: 

. - V + b Vl • 5 + V2 
]. - a l 1 c l . .•• 2.3-24 

in which aI' bl and cl are constants determined by the 

fluid and the medium. 

Martin (1948) gave a revie1T of some of the friction 

factor versus Reynolds number correlations -that have been 

reported for both laminar and turbul ent flow conditions. 

Zabrodsh:y (1963) has outlined some of the relations most 

commonly used in chemical engineering applications. 

These relations have not been used in the analyses 

undertaken in this -t,hesis and will not, therefore, be 

considered fur-I;her. 

2. 3.4 Summary 

From the results reported in the literature and from 

theoretical considerations it has been shown that for a 

wiele range of Reynolds numbers the coefficients in either 

the Forchheimer or the exponential head loss relation will 

not be strictly consiant. I-!o7rever, both experimental and 

theore-t,ica1 results have sho,'/Il that a Forchheimer relation 

,nIl be accurate for a considerable range of Reynolds 

nlli~bers on either side of any particular Reynolds number 

under consideration. Similarly an exponential head loss 
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relation will be accurate over limited ranges of flolT. 

'ilhether or not allowance must be made for a change in the 

coefficients of either equation, in the solution to a 

"'iven flow' uroblem, will o.epend on the range of Reynolds 
v " 

numbers encountered in the problem, and on the (Iegree to 

which any change in coefficients affects the results. 

It may be, that al'though the coefficients actually change 

by a small amount, an accurate macroscopic solution for 

variables such as the discharge rate and the piezometric 

heei!. can be obtained using "best fit" values of the 

coefficients over the range of Reynolds numbers involved. 

The Forchheimer e(1,uation has been used, to 8, great 

extent, in the analyses undertaken in this thesis because 

most theoretical 1'Tork reported, together with a substantial 

volume of experimental >vorl", has tended to support °Ghis 

form of head loss relation. In addition, an analysis 

of some of the results reported (for example Parkin 1963a; 

Dudgeon 1964) has sho,ill that a Forchheimer relation can be 

fi t"ted to the resul °GS, at 1 east as accurately as the 

exponential relations given. It is considered that a 

calculation of the percen'bage deviations of experimental 

resul ts from fitteo_ curves should be employed more widely 

as a check on the accuracy of postUlated relations, 

rather than relying on a visual observation of fitted 
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curves and lines, especially where logarithmic scales 

are employed. 

One further point may be noted in favour of the use 

of a Forchheimer relation, For the exponential relation 

the value of the exponent m must be 1 in the linear 

laminar regime to agree with Darcy's LaVT whereas at higher 

veloci ties it must approach 2 to agree with experimental 

observations. It is obvious therefore that any particular 

value of the exponent m can cover only a limited range of 

velocities, For the Forchheimer relation however, it is 

possible that the linear laminc"r regime may correspond to' 

velocities such that the term bV
2 

is negligible compared 

to the term aV, whereas in the turbulent flow- regime the 

bV 2 term may become predominant so that the head loss 

approaches a value proportional to V2 , It is therefore 

possible that the coefficients a and b could remain 

constant for a larger velocity range than could be covered 

by constant coefficients c and m in the exponential 

relation. 

There is, of course, a considerable advantage to be 

obtained in analytical work if the coefficients can be 

maintained constant without appreciable error. The 

experimental and numerical analyses discussed in later 

chapters were designed to investigate actm'~l flow conditions 
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wi th a vieW! to determining the accuracy of solutions based 

on constant coefficients. 

2.4 Field Equations for Flow" Analyses 

Problems which require the solution of a differential 

equation throughout a physical region or "field" are often 

called field problems; in this context the differential 

equations which aoply throughout the field may then be 

termed the field equations. 

When 

veloci ty 

dealing 

v 2 
head 2g 

wi th floTT through porous material s, the 

can usually be neglected in comparison 

with the piezometric head 11., even when velocities are 

large enough to cause a nonlinear head loss equation. This 

is borne out by calculations using measured velocities and 

heads in actual flows. Thus the complete solution to a 

problem can be obtained if the piezometric head distri-

bution is Im01m over the region of flow-. Other quanti ties 

can be obtained from the values of piezometric head; for 

example, the discharge rate can be evaluated by calculating 

the hydraulic gradient and substituting in the head loss 

relation to obtain velocity and integrating over any 

particular area. Consequently, in the work which follows, 

the unlmown rill be considered as the piezometric head h 

whose value is required for all values of the co-ordinates 

x and y in the region of flow-. The field equation then is 
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wri tten in terms of piezometric head as the un.l{no\\ffi 

function. 

2.4.1 The Laplace equation for Darcy fl01r 

Darcy's Law given as equation 1.1-1 may be rewritten 

in terms of piezometric head as: 

v - - k £h 
as oe." 204-1 

since the velocity head may be neglected. Assuming 

2-dimensional flow", the vector velocity V in the s direction 

may be written in terms of its components in the x and y 

co-ordinate directions: 

""00204-2 

in m"ich i and i are unit vectors in the x and y directions 

respectively. Similarly, -('he gradient of the scalar field 

h may be written in terms of its components: 

.""02,,4-3 

in which ~ is a unit vector in the s direction. 

Substituting equations 2.4-2 and 2.4-3 in 2.4-1: 

- + - -_ k (£n 1." + 8h -) u.1 vJ. - ax _ 6y J. " " 0... 2.4-4 

and equating components in equation 2.4-4: 

- k 
ah ) 

u = -8x ) 
) 

" • II: " 2.4-5 

v = k.£h ) 
ay ) 
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The continuity condition for 2-dimensional flow may be 

written: 

E.:£ + ov = 0 ax oy 00002.4-6 

Substituting equation 2.4-5 in 2.4-6 and assuming k is 

constant: 

" .. " 2.4-7 

This is the Laplace equation for 2-dimensional flow in 

terms of the piezometric head. 

Scheidegger (1960b) suggested that an alternative 

form of the differential equation might be acceptable in 

which the coefficient of permeability is included in the 

function under the derivative sign. However, Hubbert 

(1940) indicated, by a thermodynamic analogy, that 

equation 2.4-7 is valid and Jones (1962) has also 

supported equation 2.4-7 as being the correct differential 

form of Darcy's Law. 

2.5 Field Equations for Nonlinear Flow 

Kristianovich (1940) considered a general flow 

equation of the type: 

i = ¢(V) 

in which ¢(V) is a function of velocity and may take 

2.5-1 

different forms depending on the particular problem in 
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hand o Thus: 

¢(V) V ) = ('Darcy's Law) k ) 
) 

¢(V) = aV + bV2 ( Forchheimer equation) 
) 
) .. 2.5-2 

) 

¢(V) = cV
m (exponential equation) 

) 
) 

The continuity condition for 2-dimensional floir (equation 

2.4-6) may then be combined \'lith equation 2.5-1 to give 

the system of equations governing the flow. 

Kristianovich introduced the velocity vector y. and 

its anglee to the x axis in lieu of the velocity components 

u and v in the x and y directions. With piezometric head 

h and a flow function t/! as independent variables the 

system becomes: 

ae ¢(V) av 
0 

) - = ) at/! v 2 ah 
) 2.5-3 ) o 0 •• , 

§.2 + W£Y. = 0 
) 

8h V at/! ) 

in which ¢. (V) represents the derivative' of ¢(V) w:i th 

respect to V. This system was then reduced to a system of 

four equations by the introduction of auxiliary independent 

variables ~ and ry and Kristianovich outlined a method of 

solution in which the problem is first solved in the ~, ry 

plane and values of x and yare then obtained from integral 

relations, 
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The system of equations to be solved is complex· and 

Kristianovich offered only an approximate method of 

solution. For complicated boundary conditions likely to 

be met in practical flow situations, the solution of the 

problem by this method rlOuld be very tedious, even if i-b 

is possible at all. KrisJGianovich therefore devoted a 

special section of his paper to the application of an 

electrical analogy method for the study· of groundwater 

motion which does not obey Darcy's Law, 

2.5.1 Ei£ld equation based-2Q-2he Forchheimer relation 

Engelund (1953) used a slightly different approach to· 

the one outlined by Kristianovich to obtain the differential 

equation for seepage. The general flo1'T equation was 

wri tten in the form: 

- grad h = F(IVI )v o .. .. ., 205-4 

in which Y is the vector velocity; IVI is the magnitude of 

Y; and f( I Vi) is a function of the magnitude of the velocity. 

Engelund assumed that grad hand yare oppositely directed 

vectors and for 2-dimensional flow the appropriate 

equations, in the x and y co-ordinate directions, then 

become: 

3h 
F( I vi )u 

) - = ) 3x 
) 

2.5-5 ) . . . . 
ah - = F( IVI )'1 l 3y 
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These equations may be combined wi th the continuity 

equation to give the complete system describing the flo17. 

Sngelund considerec1 a Forchheimer relation to obtain 

F( Ivl) for the nonlinear floT{" range. Thus in this range: 

F( Ivl) = a + blvl I) 0 0 (I 205-6 

However, with F( Ivl) defined as in equation 2.5-6 

the equations 2.5-5 are nonlinear and are difficult to 

solve analytically so that Engelund introduced nev 

variables in order to linearise the resultant differential 

equation. This final equation becomes: 

",a v (V oh) + 1(1 + 
v F av F V 

~) a
2
h _ 0 

F 2 as 
• <> G <1 205-7 

in which the independent variabl es are the velocity V and 

the angle e between the vector velocity :y: and the x axis, 

and F' is the differential of the function F with respect 

to velocity. Although equa-tion 2.5-7 is linear, it still 

remains intractable to direct solution for complex 

boundary conditions encountered in practice. Engelund 

gave a solution for one flo1'r problem with simple 

boundary conditions and outlined a possible method of 

solution by series. 

The deri va-bions of Eugelund and Kri stianovich involve 

the introduc-bion of new independent variables in place of 
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the cartesian co-ordinates x and y in order to simplify 

the analyses. Thi s will usually involve more work in 

interpreting solutions once they are obtained. With 

progress in numerical analysis it is now possible to 

obtain solutions for differen-ti al equations as compl ex 

as those encountered in nonlinear seepage floy", and it is 

therefore unnecessary to introduce new independent 

variables. 

Irmay (1958) gave a brief discussion of the use of 

the Forchheimer equation in deducing a differential field 

equation, This resultant field equation may be written: 

" 0 " 0 
2.5-8 

in which .§ is a unit vector in the direction of the 

hydraulic gradient i; In denotes a natural logarithm; and 

-1 

+1tlJ DO •• 2 eo 5-9 

Irmay suggested that equation 2.5-8 be solved by the 

method of Kristianovich discussed previously. 

The field equation for Forchheimer flow can be 

derived as follows. Assuming that grad hand V are 

opposi tely directed vectors, as has been assumed by 

Kristianovich, Engelund and others, equation 2.3-1 in 

vector form becomes: 
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grad h = (a + blvl)V •••• 2.5-10 

If the unit vector.§. is normal to the surface of constant 

h in the scalar field at any point, then~ 

8h 
- grad h=- os s 

Adopting the notation h s 
i3h = --0 h = os' x 

i3h and h 
i3x y 

o D .. 0 2.5-11 

= oh and 
i3y' 

according to the usual vector notation in which i and i 

are unit vectors in the x and y directions respectively, 

it can be shown from vector theory that: 

h s = - h i - hyi • 0 •• 
2.5-12 s- x-

also h s = s- (a + blvl)~ .. . . " 2.5-13 

= (a + blVI) (ui + vj) • 0 • .. 
2.5-14 

Equating components of corresponding vectors in 2.5-12 and 

2.5-14: 

h = (a + blvj)u j x 

and h = (a + blvl)v 
) 

y ) 
o .. eo 2.5-15 

From equation 2.5-12: 

h h x + ...Y. . .§. = - 1. h J. h •••• 2.5-16 
s s 

and since ui + vi = Vs • • •• 2.5-17 

h h 
• ui 
•• 

+ vi = V-2!: 
h i + V...Y.· 

h J. 0"0. 2.5--18 
s s 



so that components u and v may be written: 

u = 

v = 
h 
J. V
h s 

~ 
) 

~ 
) 
) 
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011'102.5-19 

But from equa-tion 2.5-13 it is obvious that V and hare s 

opposite in sign so that: 

Thus 11 = -

v = -

) 
) 
) 
) 
) 
) 

Again from equation 2.5-13: 

Ihsl = I(a + blvl)vl 

and 
I 2 1 h~1 

I V I = - ~b +~ (E) + T 

Thus 

."elO 2.5-20 

, , " 2.5- 21 

.0 o. 2.5-22 

..... 2.5-23 

On application of the continuity condition, the result is: 
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2 

Equation 2.5-25 is the field equation governing floi7 in a 

2-dimensional flow field where equation 2.3-1 is the 

relation between head loss and VGloci ty. 

2.5.2 Field equation based on-iQG exponential relation 

Brooker (1961) derived a fiGld equation for systems 

obeying the nonlinear exponential head loss relation. 

Parkin (1963a) used a vectorial approach for dGriving 

BrookGr's equation. After combining the exponGntial 

relation with thG continuity condition, the resulting 

differential flow equation may be 11ri tten: 

(h + h ) (h 2 + 1'1 2) + (I. _ 1) (h ~ + 2h h h 
xx yy x y m x xx xyxy 

+ 11 ~ ) '= 0 .... 2.5-26 y yy 

This equation reduces to the Laplace equation for the 

condi tion m '= 1 as ,rould be eXPGcted since the exponential 

head loss rGlation, ,Tith m '= 1, is simply Darcy's' Law. 

Parkin indicatGd that equation 2.5-26 'TQula. be applicable 

to flow through rockfill dams but suggested only a possible 

method of solution by sketching. Curtis (1965) employed a 



finite difference form of equation 2.5-26 to analyse 

flo11 through rectangular shaped rockfill banks. 
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Mohar (1966) exJcended the differential field equation 

to allo,T for spatial variation of the coefficients c and m 

throughou-t the entire region of flow, Mohar appl ied this 

extended equation to investigate floTT through a perm(lable 

wall wi-bh vertical upstream and dOl'mstream faces. The 

resul ts of the analysis showed however, that the 

magni tudes of the terms resul ting from the spatial 

variation of c and m were negligible compared to the terms 

with constant coefficients (which are the terms of 

equation 2.5-26) for the particular flow conditions 

investigated. Kirkham (1967) used a similar equation to 

that derived by Eohar to investigate confined nonlinear 

flow in a special model. The model was ,rell sui ted for 

a finite difference numerical soluJ"ion of Johe extended 

flow equation ,;>~nd good correlation between experimental 

and theoretical resul ts was obtained. 

The field equation based on the exponential relation 

can be derived as follows, by a procedure analogous to 

that used for the Forchheimer relation. Equation 2.3-23 

in vector form becomes~ 

.... 2.5-27 
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and h = (c!V!m-l)u ) 
x ) 

) •••• 2.5-28 

h = (c!V!m-l)v ) 
y ) 

In th ui = h lY.L i ) 

! h s ! 
\ X J 

~ 
Iv! vi h J 

) 
= 

! h s ! ) y 

..•• 2.5-29 

the continuity relation gives: 

2.5-30 

Eque, tion 2.5-30 is the field egu2.tion governing 

2-dimensione,1 flov when the head loss relation is of 

exponential form. 

The fielQ relations 2.4-7, 2.5-25 and 2.5-30 are the 

equations analysed by numerical methods in Chapter 4. 
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APPLICATION OF THEORY TO SOlviE PRACTICAL 

FLOW SIYlJATIQN.2 

3'.1 Groundwater FlolY:... to a Well in a Confined Aquifer 

Analyses of flows in aquifers are usually based on 

a number of simplifying assumptions. The aquifer 

material is assumed to be saturated, homogeneous and 

isotropic and of uniform thickness, while the well is 

assumed to penetrate the entire aquifer. For horizontal 

confining layers, the flow conditions may be represented 

as in Fig. 3-1-1. 
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FIG. 3-1-1 
RADIAL FLOW TO A WELL IN A CONFINED AQUIFER 

If the flow obeys Darcy's LavT w::i. th a constant 

permeability k, and if the head he at radius re is 

assumed to be unaffected by the well, then the relation 

68. 
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between the piezometric head h at radius r, and the 

discharge Q 18 given by: 

• 110 •• 3.1-1 

in which B is the t.hicl{ness of the aquifer. This equation 

is known as the equilibrium or Thiem equation (Thiem, 

1906). For natural aquifers of large lateral dimensions 

the head h increases indefinitely wi th increasing radius 

so that steady flOTT" is bo-/;h theoretically and physically 

impossible (De Wiest, 1965). Under these conditions, 

equation 3.1-1 is applicable only within close proximity 

to the well. 

Theis (1935) investigated the problem of unsteady 

flOTT in an extensive confined aquifer and showed that the 

piezometric head is a function of radius and time 

accord.ing to the equation: 

+ 1. ah 
r ar 

S Clh 
= m ~+ 

~ v u 
.00_ 3.1-2 

in which S is the storage coefficient of the ~quifer and 

T (=kB) is the transmissivity. Solutions to equation 

3.1-2 for specified boundary conditions have been widely 

used as the basis for field determinations of the aquifer 

properties Sand T. However, for most aquifer materials, 

it is only in the area adjacent to the well that nonlinear 
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effects will be important so that no analysis, either 

experimental or theoretical, of unsteady flo1T condi tirins 

was carried out in this thesis. 

One particular example of confined flow, for which 

equation 3.1-1 gives an exact solution, is tha-b of a 

well discharging from a confined aquifer at the centre 

of an island. The flow situation is then as depicted 

in Fig. 3-1-2. 
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WELL DISCHARGING FRON] A CONFINED AQUIFER ON AN ISLAND 

If the discharge Q is a constant and if the flow-

h 
e 

obeys Darcy's Lav throughout, then the equilibrium equation 

will hold without error. 

Engelund (1953) solved the problem of Fig. 3-1-2 

allowing for a zone of nonlinear flow around the well. 
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Darcy's Law was assumed accurate for radii greater than 

r
t

, the so-called radius of turbulence, but inside r t a 

Forchheimer relation was employed to link head loss and 

yeloci ty. In yiew- of the considerations of Chapter 2 

in which it l1""2,S shown that a Forchheimer rela-~ion is 

accurate oYer a considerable range of flows, the flow-

si tuation depicted in Fig. 3-1-2 may be sol yed on the 

assumption that a Forchheimer relation governs the head 

loss throughou-" the entire aquifer. Thus if Q is the' 

constant discharge, then 

Q • and since i = ah 
2wrB' as 

1.1-2 yields: 

the velocity at any 

= ~~ , substitution 

radius r is 

in equation 

After integration bet\,Teen the limits r ,h and r , h 
1\1" wee 

the result is: 

h e h 
w 

=&1 
2wB n 

r 
_f. 
r 

Tf 

(L 
r 

w 
000. 3.1-4 

The derivation has assumed that velocity heads are 

negligible so that the piezometric head h can be used in 

lieu of the total head Ii and that there is no loss of 

piezometric head as the water enters the well. This 

latter condition would be fulfilled if the velocity head 

of the water passing through the well screening is equal 
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to the head lost on entering the well. This is similar 

to the assumption usually made 'There a clo sed cono.ui t 

discharges into a reservoir: '~hat the head loss at the 

exit is equal to the velocity head of the flow, 

If the external head h and the height of water in 
e 

the lTell hare l-mown as well as the coefficients a and 
17 

b for' the aquifer material then equation 3,1-4 may be 

solved for the discharge Q. 

Anandcl~rishnan and Varadarajulu (1963) have given 

a similar result for an exponential hea.d loss relation. 

Thus the velocity at any radius r is 2~~B and substitution 

in equation 1,1-3 yields: 

8h Q m ar = c( 2lr-rB) 0".0 301-5 

Integrating between r 1r, hvr and r e , he' the result is: 

h 
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h 
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m "."0 3.1-6 

Equation 3.1-6 may then be solved for the discharge Q. 

The flow:- si tuation sho.m in Fig. 3-1-2 can be 

simul ated in the laboratory and, since it can be solved 

vi thout recourse to numerical methods, provides a 

convenient initial problem for consideration of nonlinear 

effects in flou- through coarse grained aCJ.uifers. 



3.2 Groundwater Flowe to a Well in an Unconfined Aquifer - -
The assnmptions usually made in analysing unconfined 

aquifer flows are similar to those made for confined 

aauifers. Some solutions have been obtained for more 

general conditions such as flovr to pa,rtially penetrating 

17ells (Forchheimer, 1930; Boreli, 1955; Kirkham, 1959; 

Hantush, 1961), flol[ to wells in sloping sands 

(Forchheimer, 1886; Hantush, 1962a); 8-nd horizontal flow 

through aquifers "here permeability varies with depth 

("Youngs, 1965). However the analysis of flow problems 

is considerably simplified when the assum-ptions of fully 

penetrating wells, horizontal layers, uniform permeability, 

etc. are made, and most investigations reported have been 

based on such assumptions. 

The si tua tion of unconfined flow to a well may be 

represented as sho,m in Fig. 3-2-1. 
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FIG. 3-2-1 
RADIAL FLOW TO A WELL IN AN UNCONFINED AQUIFER 
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The aquifer is assumed to be homogeneous and isotropic; 

the saturated thickness before pumping starts is assumed 

uniform throughout and the well is assumed to penetrate 

to the horizontal impermeable base of the aquifer. 

Dupuit (1863) solved the problem of Fig. 3-2-1 on 

the basis of further assumptions which have become kn01m 

as Dupui-t's conditions. These are: 

(i) the velocity is horizonial across any 

vertical section; 

( ii) 

( iii) 

the velocity is uniform over the depth of floir. , 
the velocity is proportional to the tangent 

of t.he slope of the free surface instead of 

to its sine. 

For steady floTT conditions and assuming Darcy's Law 

is valid throughout, Dupuit's solution may be stated as: 

•• "v 3 0 2-1 

~'his expression is often called the Dupui t-Forchheimer 

formula. At v:n intermediate radius r where the piezometric 

head is h, equation 3.2-1 may be rewritten as: 

h 2 = .2...7Tk In ( r / r ) + h 2 
w ~r 

Because there are actually large vertical components of 

flo,," neglected in Dupui tt s assumptions, equation 3.2-2 
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fails to describe accurately the drawdo1'l1l curve near the 

"ell. In practice there is found to be a seepage face 

at the well as shown in Fig. 3-2-2 and this is not 

accounted for in equa-t.ion 3 ... 2-20 

water level -----~ after pumping 

} seepage face 

_,\L 
T 

height of rra-ter 
in well 

/// ,//////,/ //,/ //./,/ /" /// // // /"./ //,/,/ /' /// 

FIG. 3-2-2 
SEEPAGE FACE AT WELL IN UNCONFINED FLOW 

However, equation 3.2-1 has been shown to give 

accurate values of the discharge (Muskat, 1946), while 

Hantush (1962b) has shown that this equation can be 

rigorously derived between the limits hw' 1'17 and he' re 

allowing for a seepage face at the well. A similar 

resul t for flow in dams wi th vertical sides was given 

by Huard de la Harre (1956). Thus while equation 3.2-1 

gives accurate discharge values for Darcy flow conditions, 

equation 3.2-2 does not accurately predict the drawdown 

in the area adj acent to the well. 
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In view of its importance in groundwater applications, 

a number of theoretical and experimental investigat,ions 

on the problem of unconfined flow to a well have been 

reported. Although most of these have dealt with Dercy 

flolT, the methods involved can be applied, wi tll sui ~Gabl e 

modifications, to nonlinear flow- analyses. 

3.2.1 Exuerimental igyestigatiQll§ 

Sand models, including sectors of a circle, have 

been used extensively in investigations of flow to wells. 

The results obtained by Wyckoff, Botset and Muskat (1932) 

using such a model indicated the importance of capillary 

effects in unconfined flow through sands. Their resul ts 

also showed that Dupuit's curve gave good agreement with 

values of piezometric head measured along the 

impermeable base of the model. A comprehensive set of 

experiments was carried out by Babbi tt and Caldwell 

(1948) using a sand model and also an electric carbon 

lv-edge analogy. From their results, Babbitt and Cald-ffell 

derived an empirical formula for the free surface, to 

replace Dupuit's curve which is inaccurate in the 

vicini ty of the well. 

An account of some of the experimental precautions 

which must be taken to prevent air entrainment was 

given by Hansen (1953) who used a 90 degree sector for 
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model tests on unconfined flow through sand. The effect 

of the capillary zone was shown to be important at least 

for the sand size used in the experiments. Hansen also 

discussed -t,he occurrence of the seepage surface at the 

well face and showed that it was not due to well 10 ss 

alone. 

Flow into e" tubular well was studied by Peter (1955) 

who com:pared his results with the -t,heories of a number of 

:previous workers. Mogg (1959) investigated the effect 

on Trell drawdown caused by nonlinear flow in the aquifer 

around the well. The results indicated that nonlinear 

effects would be significant only for gravels and coarse 

sands. Mogg sugges-bed an empirical method, based on a 

varying exponent of velocity, for calculation of head 

losses and his work involved no fundamental analysis of 

nonlinear flow. 

A 30 degree sector of sufficient size to limit errors 

to 3 percent was used by Grcic (1961) in his experiments 

to determine the heigh-t of the seeyage surface for 

various conditions. Grcic showed that, for coarse sands, 

the height of the seepage face !'Tas affected by nonlinear 

flow neo,r the well, al ""hough he recognised the difficulty 

of accounting for these effects analytically. Unconfined 

and confined aquifer flows were both summarised by Glover 

(1964) in a general report covering various types of 
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groundwater movement. 

Various analogies have been applied to the solution 

of groundwater problems. For example, Lavrson and 

Hendriclo: (1965) applied a membrane analogy to the 

solution of well flo~7 problems including multiple wells 

with a number of boundary conditions. An electrical 

analogue TTas employed by Macawaris (1966) in studying 

flo,r to well s with 17-edge shaped boundary conditions 

formed by rivers and impervious foundations. Macawari s 

analysed the flow situations using compl ex variabl e 

theory and checked his ::oe8ul ts with the aid of the 

electrical analogue. Prickett (1967) also used 

electrical analogues in simulating pumped wells, to 

determine the effect of variables such as radius, 

length of screening and degree of penetration. 

S. 2. 2 Numerical solu-(;i2l1.§. 

A number of numerical solutions to unconfined flow' 

problems have been obtained in recent years, one of the 

first of these being ob-tained by Yang (1949) who analysed 

steady-state flow to a well in an unconfined aquifer by a 

modification of the relaxation method of Shaw and Southwell 

(1941), In his analysis, Yang assumed that the free 

surface could be approximated by the grid points which 

were closest to it throughout the flow field, Boulton 
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(1951) also used the relaxation process to solve four 

cases of unconfined well flow. A graded mesh was 

incorporated near the' well and near the free surface 

and a modified form of the finite difference equations 

ITaS eI:Jployed, assuming logarithmic variation of 

piezometric head with radius in the area adjacent to 

the well. The value of the discharge calculated by 

Boul ton from his num'erical solutions agreed with the 

Dupuit discharge to within 0.3 percent. 

Numerical solutions were also obtained by Luthin 

and Scot J
& (1952) for unconfined nov to a well at the 

instant pumping sJGarts; in this case the water table 

could be assumed horizontal so tha,t trea-t,ment of the top 

boundary TTas considerably simplified. The results are 

therefore of little practical application, although 

consideration was given to nonhomogeneous formations 

separated by horizontal interfaces. 

Some different forms of 'the relaxation egl1a-Gion for 

irregular grid lengths ,,-ere discussed by Boreli (1953) 

who indicated their relevant merits with respect to the 

number of iterations required to obtain a given accuracy 

in a solution. Hall (1954) gave a comprehensive historical 

review of groundwater flow to well s, from the time of 

Darcy and Dupuit until 1954. Yang's method of step 
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representation of the free surface was used by Hall (1955) 

in a relaxation solution for unconfined well flow. 

Associated eXlJerimental work was carried out with a 
~ 

sand model using a 15 degree sector and the effect of 

capillary action was considered in some detail. Murray 

(1960) solved a number of free surface problems by the 

relaxation method including flow" through a vertic2"1 sided 

p"ermeabl e wall, flo" through an e8"rth dam with a c en tral 

core, and unconfined flo .. ,. to a well. A digital computer 

was employed by Hendrick (1965) in a relaxation analysis 

of unconfined well flow, to obtain a comparison wi tIl 

the results of his membrane analogy investigation. 

3.3 Flow Through Rockfill 

The application of rockfill to the construction of 

dams was considered by ':rilkins (1956). Willdns carried 

out permeame~(;er tests on rockfill of large particle size, 

to determine the appropriate head loss equations and 

applied these equations to the design of dams. Sandie 

(1961) undertook a series of experiments on the self-

spill w"ay type of rockfill dam propo sed by Wilkins and 

suggested that there were four main regions of flow- as 

sh01m in Fig. 3-3-1. 
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FIG. 3-3-1 FLOTT REGIONS IN A SELF SPILLWAY DAiIi 
(After Sandie, 1961) 

TI1ese regions are: 
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(a) the upstTeam region, which is the part of the 

fl017.upstream of the impervious cut-off wall; 

(b) the cTest Tegion, adjacent to the crest of 

the cut-off wall; 

(c) the freefall region, '-There the water falls 

freely through the rockfill i 

(d) the downstream region, where >ohe water flows 

through the rockfill along the horizontal 

impervious base dOlTIlstream of the cut-off wall. 

Sandie also investigated the stability asp>e>cts of 

these dams and undertook theoretical considerp,tions of 

the free surface profile in the d01'lIlstream region. Sharp 

(1961) considered the heieht of the exit point at the 

dormstream banl~ of self-spillway rockfill dams. 

The results from further model studies on inbuilt 

spill way rockfill dams were di scussed by Lawson, Trollope 
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and Parkin (1963) who suggested methods of analysis for 

some flow regions. Al though the upstream region was 

considered intractable to direct analysis, approximate 

methods of solution were formulated for the other regions, 

Flow in the crest region was considered to be related to 

three representative lengths, the vertical depth of flow

at the top of the spillway, the minimum width of flow in 

-I;he crest region (at 45 degrees to the vertical), and 

the horizontal ,ridth of flow at the crest. Flow in the 

freefall region was shown to correspond to unit energy 

gradient while the downstream section was analysed by 

assuming uniform horizontal velocity at any section. 

A comprehensive study of hydraulic characteristics 

of rockfill deJns ~ri th inbuil-t spill ways was carried out 

by Parkin (1I:)63a) who formulated methods for their design. 

Fenton (1968) obtained numerical solutions for flow 

through rocldill banks with no impervious membrane by a 

finite element analysis of the field equation based on 

the exponential law for head loss. Fenton investigated 

discharge varip/&ions as well a-s stability aspects for a 

number of values of the exponent m in the head loss 

rela-tion. 

The stability aspects of rockfill have been invest

igated by a number of authors including Lewis (1965), who 
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briefly discussed the shear strength of rockfill and the 

difficul ties involved in measuring it. Wilkins (1963) 

drew flow nets from model tests on rockfill, but he 

indicated that there were considerable difficulties 

involved in measuring piezometric heads for turbulent 

flo,[ through rockfill. Based on the flow nets and other 

considerations, Willl:ins formul ated a method of stability 

analysis and suggested most appropriate arrangements of 

steel bars to stabilise the downstream slope. 

Deep seated slip failures of rockfill were 

investigated by Parkin (1963b) who 8"pplied the systematic 

arching theory developed by Trollope (1957) to the 

analysis of the stability of the dOTmstream slope of 

rockfill dams. Discharge and stability aspects of flori 

through rockfill were considered by Parkin, Trollope and 

Lawson (1966). They indicated how non-Darcy floTT could 

be analysed on the basis of an exponential head loss 

relation and discussed stability aspects in some cletail. 

Design charts were produced for both stability and 

discharge calculations, Guidici (1967) commented on the 

mesh requirements for protection of the d01mstream face 

of a rockfill dam. 

Spe"rh:s (1967) discussed the possibility of the two 

types of failure: erosion and sloughing, of the dOi'mstream 
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slope. He employed a tilting analogue model to simulate 

the activating forces on the slope. Sparks used the 

tilting analogue results and a nonlinear flow net 

obtained by the method of Wilkins (1963) to analyse the 

stability of the slope and to predict reinforcement 

requirements. 

A comparatively recent development in dam 

construction methods is the practice of passing flood 

flows through and over rockfill coff er dams and partly 

completed earth and rockfill dams. Weiss (1951) 

discussed economic benefits of -the use of the technique 

in the construcJGion of" a number of dams in Mexico. A 

comprehensive set of experiments on flow through and 

over rocldill Tras carried out by Olivier(1967). He 

considered the profiles established by rod;: when placed 

under various conditions in :Plowing vater. Olivier 

developed a method for stability analysis based on the 

tractive force exerted on a rock by the flaTTing water and 

suggested a means of calculating the surface profile 

within rocll:fill from a modified open channel floTT equation. 

Model stucUes TTere reported by Speedie, Tadgell and 

Carr (1967) for "wo dams with upstream impermeable 

membranes. The model tests investigated the passing of 

flood floiTs through and over the rockfill during 
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construction and involved a consideration of the 

protection of the do~mstream face against erosion and 

slip failure. Lane (1967) discussed experience obtained 

in placing rockfill under flowing water, as a consequence 

of actual dam and coffer dam construc"bions chiefly in 

Africa. The results of model tests which were under

taken beforehand and observations of prototype flo.v 

conditions during construction showed that economical 

coffer dams may be achieved by designing rockfill to 

undergo several overtoppings. 

Curtis and Lawson (1967), experimentally and 

theoretically, studied flow over and through rectangular 

shaped bap~s of rockfill. They considered overtopping 

flo17s by comparison ,lith modified formulae for broad 

crested weirs.' Flow wi thin the rec"I;angular shaped banks 

1T8.S analysed. by a numerical solution of the field equation 

based on the exponential head loss relation. 

Flow through jointed rock masses involves different 

principl es from flow through rocldill because the particl e 

size in the former case will usually be much larger than 

in the latter. Investigations such as that due to 

Barenblatt, Zhel tov and Kochina (1960) have dealt 17ith 

flow through roell:s from the point of view of water 

movement in o"he fissures themselves rather than through 
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a homogeneous porous medium. Snow (1965) considered 

flow, through joints in rock masses and suggested a 

]J'arallel plate model to represent this flow condition. 

Wittke and Louis (1966) analysed laminar and turbulent 

flow within fissures and considered the effects of normal 

and shear stresses on the roel,s. 

Because of the larger par-bicle size encountered in 

jointed ro ck masses, the analysi s of flow conditions will 

usually need to be based on flow'lrithin the fissures. 

The assumptions made in the derivation of the partial 

differential field equations will often not be applicable 

so that analyses based on these equations will become 

inadequate. The solutions obtained in this thesis will 

therefore only be applicabl e to flow in rock masses, if 

the rock mass can be considered as a homogeneous porous 

medium; and, even in this case, a linear flow' solution 

would usually be adequ2.te. 



CHAPTER-1 

METHODS OF NUMERICAL ANALYSIS 

4.1 .l~ini te Difference and Finite Jlllement Approa.£h~ 

The field equations for steady saturated flow in 

undeformable porous media, derived in Sections 2.4 and 

2.5, are partial differential equations of elliptic type 

and as such are amenable to solution by a numerical field 

approach. To obtain solutions to these equations it is 

necessary to delineate a region of flow' and to specify 

relevant boundary conditions over a closed curve 

surrounding the region. The approach in obtaining a 

numerical solution to such problems is to solve for 

piezometric head values at a finite number of points 

throughout the field. Equations are written which involve 

the function value at discrete points throughout the 

field so that the solution of the problem reduces to 

the solution of a finite number of algebraic equations. 

This process is often referred to as discretization. 

TIle discretization procedures utilised in this thesis 

are the direct finite difference method and the finite 

element method. 

The finite difference method is based on an 

approximation to the differential terms in the field 

equations by finite difference formulae involving the 

87. 
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function values at a node and its surrounding nodes. 

The differential equation at each interior nodal point 

is therofore replaced by an algebraic equation; the 

resultant set of equations, together r.ith relevant 

conditions on the closed boundary, specify a unique set 

of values which may be obtained by solving the equations. 

The set of simultaneous equations may be solved by direct 

or i terativ8 methods but because of the largo number of 

uru~nowns, iterative methods are usually employed. 

In an iterative solution, initial values of the 

function are assumed at all points and then better 

values are calculated from the surrounding nodal values 

by application of finite difference formulae. Southwell 

(1940; 1946) pioneered the relaxation process which 

involves calculation of the residual difference bet~reen 

the value o,t any point and the improved value obtained 

from the finite difference equation. The relaxa-t,ion 

process allows a systematic reduction of the residuals 

at all points un-til the solution is obtained to a 

required degree of accuracy. 

A slightly different iterative approach, called the 

method of squaring, had previously been developed by 

Thorn (1928a, 1928b) and is described in detail by Thorn 

and Apelt (1961). This approach has an advantage over 
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the relaxation process when computers are employed 

because it does not require the storage of residuals at 

all points in the field. The iterative finite difference 

formula is applied at all points until the change between 

successive values is smaller than some specified amount. 

The method of squaring has been employed in the finite 

difference solutions obtained in this thesis. 

The finite element approach relies on the 

variational method of setting up the difference equations 

for the field. The region is divided into a finite 

number of elements in each of Trhich the variation in 

properties is assumed to be linear. ThG problem o·f 

solving the differential equation is converted into a 

corresponding extremum problem involving the minimis-

ation of an integral throughout the field. Minimisation 

with respect to each nodal value again yields an equal 

number of algebraic equations which are usually solved 

by iterative procedures. 

In both the finite difference and finite element 

methods, the continuous field is assumed to be well 

represented by the solutions obtained for the nodal 

points, with a linear variation between the nodes. 

4.2 Finite Difference Form of Field Equations ----- --
4.2.1 The Laplace eg~tion 

The Laplace differential equation, which was given 
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as equation 2.4-7 is of fundamental impXlrtance to a wide 

range of problems including steady heat floT., ideal 

fluid flow ",nd linear laminar flow through porous media. 

For' this reason, the numerical solution of tho' equation 

has been well treated in the literature (Shaw' and 

Southwell, 1941; Thorn and Apelt, 1961; Jeppson, 1968a). 

However a brief outline of the procedures involved will 

be given here as an introduction to the numerical 

approach Tlhich is similar to that used for the nonlinear 

flow field equations. 

Consider a poin'!; 0, in a flow' field, surrounded by 

other points in a regular erray as shovm in Fig. 4-2-1. 
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FIG. 4-2-1 FINI1'E DIFFERENCE NETWOPJC 
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The follo17ing commonly used shorthand representation of 

differentials will be used frequently throughout the 

remainder of this thesis: 

h CJl! h = 
CJ~ ) 

= ) x ax xx ax 2 
) 
) 

h = ££ h = ~h ~ 4.2-1 
8y ay2 

... " . y yy ) 
) 

~<b_ a~ 
) 

h = h = 
) 

xy axay yx ayax ) 

A Taylor series expansion about 0 in the positive and 

negative x directions then yields: 

hI h d h d 2 
+ = + + -h ••• c-

o ox 2~ oxx 

h3 = h d h d 2 
- + -h .... 0 .. 

0 ox 2~ oxx 
... .... 4 .. 2-3 

in which d, as used in this Chapter, represents the grid 

length of the finite difference mesh. 

Combining 

the derivative 

equations 4.2-2 and 4.2-3 an expression for 

a~l at the point 0 is obtained as: 
ax2 

hI + h3 - 2ho 
= -- d2 -- .. I> .. 0 4.2-4 

provided that terms of magnitude d4 and above may be 

neglected. A similar analysis in the y direction yields: 
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1\ 1\ 1\. 402-5 

Substi tU-Gion in equation 2.4-7 results in a finite 

difference form of Laplacets equation: 

hI + h2 + h + h - 4h = 0 3 4 0 
."004.2-6 

provided again that terms of the order d 4 and above are 

negligible. Thus the finite difference equation to be

applied at all points throughout the field is: 

h 
o = 0 ••• 4.2-7 

This is the so-called "unit square" formula. In 

4 
vierT of the assumption that terms of the order d and 

higher are negligible, an obvious means of increasing the 

accuracy of a numerical solution is to decrease the grid 

size. However a decrease in grid size effectively 

increases the number of nodal points so that more equations 

have to be solved and, in computer applications, more 

variables stored in the memory. Thus the number of grid 

points should be chosen to give the required degree of 

accuracy with a minimum amount of computer storage and 

time. 

An al ternati ve method of increasing the accuracy of 

solution for a given number of iterations is to use 

finite difference formulae which include more points in 
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the field and so red.uce the trunc.ation error. Thom and 

Apelt (1961) gave an account of some higher-molecule 

formulae and their p'ossible applications. Examples 

include the '20 formula', the '100 formula' and the 

'476 forI:lula' which, for the points shovm in Fig. 4-2-1, 

may be written as: 

100ho = 10S3 + 7S4 + S5 - 11Sd2v~o 

_ld4n4h + O( d6 ) 
3 0 

476ho = 468
3 

+ 32S
4 

+ 9S
5 

- 576d2v~0 - 176d4V4h
o 

_ 4Sd4 n4h + O( d6 ) 
o 

" . "., 4. 2-8 

in which V 2 

and 0 means a term of the order of the function in the 

brackc·ts; and: 

Sl = hI + h2 + h3 + h4 

S2 = h5 + h6 + h7 + hS 

S3 = h9 + hlO + h11 + h12 
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S4 = h 13 + h14 -I- h15 + h16 + h17 + h18 + 

h19 
-I- h 20 

S5 = h21 -I- h22 + h23 + h24 

• • t 0 4.2-9 

For Laplace's equation, Thorn and Apelt indicate that 

the '100 formula' alloTTs a solution to be obtained most 

quickly at least when using a desk calculator. However, 

it cannot be applied at p·oints adj acent to the boundaries 

and the '20 formula' is therefore applied at these points 

when the boundaries are regular. At nodes adjoining the 

free surface, the situation is more complex because 

irregular grid lengths are involved. At these points a 

modification of the unit square formula for unequal arms 

is therefore employed. Fig. 4-2-2 shows a possible 

configuration where short arm lengths occur on both the 

vertical mld horizontal grids. 
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The shorter horizontal arm is of length Gld while the 

vertical one is of length G
2

d, where d is the normal grid 

length. Taylor series expansions abou-I; the point 0 again 

enable a finite difference expression to be derived. For 

t7ro-dimensional flow- and for the configuration of Fig. 

4-2-2, this expression is: 

h 
o 

<I <) ~. 402-10 

If only one short arm occurs, equation 4.2-10 still applies 

with the v9,lue of the other ratio, G
l 

or G2 set to unity. 

Equation 4.2-10 reduces to the unit square formula when 

both ratios G
I 

and G
2 

are unity. However if eit!1er Gl or 

G
2 

differ from unity, the tl~ncation error for the 

irregular star equation is of the order d 3 which is an 

order o.f magnitude larger -bhan that for the unit square· 

formula. 

The preceding fini-be difference formulations of 

Laplace'·s equation apply to t1W-dimensi(mal linear laminar 

floTr through porous media, such as would be encountered 

in flow through a vertical side·a permeable wall. For 

axisymmetric flo<7 -Go a well, with co-ordinates as shoi'ffi 

in Fig. 4-2-3, the corresponding form of Laplace's 

equation may be \Tl'i tten: 

<) <I 0' 0 40 2-11 
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FIG. 4-2-S CO-ORDINATES FOR AXISYlvl~iET3,IC FLOW 

Substituting r for x in Fig. 4-2-1 the finite difference 

ah 
approximation to the term 8r may be obtained by 

subtracting eguation 4.2-S from 4,2-2: 

or h 
or 

2dh 
or 

~ 0 I> 0 -4. 2-12 

.there the truncation error is of the order dS • The 

complete finite difference formulation for the axisym-

metric Laplace equation may then be TTri tten as: 

h 
o 

'" hl + h2 + hS + h4 + 
4 

I> I> .. 0 41;1 2-13 

17.here the unit square approximation to the term 

~ 2:no + a2
h o h - as been used. Observation of the higher 

Clr 2 CI z2 

molecule formulae j equIJ,tion 4.2-8, indicatES that in each 
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of the 120, 100 and 476 formulae l the term "~o must be 

ZBro before the truncation error is reduced to the order 

of d6 and in the 1100 and 476 formulae I the term D4h o 

1TQulc1 also have to be zero. For ti\:o-c1imensional flow-

the conc1ition of ,,4h being zero is satisfied from the 
o 

fact that v~ is zero. 
o 

However, for axisymmetric flow, 

indicates tha-I;"~ is not zero and for 
o equation 4.2-11 

small values of r the term 1 ~h will be quite significant. r vr 

In representing the term ,,2h then for axisymmetric 
o 

flow the truncation error in -the higher molecule formulae, 

equation 4.2-28, is effectively increased to the order of 

d
4

• As a result there appears to be little advantage in 

using these formulae instead of the unit square formula 

especially when the increased time per iteration is 

consic1ered for the higher mol ecul e approximations. For 

example Fromm (1963) and Stark (1968) in computerised 

solutions of the Navier-Stol<:es equations sh01'red that there 

was no advantage in the use of the '20 or 100 formulae" 

because, while the number of iterations to achieve a 

required accuracy iras reduced, the total computer time 

was longer because of the increased time per iteration 

with the more complex formulae. Also, the '100 formula' 

for example, cannot be used at nodes immediately adjacent 

-Co the boundary and the 20 or unit formula must then be 
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applied; and as error' terms differ from equation to 

equation, combining these formulae in effect introduces 

nel'r error terms which may be of increased magni tude. For 

aXisymmetric flow., equation 4.2-1S has therefore been 

applied throughout "Ghe finite difference. network to 

yield successively better approximations to the true 

value of piezometric head at each point. 

For points adjacent to the free surface, equation 

4.2-13 must be revised for short arm lengths. The 

d ' t' ah b erlva lve ar ecomes: 

ah 
-- = h a:r or 0(100 4.2-14 

Dividing equation 4.2-14 by r 

a2
h difference expression for ---

and adding to the finite 

Or2 
+ a~ yields the appropriate 

oz 
axisymmetric finite difference equation for short arm 

1 engths: 

[ 
dG2(1-Gl) J- ~1(h2+G2h4) 

ho (G1 +G2 ) - 2r - (l+G
2

) + 

2 
dG2(Gl hehS) 

+ -'2r( l+G, ) --
.L 

Equation 4.2-15 then is the iterative formula for a node 

with unequal surrounding grid lengths. 
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Because the free surface necessitates the use- of 

cumbersome finite difference equations to allow for 

irregular grid lengths, Thorn and Apel t (1961) suggested 

an alternative method of solution for free-streamline 

problems. ';rhis method is based on the property that if 

cp and ifJ are conjugate functions which satisfy Laplace's 

equation in the x-y plane then x and y will be conjugate 

functions satisfying La1)lace's equation in the cp, ifJ plane, 

Thus if 

and 

then 

and 

) 
) 

~ 
) 
) 
) 

) 
) 
) 
) 

~ 

D •• O 402-16 

, • " 4.2-17 

For porous media flow obeying Darcy's Lavr a potential 

funci,ion cp can be defined as: 

cp = - kh 

and a streamline function ifJ can be defined as: 

and £!l!. = 
oy -u 

II .. <> II 4.2-18 

.... 4,2-19 

The functions cp and ifJ can then be Sh01ID to sati sfy equation 

4.2-16 so t!lat equation 4.2-17 also applies in the inverse 

plane. The solution in the inverse- plane has the advantage 
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that it is often possible to obtain a field of rectangular 

shape so that the finite difference grid can be fi tted 

exactly without recourse to short arm lengths. Jeppson 

(1966) used this method to solve a number of problems 

including seepage from di tches, axisymmetric jet flows 

and seepage through a dam wi th a hori zon tal dOi'TIlstream 

under-drain. Cassidy (1965) obtained solutions for flol1 

over spillways by the inverse function approach while 

Ivlarkland (1966) solved the problem of a free overfall at 

the end of an open channel. 

However the method has two maj or di sadvantages in 

the problems analysed in this thesis. The main object of 

obtaining Laplace solutions was to give reasonable initial 

values for the nonlinear solutions o For the nonlinear 

flow-'- equations no corresponding simple relationships 

betw:een conjugate functions can be obtained so that the 

method of inverse fu.nctions cannot readily be applied. 

Since the nonlinear solutions are carried out in the 

physical plane, it is logical to obtain initial values 

from Darcy fioTT solutions in this plane also. 

In addition, the problems discussed herein have 

usually involved a seepage surface, either at the down

stream bank of a dam or permeabl e 'imll, or at the I'Tel1 

face in unconfined flow- to a well. This seepage surface 
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. neither an enuipotential line nor a streamline so that l S "-

the boundaries on the inverse plane do not form a 

rectangular pattern. The situation is illustrated for 

seepage through a two-dimensional vertical sided permeable 

wall as shoTln in Fig. 4_2-4. 

//// //// /",.,/./ / /// // ///// //// 
B A 

FIG. 4-2-4 FLOW THROUGH PERMEABLE WALL - PlrISICAL PLANE 

The impeTvious base AB and the free surface CD are 

streamlines while the upstream and downstream boundaries 

belOIT water level, BC and AE are equipotential lines, 

but the seepage surface DE does not belong to either 

category. Thus in representing the flow field on the 

inverse plane as sh01m in Fig. 4-2-5, DE forms an initially 

unlm.o,m section of the boundary. The boundary configur-

a.tion is therefore not rec J0angular so "Ghat short grid 

lengths and associated cumbersome finite difference 

formulae will still be necessary. It is, however, 
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*t--~c~----------------~' 

, 
E 

FIG. 4-2-5 FLOW THROUGH PERMEABLE WALL - INVERSE PLANE 

possible that the free surface adjustment procedure may 

be simplified in the inverse plane but two fields of 

values, x and y, have to be solved whereas only one field 

of h values need be considered in the physical plane. 

The numerical solutions outlined in -this thesis howe 

-bhe-refore been obtained by solving for piezometric head 

values in the physical plane. 

4~202 E£rchheimer field equatio~ 

In sec-cion 2.5.1 the Forchheimer field equation for 

two-dimensional floT' was derived as equation 2.5-25. For 

finite difference applications, equation 2.5-25 can be 

more suitably restated as: 

..£. 
ox [ -

a 
2 

h x 

J 2 
+ : + ~] 
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To simplify the derivation, the term hs will now be tal~en 

to mean the meegni-l;ude of the head gradient. 

':Till be uri tten instead of 1 hs I' 

If 

af 
then ax 

af 
and -. ay 

= (-n[.§: + 1£ + bh J- 2 

l(~ + 
2 "'4 s 2 4 

[ J 2 J- 2 
2 = (-1) .§: + ~ + bh l(~ + 

2 4 s 2 4 

-~ 
bh ) 

s 

bh ) 
s 

1 -. 

Theet is h s 

•••. 4.2-21 

8h 
b -1? 

• 8 x 

o " 0 II 4,2-22 

• , " 4.2- 23 

Now at any point, the hydraulic gradient in the direction 

of flow is glven by: 

, h s = h + h yi x '" S -

2 2 
h = h s x 

8h 
Thus 2h s 

8h = s x 

8h h 
s ....:l£ §h-, = h x s 

or 

8h h 
Similarly 8h s = -X. 

h v 
" 

s 

8h ah 8h 
Then r -1? x = 8x x ah • 

x 

h 
xx 

+ h 
Y 

2h x 

ah 
s 

+ 8i1 
y 

h 
yx 

2 

\ 
J 

) 
) o • ". 4" 2- 24 
) 

) 
) 
) 
) " " 01" 402-25 
) 

~ 

• II> ." 40 2- 26 

" "" II 402-27 



Similarly h yy 

h 
+2; 

h 
s 

h xy 

104. 

0.00402-28 

substituting equations 4.2-21 and 4.2-27 in equation 

4.2-22 yields: 

-t h 
(_2f h 
h xx 

s 

Similarly equation 4.2-23 becomes: 

-t 
of --oy 

h 
( oS. h 
h yy s 

The field equation 4.2-20 may n017 be rewritten: 

Oox (h f) + O..£.. (h £) = 0 x y y 

or 
of o-P 

h -+fh +h -=-+fh =0 
x oX xx y oy yy 

•••• 4.2-29 

1;>000402-30 

.... 4.2-31 

Substi tution of equations 4.2-29 and 4.2-30 in equation 

4.2-31 gives the field equation for Forchheimer flo17 in a 

form sui table for direct application of finite difference 

approximations: 

h xx 
hx- f a 2 

- -- - ·b(--h 2 4 
+ bh ) 

s 

+ h yy 

s 

h f 2 
_ ...:L - b(!L + 

hs 2 4 

1 
-2 

(h h + h h ) 
xxx yyx 

-1 
(h h + h h ) = 0 

y yy x xy 

<10100 402-32 

The finite difference formulation for equation 4.2-32 is 

best carried out in a number of steps. For the arrange-
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ment of nodes sholm in Fig. 4-2-1 the derivatives hand ox 

h become: 
oy 

h,,- ) hI -
h ox 

u ) = 2d ) 
) " II " (> 

4.2-33 

h = h2 =-h4 ) 
oy 2d ) 

The gradient h can then be calculated from equation 
os 

4.2-24 and substituted in equation 4.2-21 to obtain the 

function f. Having calculated hand f, a number of terms 
os 

in equation 4.2-32 can now be grouped into one factor 

denoted as FACT: 

FACT -

The second 

evaluating h <'>t y 

abont point a 

h 
oyx 

ln 

f 
h os 

2 
b (~ 
2 4 

derivative 

points 1 

-~ 
+ bh ) 

s 

h can 
oyx 

and 3 and 

the x direction. 

since hand hare eoual. oxy oyx ". 

be obtained 

considering 

Thus: 

h 
oxy 

<> .. ~ <) 4 .. 2-34 

by 

expansions 

"000 402-35 

Using equation 4.2-35 and equations 4.2--4 and 4.2-5, 

equation 4.2-32 in finite difference form becomes: 

hI + h2 + h3 + h4 - 4h - FACT h 2(hl +h.,-2h) 
- 0 ox v 0 

2 - FACT 11 (h 2+h4-211) oy 0 
0.5 FACT h h 

ox oy 

••• 4.2-36 
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or on rearranging: 

" 0 .. 0 4.2-37 

in "hich hand hare given by equation 4.2-33. 
ox oy 

Higher mol ecul e 

c.onsidered since V 2h 
o 

formulae for the V2h terms are not 
o 

is not zero for nonlinear flow, 

while higher molecule approximations to e'quation 4.2-37 

as a lrhole, with significantly lower truncation errors 

would result in very complex iterative formulae vith 

substantially increased iteration time. Equation 4.2-37 

has therefore been employed as the i terati ve fini te 

difference formula for successive application at regular 

interior nodal points when 'ohe flow is governed by a 

Forchheimer head loss relation. 

At points adjacent to ~~e free surface, equation 

4.2-37 has 'GO be modified to allow for either one or two 

grid lengths to be shorter than the standard length. The 

procedure follol'TS the same steps as· outlined for regular 

grid lengths. For the configuration of nodes ShOl'm in 

Fig. 4-2-2, the derivatives hand h may be evaluated 
OX oy 

as: 
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2 
- h + (1 - G 2)h ) 

h 
~l hI 3 1 0 ) 

= G
l 

d(l + G
l

) ) OX 
) 
) o 0 0 • 4.2-38 

2 G 2)h ~2 - G2~4 : ,<1 - ) 
h 2 Q ) 

oy G
2
dTI + G

2
) ) 

The gradient h is again obtained from equation 4.2-24 
os 

and the function f from equation 4.2-21. The combined 

term FACT is then calculated according to equation 4.2-34" 

The second derivatives 11 and h
oyy 

in this case are: 
oxx 

given by: 

2[.Gl h l +h 3 - ho(l+Gl ) l ) 

110xx ) = 2 G
l 

(l+G
1

) d ) 
) 

''; ri q .' .4 .. 2-39 

2 {G2h4+h2 - h o (1+G2)l ) 

h = 
) 

oyy G
2

(l+G
2

) d 2 ~ 
~e second derivative h is more difficult to c'alculate oyx 

especially if a short arm occurs in the horizontal 

direction. For this case:, h is calculated from the 
oyx 

values of h at points 0 and 1 because it is impussible y 

to obtain an accurate value of h at point 3. ~~en only 
y 

one short arm, in the vertical direction, occurs h is 
oyx' 

obtained from values of h at points 1 and 3. Substitution 
y 

of all terms in equation 4.2-32 allows the final finite 

difference formula for h to be obtained. , 0 

For axisymmetric floiT to a well, the field equation 

4.2-20 must be modified to allow for the radial c'onvergence 
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of the flow. For axisymmetric flow, the continuity 

equation is: 

OV 
---!: + or 

V oV 
-I. + --2i = 0 

r oz 

in which V and V are the velocities 
r z 

• • • • 

in the r and z 

4.2-40 

co-ordinate directions of Fig. 4-2:"3, Sub sti tu ting for 

Vr and V , equation 4.2-40 becomes: 
z 

ir [~ .j~r+ bhJ 
h 

Y 0 

[~ 
h 

bh:] " 0 + ..J: + 
z 

h r llZ 
+Ja

2 
+ 

s 
4 

in which V is the velocity in the s 

by 
V = 

It is apparent that equation 4.2-41 

eque,tion 4.2-20 wi tt the extra term 

• 0 •• 

direction and is 

· ... 
is equivalent to 
h 
..J: Y added to the 
hs r 

4.2-41 

given 

4.2-42 

left hand side. The finite difference approximation is 

therefore obtained by an analogous procedure' to that used 

for equation 4.2-20. The derivatives hand hare 
or oz 

first obtained and then h is calculated from them. 
os 

Substi-I;uiion bf h in equation 4.2-21 gives the function os 

:tr. The term FACT is again calculated from equation 

4.2-34 and all the subsidiary variables can be substituted 

into equation 4.2-41 to give the final finite difference· 

equation for axisymmetric Forchheimer flow: 
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+ [h d
2 

IJ/ [r (4-2 FACT h 2) J 4.2-43 
or os 

since V and f hos are equal. A similar analysis, to that 

for the two-dimensional flow case, can again be' unde-rtaken 

when one or two grid 1 engths are shorter than normal. 

4.2.3 Exponential fi eld eguation 

The field equation for flow obeying an exponential 

head 10 ss relation was given in section 2.5.2 as equation 

2.5-30. After multiplying by the constant -c in this 

equation and 17ri ting hs instead of I hs I as before" 

ecquation 2.5-30 may be rewritten: 

_ h m a ( I-m/ 
ox s h + - h m ) 

a ( I-m/ 
x ay s h ) = 0 •••• 4.2-44 

If M = I-m 
m 

then equation 4.2-44 becomes: 

hxx h s
M + hx Mh s

M
-

l 
ohs 

ax 
+ h yy 

y 

h ill + h Mh M-l 
s y s 

ah 
~ 
ay 

= 0 

. •.• 4.2-45 

Using equations 4.2-27 and 4.2-28, equation 4.2-45 becomes: 

h +h +...M.... 
xXYYh2 

s 

(h ~ + 2h h h~ + h ~ ) = 0 
x xx x Y ":I Y YY 

" . " . 4.2-46 
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This is the equation which has been obtained by Brooker 

(1961), Parkin (196Sa) and others. Using equations 

4.2-4, 4.2-S and 4.2-S5, equation 4.2-46 may be written 

in finite difference form. For the configuration of 

points shown in Fig. 4-2-1 this becomes: 

= ~os 2 
(hI +h2+h3+h4)+M[hox2(hl +hS)+O. 5 

(hS-hS-h6+h7 )+ hy 
2 

(h 2+h4 )]/2( 2+M)hos 
2 

h h 
ox oy 

o • 0 0 4.2-47 

where h ox and hoy are given by equation 4.2-33 and ho sis 

given by equation 4.2-24. This is the iterative formula 

to be applied at interior nodes when the floTT" is governed 

by an exponential head 10.8s relation. For points adjacent 

to the free surface, e.quation 4.2-47 must be modified to 

allo~T for short arm lengths. The modification is made 

in a manner similar to that employed for the Forchheimer 

field equation. 

For axisymmetric flow the field equation 4.2-44 must 

be modified also and, in cylindrical co·-ordinate·s·,· be·comes: 

+ a (h h M) = 0 
Oz z s ••• 0 

Using the configuration of points of Fig. 4-2-1 this 

equation may be 17ri tten in finite difference form as: 

ho =~10S 2(h
l

+h
2
+h

3
+h

4
)+ ~os:Q!: + M[h

or 
2(h

l
+h

S
) 

4.2-48 

+ 0.5 h h (h5-hS-h6+h
7

)+h 2(h
2
+h

4
)]/2( 2+M)h 2 

oroz oz os 

•••• 4.2-49 
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For points adjacent to the free surface, the corresponding 

form of equation 4.2-49 for irregular arm lengths may be 

derived as before. 

4.3 Boundary....Qondi tions and Adjus·~ment of the Free 
§Urface in the Finite Difference AppTIO~ 

The boundary conditions and surface adjustment 

techniques are similar for tw:o-dimensional flow through 

a vertical sided permeable 1'rall and axisymmetric flow 

to a welL Only flo~r through the permeable wall will 

therefore be considered in the follo~ring discussion, the 

axisymmetric flo,r si tuation being treated by the same 

procedures. Consider flow through a vertical sided bank 

as shown in Fig. 4-3-1. 

V' 

h u 

//////"/ 

y 

E h=y ill1 = 0 

~D 
]Jlow Region { 

h=h u 

~/// 

h::DC 

- d 

'/ /.......-//.....-/,.../ in-o BY -

/K 
'V' 
-. 

hd 
I 

////// // /' /' /' 

FIG. 4-3-1 BOUNDARY em-JDITIONS 

/ /// x 
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The boundary conditions include a number of types. The 

upstream yrall AE and the submerged d01'mstream section BC 

are lines of constant piezometric head with resultant 

Dirichlet boundary conditions: 

On AE h = h ) 
u ) 

) ...... 4.3-1 
on BC h = h(,- ) 

Along the seepage surface CD, the piezometric head is 

equal to the height above the impermeable stratum: 

On CD h = Y ..... 403-2 

The impervious base AB is a streamline so that the he>ad 

gradient normal to this line must be zero, resulting in 

a Neumann type boundary condition: 

On AB 2ll: = 0 
ay ...... 04.3-3 

The free surface ED involves a mixed type of boundary 

condi tion. Since it is a streamline the head gradi ent 

normal to it must be ze+,o and since the pressure is 

atmospheric along ED the piezometric head must equal 

the elevation above the impermeable base: 

On CD 

and 

£h = 0 an 

h = y ........ 

403-4 

4.3-5 

in which n represents the direction of the normal to the 

free· surface at any point. 



113. 

TIle' imposition of the Dirichlet boundary conditions 

in the numerical solutions is relatively simple. The 

piezometric heads at all nodes on AE and BC are set 

equal to hu and ha respectively, ,,;hile at each node on 

CD the piezometric head is set equal to the elevation of 

the node above the base. 

The Neumann boundary condition on .A.B could be 

imposed by first calculating the normal derivative', in 

terms of h values at nodes on AB and at the nodes directly 

abeve them; and when this normal derivative is set to 

zero new values of h on AB could be obtained. For nodes 

as depicted in Fig. 4-3-2, the following relation can be 

obtained by Taylor series expansions from 

9h2 + 2h3 = llh + 6d h 
o oy 

h : 
o 

where the truncation error is of the order d4 • 

3 

2 

1 T 
0 

Id 
/// / '/ I /1'/// 

I-d 
-1 ~ 

••• c 4.3-6 

FIG. 4-3-2 NODE l.J.~RANGEMENT AT BOTTOM BOUNDARY 
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Since h is zero according to equation 4.3-3, equation 
oy 

4.3-6 may be rewritten to evaluate a new value of h for 
o 

the boundary node: 

QO.,O 403-7 

However, eouation 4.3-7 is derived from one-sided difference 

formulae about h , so that Forsythe and Wasow (1960) 
a 

suggested an al-bernative method using more suitable 

central differences. Shaw and Southwell (1941) had also 

used this method which is based on the inclusion of a 

fictitious row of nodes at distance d below the line AB, 

one node of this row being shorm as the point -1 in 

Fig. 4-3-2. The requirement of zero normal derivative 

at 0 is then met by putting: 

- h - 1 o " " " 

Although the truncation error in equation 4.3-8 is 

theoretically of the order d3 , this equation is more 

suitable than equation 4.3-7 because it is based on 

central differences, and Giese (1958) has shoTm that 

4.3-3 

smaller discretization errors occur with centred differ-

ences tha.."l with one-sided differences. The ro1'/' of nodes 

AB is therefore treated as an interior row for application 

of the finite difference form of Laplace's equation and 

the bottom boundary condition is imposed by application 

of equation 4.3-8 to obtain new h values for the 
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ficti tious row below" AB. 

Flow problems involving a free surface usually ce,use 

considerable difficulty in imposing the required bounda~J 

condi tions. One treatment of free surface flow" has been 

incorporated in the "marker and cell" method developed by 

the Los Alamos Scientific Laboratory team, and reported 

by Harlow and Welch (1965), in ,{hich the full Navier

Stokes equations are analysed for fluid flow problems. 

However this method, which incorporates a polynomial 

representation of the free surface for imposing the 

boundary conditions, has been employed in the analysis 

of time-dependent problems where the initial position of 

the free surface is knovffi. 

In the present analysis, where steady flow" is assumed, 

the initial position of the free surface is not ImoTffi and 

an adjustment technique has to be incorporated to allow" 

for errors in the assumption of the initial free surface. 

position, The technique described below is similar to 

that used by Boul ton (1951) (and di scussed in more detail 

by Mohar, 1966 and Hendrick, 1965) but with some modifi

cations. 

Consider a portion of the free surface at an angle 

a to the horizont,al as ShOYffi in Fig. 4-3-3. 



116. 

/~y 

. FIG. 4-3-3 NOMENCLATURE AT THE FREE SURFACE 

Boul-bon (1951) has sho1m that the condition expressed by 

equation 4.3-4 can be rewritten in terms of the derivatives 

2l!=sin2 a •••• 4.3-9 
ay 

and ah 
ax =-sin a cos a 4.3-10 

in which a is the angle of the free surface to the 

horizontal 2.t any point. Because of the curved nature of 

the free surface it is inappropriate to employ fictitious 

nodes above it, and a similar approach to that used for 

the bottom boundary is therefore not possible. As a 

result, one-sided difference formulae are necessary and 

these also must account for a shortened grid length 

betw"een the surface node and the 8.djacent interior node 

in each direction. Consider first a vertical grid line 

intersecting the free surface as shown in Fig. 4-3-4. 

Since h = z at the free surface then 

z = h oy oy •••• 4.3-11 



117. 

i 

C 
d 

d 
, 

i 

hI i , 
,~c1_;~! 

! 
; 

h2 
, 

I 
i 
; 

hS I , 

FIG. 4-3-4 

INTERSECTION OF VERTICAL 
GRID LINE l'fITH FREE SURFACE 

and Taylor series expansions about Zo to hI and h2 allow 

Zoy to be calculated as: 

zo(l+2G2) + G2 ~12 - (l+G2) 2hl 
Zoy = G 2d( 1 +G 2) 

4.3-12 

in which the truncation error is of the order d 3 • More 

points below Z could be employed to reduce the order of 
o 

the truncation error. However, since one-sided differences 

are used it is consi.dered better to restrict the Taylor 

series expansion to points in the immediate vicinity of 

Z ; otherwise the points used for calculating the o 

derivative, exJvend too far away from the point a-I; which 

the derivative is to be determined. For this reason only 

the two clo sest points have normally been incorporated in 

the finite difference formula. 

Now from equations 4.3-9 and 4.3-11: 

. 2 
Z = s~n ex 
oy .• .• 4.3-13 
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A value of sina is therefore required at the point R. 

Since the fini te difference networl~ can only approximate 

the free surface by a number of discrete points along it, 

the calculation of sina must be basod on the assumption 

of short straight line segments joining these points. The 

value of sin a at point R is assumed to be the average of 

sinal and sin a
2 

\There a
l 

and a 2 are as shown in Fig, 4-3-4, 

Sinal is calculated from the triangle PQR and sina
2 

from 

triangle RST. Once sin
2

a has been determined, a new value 

for z can be obtained by combining equations 4.3-lZ and 
o 

4,3-13 to give: 

= G2d(1+G2)sin 2a + (1+G2)2hl-G2~2 
zo 1+2G

2 
, ' •• 4.3-14 

The height of the free surface above the base at the 

vertical grid line is then set equal to this value of z 
o 

and the shortened grid length, G
2

d from the nearest node, 

is recalculated. 1'lhen the surface is being adjusted 

d01ffiwards, equation 4,3-14 does not allow- z to de·crease o 

beloIT the value of hI so that once the intercept G
2

d 

becomes smaller than some preset value, the adjustment is 

carried out from the second closest node. Equation 

4.3-14 can still be applied but 1Tith G
2 

replaced by 

1 + G2 , hI replB_ced by h2 and h2 by h
3

, This allows the 

surface adjustment to proceed d01ffiwards across 
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horizontal grid lines. No similar problem is encountered 

in adjusting the surface upwards. 

Equation 4.3-14 is not applied at the upstream and 

d01mstream banks; that is to say it is not applied at the 

vertical grid lines AE and BD in Fig. 4-3-1. The height 

h to E is fixed so -that the position of E remains 
u 

constant, 17hile at D, the junction of the free surface 

with the downstream face, equation 4.3-14 alone does not 

adequately represent the boundary requirement, From 

theoretical considerations, Dachler (1934) suggested that 

ED should meet CD tangentially at D, but an extremely 

fine net would be required to represent this condition 

satisfactorily in a finite difference solution. A 

solution was therefore attempted on the basis of 

equating the fl01'T across the vertical line DB to the 

fl01'l across the third vertical grid line from the 

upstream boundary. The third line was chosen for 

calculating the reference flow because it is close to the 

upstream boundary where the surface position should be 

most stable and because, at this line, central differences 

can be incorporated for accurate calculations of gradients 

in the flovr determination. The position of D was adjusted 

by calculating the magnitude of the grid intercept to the 

nearest regular node required to produce a flow across 
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BD equal to the reference flow. The change in height 

of D for each adjustment was, however, restricted to 

less than twice the normal grid spacing d. An add.ed 

precaution was also necessary to prevent the position of 

D rising above the height of the free surface at the 

closest vertical line, less the increment between this 

line and the next closest line upstream. 

In coarse grid solutions for axisymmetric flows· 

it ,Tas usually found that the latter requirement was the 

limiting one. The flow calculation across BD is based 

on one-sided finite difference formulae for determining 

the piezometric head gradi ents and, especially with 

axisymmetric flow, this results in an inaccurate v.alue 

of discharge. It is to be expected then -Ghat there may 

be some degree of error in the determination of the 

height of the seepage surface DC. For this reason a 

fine grid was incorporated near the 17ell for some 

axisymmetric flow· solutions. The fine· grid was· included 

after the solution had been obtained on the coarser grid 

throughout the field. The number of coarse grid lengths 

away from the well, which were to be included in the fine 

grid section, was read in as data as "as the number of 

fine grid mesh lengths per coarse grid length. The 

initial values of piezometric head at the intermediate 
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points on the fine grid were obtained by interpolation 

from the closest coarse grid values. 

Consider no~ the intersection of a horizontal grid 

line with the free surface as ShOi'ffi in Fig. 4-3-5. 

z 1 
A 

FIG. 4-3-5 

INTERSECTION- OF H02.IZONT1.L GRID LurE WITH FREE SURFACE 

Application of Taylor series expansions about h allo1'(S 
o 

a finite difference approximation to h : - ox 

h = ox 

(l+2G
l

)h
o 

G
l 

d(l+G
l

) ... ,4.3-15 

In this case sino: coso: is substituted for h according to 
ox 

equation 4.3-10; sino: and coso: are calculated as the 

average of the respective functions for 0:
1 

and 0:
2 

in 

Fig. 4-3-5. However the value of h cannot change since 
o 

i-b must equal the height of the particular horizontal 

grid line above the base. Equation 4.3-15 can therefore 

be used to calculate a new value of the shortened grid 
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length G
l 

d at which -the grid line intersects the free 

surface. This extra adjustment however, is only 

necessary for a coarse mesh mth a high vertical 

component of flol'T. Provided the mesh is reasonably fine, 

the free surface can be well represented by straight line 

segments bet1\ceen the vertical grid lines. The mesh size 

has therefore been kept small enough in all analyses so 

that this requirement is satisfied to a sufficient degree 

of accuracy. After the vertical grid adjustments have 

been completed, the horizontal intercepts are adjusted on 

the assumption of a straight line intercept betTTeen the 

two neighbouring vertical lines. 

4.4 Selection of -Initial Value§ for Finite Difference 
Soluti.Ql1'§ 

4.4.1 Initial values for Darcy solutions 

Numerical solutions to elliptic partial differential 

equations, in which a "hole or part of the closed 

boundary is subject to a Dirichlet boundary condition, 

may be obtained by initially assuming all interior nodal 

values to be zero. However a solution can often be 

obtained much more quick.ly by judicious selection of 

initial values, both for the interior nodes and also for 

those parts of the boundary, if any, which are subj ect 

to other types of boundary conditions. In free 

streamline problems, the accuracy of the assumed initial 
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position of the free surface also affects the time 

required for a complete solution. 

For two-dlInensional flo\'! through a permeabl e wall 

as sho.m in Fig. 4-4-1, the 1 ength of the seepage 

surface CD lms assumed to be one-third of the difference 

between upstream and d.ownstream ITater levels, s'o that 

hs in Fig. 4-4-1 is given by: 

hs • • •• 4.4-1 

FIG. 4-4-1 PERMEABLE WLLL INITIAL VALUES 

The free surface curve ED is assumed to folloTT a power 

la\,T between hu and hs9 thus if Y is the initially assumed 

height of the free surface at distance x from the 

upstream face then: 

n 
y :::: h n 

u •••• 4.4-2 
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in which Lis the 1 ength of the wall and n is an exponent 

betTreen 1 and 2. Similarly the piezometric head, h(x), 

on the bottom boundary at distance x is assumed to follow 

a power law between hand hd: 
- u 

4.4-3 

For larger flow values, that is where the difference in 

water levels is large comparerl to the length of the i'T8~11, 

the velue of n 1'12,S taken as 2 in both equations 4.4-2 and 

4.4-3. AI though this assumption could also have been 

made for smaller water level differences, better ini"Gial 

values were obt<1ined by taking n <1S 1.5 in both equations. 

The v8~lues of piezometric head at nodes between the 

bottom boundary and the free surface were obtained by 

linear interpolation over each vertical grid line. 

In obtaining initial values for the axisymmetric 

flow situation, advantage was t&~en of some empirical 

relations suggested by previous researchers. For 

unconfined flOTT to a well as shown in Fig. 4-4-2, Hall 

(1955) obtained empirical equations for the height of the 

seellage surface hs and for -the free surface curve ED. For 

the nomenclature of Fig. 4-4-2, the seepage surface 

height hs is given by: 
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z 1'---_____ _ 
I I 
: I 

----- ----.---

FIG. 4-4-2 . UNCONnNED WELL FLOW INITIAL VALUES 

hs - h .l>fI'. 4.4-4 

while the height z of the free surface at radius r is 

given by: 

[
2.5(r-r,r) G-r_.'r )1.5, ••• 

z=hs+(h-hs)-r T' -1.5- - J 4.4-5 
e \ r -r r -r 

. e vr e w 

Since the flow along the impermeable base must be 

horizontal, it would seem reasonabl e to assume that the 

ini tial values of piezometric head could be J,;aken from 

the Dupuit curve between hand h. Wyckoff, Botset 
e w 

and Muslmt (1932) have sho,m experimente.lly that 
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Dupuit's relation is approximately true for head measure-

ments along the impermeabl e base 2,nd thi s was supported 

by Hall (1955). If h(1') is the base piezometric he8.d at 

radius r, then the initial value for h(r) can be assumed 

to be given by: 

0. (>." 4 .. 4-6 

For flow conditions corresponding to larger differences 

in water levels hand h , -bhe initial values were' 
e w 

calculated using equations 4.4-4, 4.4-5 and 4.4-6 and 

interpolating along vertical grid lines, between the 

base piezometric head and free surf8,ce height, to obtain 

internal nodal values. For medium water level differences 

the seepage surface height hs was calculated from the 

assumption: 

hs = h + 1 (11. - h ) 
i'T 3 e '\'T 

0. D • II 4.4-7 

and equations 4.4-5 and 4.4-6 were again employed to 

obtain free surface heights and base piezometric heads 

res,?ectively. For small differences in water' levels, 

hs "~,s set by equation 4.4-7 and h(r) by equation 4.4-6 

but -I;he free surface height was set by a Dupuit curve 

between hs and h . 
e 

No attempt vras made to investigate the best initial 
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value asswnptions in terms of representative aquifer 

parameters as the choice of initial values usually only 

affects computer time requirements and is therefore' not 

of fundamental importance to the problem being analysed. 

However at 1017 differences in .. ra-ter levels it Tras 

observed that initial values calculated from equations 

4.4-4, 4.4-5 and 4.4-6 gave a free surface that eras too 

low near the 17ell. After a number of i tera-Gions the 

piezometric heads in the field near the well increased 

to values greater than the height of the free surface 

vertica.lly above. The free surface adjustment could 

not cater for this situation, so that a solution could 

not be obtained by the usual method. For this reason 

the Dupuit curve between hs and h was employed to 
e 

calculate an initial free surface position and a solution 

was then obtained wi thou-t further difficulty. In all 

ca,ses, by calculating discharge values at each vertic-al 

grid 1 ine, an indi cation could be obtained, wi thin a few 

i tera,tions, of whether or not the initial assump"lOions were· 

suitable so that the selection of appropriate initial 

values presents no real problem. 

4.4.2 Initial values for F££ch~~er solu]lQn§ 

The computer time per iteration is considerably 

longer' for nonl inear flow than for linear Darcy flow 
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analyses because of the greater complexity of the finite 

difference f.ormulae for the former. A saving in computer 

time can therefore be effected by solving a given flow 

si tuation on the basis of Darcy's Law <md then using the 

results as initial values for the nonlinear solutions. 

For tw;n-dimensional flo;'! problems, the results from 

the Darcy solution -;Tere used directly as initial values 

for the nonlinear analyses. For axisymmetric problems, 

however, the Darcy solutions .rere modifi ed -to obtain 

ini tial values whi0h further reduced the compu~cation time. 

This modification was based on a corresponding confined 

flo·iT problem for which exact solutions can be obtained 

for both Darcy and Forchheimer flow. Observation of the 

Dv,rcy and Forchheimer confined flolT solutions at corres-

ponCl.ing radii showed that the difference between JGhe 

ForchhGimer head velue and the Darcy head value, bore an 

approximately constent ratio to the difference between the 

Darcy head vt?,lue and the external head h • 
e 

This 

observation led to e method of obtaining better initial 

vEO,lues for the axisymmetric nonlinear analyses. 

The value of the discharge QF for confined Forchheimer 

flo,7 is obtained from equation 3.1-4 using JGhe same water 

levels h 
-r I. 

and h at rand r respectively, and assuming e 17 e 

any convenient aquifer thickness B as this does not 
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affect the distribution of piezometric heads o The 

piezometric head for confined Forchheimer floTT, FHC( r) , 

at any radius r can then be obtained as: 

FHC(r) = h 
1'T 

00. 4,,4-8 

The corresponding piezometric head for confined Darcy 

flow DHC(r) is given by: 

In(r/r ) 
DHC(r) h + 17 (h - h ) --

If In(re/r ) e 17 
.*004 0 4-9 

w 

If FH(r,z) is the required initial value for the 

Forchheimer analysis at any point r,z and if DH(r,z) is 

the solution at the corresponding point from the 

numerical analysis of Darcy flow, then FH(r, z) can be 

obtained from: 

FH(r,z) - DH(r,~ = 
h - mr{r,z) 

e 

FHC(r) 
h 

e 

- DH.91cl 
DHC(r) ... 0. 4\>4-10 

The improvement of initial values so obtained enhanced. the 

speed of solution by up to 50 percent in some cases. For 

101'T he8_0. gradien-t,s the relation: 

FHfr,~) _ FHG r' 
DH r,z) - DHC r 

was also found to give satisfactory initial values for the 

nonlinear Forchheimer analysiso 
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4.4.3 Initial values for exponential solutions 

For two-dimensional flo1'T, the Darcy results vere 

used directly as initial values for the a.llalysis of 

flofrs obeying an exponential head loss relation. For 

axisymmetric flow, initial values ;;-ere obtained in a 

manner analogous to that for Forchheimer flow. The 

discharge QE for a corresponding exponential confined 

flo1'T problem can be obtained from equation 3.1-6, so 

that the piezometric head for confined exponential flow', 

EHG(r) , at any radius r can be obtained as: 

EHG(r) = h 
w 

I-m I-m 
r - r vr 

00 •• 4.4-12 
I-m 

If EH(r,z) is the required initial value for the 

exponential flow analysis at any point r, z, and DH(r, z) 

is the numericl),l solution at the corresponding point for 

De,rcy flow then EH(r,z) is obtained from: 

EH(r,z~DH(~ = EHG r - DHGL~l 
h -'J5H{'r,z)~ h - DHG rj 

e e 
•••• 4.4-13 

where DEG(r) is again obtained from equation 4.4-9. 

Alternatively the relation: 

EHtr,~ = 
DH r,"ZT 

EHG r 
mre r 

is employed for 10.T' hydraulic gradients. 

•••• 4.4-14 
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4.5 Qillvergence of Finite Difference Numerical Solutions' 

The iterative method used in the solution of the 

finite difference equations is the Gauss-Seidel procedure 

of successive: displacements with an over relaxation 

fac'tor. The method, which appears to have been first 

introduced for elliptic differential equations by 

Liebmann (1918), uses the latest values of the function 

at all points when calculating the improved value and 

al so incorpora-tes an over correction for the nevr value. 

Yne method has been discussed at some length by Forsythe 

and Wasow (1960), who pointed out that convergence is not 

guaranteed for all systems of equations. 

TI,e over relaxation process may be represented as 

follows:- if h(n) represents the value of h, at a 

particular 

hI (n+l) is 

node, obtained from the nth iteration and if 

the value at that node which would be cal cul-

ated by direct application of the finite difference 

equation for the n+l th iteration, then the over corrected 

value actually -ball:en, h(n+l), is given by: 

h(n+l) = h(n) + W [h'(n+l) - h(n)] co. •• 4 0 5-1 

in which W is the over relaxation factor. The selection 

o,f the optimum over relaxation factor to give quickest 

convergence to a solution is a problem which has only 

been solved for isolated cases. Young (1954) formulated 
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rules for deriving the optimum factor under certain 

condi tions. Russell (1963) suggested equations for' 

determining optimum under relaxation factors (W < 1) for 

numerical solu'bion of the Ne.vier-Stoll:es equations. 

However for most elliptic differential e,quations the 

selection of an optimum value of W cannot yet be carried 

out on completely theoretical grounds and must be 

obtained from a trial and error approach. The factor 

will usually depend on the finite difference operator 

itself 2.nd also on the shape of the field in TIhich an 

equation is to be solved. 

Because of the importance of the Laplace equation 

in ma.,'w fields, -the convergence of finite difference 

solutions to this equation has been ree.sonably -"ell 

studied. Thorn and Apel t (1961) evaluated the relative 

merit of the unit square and higher molecule formulae for 

solutions to tho i.ro-dimensional Laplace equation using a 

desk calculaior. Thoy showed thaJG, 1Tithout using an 

over relaxation process, the 'lOa formula' (equation 

4;2.8) could be up to five times as 'fast as the unit 

square formula for a square shaped field of values. 

However Jeppson (1966), in Laplace. soluiions to free 

streamline problems on the inverse plane, showed that by 

using optimum over relaxation factors with each formula, 
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the computer "0ime saved by using the '100' formul a was 

only 25 percent of that required to obtein a solution with 

the unit square formula. This does not give en exact 

indication of the reI ati ve merits of the formulae because, 

in free streamline problems, not all of the' time is 

involved in applying the finite difference operators; 

but it does indicate that, with computer a::;rplications 

and with appropriete over relaxation factors, the 

discrepancy in relative merits of the formulae is 

considerably reduced. 

Jeppson (1966) obtained optimum over relaxation 

factors for the two finite difference operators by 

plotting the results of trials with a number of values 

of W. His results are reproduced in Fig. 4-5-1. This 

shows that for the rectangular field considered the 

optimum over relaxation factor for the uni-t square 

operator w.as approximately 1.5 while thet for the higher 

mol ecul e formula was approximately 1.3. 

The optimum value of the over relaxation factor 

va.ries with the shape of the finite difference grid even 

for one particular operator but, for the unit square 

Laplace operator, it usually has been found to be in the 

range 1. 5 to 1.8 and, for the axisymmetric flows analysed 

in this thesis, a value of about 1.6 to 1.7 was found to 
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CONV:<:RGEl-!CE OF FINITE DIFFERENCE SOLUTIONS 
LAPLACE EQUATION (After Jeppson, 1966) 

yield best results. For the higher molecule formula 

used in tim-dimensional flovr solutions a lOTTer value Tras 

used in accordance with the results of Jeppson (1966). 

The general theory of convergence of finite difference 

solutions for nonlinear elliptic partial differential 

equations has not been developed in any detail amI the 

selection of appropriate iterative methods is still 

largely a matter of trial and error. For some nonlinear 

equations, such as the Navier-Stokes equations for steady 

incompressible fluid flow, an under relaxation process 



135. 

must be used to obtain convergence of numerical solutions; 

that is, VI in equation 4.5-1 must be less than unity. 

For this reason a number of trial runs were carried out 

with the nonlinear finite difference operators using an 

over relaxation factor of unity, or in effect no over 

relaxation at all. As no difficulty was experienced in 

obtaining convergence, a series of over relaxation factors 

between 1 and 2 were employed to determine J0he optimum 

over relaxation factor for a typical problem. 

The surface adjustment affects the solution at interior 

nodes although surface adjustments are best carried out 

with a reasonably settled field of values so that, in 

determining the optimum over relaxation factor, the free 

surface was assumed constant and the solution obtained 

for the field of values under this surface. For a range 

of values of Yr, the number of iterations required to 

obtain a given ac curacy of solution was determined. The 

accuracy was stipulated as a maximum change between 

successive iterations of 1 x 10-6 in the value at all 

points in the field. Fig. 4-5-2 show's a plot of the 

number of i te,rations required to obtain this accuracy, 

against the corresponding over relaxation factor for the 

particular problem investigated (in "ilie case of 

Forchheimer flow). 
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! 
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FIG. 4-5-2 

The optimum 

Over Relaxation Factor W 

OPTIMUH OVER RELLXATION FACTOR FOR FORCHHEnmR 
FINITE DIFFERENCE SOLUTIONS 

over relaxation factor from Fig. 4-5-2 is 

approximately 1.7. The curve depicted in Fig. 4-5-2 

shows the results obtained from a particular two-

dimensional flow problem but the value of 1.7 was found 

to give a compe"Ta,ti vely fast rate of convergence for all 

the Forchheimer finite difference analyses including tho se 

for axisymmetric flo·17. 

'I'he results of a similar investigation into the 

convergence of the exponential finite difference solution 
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for the same problem are sho1m in Figo 4-5-3. 
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FIG. 4.,.5-3 OPTIhiUM OVE:;:t RELAXATION FA C '.;'0 R FOR 
EXPONENTIAL FINITE DIFFZ£t:!SHCE SOLUTIONS 

Prol<! Fig. 4-5-3 the optimum over relaxation factor for 

the exponential flolT solutions is approximately 1.6 .• 

In obtaining the numerical finite difference 

solutions allowance has to be made for adjustment of the 

bounda1Y values both at the free surface and at the 

bottom boundary. The position of the lower impermeable 

base is fixed and the finite difference form of the 

boundary condition at this boundary is applied each 
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iteration to obtain improved values. However the free 

surface adjus-bmen-I; involves a change in the boundaries 

of the actual field being solved and, for a stable 

adjustmer._.J(, "t,echniquG, the free surface boundary condi -bion 

is applied only after the field of values is reasonably 

well 'settl ed dO-~ffi' • Thus for -:l:te firsi three or four 

surface adjustments, tuenty or more iterations were 

carried out per surface adjustment until the field of 

values was f2,irly stable, after which only three or four 

iterations per adjustment were needed. The exact numbers 

of iterations v2,ried for different problems and the most 

appropriate values ,'Tere determined at the time of 

4.6 ~neral Prog~~rangement and Ouiuui of Fi~ 
~ifference Solutions 

'I'he firri te difference numerical solutions -'Tere carried 

out using -the University College of Torffisville's IBM 1620 

computer with ex-i;ended memory capacity. Mo st of the 

programs lTere wri tton in PDQ Fortran, 'Thich is a 

modification of Fortran II and which operates approxima-cely 

three times as fast as Fortran II, although it has limited 

error detection facilities. The programs were arnmged 

in sets of lin'" progra,ms using a 'common' data storage 

area so that the maximum number of nodal points could be 

included for each problem anal~ed. Because of the 
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amount of computer time rec,uired on the IBM 1620, the 

programs TTero written so that the iterative process could 

be interrupted at any stage and then continued on from 

this stage at a la-cer time. 

TI"e' interrelation between cOQPuter programs is 

shown in Fig. 4-6:..1, The initial position of the free 

surface is calculated in the initial input program for 

Darcy flow; the finite difference grid is set, to· a 

predetermined scale throughout the field and the short 

arm lengths, 1'There the grid lines intersect the free 

surface, are calculated. Initial values for piezometric 

heac1 are then set at all points in J6he field. The Main 

Program for Darcy floiT is ceo,lled into the working section 

and the iterative solution of the finite difference 

equations is carried out including automatic adjustments 

of the free surface. The flow- calculation program can be 

c8,11ed at any stage to print out the flo17 across each 

vel'tical grid line. A compo,rison of these flows serves 

as a continuity check and gives some indication of the 

accuracy o.f the solution. This feature was incorporated 

because it is sometimes difficult to ascertain the 

accuracy obta,ined simply from the change in value at a 

point between successive iterations. After completion 

of the flow calculation, the program can either return 
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to the fvlain Program for more iterations or procee,d to 

plot eque,l head lines and lines of equal flow. 

The Darcy solutions for piezometric head \'i'ere then 

converted to initial values for either Forchheimer or 

exponential flov analyses; for tvo-dimensional flow, the 

solutions were input directly as discussed in section 404. 

The procedure for solution of either the Forchheimer or 

exponential flow problems was similar to that described 

for the Darcy solutions. In tho case of the Forchheimer 

solutions for axisymwotric flol'T, provision was made for 

the inclusion of a fine grid area near the well to 

increase the accuracy in determining tho height of -the 

seepage surface. 

The average value of discharge calculated from the 

finite difference solutions was printed out while a flow 

net for the problem was produced by the on-line plotter. 

The flo'l'1 net showed equal he20d lines and lines of equal 

flow throughout the field including tho fine grid area 

when this was incorporated in a solution .. 

4.7 .Ei!1-i te El ement ,Methods of Analysi s 

Many probl ems involving elliptic partial differential 

&quations can be related to the minimisation or maximi

sation of an integral. This property, which is discussed 

more fully by Courant ruld Hilbert (1953), leads to an 
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alternative variational formulation of -the problem. 

Instead of attempting to solve the partial differential 

equation in its original form, the problem is converted 

to one 0 f maximi sing or minimi sing an integral throughout 

the fi eld. 

Although originally developed as a direct application 

of the principles of structural analysis, the method of 

finite elements 11:::,"s since been shoT,rn to have wider 

a~plications. De Veubeke (1965) showed that it could be 

interpreted on the basis of minimisation of the total 

potenti2,,1 energy of a physical system, and in effect 

becomes a numerical method for the solution of problems 

anc'vlysec_ by the vcLyiational principl e s of mechani c s? 

vrhich were discussecl by Lanczos (1962). Zi enId ewi c z 

and Cheung (1965) demonstrated the logical extension of 

the method of finite elements to sol ve the 0,1 terna.JGive 

variational formulation of field problems involving 

+ t ' 8h 'f' elliptic partial differen Jial equa -lons & -L~ e specJ_ ·lC 

equations they solved were those of Laplace and Poisson. 

The method is ideally suited to the analysis of problems 

invol ving nopjlOmogenei ty and anisotropy for linear flow 

through porous media, as shoTm by Zienlziewicz? Mayer 

and Cheung (1966), i'Thil e Finn (1967) and Taylor and 

Brown (1967) have demonstrated its versatility in 

handling free streamline problems wi th the Lap18,ce equation. 
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4.8 Ma thema ti cal Considerations and Boungarv Condi tlons 
-;i th_fue Fini te ~!;l ement rVlethod 

Equations 2.4-7, 2.5-25 and 2.5-30 are the differen-

tial equations for ~hich solutions are required in the 

flow domain. For purposes of discussion, consider flow 

through the dam TTi th a lOITer impermeabl e boundary as 

depicted in Fig. 4-8-1. 

FIG. 4-8-1 FLOW THROUGH A D1Jvl 

A function h is required which satisfies equation 204-7, 

2.5-25 or 2.5-30 inside the domain ABCDEA. The boundary 

conditions are similar to those outlined for floTT through 

a permeable vall, in section 4.3 and can be stated 

briefly as follows: 

h 

h = 

h = 

h = 

h 
u 

hd 

Y 

y and 8h 
~ 

on AB 

on DE 

on CD 

0 on BC In which n is the 

direction of the normal to 

boundary at any point. 

the 



£h = 0 an on EA 
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The mathematical theory behind -/:'he variational method 

has been developed in some detail for linear ]?2.rt.ial 

differential egw:djions. It has been shown (Forsytho and 

Wasow, 1960) that only self-9Jd,joint problems can be solved 

by minimising an equivalent integral expression. For a 

given differential equation; 

L(h) = 0 .e •• 4.8-1 

the requirement for a self-adjoint problem is tlH1:t -the 

operator L itself be self-adjoint and that the boundary 

conditions take a s"Decial form: 

ah + A + f3 ~~ + 0 ~ = 0 4.8-2 

in lThich a , A ? f3 ,0 are continuously differentiable 

functions of s on the boundary; a~ is the inner normal 

derivative and ~~ the positive tangential derivative on the 

boundary. Conversely - " II the boundary condi tions tal'i.:e the 

special form (4.8-2) and if the operator L is self-adjoint, 

the problem is also self-adjoint and may be solved by the 

variational metno c. 

For -I-n' e '>'enor"l .I b .. _\,... LV variational problem: 

E(h) = f f G (h, 
R 

h 9 
X 

h , 
Y 

x, y) dxdy • • •• 4.8-3 

the Euler equation, from the Calculus of Variations 
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(Pars, 1962) for the minimisation of E in the region R, is 

.£Q a (oG) 3 (aG) = 0 
311 - ax Dh - 3y' 8h x y 

' •• 0 408-4 

and if the boundary' condition is of the special form 

( 4~8-2) it is callec'l the nature.l boundary condition beCE'-l.lse 

i{, is automatically satisfied by the function h minimising 

3(h), Tn thou t being impo sed (Forsythe & Wasow, 1960) 0 For 

the expression given in equation 408-3 the "Ilalues of a, A , 

fJ, 0 can be shown -to give the natural boundary condition: 

aG 
ail x 

o • • •• 4.8- 5 

Thus if the actual boundary condi tions in a given p'T'ohlem 

(3,re of this "natural if type, the variational method is a 

pOl'Terful analytica,l technique because it requires only the 

minimisation of the integral ~(h) 'wi thout any special 

allowance for boundary conditions. 

The mathematical bach:ground for the applic:::,tion of 

the variationa,l method to nonlinear partial differentia,l 

equations appears to he l'elatively undeveloped and, at 

this stage, guidance can only be obtained from the 

conclusions rev,ched for the linear case. Thus, for a 

given nonlinear equation, if it is possible to derive an 

integral expression E(h) such that minimisation of E(h) 

according to the Eul er equation yi elds the origina.l 
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differential equation and if the boundary condition is of 

the special form of equation 4 0 8-5, then such a nonlinear 

eouation should be tractable by a variational formulation. 

It should be noted that the boundary concH tion mp"y 

differ from the D.c.,t,ural one for some sub-section of the 

boundary, provided ihis new condition is then imposed on 

the solution, such a condition is the requirement that h 

have prescribed values on AB and CDE in Fig. 4-8-1. 

4.80 I ~rc;r flow 

According to equations 4.8-3, 408-4 and 4 0 8-5, .the 

Laplace eqmd:.ion is mcd:.hematically equivalent to minimising 

the 

E(h) 2 2 f f [( h) + (h) J dxdy x y 

with the naiural boundary condition: 

or ah 
an 

911 dy + 2h £2:; == 0 
WJ. x ds ., Y ds 

== o 

" •• " 4.8-6 

•••• 4.8-7 

o 0 () 0 4.8-8 

The natural boundary condition 4.8-5 agrees with the actual 

one along the fr8e surface and along the impermeable base 

since zero head gradient perpendicular to the boundary 

fulfils the requirement of no flow across it. 

4.8.2 Nonlinear flow 

In order to express equation 2.5-25 as equivalent to 
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minimising an integral, according to the general expressions 

4.8-3 and 4.8-4, -bhe following requirements must be met: 

SQ = 0 ah 

[-
I l~ l (-11 ) ) oG C1 

a + J (-.§) 2 + s x ) 8h = u = -
b J Ihs I 2b ~\ 2b 

) x 
) eo I) -0 4.8-9 
) 

C1 [ - J 2 Ihs I J (-hy~ I 

oG ~ '" ) 
oh = v = ~ + (~) + ) 2b 2b b Ihsl y ) 

in which C
1 

is 3ny constant value o If C
l 

is put equal to 

-1 ~ these requirements are fulfilled by the functio'n 

3 

[ 
2 h ] /2 

~ a 2 a s 
u = - ._- I h I + -b (-) + ~ 

2b s 3 2b b •• " 0' 4 0 8-10 

and the integral to be minimised is 

S(h) -
3/ 21 

] dxdy 
J 

••• ~ 4~8-11 

'The nature.l bouncif!vry conCti tioD is 

oG ~+ oG .s'£s 0 8'h 3h = ds ds x y 
•• 0. 403-12 

or ~ dx 
0 u - v- = ds ds 00 .... 4 0 8-13 

-h 
stY: 

h 
~ or x + (a+~lvlr 0 '[a+blvIT = ds ds 00." 4~8-14 

This reduces to 



h .9:.Y+h M 
x ds Y ds 

£h - 0 on -
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0 ••• 4.8-15 

which again agree s iIi -th -the ac -tual boundary condi tion on 

the free surface and along the impermeable base. 

A similar an01ysis for the differential equation 

2.5-30 ShOTTS that the integral to be minimised is 

E(h) = fflll 1m c 

TTi tIl the natural boundary concli tion: 

For c and m const,ant,s the 

to m+l -
E(h) = ffh s 

m 
dxdy 

4.8.3 Concepts of-energy minimisati~~ 

dxdy 

...... 4'1> 8-17 

•• 00 4.8-18 

In treating problems of flow through porous media, 

velocity is usually considered. as the superficial velocity 

or flo17 per unit total area, ignoring the presence of the 

solid particles; the piezometric head value at a point is 

considered to be the average of values over a region of 

fluid and medium centred on the point in question. For 

analytical purposes therefore, the fluid-medium system is 

replaced by an imaginary fluid occupying the total volume 

and Tmich behaves in a manner governed by the veloci ty 
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he~d loss relation for the flow. 

When Darcy!s Law is valid the imaginary fluid 

behaves analogous to an ideal fluid in irrotational flow; 

because, al though 8_11 the energy is assumed to be 

dissipated in friction, the head loss relation is of such 

a form that the imaginary fluid occupying the total volume 

can be considered as a frictionless fluid wi thin -the same 

From hydrodyne,mic theory (Lamb, 1932) , it can be 

shown that the integral: 

ff{u £Q + v~) dxdy 
. Ox ay • 0 • 0 0 4.8-19 

(for t,ro-dimensional floTT) represents the rate at which 

the pressure forces do l'1Ork on the boundaries of. all 

elements of a fluid in a gi ven region. Wilen the 1"lo1'k done 

by gravity is include~ the integral becomes: 

ah oh 
ff{u ox + v ay) dxdy ••• 0 4.8-20 

This I'Tor1l:: done on any portion of the fluid has two possible 

effects. It may either increase the kinetic energy of the 

fluid or it may be dissipcLted 2JS some other type of energy, 

for examp1 e heat energy, due to the action of vi SCDUS 

stresses in the element. 

The r8.te of increase of kinetic energy is given by 

d [l( 2 2 I . dt '2 u + 11 ) J at any pOl.nt. That is: 
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u 
du + v dv 
dt dt 

( au au f £.11) + (0'1 + 
oy + v .2Y) u at + u T 7 V ~- U ax ax ay at oy 

In deriving Darcy's La"\T on a theoretical basi s from the 

Navier-Stolr;.es equations, it is assumed that all terms of 

the type included in bracl'=.ets in the expression 408-21 are 

negl igibl e. means that the rate of 

increase in kinetic energy at any point in the flolT is 

considered negligible, so that, if Darcy's Law- epplies 

then all the \'Tork done by the pressure and grevi ty forces 

must be dissipated as friction. 

In actual practice the expression 4.8-20 ~'Till only 

exactly give the rate of energy dissipation when there is 

no change in the velocity components throughout the flow. 

This is also -~he only situation in which Darcy's Law will 

hold exactly becfmse, if there is a change in veloei ty then 

there will be a change in kinetic energy, and some of the 

1 d 7 ., d wory;: one oy -Gne pressure an .," , b gravl-cy 1:orces musv e 

responsibl e for this change. As a result the integral 

4 0 8-20 Tfould not then precisely express the rate of energy 

dissipation. 

Ho,Tever when Darcy's Law applies, the integral 4.8-20 

do es repre sent the rate 0 f ener.gy eli ssipa -tion as ShO\,ffi by 

Muskat (1946). Thus in ap:9lying the method of finite 



151. 

elements -to D<lrcy flow, the minimisation of the integral 

reCjuirement for -'vhe r8,te of e:.1.ergy di ssipation in the flow 

to be a minimum, as ci.iscussed by Zienkiewicz, Mayer and 

Cheung (1966). 

Engeluncl (1953) b:riefly considered the Calculus of 

Variations e,s applied to groundwater flow. He considered 

a nonlinear relation in the form: 

i = F( I V j) V 0000 0 4.8-22 

In Trhich F( I V!) = a + b I V I 
After obtaining expres sions for v_ and v from eC.1Uation 

system describing the flow becomes: 

0 ••• 4.8-24 

Engelund suggested that ec.;uation 4.8-24 ,'[as, by virtue of 

Euler's theorem, equivalent to minimising the expression: 

IJ (h ) 2 + 1 (h ) 2l If!! x F -y J dxdy •••• 4.8-25 

However "I'Ti1.en F is defined as in equa,tion 4.8-23, it is a 

function of V and therefore of hand h so that al)plication x y ..L_. 

o·f the Euler theorem to the expression 4.3-25 do es not 

yield equation 4.8-24 in this case. 

In addi-tion, the expression 4.8-20 has not been shown 

to represent the rate of energy dissip'ation when Darcy's 
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LaVT does not apply. The reason for the application of a 

nonlinear equation ~ rather than Darcyl s 121,,[, is to ac count 

for the contribution of terms such as those included in 

brackets in 4.8-21. Thus for nonlinear fioTT the rate of 

change of kinetic energy can no longer be considered 

negligible. This means, in effect, that, the integral 

4 0'3-20 noW' represents the sum of the rates at which 

kinetic energy is being increased ,,"nd at which energy is 

being dissipated in friction. Hence for the case of 

nonlinear flow in porous media, although the integr2-1 

4.8-20 can still be evaluated, any physical significance 

in terms of minimising the rate of energy dissipation, is 

lost. 

4.,9- . Detail s 0 f the Met~od for Tllingular ]1 ements 

'.:'he numerical techniaue of finite e1 ements has been 
-'-

applied to linear seepage problems as noted earlier 

(Zienkiel'ricz, rilayer 2~nd Cheung, 1966; Finn, 1967· 9 Taylor 

f..nd BrOTTil 9 1967), "llhil e Fenton (1968) adopted the technique 

for the analysis of flo,'[ governed by the exponential 

relation and compared solutions for different values of 

the exponent m. 

Consider 2. general region divided into -tri a.ngular 

el ements wi ih one par~Gicular e1 ement denoted by nodes I, 

J, M as shol'TU in Fig. 4-9-1. 
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FIG. 4-9-1 THE FINITE ELEMENT FOREULATION 

The clements are assumed to be small enough so that 

the node,l values of 11. accurately define the piezometric 

head function TTithin each element. Then by representing 

the function as 8, li!1ear polynomial in each el emen-t and 

minimising the integral E(h) in equation 4.8-6 with 

respect to each nodal value, Zienkierricz (1967) has shoTrn 

thc:,t, for Darcy flow, a solution is obtained from ::t set of 

simultaneous equations in 11.1 where 11.1 is the piezometric 

head value at node I; I has values 1 to N for N nodes. 

These equations may be solved by an i terati ve method for 

the unknoiID vc:,lues of hI" 

For the particular el ement IJM, 11. may be expressed as: 

+ (Cl,., + bil,x + c,,'y)hu M 1\'1 1V1 Ivl 
• • •• 4" 9-1 
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xJYM - x-"YJ ) 
I'Thich 

I'll ) in a I = 2!:::. ) 

Y - YM 
) 

b --
J ) 

4 0 9-2 = ) 1. 2!:::. o • 0 0 

) 
:;~ ~ - xJ ) 

c r = -1:L ) 
2!:::. ) 

and the remaining coefficients are obtained by cyclic 

permutation of subscripts; and 2!:::. = 2 x area of triangle 

IJM. 

The process of minimisation of the integral E is best 

accom~lished by evaluating the contribution to each 

d · ff J.' 1 hoE f' t· lIt .1.h 1 eren l<la , suc~ 8,S 3h-_' ~ rom a yplca e emen , u en 
.L 

adding all such contributions and equating to zero. 

L simi120r a?proach based on triangular elem~:mts will 

be used in the present, analysis for the nonlinear flow 

problem. 

For flow governed by the Forchheimer equation the 

integral E(h) to be minimised is given by equation 4.8-11. 

~f .,."e , 
.l J:!, 1 S the value of E associated with an element 

( , l' 'i_ t' l'·..l. ~. .1.-1m}) ylng an In'c,egr2J lon llYll \JeeL -00 vl1.0 a,rea of -the 

element) then'differentiating equation 4.8-11 yields~ 

dxdy 

.0 •• 4,,"9-3 
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but 
2 " 2 ::: (11 + h t:.) 

X Y 
.0 •• 4 0 9-4 

so that ::: 4.9-5 

and since h 0 hand. h are assumed constant over the area 
s' x y 

of the element then~ 

From equation 4.9-1 it may be ShO,ffi that: 

h 
oh 

bIhI+ bJhJ + b .. h'\A ::: 
Ox = 

'" 1\;i I. 
"" 

h 
ah 

f' h + 
, 

.L C'O\ ~h.." '; .-
oy 

~~,--

~r'-I C
J

11
J • 

Y M IV, 

and since ff CLxdy ::: t:" 

£];e !::. [- ~ + [ (~) 
2 

then oh
I ::: Ihsl 

+ 

.. [b I ( bIhI + bJhJ + b. ,hM) + 
111 \ 

or 

in TThich A 

) 
) 
) 
) 

~ J~J 
cI(crhI 

• • •• 4.9-6 

••• 0 4,,9-7 

o , 0 0 4.9-8 

+ cJhJ + cMh1vI ) J 
0- 0 0 0- 4.9-9 

• • •• 4 .. 9-10 

4.9-11 
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Since any element contributes to only three of the 

differenii['.,l sasso ciated wi th its nodes: 

[~J = • • •• 4.9-12 

then [ 
aEe I 
3h" J == 0- 0 Co 0 4.9-13 

in which an example of Oile element of the S mat,ri.x SIJ is: 

4.9-14 

The final eCluations are obtained by adding all parts of a 

d 'i" t' 1 ' em r. lIlt -'- d J 1 'xeren la sucn as ohI Ior a e emen s connecue GO 

Node I and eouating to zero. :J. ::> 

•• o. 4.9-15 

•••• 4.9-16 

For flo,\T governed by the exponential relation the 

integral to be minimised is given by equation 4.8-18. The 

process of minimising the integral associated with Em' element 

again leads to equation 4.9-13 in which one term of the S 

matrix is given by equation 4.9-14 except that in this 

case the ractor A is: 
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.A = 000 0 409-17 

Assembly of tl1e total derivative for any node again yields 

equation 4.9-16. 

For all nodes the result is a narrow band vidth set 

of simul taneous aqua tions in hI' hJ' hM' 0... etc ,thich may 

be solved by an iterative method. The iterative procedure 

used \'Tas the accelerated Gauss-Seidel method vrith an over-

relaxation i'actor of approximately 1.7 J thi s has be en 

sho,'ffi to give ra.pid convergence of the finite difference 

solutions and 'was found to be satisfactory for the :fini te 

element solutions also. It should be noted that· the 

expressions for A as given by equations 4.9-11 and 4.9-17 

contain the deriv2.tive h vhich must be evaluated in terms 
s 

of the nodal values hI' h J and hM• Thus, in order to sol ve 

for values of h ai the nodal :points SOlTIe ini tial value at 

each of these points must be kn07ffi. The solutions -'GO the 

Darcy flow situation provide convenient starting values 

for h at the nodes. The procedure is to calculate the [S ] 

matrix in terms of these ini tial values and then sol ve for 

more accurate values of hI' hJ ? hM etc; then use these more 

accurate values to re-form ·the [S] matrix and calculate 

more accurate values still. The process is repeated until 

the change in successive values of hI' hJ' hM' •.•• etc is 
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negligible. To determine the optimum number of iterations 

uerformed between successive formations of the [S ] matrix, 
.;: 

a compromise has to be reached between: ( a) the time 

taken by more iter2-iions pToducing only small 1 • cllanges In 

the values, and (b) the extra time involved in setting up 

the matrix more times at an earlier steege -;:Yith less 

accurate values of h at the nodes. This optimum number 

will depend on the problem in hand but for the problems 

solved in this thesis, from 10 to 15 iterations betwec<n 

successive formations of the [SJ matrix were fou!ld ·to give 

shortest overall computer time requirements. 

The method used for hand.ling the fr0e surfac(:')'!ms 

similar to that outlined by 2inn (1967). If y and hare 

both mesosured from the impermeabl e ba.se as datum .!..' Gnen one 

boundary regr!.irement on the free surface is that h = y. 

The ini ti 801 po si -ilion of the free surface "I'JaS taken as the 

result obtained for Darcy flow. Surfcwe adjustments to make 

y = h on the top boundary Trere carried out after the 

values of 11: had 'settl eel do 1m I under the assumed boundary 

at any J • Glme. Usually only 1 or 2 adjustments were needed 

to' obtain an agreement betwoen y and 11 to wi thin 1 percent 

for the flows vrith no cut-off I'Jall; ho,vever 9 for the flows 

Trith cut-off walls the increased complexity in the bottom 

boundary shape necessitated more adjustments to the free 

surface. 
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The ini tial po si tion of the free surface for the 

C1nalysi s of flow through a dam Tms ob-t,2,ined by sketching 

Tthile the ini tial values of piezometric head at the nodes 

i'lere guessed from the 2AljELcent free surface height 2..nc1 

were incorporated ;'{ith the input data for the nocleso 

The finite element solutions were output by plotting 

the elements with the on-line plotter, and printing out 

values of piezometric head at each node and velocity 

components for each element. The position of the free 

streamline WB,S therefore obtained automatically from the 

plo tter au -t,pu t ;rhil e equal head lines coul d be sketched by 

hand from the nodal head values. The discharges across 

a number of vertical grid lines throughout the fiel-d w·ere 

calcu12,ted anet the average of -these gave th2 fini te 

element solution for discharge. Because of the difficul ty 

of irriting a general computer program to plot equal flow 

lines from a random arrangement of elements? these flow

lines were not usually included in the finite element 

outputs. However y there is no disadvantage in this 

because all the desired information about any particular 

flow problem can be obtained from the plot of piezometric 

head values. 



~HAPTER ~ 

EXPERIMENTAL APPARATUS AND PROCEDURES 
t -

5 .. 1 Permeameter Tests 

T~ determine appropriate values of the coefficients 

in the head lass relations, permeameter tests were 

carried out on the aggregates used in the experiments. 

The constant head permeameter I'TaS an upward floW' vertical 

type of length 3 ft. 6 in", with piezometric head 

measurements being taken over a 1 ft. 6 in. central 

section. The permeameter TTaS constructed from 1/8 in. 

perspex tubing of 6 in. outside diameter. Four brass 

taps, spaced 6 in. apart vertically, anet at each corner 

of the four quadrants of a circle, served as outlets to 

manometers for pressure measurement. 

Water l'ras inlet to the permeameter via a steel baSin, 

I ft. 0 in. deep and I ft. 9 in. in diameter, which was 

partly filled wi th coarse gravel to dampen any fluctuations 

in the flow. The sample of aggregate Tras supported on a 

gauze covered ring at the bottom, and held in place with 

another gauze covered ring at the top. An overall view-

O'f the permeameter is shown in Fig.5-I-l. 

A thermometer was inserted in the flovr to record 

temperatures; a,nd the flow' rates '\'rere measured gravimet

rically. Petrol ether was used in the manometers, at 

160. 
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low flo'\\'-:- rates, to increase the accuracy of measurement, 

while for larger flows water manometers were used. For 

poro si ty determinations, the permeameter Ims 1'I-eighed 

empty, and again when filled to a measured depth w-ith 

dry aggregate. After obtaining the specific gravity 

of the aggrega-'iie material, the porosity of the sample 

in the permeameter could be calculated. 

5.2 Circular Tank Apparatus for Well-Flow Experiments 

5.2.1 Construction details 

The circula.r tank of' 20 ft. diameter was constructed 

with 6 ft. high walls and ~nth a base formed by a 

reinforced concrete slab 25 ft. square. The walls iVTere 

attached to the slab via a circul ar metal band which was 

rolled from 4 in. by 3/8 in. flat steel and Trhich was 

set 2 in. into the slab. The band and slab reinforcing 

rrere spot welded, and the band was levelled wi th a dumpy 

level before the concrete was poured, to ensure that ..... 
l iJ 

71as horizontal. Special precautions were taken when 

pouring the concrete, to produce a slab surface which 

'iTS"S as uniformly horizontal as possible. A check on 

levels taken over the 25 ft. square, after the concrete 

had set, showed that the maximum deviation of the slab 

from the horizontal was less than 1/4 in. 

The wall s of the tank were constructed from fl exiform 

~mich consists of 2 ft. by 6 ft., 14 gauge metal sheets, 
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braced in the longitudinal direction by light angles at 

8 in. centres. 'fhis allowed the sheets, when bolted 

together, to flex and take up the required circular 

shape. The joint bet,Teen the sheets -vas sealed Td th 

secostrip (a sealing compound in long thin strips), as 

was the joint bet'w'een the wall s and the metal band in 

the slab. The tank was braced in the circum:feren-tial 

direction by 11 in. diameter pipes? rolled to the diameter 

of the tank. Fig. 5-2-1 shorTs details of the flexiform 

t ... -cons ruculon, Tnth circumferential pipe bracing? and 

longi tudinal angl e bracing on individual sheets. 

nro larger remo'vable panels were constructed from 

3/16 in. rolled steel plate to allow access of trucks and 

end loaders for filling and emp~ying the tank. These 

panel s were al so braced TTi th 8Jngle s in the longitudinal 

direction and circumferentially Ynth pipes. Fig. 5-2-2 

8ho1'[Os the tank with these panel s removed. 

5.2.2 Inlet arrangement 

The constant head required at the external radius 

of the simulated aquifer was produced by a porous wall 

of hollow concrete building blocks. The blocks, with 

openings in the vertical direction, were stacked in a 

single layer around the circumference as shown in Fig. 

5-2-3. The water could then seep through into the aquifer 
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material horizontally at the outer boundary. The \'Tater 

for the experiments vras supplied from a constant head 

reservoir via a 5 in. aluminium pipe and hexagonal ring 

main. The ring main was supported on brackets attached 

to the circumference of the model and \'rater 'Was conducted 

into the layer of blocks by a number of l~ in. diameter 

tubes spaced around the ring main. The flow to the tank 

was cantrall ed by a g8Jte valve in the line from the 

constant head reservoir. The inlet arrangement including 

the ring main is shown in Fig. 5-2-4. 

5.2.3 ,9utlet arrangement and flo11 measurement 

The well at the centre of the aquifer was constructed 

from pipe which was drilled over the section subjected 

to flow. A 4i in. outside diameter pipe was used for the 

confined floVl experiments, !"hile one of 8t in. external 

diameter was used for the unconfined tests. The holes 

were drilled at close intervals so that only a skeleton 

of metal remained to support a fine gauze, which covered 

the holes in an attempt to prevent movement of fines from 

the aquifer material 0 For exampl e, wi. th the 8i in. 

diameter pipe, holes of 13/16 in. diameter were drilled 

at 1 in. centres. In this way, negligible additional 

head loss would be incul'red as there is Ii ttle increase 

in curvature of the fIaTT lines at the slots. Al though 
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some slight head loss may result at the highest velocities, 

due to -the small amount of metal remaining betvreen the 

holes, the well can be assumed to be uncased for the 

purposes of the investigation. In each case the l7ell was 

placed at the centre of the taru~ and rested on the 

concrete slab. 

'Ine dreJirdo"iffi to the well was maintained by pumping 

the water bacl':. through flow measuring devices to a 

storage reservoir. Two electric pumps w'ere used to 

produce constant flolTs over extended periods of time. 

For low discharges, a small self-priming unit capable 

of pumping 30 gallons per minute was used while for 

larger flows~ a unit capable of up to 1.25 cusecs 'was 

employed. The flow from each pump was regulated by 

means of valves on their delivery lines. The flow into 

the tan.."k from the main, and the outflow· from the pumps 

were varied to produce constant head condi tions at the 

external radius and in the veIl itself. Measurements 

of di scharge showed theJt the output from the e1 ectri c 

pumps was constant, to a high degree of accuracy, over 

long interval s. 

Two methods of floT{ measurement were used. Most 

discharges 1-1ere measured gravimetrically using a drum 

on a set of scales i'{hich could be inserted under. the 
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outflow for a measured period of time. This method is 

depicted in Fig. 5-2-5 in which only the outlet for the 

small pump is shown, al though flows from the larger pump 

were measured similarly in some cases. 

The other method of measurement involved a 90 degree 

vee-notch Treir with its associated inlet channel, in 

which a gravel \'Tall was included to act as a baffle 

for stabilising the flow on the up'stream side of the weir. 

The Treir had been previously calibrated and the heighJ(j of 

the water above the vee-notch was measured using a hook

gauge. The arrangement is sho'wn in Fig. 5-2-6. 

5.3 Qonfined .Axts~tr:i..2. Flow Tests 

503.1 Technigu.e for £Q.nfining th.£..Jl.QJ! 

A confined aquifer lnts obtained by using visaueen as 

the confining medium. Er:li s i.s a soft, yet durabl e 

plastic-like material which is used extensively in 

constructing ground-level concrete slabs, to prevent 

seepage 0 f groundwater upwards through -the sl ab. A sheet 

of vi squeen 30 ft. square was laid over the aquifer 

medium and Tras drawn up at the sides to cover the layers 

of bricks above -/,:,he 1 evel of the aquifer. Fig. 5-3-1 

shows the vi squeen covering the aquif er medium, and 

ready to be draim up to cover the upper layers of concrete 

bricks at the outer wall. Sand ballast was then placed 



1 • 



170. 

on top of the visqueen to seal it against the aggregate 

in the aquifer and against the outer brick TraIl 0 This 

method of sealing the flow proved to be quite satis-

factory and heads of water at the outer boundary coul(1 

be obtained up to any desired level, by introducing 

sand ballast up to that level. The sand ballast is 

sho~~ in position in Fig. 5-3-2. A section through the 

model sho.'Ting the flow path for the confined aquifer is 

given in Fig. 5-3-3. 

5 0 302 Piezomet~head m~surements 

The depth of ':Tater in the hollow concrete brick 

wall at the outer boundary, was measured by means of a 

standpipe attached to a scale? and connected to a 

tapping point at the base of the tank via a piece of 

flexible hose. A number of these standpipes were placed 

around a quadrant of the circle and the average of their 

readings was taken as the external head h • 
e 

A compari son 

of the readings showed that differences be·tween the 

hea,ds measured i'rere small. Fig. 5-3-4 sho1'TS the 

arrangement for one of· the standpipes. 

The depth of water in the ,'Tell was measured by means 

of an electrical resistance device. This consisted of a 

volt-ohmmeter with its own power source~ and a pair of 

vires ·which produced a change in resistance when a probe 
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(to which they \'Tere attached) passed from air into l'ratero 

The ';'Tires "were bared at -Ghe end for ~ in. and were 

separated by t in. They were wound on a 3/16 in. 

graduated brass rod which could be lowered into the well. 

The change in resistance lThen the probe intered the water 

was registered as a sharp deflection on the volt-ohmmeter. 

Fig. 5-3-5 shows the probe v-Tith bared inre tips9 i'Thile 

Fig. 5-3-6 sholls the vo It-ohmmeter used. 

Since the theoretical calculation of discharge for a 

confined aquifer depends on the difference in level, 

between the water heights in the well and at the external 

radius, as well as on the magnitudes of the heights 

themsel ves, the me,ximum possible accuracy must be ensured 

in measuring the difference in levels. A horizontal 

datum line vms therefore set wi. th a dumpy I evel and the 

depths to the two water levels belo~T this line \'Tere 

measured, allowing an accurate calculation of the 

difference between themo 

It vas originally intended to use porous plug type 

p'iezometers, developed by Casagrande (1949), in determining 

the shape of the piezometric head line through the model. 

However, as these could not be obtained in time, some 

alternative piezometers were fabricated from ~ in. diameter 

pipe 9 i'rllich was drilled wi th 3/8 in. diameter holes and 
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covered with gauze for a length of 4 ino at one end. 

The end "Vras shaped to a point for ease of insertion in 

the aquifer and to ensure that the piezometer rested on 

the base slab. Fig. 5-3-7 sho"l'Vs the end section of the 

piezometer, drilled and gauzed and shaped to a pointy 

while Fig. 5-3-8 shows the whole piezometer. 

iThen the piezometers are inserted into the aquifer, 

the water rises to the level of the piezometric head at 

the point. The piezometric heads at a number of radii 

can therefore be obtained by measuring the depth to the 

water levels in the piezometers? using the electrical 

resistance gauge. 

5.303 Experimental proced~ 

The model '\Tas filled to the required depth with 

aquifer material by removing the gate panel sand allow'ing 

trucks to enter the model and discharge their loads. 

The well was then set into position, the panels replaced 

and the aquifer material spread and levelled by handu 

The thickness of the aquifer VJaS checked with a dumpy 

level to ensure uniform thickness. TIle gravel material 

used in the experiments Tras placed to a depth of 1" 33 fto 

and a check on the levels sho~Ted that the maximum 

deviation from the horizontal Tras less than 3 percent. 
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When the aquifer had been levelled, the visgueen 

sheet w'as laid and the piezometers were inserted and 

sealed in the visqueen. These were placed in t"va lines 

at right angles to enable an average value of piezometric 

head to be determined at each radius chosen. Four 

piezometers were included in each line at radii of 1 ft., 

2 ft., 4 ft., and 8 ft. 'I'he sand used to hold the 

visqueen in po si tion was then placed in the model by a 

front loader. Fig. 5-3-9 shoTTs the tank prepared for 

testing, with the two lines of piezometers and the ballast 

sand in position. 

':later was allow-ed to enter at the outer boundary and 

when the level in the WBll had risen above the aquifer 

depth, pumping was commenced. As a gravel was used for 

the aquifer me,terial, no problem was envisaged with air 

entrainment, after a large flo17 had been drawn through 

the aquifer initially, to wash out any entrapped air. 

However, some small amount may have remained in the 

aquifer but it is not considered that this would have 

significantly affected the results. 

The pump output \Tas set to the req1.cired floTT value 

and -t,he inflow-rate Tras then adjusted until the desired 

head at the external boundary had achieved a steady value. 

By checking water levels and discharge rates before and 
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after each test, it was found that an essentially steady 

s-tate could be maintained over long intervals of time. 

5.4 Unconfined Axisymmetric Flow- TesJ&s 

5.4.1 Experim~ts w.ith cQillplete circle of material 

The confined flow experiments, described in section 

5.3 were carried out using a complete circle of material 

so that no 1rall effects from side walls were introduced. 

However, the agr8ement of results from the two lines of 

p-iezometers at right angles indicated that the flow- was 

accurately axisymmetric as assumed. This demonstrated 

that for small gravGl sizes, a sector of material could 

be used to represent the complete circle of flow- as had 

beGn used by a number of previous researchers, and 

discussed in section 3.2.1. However, one set of results 

was obtained for unconfined flo,r to a central well in 

a complete circle of material. This set of experiments 

was carried out because a sufficient supply of gravel 

material was readily available and because, in this case, 

wall effects were compl etely elimina,ted, and the flow 

si tuation was simil ar to that lill:ely Joo occur in practical 

appl i_cations. 

The experimenta,l procedure ,ras similar to that 

outlined for the <!tonfined flow experiments except that 

the porous plug piezometers had been obtained and were 
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meter, to determine the height of the free surface. 
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These piezometers, ,rhich were discussed by Casagrande 

(1949) were 2 ft. long hollow tubes, porous throughout 

their entire 1 ength. They were placed so as to intersect 

the free surface at a number of points between the veIl 

and the external boundary of the aquifer material. 

However, the water level in these piezometers does not 

exactly represent the height of the phreatic line. 

Hantush (1962b) indicated that, in an unconfined aquifer, 

an unlined well will register the average of the 

piezometric heads taken over that part of its length 

below vater level. The error, thus incurred in determining 

the height of the free surface, can be minimised by 

having only a small length of tube below· water level; 

nevertheless, only an approximate measurement of the 

free surface position was obtained. 

Mea.surements of the water level s at the outer boundary 

and in the vrell, togE:ther ,.,i th discharge measurements, 

1'I'Bre obtained as in the confined flo11 experiments 

discussed in section 5.3. 

5.4.2 Exp&Eiments using ~ sector of material 

A fifty-one degree sector vas constructed as a part 

of the large circular tank described in section 5.2, using 
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the access panel section of the larger tank for the 

outside boundary of the sector, to facilitate removal 

and replenishment of aquifer materials. One radial wall 

of the sector vas constructed from sheet steel while the 

other l7as fabricEOted from perS1Jex. Both shee·ts lrere - " 

reinforced and braced to withstand the pressure from 

the aquifer material and from the ITa tel'. The sheets 

were sealed against the concrete base by' bolting to 

steel angl es which were in turn bol ted to' the concrete. 

The well casing was also bolted dorm and sealed against 

the concrete slab, lThile the radial walls were attached 

to the well via vertical angles welded to the casing. 

The well, of 8~ in. outside diameter, was drill ed and 

g;auzed only over the section enclosed between the 

sector walls. A view of the empty sector, 1rith the 

outside wall removed, is sho'll in Fig. 5-4-1 looking 

towards the well. 

A row of hollolT concrete blocks was c,gain use.d a.t 

the outer boundary- to allow wEOter to percolate into the 

aquifer from a constant level. However, in this case, 

an overflow ,Tas ar'ranged at the outside wall to enable 

a constant level to be maintained with a minimum adjust-

ment of the quantity of incoming flow. Water was 

conducted to the secior via a 5 in. aluminium pipe 

terminating in a tee-section, from "hich six It in. 



180. 

diameter inlet tubes were fed into the hollow concrete 

brick wall. Fi ve standpipes were spaced around the 

outer boundary to check the ,rater level and, by 

adjusting the flo11 in each inlet tube, the external 

head h could be maintained constant to wi thin 1/10 in. 
e 

over the complete sector boundary. The inl et arrangement 

to the sector is sho,ill in Fig. 5-4-2. 

The \Tater level h , in the veIl, was also measured 
w 

wi th a standpipe attached to a tapping point in the 

sealed section of the well crasing. Both levels were 

measured from the same horizontal datum, to eliminate any 

small errors due to variation in the concrete base level. 

Piezometric head measurements throughout the flow" 

were obtained from brass taps inserted into the radial 

steel 'wall at various points. Fig. 5-4-3 shows the 

arrangement o:f tapping points TThich were used for 

measuring piezometric heads. 

The position of the phreatic surface was obtained 

by plotting along the transparent perspex' sheet. Al though 

surface tension effects ,rere small for the gravel 

materials used, they did slightly af:fect the free surface 

height along the perspex sheet. To minimise these effects 

as far as possible, the material was excavated next to the 

perspex sheet, almost to the free surface level. The 
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phreatic' line was then drawn on a square grid 1'Thich had 

been marked on the perspex" sheet. This facilitated the 

recording of the free surface position for each test. 

The measurements obtained by this metho d were shown 

to be satisfactory, by checking the levels in a glass 

tube, of sufficient diameter to nullify surface tension 

effects, vmich was inserted next to the perspex wall. 

This procedure ,taS described by Boul ton (1951) -,rna used 

it to check his free surface heights. 

One free surface line is shoTm as drawn on the 

p'erspex sheet in Fig. 5-4-4. 

5.5 Trro-Dimeu§.iQ.nal Flow- Experime!rt§. 

5.5.1 Gravel ba~ tests 

The t1W-dimensional flow tests T'Tere carried out in 

an open flume 2 ft. mde, 2 ft. deep and with one clear 

perspex side for viewing purposes. Water l1"aS supplied 

to the flume from the constant head reservoir via a 6 in. 

diameter pipe discharging into a stilling basin on the 

upstream side of the flume. The ilUet arrangement and 

an overall view of -the flume are shown in Fig. 5-5-1. 

At the outlet end, the flume discharged into a 

calibra"bed measuring tank. A sot of scales and a weighing 

drum could also be set under the outlet, so that flo1'T 

rate s could either be measured gravimetrically with the 
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scales or with the calibrated tank. The scales are 

sho,m insid.e the calibrated tank in Fig. 5-5-2. 

In the experiments on flow through gravel dams and 

bl1nks no attempt was made JGO model actual dam conditions, 

as the purpose of the investigation was simply to 

determine whether the numerical solution of the 

differential equations for nonlinear flow, could pTedict 

accurately the position of the phreatic surface and the 

quanti ty of discharge, for knovm boundary condi tions 

and material properties. For larger flows therefore, a 

wire screen was positioned at t.he t.OTT of the gravel dam 

-1;0 prevent scour of material on the dOimstream end; the 

flow then ended in a vertical drop off aJG the screen 

resul ting in zero tailwater depth. For smaller flows 

however, the gre,vel material was stabl e ,ri thout the use-

of the screen and a finite value of tailwater depth 

occurred at the downstream end of -I;he flume. No 

experimental or theoretical analysis of stability 

aspects was cont,emplated in this project. 

The gravel used in the dam flow experiments 3 . was 4" ~ne 

nominal si ze and no diffi cuI ty was encountered wi th 

surface tension effects. The free surface position was 

draTffi on the perspex side of the flume and was recorded 

from the grid of lines marked on the perspex. Fig. 5-5-3 
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shows two phreatic lines drawn on the transparent side 

of the flume. 

Measurements of piezometric head in the experiments 

were obtained from tapping points on the steel side of 

the flume. The arrangemen-I; of these tapping points is 

shoi'ill in Fig. 5-5-4. 

Some of the dam flow exueriments involved an 
" 

impervious cut-off wall which "as sealed at the bottom 

and sides of the open flume. A cut-off wall is shovm in 

position in Fig. 5-5-5. 

5.5.2 Tests on permeable walls with vertical side§ 

These experiments were also conducted in the open 

flume. The gravel, in this case, was retained between 

tl'l"O vertical sheets of gauze pol ac ed perpendicular to the 

direction of flow. The experimental procedures for 

measuring discharge, piezometric head, free surface 

posiJ&ion etc, >rere similar to those discussed in section 

5.5.3. A Yiew- of the flume showing a banll: of gravel 

betrreen the gauze retainers is given in Fig. 5-5-6. 
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CHAPTER 6 

DISCUSSIOJ:J MID COMPARISON OF RESULTS - PART I 

6.1 

6.l.1 

Confined Axisymmetric Flow Fucperiments 

~efficients in h£§d loss equations 

The material used in the confined flow experiments 

was a gravel of nominal size 3/16 inch. To obtain the 

appropriate coefficients to be inserted in the head loss 

relations, permeameter tests were carried out on the 

material being used. If the coefficients are to corres

pond exactly with tho se which apply to the material in 

the actual well flow experiments, the sample taken from 

the circular tank should be packed in the permeameter in 

the same way as the parent material is packed in the tanlr, 

wi th porosities, arrangement of solid particles, etc being 

identical. However this requirement of identical packing 

can only ever be approximately met and the coefficients 

obtained from thG rGsul ts of the permeameter tests were 

therefore checked by comparing one calculated flo~r ri th 

the experimental result from the tank experiments.' This 

is somewhat analogous to obtaining the Darcy coefficient 

of permeability from a well pump test, except that no 

associated permeameter results are required for the Darcy 

coefficient. 

For correspondence of the coefficients, the ,Reynolds 

number range in the permeameter should also coincide with 

189. 



190. 

that in the circular tacl~.· Since the material is assumed 

uniform, the particle diameters will be equal and the 

Reynolds number criterion reduces to a requirement that 

the velocity to viscosity ratios be equal. Since ~le 

coefficients in the head loss equations are affected by 

the viscosity of the water, the axisymmetric well floiT 

experimenis were carried out ai tempera-tures which were 

sufficiently uniform io render variations in viscosity 

negligible. By carrying out the experiments at similar 

times on successive days, no· difficul iy was experienced in 

maintaining the temperature constant to wi thin 1 or 2 

degrees Fahrenheit. 

During the permeameter tests, however, the temperature 

range was· greater and the temperatures at which the tests 

were carried oui differed from that of the well flow 

experiments. In order to eliminate differences due to 

viscosiJ0y the permeameier resul ts were reduced to 

equivalent readings at the temperature of the well f'lo~,.. 

experiments. Bece,use the arrangement of the material in 

the permeameier is constant, the Reynolds number criterion 

of similariiy can be applied to reduce ihe actual results 

to corresponding resul is at ihe reference tempera-bure. For 

similari ty of floyr conditions the Eul er numbers are al so 

equated since the flo17 in the permeameter is confined and 
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gravity effects do not influence the flow pattern. Thus 

if the subscript 0 is used to denote the reference state 

and if the subscript 1 is used to denote properties 

actually measured in the permeameter then the follo1ring 

relationships apply. For the two states of flow to be 

dynamically similar the Reynolds numbers must be equal: 

V d VI dl _2-9.. = v vI 0 

OOOf 6 .. 1-1 

and since d = d
l 

then 
0 

V 
Vo 

- V --
0 IV I 

"" ... 6'.1-2 

Also since pressure forces predominate in the permeameter, 

the Euler numbers must be equal: 

and because -the pressure drops are measured over the same 

length in the permeameter then: 

b.p 
o 

b. PI 
= 

whence eC[uation 6.1-3 may be written: 

"..... 6.1-4 

" 0'0.0 ..• 6 0 1-5 
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TI1US equations 6.1-2 and 6.1-5 can be used, if necessary, 

to reduce the permeameter measurements VI' iI' to 

at the standard temperature at which the 1'7ell floYT 

V , <I. 
o 0 

experiments were performed. With the elimination of 

effects due to vi sco si ty differences, the requirement of 

a similar re,nge of Reynolds numbers in the permeameter Trill 

be satisfied by including a range of velocities similar to 

those occ~ing in the tank. 

TIle nominal size of the aggregate was given as 3/16 

inch but calculations from sieve analysis resul ts showed 

that the arithmetic mean particle diameter (after Dalla 

Valle, 1948) was .110 inches. TIle ratio of diameter of 

particle to diameter of the permeameter is therefore 1 ess 

than 1:50. There still appears to be some contention as to 

the required ratio of these dimensions to eliminate wall 

effects. Mott (1951) showed that for spherical particles 

the wall effect was negligible for ratios of less than 1:10; 

but that for irregular shaped particl es the wall· effect was 

present at smaller values than 1:10. Recent work by 

Dudgeon (1967) indicates that some wall effect may be 

present at very small values of the ratio of mean perticle 

diruneter to permeameter tube diameter. However, both Mott 

and Dudgeon used particles of essentially uniform size and 

the wall effect is then likely to be more pronounced than 
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wi th a graded materin,l as used in the experimental work 

discussed hei"e. Franzini (1968) suggested that for field 

17orll: a ratio of 1:10 should be sufficient, while for 

research type work a ratio of 1:40 should be attempted, 

to eliminate wall effects. 'i'he ratio of 1:50 involved 

17ith the 3/16 inch nominal size material is less than both 

the suggested figures, and no further consideration was 

gi ven to the wall effect. 

The coefficients in the head loss equations were 

obtained by fitting the appropriate curves to the 

expeximental (I.ate, by a least squares ane,lysis. Because 

of the wide range of readings taken, a direct least 

squares curve fit was unsuitable as it placed too much 

emphasis on the higher readings and tended to ignore the 

1017er order resul -Os. A propor-bional 1 east squares analysi s 

~ras therefore employed to yield values of the coefficients 

which would enable accurate prediction of the head loss 

for the full range of velocities encountered. Sunada 

(1965) introduced a proportional least squares procedure 

to fit a Forchheimer relation to a wide range of experi

mental results. ~,is procedure involved minimisation of 

the square of the ratio of the difference between the 

observed and calculated gradients to the corresponding 

veloci ty.· A slightly different approach used by lior; Lum 
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(1966) minimised the sg.uare of the ratio obtained by 

dividing the deviation of the calculated hydraulic gradient 

from the measured gradient by the measured gradient itself. 

The latter appror,ch T[aS utilised in this thesis and was 

extended to a proportional least squares fit of the 

exponential relation. 

Thus if TI~ re:presents the theoretical hydraulic 

gradient calculated from the fitted curve and if Ok .is the 

observed or experimental value of the gradient, both 

corresponding to the kth velocity reading V
k

, then the 

function to be minimised is: 

00006,,1-6 

in which n is the total number of experimental readings 

taken. 

For the Forchheimer curve, equation 6.1-6 becomes: 

Since S is to be minimised with respect tG a [md b then: 

•• 0 0 6.1-8 

or •• 0 CI 6 .. 1-9 
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Similarly on minimising S with respect to b, the result is: 

0 • ., .. 6 .. 1-10 

EqUE"tions 6 .1-9 2.,"d 6.1-10 may then be solved simul taneously 

to yield the coefficients a and b. 

An estimate of -Ghe accuracy of fit of the Forchheimer curve 

was obtained by calculating a standard percent error of 

estimate defined as: 

BE = 
1 n --I: 
n k=l 

••.• 6.1-11 

For the exponential relation, the curve fitting process is 

not as straightforvard since logari-bhms have to be taken 

before the least squares analysis is performed; thus 

lni = Inc_+ mlnV .. • '0 '" -6.1-12 

Equation 6.1-6 might then be written in terms of the 

appropriate logarithms: 

s = • , •• 6.1-13 

By minimising S with respect to c and m the co efficients 

may be calculated. A standard error of estimate for the 

exponential relation may then be obtained as: 

m 2 

1 t C( ~Vl~ --O~) x 100J 
n k=l L Ok 

•••• 6.1-14 SE := 
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However, by virtue of taking logarithms, the effective 

range of values is decrG~sed; as a result, a least squares 

curve fit was obtained by minimising the following quantity: 

n 
S = \' 6 

11:=1 

After trials it was found that this process resulted in a 

curve with a smaller standard error of estimate (defined as 

in equation 6.1-14) than the curve obtained by minimising 

S in equation 6."1-13. The coefficients c and m were 

therefore obtainod by this method. Minimising S with 

respect to c in equation 6.1-15 gives: 

-
oS \' 

= 0 = 2 6 
oc k 

(lnc+~nVk-lnOk) = 0 
lnOk 

or ..•. 6.1-16 

Similarly minimising S with respect to Vk results in the 

equation: 

lnclnV, I 11:+ 
k lnO!1: 

- I lnV = 0 
11: 11: 

III •• ,. 

Thus the coefficionts c and m can be obtained by 

simUltaneous solution of equations 6.1-16 and 6.1-17 

6.1-17 

The experimental results ancl fitted curves for the 

material used in the confined flow experiments are plotted 

in Fig. 6-1-1. 
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The coefficients in the head loss relations and the 

standard error of estimate SE for each relation are given 

ill Table 6-1-1. 

, 

a( sec/ft)T:( sec 2/ft2) SE 
Forchheimer Relation 

4.5% 3.054 83.613 

c m SE 
Exponential Relation 

15.355 I 1.283, 1l.4% 

TABLE 6-1-1 COEFFICIENTS FOR CONFINED FLOW EXPERIMENTS 

As there was no guarantee that the poro si ty of -the material 

in the permeameter would be the same as that of the material 

in the tank, a check was made on the coefficients by 

comparing one of the experimental flows 1ri th the corres-

ponding calculated flow. Thus for the external head 

IT = 3.156 ft. and the internal head h = 2.696 ft., the e w 
experimental discharge was .177 cusecs. The theoretical 

value obtained from the Forchheimer relation was .179 cusecs 

but that from the exponential relation was .191 cusecs. 

However, in view' of the close agreement of the l!'orchheimer 

resul t with the experimental one, the coefficients obtained 

from the p'ermeameter tests, and given in Tabl e 6-1-1, ,were 

<"ccepted. 

6.1. 2 ~~rimental and analytical results 

For the confined flow problem, analytical solutions 

are available for each of the Darcy, Forchheimer and 
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exponential relations. In the analytical solutions it 

was assumed that no additional 10 ss of head occurred at 

the 17ell scree-no As was noted in section 5.2.3, the well 

was perforated at close intervals and covered with gauze 

so that little distance between openings occurred. For 

this reason, -the assump;tion of an uncased well should be 

valid wi thin the limits of experimental error. The 

assumption is made that the exit head loss at the well 

surface is equal to the velocity head of the water entering 

the well. Also, as the velocity is very small at the 

external boundary, no inlet loss of head is considered. 

Thus the boundary conditions for pi ezometric head in the 

analytical solutions are that h = h at the well G.nd h = 
l'T 

h at the external boundary. 
e· 

To obtain a discharge value from the Darcy solution, 

the permeabiliJGy must be known. However, it is obvious 

from the p'ermeameter results th2,t the p'ermeabili ty varies 

continuously wi -bh velocity and, for this reason, a reference 

value of the coefficient of permeability was obtained in a 

manner similar to that which would be employed in practical 

si tuations. The co efficient was cal cuI ated from one of the 

well flow tests, this test being the one which was used to 

check the coefficients in JGhe nonlinear equ·ations. The 

value thus obtained for the permeability coefficient was 
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• 181 ftl sec. A comparison of the accuracy of the solutions 

obtained from the linear and nonlinear head loss relations 

could then be made directly. Four flows were carried out 

and are designated as flow Nos. 1 to 4 in ardor of 

increasing magnitude of discharge. Flow No.1 was taken 

as the reference flow. Some of these results have been 

reported by Tapiolas (1967). 

The experimental results obtained for flow· No.3 are 

compared with the Darcy, Forchheimer and exponential 

solutions in Figs. 6-1-2, 6-1-3 Imd 6'-1-4 respectively. 

The piezometric head curves are plotted in each diagram 

and the radii r , r , internal and extel'nal heads h , h w e ~r e 

and the experimental and theoretical discharge values in 

cusecs are also given in each figure. The corresponding 

results for fIaTT Nos. 1, 2 and 4 are given in Figs. A-I-l 

to A-I-9 inclusive, in Appendix I. 

A comparison of the discharges for floT, No.3 ShOT'S 

that the Forchheimor relation gives by far the most 

accurate· valuo· when compared to the experimental one. 

H01fcver inspec J0ion of the piezometric head lines shows 

th"ot the Darcy result compares most favourably wi th the 

experimental rosul t, while the Forchheimer and exponential 

linGS show a substantial deviation from i·t. This is 

surprising in view of the fact that the permeameter results 
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shoTT" thn.t Darcy's Law is decidedly inaccurate over the 

rn.nge of velocities which occur between the external radius 

and the well for My particular flo.T. A study of the 

resul ts for flo,T Nos. 2 and 4 shows similar trends, although 

for flovr No.4, the di scharge obtained from the exponential 

reI ation agrees slightly more clo sely with the experimental 

result than does that from the Forchheimer relation. 

Considering the close agremnent of the Forchheimer cal cuI ","ted 

discharges v.d th the corresponding experimental ones over the 

range of flows investigated, it would be expected that the 

Forchheimer piezometric head lines should agree accurl1tely 

wi th the experimental results. 

It is considered that some of the discrepancy between 

the experimental piezometric head linG and the corresponding 

analytical result from the nonlinear relations may be due 

to experimental error. Some difficulty ,;as experienced in 

forming n. watertight seal around the piezometer te"pping 

points which penetrated the visqueen impervious layer, Qnd 

consequently the piezometric head measured may havo boen 

less than that w:hich actually occurred. This hypothesis is 

reinforced by the fact that even the Darcy calculn.ted head 

lines are higher than the recorded resul ts. However in 

spi te of the discrepanci es between c·al culated mld measured 

pie·zometric head lines, the flow resul ts shorred 1jhat 
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solutions based on the nonlinear relations could accurately 

predict discharge values over a range of head differences. 

In Fig. 6-1-5, the experimental and various. cal culated 

discharge values are plotted against the corresponding head 

difference betTleen the external and internal radii. As the 

depth of aquifer is constant the discharges are ploJGted 

directly against the head differences causing flow • 

• 50 
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FIG. 6-1-5 
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Fig. 6-1-5 ShO-iTS that, while the discharge calculated 

from the ForchllGimer relation agrees accur8,-bely 1Ti th tho 

experimental value for flo,r Nos. 1, 2 and 3, it exhi bi ts 

a largor discrepEmcy for flo1'r No.4 al-bhough it is still 

more accurate then the Darcy calculated value. The velocity 

at the lTell radius for flow No.3 is about .15 ft/sec whereas 

the largest values involved in the permeameter experiments 

are of the order of .06 ft/sec. The radius at which the 

veloci ty decreases to .06 ft/sec is approximately 6 inches 

so that this represents the extent of the area in which the 

Reynolds nUI!lbers in the tEmk exceed those in the permeameter. 

For flow No.4 the velocity at the well is about .25 ft/sec 

while the radius at which tho velocity decreases to .06 

ft/sec is 8~ inches. Thoro is thus a larger area in which 

the Reynolds numbor rango of the permeameter tests is 

exceQded and, in addition, the discrepancy is greater them 

for floTr No.3. It appears "Ghat some of tho difference 

between the observed discharge and that calculated from the 

Forchheimer relation for flow- No.4 is due to the fact that 

the coefficients are applied too far outside.the Reynolds 

'number range for which they were asccr-bained. It is clear 

therefore that, as far as possible, the coefficients in the 

nonlinear hee,d loss equations shou1.d be obtained over the 

Reynolds number range for which they are to be applied. 
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The situation of steady confined flow to a well at 

tho centre of an island, as examined in the confined. floir 

oxperimonts, occurs rarely in practico, whero confined flow-

si tuations usually involve unsteady floTT ovor a large area. 

The confined floTT experiments were undertaken as 2, prelude 

to steady unconfined flow. 

6.2 ",U""n.::.co""nfined Axisvmmetric Flow Iiiih....Qomplete Circle 

6.2.1 

The material used in this set of experiments was 

similar to that used in the confined flow tests, being 

gravel of 3/16 inch nominal si ze. }Io1'rever it vras supplied 

at a diffGrent time and contained 2, higher percentage of 

fines which caused a marked difference in the flo,. 

properties from those of the material of the confined flow 

experiments. One of thG problGms involved in determining 

the flow properties of an insitu material from permeameter 

tGsts is the necessity to duplicate the porosity of the 

insitu material in the permeameter, and this problem V2,8 

found to be accentuated by the higher percentage of fines. 

Engelund (1953) noted that, for sands, a small cha,nge in 

the porosity could have a marked effect on the value of 

the Forchheimer coefficients. With a cohesionless substance 

such as sand or gravel, it is difficult to obtain ml 

undisturbed sample and for this reason a method was devisGd 
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to obtain the coefficients in the head loss equations from 

actual flo17 tests in the taILt;:, in conjunction with 

permeameter tests on _ samples of the material at two 

different porosities. The theory of obtaining the 

coefficients from an unconfined flov test is outlined in 

section 6.2.2. 

In an attempt to cover a wide rl",nge of porosities of 

the material, one s£:.mple was placed loosely in the 

permeameter wi tIl only light tamping to maintain uniformity 

of packing, while another was placed as tightly as possible. 

The loosely placed material resulted in a higher porosity 

sample on which permeameter tests were carried out for a 

range of Reynolds -numbers. Average seepage velocities £:.nd 

corresponding hydraulic gradien-bs weTe calculated. A study 

of these results showed a continuous variation in the 

permeability coefficient indicating that Darcy's Law is 

again invalid for this material. The coefficients a and b 

in the Forchheimer equation and c and m in the exponential 

relation were obtained by least squares curve fitting to 

the results. A proportional least squares fit was again 

employed in order- to obtain representative coefficients to 

cover a wide range of Reynolds numbers. Precautions were 

tcl{en to reduce the permeameter results to equivalent 

readings at the temperature of the well flo17 experiments. 

The -re'sul ts for the higher poro si ty sampl e together wi th 
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best fit Forchheimer cnd exponential curves arc plotted in 

Fig. 6-2-1. 

The other test was carried out on a sample which was 

compacted c,s much c,s possible by ramming and t=ping in 

the pormeamctcl'"' a This resulted in c, 10lT porosity sample 

and the experimental results together ,ri tIl the fitted curVGS 

arc plotted in Fig. 6-2-2. 

The standard errors of estimcte of the curves Tlere 

ob"G2_il1Gd as described in section 6.2.1. The coefficients 

in the head loss ectuations for the two samples and the 

s-i:ismdard errors of estimate of each fitted curve arc set 

out in Table 6-2-1. 

,----------------- ------------------------~ 
High Porosity Sample \------.--- --------------------.~-------.------r_--------_4 

a b SE 
Forchheimer Relation 

2;499 67.617 3.06% 

I BE 

I 
---

13.38% -
ExP-o-n-e-n--t-i-a-l--.-R-e-l:tion -~ ---+----~----~-
1 ___________ ~3. 3~i-..J 1.4;;..:99=-----1. __ 

Low POl'O si ty Sampl e -- ---------.-----------~ 
a b SE 

Forchheimer Rclution ----- ---
4.850 133.224 5.51% --- -I- - --

Exuonenticl Relation 
c m SE ---

I I 39.363 1.394 16.22% -- ---
TABLE 6-2-1 

COEFFICIENTS FOR UNCONFINED FLOVr WITH COiv!PLETE CIRCLE. 
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The permeability l~ v(1ried continuously with Reynolds 

number, there being a range of +67 to -43 percent of the 

mean v2.1ue In the high porosity s2,IDple, and +62 to -49 

percent of the mean value in the 1011: porosity semplo. 

6. 2. 2 Determina tio!LQi-.Q;lm:t9.J2I.i 2"t.!L£Q.£Ui£i ents from an 
actuaLflo1'r 

The problem of determining appropri2.te coefficionts 

for the nonlinear heO-d loss equations, which will (1pply to 

materia,l sunder pr(1ctic2.1 flow conditions, has alreedy boen 

This problem appears to be of greater impo-rtance 

1Ti th finer grained gravel s =0. coarse sands thtLll wi th coarse 

grained gravels (of say 3/8 inch nominal size and above), 

where packings at similar porosities are more ea.,sily obtained. 

Fox a.nd Ali (1968) studied unsteady unconfinod flow through 

a porous medium conSisting of 5/8 inch stone chippings and 

emloloyed a Forchheimer rele.tion to deduce the he2.d loss 

gradient. To de-termine the correct coefficients a and b, 

they obtained a steCldy state drarr-doTm curvo to tho ,Toll, 

and the corresponding discharge value. From these resul ts 

an u. plot was drQ,I'm of surface gradiGnt a:r at any radius r, 

against the mean r2.dial velocity [l,t that radius. 'I11e value 

of tho coefficient a was obtained from the tangent to -this 

curve at tho origino The coefficient b Tras determined by 

plot-ting the surface gradient against the mean velocity on 

logaritr~ic paper and by tcl~ing the extreme case where head 
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loss was assumed proportional to tho square of tho 

velocity. An alternative method 8.1so based on the latter 

assumption was used to chec!~ the v2.1ue of b 0 

The se methods used by Fox a,nd Ali thus dei?end on a 

number of approximations 0 The assumption is made tha,t the 

value of a, which is determined at the 10Trest Reynolds 

numbGr will be va,lid for the entirG range of Reynolds 

numbGrs GncountGred, whereas a does in fact vary "1ri th 

Reynolds numbor (Stark and Yoll<:or, 1967) 0 Likewise the 

term aV will usu::\,lly h[wo a finite value compared to by2 

Gvell. at thG largest velocities involved and this will 

result in some error in det~rmining the coefficiont b. 

'rho method also assumes that the mNll1 velocity at ::my 

section corrosponds to the surface gradicm-t and this will 

be true only for nearly horizonta,l flowo The approach used 

by .Fox and Ali has the 2.dv~l-ll'Gage tIld. i"o requires no 

perme2.moter results for the material at equivalent 

porosities but it depends on the availabili'oy of an 

accurate dn'o17.do'ffi curve for the well o Thi s would not 

usu[,lly be availabl e under prototype conditions where a. 

large number of observation "\Tells would be required and 

wliGre precise depth measuremonts would be nGcessary to 

produce. sufficiGntly accura.te va.luos of the gradient ~; 

for plotting the curve a.ga.inst the mean velocity. 
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In the present analysi s therefore, a method was 

devised by which "bhe appropriate coefficients were obtained 

from permeam eter tests, in conjunction w.i th the results 

from one ac-tual well flo17, for discharge and depths of 

water at the well and at an 0xtcrnn,1 radius. Field 

permeability· tests in unconfined aquifers have long been 

based on the Dupui t-Forchheimer expression (equation 3.2-1) 

for well di scharge. This expression depends on Darcy's 

Law and "hen Darcy's La17 is invalid it is obvious that the 

permeabili ty obtained at one particular discharge will not 

hold itt any other discharge. Al though the derivation of 

the Dupui t-Forchheimer equation was originally based on the 

Dupuit asst~ptions? it has since been sho,m (Hantush 1962b) 

to yield an exact value of the discharge for unconfined 

floTr -to a well on a horizontal impervious base. 1m 

analogous set of assumptions for flows with low-hydraulic 

gradients were made to obtain an approximate analysis of 

nonlinear unconfined flow. 

Consider the unconfined flow situation depicted in 

Fig. 6-2-3. It is assumed_ that velocities are horizontal 

and uniform over any vertical section. The velocity at 

rfl,dius r is therefore given by: 

Q V - ..,.....;...,... 
2=h to • ... 6.2-1 
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FLOW FIELD FOR APPROXII>!lATE HORI ZON1?.AL FLOW SOLUTION 

in which Q is the discharge to the well and h is the height 

of the free surface at radius r. If the hydraulic gradient 

a-b radius r is assumed to be ~, then since h is considered 

to be independent of z, substitution in the Forchheim(n" 

relation yields: 

1> ••• 6.2-2 

This is an ordinary differential equation which canno·t be· 

readily integrated between the limits r ,h and r ,. h to 
Tr 17 e e 

give an expression for the discharge Q in terms of knOi'm 

variables. However the equation can be solved by a 
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numerical method. A Runge-Kut-t,2, solution was therefore 

carried out to obtain the discharge Q from the II:nown 

bounde,ry c ondi tions after having sub st,i tu ted the 

appropriate coefficients in the head loss equation. The 

steps involved in the Runge-Kutta solution 8-re outlined 

as follovTs: 

An initial v2,lue of -{;he discharge is calculated from 

the Dupuit-Forchheimer expression based on an 8-verage 

permeability from the permeameter tests. This allows a 

dh 
value of a:r to be calculated at the well radius 1'1'1' by 

substi tution in equation 6,2-2. The field is divided into 

an equal number of increments ef radius 2,nd the value o.f 

.: at each successive radius is then calculated. The 

Runge-Kutta method used was Merson's fourth order process 

for which the basic: equation may be stated as: 

+8 r 1 
h

r 
r=h +'2 (K

l
+K

4
+K

5
) ••• ,6.2-3 

in which hr+8r is the free surface height at radius r+8r 

and h
1' 

is the height at r8-dius r. If f(1",h) is written 

for the right hand side of equation 6.2-2 so that: 

f(r,h) Q 
- a 21T1'h + b CI <> • 0 6.2-4 

then the terms Kl -to K5 in equation 6.2-3 are given by: 
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1 ) Ie
l - '3llrf(r,h) 

) 

1 1 
) 

K2 = -Ilrf(r+- Ilr h+K
l

) ) 
3 3' ) 
1 1 1 1 ) 

6.2-5 K3 = -6rf(r+-llr h+'2Kl+2K2) 3 3' ) • III • " 

1 1 3 9 l K4 = 3Ilrf(r~llr, h+gK l +gK3 ) 
) 

1 h+~( -~( +6K ) 
) 

K = -Ilrf( r+llr ) 53? 1 3 4 

starting from the known head h at the well, the piezometric 
17 

head at each successive radius can be obtained (from 

equation 6.2-3) out to the piezometric head at the Gxternal 

radius r. If tho discharge va.lue' is correct and the 
e 

assl.Ullp'l;ions are sufficiently accurate, then thG hGad 

obtained at r should coincide with the 1m,01m value, h • e e 

Ini tially JGhere will be a discrepancy between the calcul-

ated value hI at r e and the true value he' due to the error 

in the assumed value of tllG dischargo. This discrepancy 

can then be used to calculate an improved approximation to 

the di scharge. In integrating from the Trell to the external 

boundary, the particular value of .ill! assumed at the well 
dr 

has most influonce on the result for piezometric head at 

the external boundary. Thus to calculate an improvGd value 

for'discharge, the assumption is made that the ratio, o,f the 

new gradient (db/dr) to the old gradient (db/dr) ld is new 0 

given by: 

db (--)nel' dr ' 

(~)Old 

h -11 
== e Tr 

h -h 
1 1" 
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in which hI is the calculated value of head at r e 
and h 

e 
is 

the actual v2,lue. Or if the improved discharge result is 

designated by QI' then: 

bQ 2 r 
:22h 2= 
_1T r 

'IT 1'1 

bQ
2 

) - 2 
41T~· 2r 

w 1'1 

() • to 0 6.2-7 

in which Q is tho initially assumed discharge. The improved 

value of discharge Qr can then be; obtained from equation 

6.2-7. 

The pTocess is an iterative one; ':rith the calculated 

value of hI convexging to the coxrect· value h as the· e 

discharge Q . converges to the reo,uired final result. The c 

i terati ve pxocedure is repeated until the correct 

piezometric head 11. is o·btained at th8 ext8rnal r"dius, 
e 

at which stage there is negligible change in successive 

calculated v2,lues of Q , which thon gives the required value c 

of discharge for Forchhoimer floTT under the assumed conditions. 

TIle numerical process is subject to discretization 

errors but these oan be minimised by using a small grid 

length; and since the solution of the ordinary differential 

equa·tion does not involvo a field solution, a small 

increment in radius can be used wi thout difficulty. The 

solution is, however, subj ect to error caused by the; 

assumptions of completely radial floTT and of no variation 
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in· h with tllG height z. Thi s error will be small previded 

only those flows are analysed which involve 1017 hydraulic 

gradients and therefore closely approximat8 horizontal 

flow. 

A similar solution for horizontal fl01r roccording te 

the exponcmtial relation was carried out but the resul tant 

differential equation in this case could be integrated 

directly to yield an expression for the discharge Q, 

wi thout the need for a numerical solution. Thus for 

horizontal floTT ~There the piezemetric head h is assu.illOd a 

function only of radius r and is independent of 'l;hG hGight 

z, then the exponential relation rot O,l1.Y radius may be 

w-rittGn: 

ccE dr -
IntGgrating between r"" hand r ,1'1 gi VGS: 

"rT G G 

h m+l_h m+l 
....lL_ TiT 

l+m 

( I-m I-m) r -r 
G W 

I-p.! 

•••. 6.2-8 

., ., •• 602-9 

It ~ .,. 6., 2-10 

Thus Q may be obtainGd direc-tly from Gquation 6.2-10 aftGr 

sub.s-tituting for the kno17Il vo,ri8,bles. 

TIlG solutions for di schargG from both hGad 10 ss 

rGlations can therefore be employed in successive intGr-
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polations to obtain the appropriate values of the 

coefficients in the two relations. A valuG of thG discharge 

can be calculated using thG cOGfficiGnts abtainGd from each 

of the lov porosity and high porosity' samples. The. 

experimental dischargG should then lie between these two 

Gxtremes, since thG matorial in the tank Trill usually be 

at some porosity betwGen the minimum and maximum porosities 

obtained in the pcrmeametcr. 

The cOGfficients in the head loss eouations depend on 
" -

some function of the porosity but the form this function 

should take has been stated differGntly by various authors. 

Engolund (1953) gave a review of SOlle of the suggestGd 

functions for the coefficiGnts a and b in the Forchheimer 

relation. Dudgeon (1968) also discussed some of the 

porosi ty functions recordod in the Ii teraturo and showed 

·that none of them should be expected ·to have general 

GPplicability. In vie,,' of the uncertE,inty associated 

with the dependence on porosity, the simplest approach was 

used, whereby the' co efficients a and b (or c and m) which 

would produce the experimentally measured 1Tel1 discharge 

wuro ceo1cu1a too. by (lirect interpol ation between the extreme 

values fitted to the two sets of pormeameter results. 

Some. improvoment on this approach may have been 

possible by using a range of porosi-Gies in the permeameter 
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bo-bwoon tho tllO oxtremas. Howover, in field applications, 

the intarpolation procoss to produce an actual wall 

discharge Trill uSUE"lly have to account for some non

uniformi ty of the modium in which tho wall is situated, 

so that as a first trial, only the two sets of results 

\'Tera used and the interpolation carried out directly 

between them. The resul ts Trere found to be satisfactory 

so that no further sets of Dermeamater tests were undertakan. 
---

Tho two extreme values of Q are calculated and more 

accurate values of -~he coefficients Hre determined by 

interpolation, to give a closer approximation to the 

discharge valuo obtained experimentally for one particular 

well test at 8, 10if hydraulic gradient. The process again 

is a repetitive one. After neTr coefficients' are obtained 

by interpolation, a new- discharge is celculated with these 

coefficients; this value will usually not exactly e'qual 

the experimental value and a second interpolation is 

carried out to obtain more accurate coefficients. The 

process is repeated until the difference between the 

c(11culated and experimental dische,rges is negligible. The 

cOGfficients so obtained are accepted as the values to be 

employed in thG analyses. 

Seven flows in all were studied for the unconfined 

axisymmetric experiments with the campI ete circl e, with 
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discharges ranging from .341 cusecs to .87 cusecs. There 

are conflicting limitations on tho flow conditions to 

produco grec:,tes-t accuracy of fi t of the coefficionts. 

Small head difforences should be used so that the 

curvature of tho froe surface is small 2_nd tho flow is 

approximately horizontal. However at low differences in 

head, tho relative accuracy of measuring the draw-doTm is 

roduced. While tho rolative error in measuring each water 

level, at the well and at some external radius, may be 

small, the accuraoy of discharge calculations depends on 

the accuracy of measuring the difference in water levels. 

Thus a sm",ll error in meo,suring each of the we"ter levels 

separately may produce a substantial error in the value 

obtained fOT tho differonco in levels. Tho TTOll test with 

tho second smn,llest dischn,rgo was therefore employod in 

interpolating for the nonlinear head loss relation coeffic-

ients and in determining the permeability coefficient k; 

for, while the drawdoi'ffi is small =d the flow is nearly 

hori zontal, the eli fforence in water level s is sufficient 

to give a reo,sonable accuracy of measurement of this 

difference. 

For the experimental Trell di scharge 0 f .414 cusec s, 

tho wn,ter lovols men,sured were: 

h - 2.59 ft. at r = .35 ft. 
W W 

and h - 3.08 ft. o,t e = 9.6 ft. 



For 2, = 2.499 sec/f-t and b = 67.617 sec
2
/ft2, 

then Q = .602 cusocs ru"d for a = 4.850 sec/ft and 

b = 133.224 sec 2/ft2 , thon Q = .372 cusecs. Direct 
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interpolation between the two sets of coefficients gives 

a = 4.42 and b = 121. 22 Qt which a dischCl-rge of .414 cusecs 

would be expected. However cQlculation with those 

coefficients ShOTTS that the clischarge would be .395 cusecs. 

Further intorpolGtions show that coefficients Q, = 4.21 sec/ 

ft. and b = 116.93 sec
2
/ft2 produce a dische,rge o'f .412 

cusecs which is within i percent of the experimental value 

of ,.414 cusecs 2nd these coefficients verc accepted for 

subsequent analysis of the unconfined floTT conditions for 

the experiments with the full circle. 

For the exponential relation, similar calculQtions 

are cQrried out for the S'1me flow: 

Thus for c' = 39.36 and ill = 1.39, then Q = .367 cusecs, 

and for c - 23.83 and m = 1.45, then Q - .609 cuscc S 0 

Interpolation yields cOGfficicnts c = 36.043 and nT = 1.405 

at which a discha,rge of .414 cusecs woul d be expected. 

I-Iovrever recalculation shoTrs that, for these' coefficients, 

the discharge is actually .405 cusccs. Subsequent trials 

and interpolations yield coefficients c = 35.45 fC.nd m = 1.41 

at ,,;:hich the calculated discharge is .413 cuesecs. These 

coefficients were then employed in -Ghe analysis of the 
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well flows when the exponential relation was considered. 

It may be noted that for these results, even though the 

exponential curve fits the permeamoter results less 

accurately than tho Forchheimer curve, the well discharges 

calculated from the two rel"tions differ by only about 1% 

at each of the t1'l0 poro si tics involved. The Darcy 

coefficient of permeability k, calculated from this flOTT, 

is .156 ft/sec. 

6.2.3 Experimental results...§nd finite difference: solutions 

Seven flows were investigated in this set of experiments 

and. ,1.re designated as flow Nos. 1 to 7 in order of increasing 

rna.gnitude of discharge. The experimentc.,l free surfo.c e was 

obtained approximately by measuring the depth to the water 

surface in piezometers located near the surface as discussed 

in sectien 5.4.1. The theoretical analysis of the uncon

fined flow condi-tions involves a finite differcmce 

numerical solution as discussed in Chap'tor 4. The 

boundary conditions assumed for the piezometric he8.d 

function at the well and at the outer boundary were the 

samo as those used in the confined floTr experiments. Thus 

an uncased well was assumed and the piezometric head at the 

well 1'ms tall:en as the height of water in the well and the 

loss of head as the water enters the stationary poel in the 

well ,ras equa'bed to the velocity head of the water entering 

the well. 
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In 8.ccordance with di scussions in Chapter 1, 

expollentio.l solutions were not obtained for all flows. 

However solu-Gions for -Ghe exponential relation were 

carried out for flow Nos. 5, 6 and T for comparison. 

purposes, as these were the highest flows in the range 

considered. The finite difference solutions for flow No.6 

for Darcy, Forchheimer and exponential flow are plotted in 

Figs. 6-2-4, 6-2-5 and 6-2-6 respectively. The plots 

include lines of egual piezometric head as well' as egual 

flow lines. The flow lines were not plotted from stream-

line function yalues even for the case of linear Darcy 

flow. For nonlinear flovr, the flo'vr lines are most 

conveniently plotted by joining points below vrhich the 

quanti ty of flofl is cons-bant, and this nrocedure was 
~ 

adopted for Darcy flow al so. The experimental free 

surfo.ce position is plotted in each of Figs. 6-2-4, 6-2-5 

and 6-2-6. The 178 ter 1 eyel shand h , the radii rand 
w e w 

r e , the experimental discharge Q(EXP), and the calculated 

discharge Q(CALC), are also given in each figure. 

The results obtained for Darcy and Forchheimer solutions 

for flovr Nos. 1 to 4 inclusive ,are plotted, together with 

the experimental free surf8,ce, in a similar manner in 

Figs. A-II-l to A-II-8 in Appendix II. The finite 

difference results for Darcy, Forchheimer and exponential 
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solutions and the experimental free surfaces for flow 

Nos. 5 and 7 are plotted in Figs. A-II-9 to A-II-14, also 

in Appendix II. The discharge obtained from the 

Forchheimer finite difference solution for flOTT No.2 

agrees crith that obtained from the Runge-Kutta solution 

to wi thin 1 percent, thus justifying the assumption of 

completely radial flovr in the process for obtaining 

appropriate coefficients in the head loss relation, 

A comp9-rison of the results for flow: No.6 shows that 

the Forchheimer solution gives the most accurc.te discharge 

'Then compared wi ih the experimental resu.l t. The Darcy 

solution for discharge is consider2,bly in error, as would 

be expected from -~he change in permeability encountered 

in the permeameter tests. The exponential re18_tion 

however 1 gives a more accurate resulto The free surfaces 

ob~G·ained from the Forchheimer and exponential solutions 

also agree much more accurately with the experimental free 

surface than does the Darcy solution. A study of Figs. 

A-II-l to A-II-14 ShooTS that similar conclusions can be 

drawn for the other flows. 

The comparison of the experimental and numerical 

resul-bs raises the question of accuracy of the finite 

difference solutions. The solutions were carried out 

using 8_ grid length of 3 inches. over the flow field. The 
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grid network together with the calcul!),ted free surface, is 

shown in Fig. 6-2-7. The finite difference solutions were 

carried out until the difference between head values, 

obt::1ined from successive i tere,tions, was Ie ss than .00010 

ft. 

A further indication of the accuracy of the numerical 

resul ts vas obtained by comparing discharge values 

cB,lcule,ted a-b eo,ch ver-bical grid line for any particular 

solution. For example in the Darcy, Forchheimer and 

exponenJuial solutions for flOTT' No.6, the totv,l discharge 

calculated at the grid lines designated A-A to D-D in 

Fig. 6-2-7 are tabulated in Table 6-2-2. 

-
I Grid line as marked Total Calculated Discharge 

in Fig. 6-2-7 (cusecs) 
Darcy Forchheimer Exponential 

A-A .916 .708 .738 

B-B .942 .712 .747 

C-C .944 .714 .740 

D-D .944 .691 .722 

TABLE 6-2-2 DISCHARGE CALCULATIONS AT VERTICAL GRID LINES 

. The maximum discrepancy between the values at the. 

different grid lines quoted for flo~T No.6 for any of the 

solutions is therefore about 3 percent. The agreement 

between values at different radii could be enhanced by 

extending the number of iterations, to obtain a still 
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smaller chmlge in piezometric head value with successive 

iterations. However, investigations with a numbeT of flows 

sho~red that, once the a_greement between dischaTge values at 

different radii was 1'Ti thin about ± 3 percent of the average, 

then further iterations caused a very small change in the 

avera_ge cal culated di scharge from -the finite difference 

solutions. The change in the free surface position and in 

the flow net diagram 1'1as also slight. As a result, 

solutions 1'1ere not generally extended to obtain better 

agreement than a maximum difference in di scharge of ± 2 

percent over all vertical grid lines, from the ~rell to the 

outer boundaT'J. 

i'be discharge obtained in the Darcy flov,- solution 

agrees with that from the Dupuit-Forchheimer expression 

usually to wi-t,hin 0.5 p-ercent. T'nis result also indicates 

that the finite difference solutions, at least for linear 

flo1'r, are accurate since it has been sh01m that th e Dupui t

Forchheimer formu19_ gives an exact solution for di scharge' 

for this flow situation when Darcy's Law applies. 

A comparison of the results obtained for the seven 

PlOTTS investigated, shoW'S that the discharge obtained from 

the linear Darcy solution is consideTably in error, as 

compared to the experimental resul -(" when the cal culations 

are based on the permeability at one particular flow. 
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The free surfac'e position from the Dercy solution is also 

in error for °ohe higher flows. For florr Nos. 4, 5, 6 and 

7 -the Darcy solution for the free surface sho1']'s a 

substabtial di screpancy from the experimental one 

especially in the vicinity of the well, readling an error 

of approximately 10 p-ercent for flow- No.7. The mean 

veloci ty incre2,ses rapidly' as the well is approached, and 

therefore °Ghe inaccuracy of the Darcy solution is more 

marll:ed in this region. The free surface positions 

obtained from the nonlinear solutions are accurate, however, 

to within a few percent. For example the maximum error in 

the Forchheimer free surface position for all flows is 

about 4 percent, "Ilile that of the exponential solutions, 

for the three floiTS analysed, is about 6 percent. 

FOT comparison purposes, -the discharge values obt2"ined 

experimentdly and from each of the theoretical solutions 

<"re plotted against (h 2_h 2) in Fig. 6-2-8. The quantity 
e w 

h 2_h 2 plot-Ged as the abscissa in Fig. 6-2-8 is not e w 

necessarily a completely representative parameter for 

disch£;rge calculations Tihen the flo1'r is nonlinear. For 

linear Darcy flow, provided hand h are measured at fixed 
ill" e 

radii as in the resul ts plotted here, then the discharge is 

directly proportional to h 2 -h 2. However iihen the head 
e IT 

loss obeys a nonlinear relation there may be an increase 
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in discha,rge for 8, decrease in h 2_h 2 under certe.in 
e IV" 

conditions. This is exemplified by e. study of the points 

plotted fOT flow Nos.5 and 6 in Fig. 6-2-8. Thus while 

the magnitude of h 2_h 2 for flow No.5 is greater than for 
e TT 

flow" No.6, "the discharge is smaller. The De,rcy solutions 

of course show" an opposite trend indics/Ging a higher 

discharge for flow No.5. However both "I;he Forchheimer and 

exponential finite difference solutions follow" the trend of 

the experimental resul is, showing a lower discharge for 

flow No.5 than for fl 01'T No.6. A study of the magni tude of 

the internal and external 7ffiter levels for the twO" flows 

shows thaJs while the difference in levels is greater for 

flow,No.5, the absolute magnitudes of both levels are 

grea-ber for flow No.6. Thus when a nonlinear relation 

connects head loss and velocity, even though the gre.dients, 

and therefore the velocities, are smaller for floTT No.6, 

"bhis is more than compense.ted for by the increase in area 

of flol'1 over -that available in flow No.5. Ho-;-rever for the 

line!:',r head 10 ss relation the reverse is true and the 

increase in area of flow is not sufficient ,to compensate 

for, the sm8,11er veloci"l;ies in flO1'T No.6. 

Nevertheless, while the quantity h 2_h 2 does not give 
e Tr 

a completely representative parameter for discharge 

compari sons under these condi tions, .no dimensionl ess or 
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other quantity is readily available for comparing all 

discharge solutions and the plot has therefore been made 

against the quanti ty h 2_h 2 in Fig. 6- 2-8. 
e 17 

Fig. 6-2-8 sho,Ts that the nonlinear relations give 

solutions for discharge which are 8.ccur8.te to wi thin a 

few percent for all flows. Apart from floTT No.2 which was 

used as the reference flol'r for equating experimental and 

all theoretical results, the only accurate discharge 

calculated from a Darcy solution is that for flov No.3 

which is clo sest to No.2; the errors for the remaining 

flows are considere"ble, rising as high as 38 percent for 

flo~r No.7o For a material as coarse 2"S that used in these 

experiments therefore, it is obvious that only by. carrying 

out a comprehensive set of field permeability tests over 

a wide range of floirs could any accuracy be obtained in 

·discharge calculations based on the Th~puit-Forchheimer 

formula. But even then the Darcy finite difference 

solution for the free' surface 1Tould be in error as it is 

unaffecJGed by the permeability coefficien-b. 

The preceding analysis of results, ho,'rever, show's that 

the nonline8.r head loss relations do give solutions, both 

for discharge and free surface' position irhich are accurate 

over a wide range of Reynolds numbers. This accur8.cy is 

obtained by determining two sets of head loss coefficients 
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from permeameier tests over a range of Reynolds numbers, 

a-b two different porosities, ZLnd by using the resulJGs of 

one prototype flow as a basis for interpolation to give 

the relevant coefficients applicable for the prototype 

medium. 

6.3.1 Determination of coefficients -- -----------
The material used in the unconfined flo;'[ experiments 

with the sector was similar to that used in the unconfined 

experiments with the full circle, but again ,rith slightly 

different properties. Permeameter tests were therefore 

cfl,rried out on a sample of the material packed at two 

different porosities. The experimental resul ts for the 

high porosity sample together with the fitted Forchheirner 

and exponential curves are plotted in Fig. 6-3-1. 

The permeameter results and fitted curves for the low 

porosi ty sample are plotted in Fig. 6-3-2. 

The results obtained for the coefficients are given 

in Table 6-3-1, together with the corresponding standard 

errors of estimate (SE). 

The process of interpolating to obtain the approj)riate 

coefficients for the well flow experiments was carried out 

in a manner similar to that described in section 6.2.2. 
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- -
High Porosity Sample 

a(sec/ft) 2 2) b(sec /ft . SE 
Forchheimer Relation 

4.62 76.58 4.6% -- --
c m SE 

Exponential Reletion -
54.51 1.62 1~.6% 

---- -
1--

Loi'{ Porosity Sample --
a( sec/ft) b(sec

2
/ft2) SE 

Forchheimer lcelation 1--
7.22 128.37 5,4% -- - --

c m: SE 
Exponenti2.1 Relation 

I 
-

19.72 l.13 20.8% --- --
TABLE 6-3-1 COEFFICIENTS FOR UNCONFINED FLOWS WITH SECTOR 

Seven well flo,TS were again investigated in this set of 

experiments Emd the flow with the third smallest discharge 

17,as selected as -the reference flo17' for obtaining the 

. p-ermeabili ty and for interpolating the nonlinear head loss 

coefficients. The drawdown for this floTt i'ffiS sufficient to 

allow accur2.te measurement of the difference in water levels 

but was small enough to give a close approximation to 

horizontal, completely radial flow. The relevant variables 

for the flow are: 

r = • 35 ft . r = 9.60 ft. 
1T e 

h = 3.31 ft. h = 3.77 ft. IT e 

Experimental discharge - .395 cusees. 
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The results from the Forchheimer discharge calculations, 

assuming horizontal flow, l'ler e': 

for a - 4.62 sec/ft, and b - 76,58 sec 2/ft2, Q - .508 CUSECS; 

for a - 7.22 sec/ft. and b =128.37 2/ 2 sec ft, Q - .348 cusecs. 

Repeated interpolation between the coefficients shorred that 

2/ 2 for a = 6.31 sec/ft and b = 110.13 sec ft, then Q = .391 

cusec s, which is wi thin about 1% of the experimental resul t, 

so that these coefficients were accepted for the unconfined 

Forchheimer flow analyses. 

Similar calculations for the exponential relation 

yi eld: 

for c - 54,51 and m - 1 69 ....... ....., Q - .631 cusecs 

and for c - 19.72 and m - 1.13, Q - .295 cusecs. 

After successive interpolations, the final coefficients 

accepted are C = 33~ 28 and m = 1.32 which give a discharge 

of .393 cusecs, Trhich closely approximates the experi-

menial resul t. 

It may be noted that the Forchheimer calculation for 

discharge, using the high porosity coefficients, differs 

from that of the eX])onential reI atioll at the same poro si ty. 

A·similar remark applies to the low porosity results. The 

exponential solu.tion for discharge is higher than the 

corresponding Forchheimer result for the high porosity and 

lower for the low porosity sample. Thus the exponential 

discharge varies more rapidly with porosity than the 
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Forchheimer discharge. In addition, it is probable that 

the process of obtaining relevant coefficients does not 

only account for a porosity change but also overcomes some 

error due to the inaccuracy of fit of the curves, especially 

the exponential, to the permeameter results. 

The nonlinear finite difference solutions for the 

referenc e, f1017, which are reported in section 6.3.2, show 

that for Forchheimer flow with the coefficients derived 

above, the discharge is .394 cusecs, ~rhile the corres-

ponding exponential solution for discharge is .397 cusecs. 

These values are sufficiently close to the experimental 

result of .395 cusecs and indicate the validity of 

assuming horizontal flow in the procedure for obtaining 

optimum values of the coefficients. The Darcy permeability 

coefficient from ,the Dupuit-Forchheimcr formu12_' for the 

above flow 1'ras.127 ft/sec. 

6~3~2. Finite diff2rence solutions for Darcy. Forchheimer 
and exponential..!lQ.lY: 

The seven flows investigated were designated as flow 

Nos. 1 to 7 in order of increasing magnitude of discharge. 

Similar boundary conditions were assumed in the snalytical 

solutions to those assumed for the solutions discussed in 

section 6. 2~ 3. Solutions were obtained for all flows for 

each of the Darcy, Forchheimer and exponential head loss 
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relations. TIle basic grid size employed in the solutions 

was 3 inches. However for Forchheimer flow, after the 

solution had been obtained to the required accuracy on the 

3 inch grid, a fine grid was incorporated near -bhe well -bo 

ob-bain a more accurate representation of the free surface. 

Nevertheless, this produced only a slight change in the 

free surface position from that given by the coarser grid 

solution. 

The i terati ve procedure. in each case lms extended 

until the change in values of piezometric head at any 

point was less than ,0001 ft. and until the variation in 

di scharge at different grid line s was 1 ess than about 

± 2 percent of the mean. The basic grid over which 

solutions were obtained for flow No,5 is shown in Fig. 

6-3-3, wi tIl -'ohe fine grid used near the well for the 

Forchheimer solution superimpo sed on it. The grid actually 

used is bounded at -bhe top by -bhe calculated free surface 

posi-bion for Forchheimer flow· which is shown in Fig; 6-3-3. 

A comparison of -bhe calcula-bed discharges for each 

solution of -the flow No.5, &t the grid lines designated 

in Fig. 6-3-3, is given in Table 6-3-2 •. The discharges 

quoted for the Forchheimer equation are those obtained from 

the ini-tial basic grid solutions. 
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- - -- --
Gri d Line Total Calculated Discha,rge 

(cusecs) --
Darcy I Forchheimer Exponential 

A-A 1. 215 .922 .931 

B-B 1.209 .924 .927 

C-C 1. 212 .921 .919 

D:..D 1.196 .901 .903 
'------

TABLE 6-3-2 
DISOHARGE AT VERTICAL GRID LINES FOR SECTOR FLOW No.5 

The maximum overall variation in discharge for these 

"~rid lines is therefore about 3 percent. For' the majority 

of solutions the maximum variation was kept smaller than 

4 percent.. The resul -Gs obtained for Darcy flow' agree wi th 

those from the Dupuit-Forchheimer expression at the. same. 

permeability, usually to within 0.5 percent. 

6.3.3. ComparisQ.g· wi tIl expmmental results 

Flow- net diagrams obtained from the finite difference 

solutions for each of the three head loss relations are 

plotted separately for each of the seven flows. The 

experimental free surface position, together with equal 

head lines obtained from the experimental results, are 

drawn on each of these plots. The' analytical solutions 

for the Darcy, Forchheimer and exponential relations for 

flow No.5 are plotted in Figs. 6-3-4, 6-3-5 and 6-3-6 

respectively, and the experimental results are plotted on 
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each of these diagrams. 
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The boundary conditions r , h w w 

and r ,h and the experimental and approprin-te analytical 
e e 

discharge valuGs arG given in each diagram. ThG discharge 

given for ForchhGimer flow is that obtainGd from the 

numerical solution 1ri th the original grid sizG so that it 

can be dirGctly- compared with the results from the other 

equations. Corresponding plots for Gach of floT, Nos. 1, 2, 

3, 4, 6 and 7 are givGn in Figs. A-III-I to A-III-18 in 

ApPGndix III. 

A study of thG discharge values 0 btainGd for flow No.5 

shows that .the Darcy solu-bion differs from the experimental 

result by 30·pGrcent, while bo-th the Forchheimer and 

exponential solutions are accurate to wi thin 0.5 percent. 

The Darcy free surface solution is also considerably in 

error especially in the vicinity of the ITGll, the error 

being as high as 18 percent at the vrell face. The equal 

head lines for the Darcy solution exhibit discrepancies 

from the experimental results as shown in Fig. 6-3-4. 

Observation of Figs. 6-3-5 and 6-3-6 indicates that the 

nonlinear rela,tions give much more accurate equal head 

lines and free sur:facG positions. The ForchhGimer solution 

gives "ohe most accurate result but eVGn then, there is a 

diffGrGncG of 8 percent right at the well face. Part of 

this discrepancy may be due to well casing loss incurred 
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because of the skeleton of metal remaining to support the 

gauze. Part may also be due to variation in porosity of 

the aggregate in the sector, although the accurate result 

for discharge would suggest that the coefficients employed 

in the he''''2 10 ss relation are correct. Some improvement 

may be obtained by using a smaller mesh size in the 

numerical solutions, although the small change resulting 

from the finer grid Forchheimer solution near the well 

suggests thaJ~ a finer grid size still, would produce only 

a marginal change in the free surface position. 

The experimental position of the equal head line for 

3.75 ft. appears to be separated from the nonlinear 

solutions for this value by some distance. Ho-wever, near 

the external bounda,ry, Trhere the p.ie.zometri c head changes 

slowly wi th ram us, a small difference in head val ues 

shows as a wide separation of equal head lines. 'lltus a 

small experimental error would result in a substantial 

separation of the equal head line from the true location. 

Al though the nonlinear solutions for the 3.75 ft. equal 

head line are located at some distance from the experi

mental line in Figs. 6-3-5 and 6-3-6, the agreement between 

the observed and calculated p'iezome-tric heads at any 

particular point in this area is within 2 percent. 
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A study of the results for the other six flaT,s shows 

that similar conclusions can be dra1m with regard to the 

free surface and egual head lines for these flows. The 

error near the well increases with increasing di scharge· 

for all three reI ations but it is much grea tor for linear 

Darcy floT{ than for the nonlinear solutions~ Thus for 

flow No.7, the error in the freo surface position right at 

the well face is 25 percent for Darcy flow, 15 pe.rcent for 

exponential flow and 10 perc<mt for Forchheimer flow. 

A compari son of the di scharge resul ts shOTTS tha.t the 

nonlinear solutions accurately predict the discharge 

throughout the range of flows. 

theoretical results are plotted 

The experimental and 

against h 2_h 2 in Fig: 
e 17 

6-3-7. A study of Fig. 6-3-7 shows that the nonlinear 

relations give' more accurate discharge results for every 

flow apart from the reference flow No.3. The error in tho-

Darcy cal cula.ted disch arges is highest for the flows with 

greatest drawdovm reaching a maximum of 52 percent of the 

experimental 1'esul t for fl01T No.7. The corresponding error 

of the Forchheimer solution for flow No.7 is 4.6 p'ercent 

while that of the exponential relation is 7.2 percont. The 

resul ts again show that the nonlinear reI ations can 

adequately cover a le,rge range of Reynolds numbers under 

practical flow conditions. Al though the curve fitting 
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resul ts indicatecl tha-t the Forchheimer relation holds more 

accurately than -I;he exponentie,l relation over a vide 

Reynolds number range, thG actual ~rGll test.s' sho11 that the 

exponential rela-bion gives satisfactory di scharge results 

over JGhe full range of drawdoI'm s, and it is only at the 

highest drawdoTfn incorporated, that the Forchheimer 

relation ShOTTS any appreciable superiority. 

6.4 Unconfi!1££ TE2=Dimensiolli!:l Fl QJY....ih2::o ugh., a Permeable 
rul 

6; 4.1 Determination of coefficients for head 10 ss relations 

The gravel used in these experiments ~Tas the same as 

was used in the axisymmetric' experiments wi th a sector. 

Hence the coefficients for' high and lov porosity samples 

are those listed in Table 6-3-1, and the curve-fitting 

results are depicted in Figs. 6-3-1 and 6-3-2 respectively. 

An approximate solution for discharge through a 

vertical sided \'Tall \Ta.s obta.ined from the two nonlinear 

relations by assuming horizontal flow. The analysis was 

similar -to that used for the unconfined axisymmetric flows, 

involving a Runge-Kutta numerical solution for tho 

Forchheimor reI B,tion. 111.e rosul ts for one particul ar flow-

in the open flume TTero used to determine the values for 

p'ermeabili-ty k, the Forchheimer' coefficients a and b, and 

the exponential coefficients c and m. 
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Three florrs wore analysed in the experiments and the 

determination of coefficionts was based on the results of 

the first of these (with the lowes-b discharge). The 

measured upstream and d01"mstream heads were .790 ft. and 

.443 ft. respectively l'Thile the length of the wall was 

3.00 ft. and the experimental discharge was '.012 cusecs. 

Analysis showed that for Forchheimer coefficients 

corresponding to the higher porosi-by sample in the 

/ 2/ 2 permeameter, a = 4.62 sec ft and b = 76.58 sec ft, the 

theoretically expected discharge for the abo've vater levels 

is also .012 cusecs, thus indicating that these coefficients 

would be accure,te for the permeable wall analyses. However 

as already discussed in section 6.3.1, the Forchheimer 

and exponential coefficients obtained from the same 

por.osity sample· in the permeameter yield different c.alcul-

ated flows through the permeabl e TTall, Although no 

inieI'polation for coefficients is reguired with the 

Forchheimer relation, it is required wi th the exponential 

rela tion. 

For c = 54.51 and m = 1.62, the expected discharge is 

.014 cusocs, 

while for c - 19.72 a.nd m = 1.13, the expected dische,rge is 

,006 cusecs ... 

Successive inJGerpolation inc1ic2,tes that with c = 48.71 

and m· = 1.53 the exponential relation would give a 
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discharge of .012 cusecs for the reference fl07T. These 

coefficients were therefore emllloyed in the finite 

difference solutions. 

6.4.2 Experimen1§l results and finite diff~2£e solutions 

Fl01r net diagrams from the Darcy, Forchheimer and 

exponential finite difference solutions for flor, No.3 are 

plotted in Figs. 6-4-1, 6-4-2 and 6-4-3 respectively. The 

experimental floT.' net is drawn, end the relevant variables 

including length of TraIl, upstream (HU) and downstream (HD) 

imterl evel s, and cal cula ted (Q( CALC» and e'xperimenJual 

(Q(EXP» discharges are given in each diagram. The 

corresponding results for floiT No.2 are given in Figs. 

A-IV-l to A-IV-3 in Appendix IV. The flow nets are not 

shown for flow No.1 but the discharges obtained from the 

finite difference solutions agreed wi th the experimental 

measurement for this fl01r, thus confirming the validity 

of the assumption of horizontal flow employed in deter

mining coefficients. 

A study of the results shows that the nonlinear 

relations give more accurate solutions than Darcy's Law 

both for piezometric head distributions and discharge 

values. The Forchheimer relation again gives a small but 

significant increase in accuracy over the exponential 

relation especially' in discharge calculations. There is 



(-

w 
w 
L~ 

Z 
H 

,
:r:: 
C:1 
H 

"" r 

------ -- EXP~RIMfN~A~ RrSL~~.~ 

------- R~ALYTlrAL. Sr~L1TICN 

_ 'L 
"'-~-------~-----~----::: -- --

1 ,5 07~l ____ ,~ ~ __ ~ ~ ___ 
f I ________ ~~ ~ ~ 

/
' I 1 ,25-/ .!.i--:;~ ~~ ~ ~ __ ~ ...... 
/ -

I I / "'-7 '~r- ...... 
{I '/ ,.CO~o-( "~, ~. .. -------'-1-' . '--'-"'''-'~. f I / /....... "-

- ".. ~ , 
I ''''''-'''''', """-"I":;,,Q I I '~ /'- "-

,._! 7 '-"" I I -.__ I . '. ", 
I >/',l"-' ___ r-.,."......../ '')'' 

I h.25 '10." •. I'. 
I ~ • . '-N

Sq
/ ../ 

-----_LI_'_,_, __ ._,._~,._,._ -'-,~,.s.QO I / i -' / 

." '_.-." I I -'-'" ,'/'..! .7 H '"'.j 

I 'I !"/.< /. I) 
I I i I /' f :""''fo'

2
5(( 

I 

I

' 1 ". I ! 5..;y II 
~ .. --·--'-·'-"--.. ---2_&ll... ___ , __ , __ .. , '~-I"_ 'r' "'''"'''''-!1 

--_.,-+ .. "".,-. __ . I I I '; 

I I I I , o . , 
) 1 r> 

2·~t:. 

--"': : 1_~'_::-r-:--:::-",L_7.~........L~-
rJ·OO 

I 
·87 , l1' J 

, 'J 1 >31 1 7~ 
, . - [?.F)? 

PERMEABLE WALL PROBLEM 
Fl.CW NO :3 

RfSULTS f[lR CARC;V F·~OW 

OISTA~Cf IN F[IT 

Lt.'NC·: rrl Of- WALL, ~ :3. [1[:C 
HO' .?2~ HU" l·G~G 

O(CALC)= ,076 Q(EXP)c= .[]52 CUSlC 

FIG. 6-4-1 

l\:) 
en 
(J) 



t
LoJ 
LoJ 
L~ 

? 
L 

H 

,-
r 
" ,~ 

'" LoJ 
r 

----------- ------ -~~-

lXPERIMLN1RL RESU~l 
-~- -- --- A",lRLY1ICAL. '30LUTION 

------ -- -------------------

-'! ~-----------
1 ~ __________ _____ 

! ~-'---JL 
I ~~~~ I 1 . ell ___ ____... 

I I I ___ ",,_ ----------'--------~---- 1/ 1 - ~7 ~ '"" , 
_. I ·----~.Z i(, 1/ "-. ..... I 

~--------- ". )-... 

I 
/ I .-......... _, 7"/-y _, J 

---------I) . '1- "_'. '-
'-............ I I , I I 'I' I ! ~_, / \ 

I I I /'1-, , "" I [ " _ _ '- _ "7' ' 

---- - .... -----.. ---------------·-.... -lr·'J.U."-~ LI I I "'Vi I 

--.-.------ r I ~~-----... --/ r----~.~_I / (j' ... J 

I ,I I I ~ ! _!'j •• _ _\1_ 

I II "'"------ --/ ___ --------r T ____ -/_1 ___ " I 

I ;--_ --1' ~ 
I (I /.[.::; : _c" 

--------1 -------------------------l'- I 'I' 'i 
---- - , I , I _ --"-I 

I;:: 52 I '1: 75 
r, 1,31, TN FTtT ' ,~7 01-STA~[E [1" I :'+2. inn Cl . ,.J...J 

PERMEABLE WnLL PROBLEM _LENGrH OF WALLe 3 
r LOw NO :J HO: J'-):-"':: 

• I _ L • ...J rlU -: 

RESULTS ['DR FDR~~HEIMER FLOW G ICllL. Cl -, ,052 

FIG. 6-4-2 

..... I Ii=' c: .... ~. 

C[10 

1.rj'lfJ 
lllt"XI-') • <052 CUr.;E C 

t\J 
CJ1 
-'l 



r- ~? 

J U 
'.J 1 -i 
(j) f-' 
uJ .:J 
rL ~ 

" J ~ ,-;" 
a" '"' 
f- .J 
Z ir 
W:......; 
;:: H 
f- J ~_~ 

(L> 
uJ .J 
(;. ([ 
X z 
~([C 

1-

l ~]' NI ll-<ZHJI-< .1 ,-, 

(\J 

en 
~ ..... 

~ 

-[70 

I;' 

"en 

~ 
;n 

~ 

" W ,..J 
I.e.. 

...J 
cc z ::< I-" 

t..... 
;",..j 

CJ '-J 
? 
a.- ,-,-

(" 
'"~ Z H 

"""j CJ 
-] 

L 
~ 

...J 
Ci..: 
r~· 

iY.: 
CL. 

...J 

...J 
([C 

J: 

~ 

258. 

" 

" ::J 
~ 

~lJ 

" 0 

'" I :..,'"') 
'<f< rJ 

" I r. 
<0 

U 
• -' <!:> 

" 
[£: 

H Cl U 
~ ~ 

q 

2: 
CJ 
...J 
t..... 

...J 
a:: 
H 
f-
Z 
L" ; 
Z 
D 
CL 
X 
l.w 

G) [L -, 
~. 



259. 

only a very slight difference in piezometric head 

distributions obtained from the two nonlinear relations 

but the discharge difference is appreciable. 

The discharges obtained from each of the head loss 

relations and also the experimental results are plotted 

against the quantity (h 2_hd2) for each fI01T in Fig. 6-4-4 
u 

for comparison purposes. The increased accuracy of the 

nonlinear solutions for discharge as compared to that from 

Darcy's Lavr is clearly illustrated in Fig. 6-4-4. 

TI1e finite difference grid size used for analysing 

flow No.2 was 1 inch while that for flo .. No.3 was % inch. 

Similar accuracie s of the finite differenc e solutions reere 

obtained as for the a.xisymmetric flo17s and trial s sho'fred 

that the accuracy could be further improved 17i th increases 

in the number of iterations for any par~Gicular flow, if 

desired. 
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CHAPTER 7 

DISCUSSION AND COMPARISON OF RESULTS - PART II - --- - -
7.1 Ma-beri al Prol2§.rJ:i es for Finite El ement Analyses 

.A crushed aggregate of % inch nominal size, and 

arithmetic mean diameter .55 inch, was used to build up 

the gravel banks for the flow tests in the open flume. To 

determine- the values of the coefficients -bo be employed in 

the head 10 ss reI ations, permeame-ber -iests w-ere carried out 

on the aggregate. The' ratio of diameter of particle_ to 

diameter of permeameter was approximately 1:11 for the 

aggregate in this case. The aggregate was graded to some 

extent and this would tend to reduce the 17all effect as 

compared to a uniform coarse material; and in view of the 

difficul ties in eliminating the wall effect completely, as 

discussed in section 6.1.1, it was decided to base the 

determination of the coefficients on actual average values 

of velocity calculated in the permeameter tests~ It is 

noted that there may also be some wall effect, though 

p1.'obably not appreciable, in the flume tests, du~ to the 

plane surfaces occurring on the- sides and bottom of the 

gravel banks. 

The analyses of fl01T through gravel banks were carried 

out because of the need for accurate l~owledge of flow 

condi tions through banks of rockfill in connection \IT th 

d2~ and coffer-drun constructions in practice. In such 

261. 
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cases, analyses -.rill usually need to be based on material 

properties which are obtained prior to any prototyp-e flows. 

The coefficients used in the analyses were therefore 

determined from permeameter tests on material packed in a 

similar way to the prototype- material. With coarser 

grained aggregates which contain only a small l'orcentage 

of fines, it appears that similar porosities can be 

re.produc ed more e.asily than with finer gre-ined, graded 

materials. The aggregate in the flume- tests was placed 

loosely without any compacting or tamping, and for the 

p-ermeameter tests it was placed similarly. The Reynolds 

-number range for the- permeameter flo17S should .again 

correspond approximately ,ri th that in the flume tests. 

Thus with the same materialpacl~ed 1n appro'ximately the 

same way, the temperatures at which both sets of tests w'ere 

carried out <Tere sufficiently- close to render difference-s 

due- to viscosity negligible, and the range of velocities in 

the permeametGr varied from thG smallest at which an 

accurate measurement could bo made to values larger than 

fu~y e.xpected in flow through the baliks. This lattGr 

re.-quirement can be checked after an analytical solution 

is obtained. 

The values of coefficients a and b in the Forchhe.imer 

relation and c and m in the exponential relation were 
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ag~in obtained from the permeameter results by least 

squares curve fitting methods. Values o·f the coefficients 

for the material together with the corresponding standard 

errors o·f estimate (SE) are given in Tabl e 7-1-1. 

Forchhe-imer 
SE 

Exponential SE Coefficients Coefficients 

.a( sec/it) I b (sec 2 /ft2) % c J m % 

.31~Ll.821 1.57 8 -:-;;-T 1. 7 4;-r;~ 02 -
TABLE 7-1-1 COEFFICIENTS IN VELOCITY HEAD LOSS EQUATIONS 

The accuracy of fit of the Forchheimer equation is 

seen to be better than tha-t of the exponential relation but 

the difference in accuracy is not great. The accuracy of 

fit is shol'm visually in Fig. 7-1-1 where the permeameter 

resul ts together with the fitted curves, are' plotted to 

seal e. 

A calculation of the permeability ratio k at each 

exp'erimental flow' show's that permeabil i ty vari es continuously, 

decreasing with increasing vela ci ty as would be ex:')ected • 
• 48G 

The mean value' of k for all the permeameter flows"was ~ 

ft/sec, while the range' of perme>abilities is such that the 

deviation from the mean value varies from approximately 

+230 percent of the mean to -40 percent. Thus while the 

Laplace equation can be solved for piezometric head values 

in the region of flow, any meaningful interpretation of 
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discharges calculated from these head values 1fould be 

difficul t. 

7.2 Finio&e Element Solutions and Experimental Results 
for Actual Flow Test§. 

7.2.1 Flow' through~~~ate be.uk with no cut-off vrall 

Resul ts were obtained for t= different flo<TS through 

a ban..1;: of the t inch nominal size gravel Tri th no cut-off 

wall. The finite element ailalysis of both these flows 

showed only' a very slight difference in piezometric head 

values for solutions based on the Forchheimer equation and 

the exponential relation; the difference at corresponding 

points was usually less than 1 percent. In addition·, the 

piezometric head values for the Darcy flow solution did not 

deviate much from those of the nonlinear solutions. 

Flor,. 1 Upstream Water Level = 0.996 ft. 

The experimental free surface for this flow" is shoTm 

in Fig. 7-2-1, together crith the theoretical free surface 

for both Darcy and nonlinear flo1f. The equal head lines 

sh01'm in Fig. 7-2-1 are obtained from the finite element 

solution for Forchhaimer flow, but thoso obtained for the 

exponential rolation are virtually coincidont with these 

lines. 

The experimental froe surface agrees well with tho' 

calculated position espocially as there is a degree of 
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uncertainty associated with drawing the experimental line 

due -100 minor variations from individual particles. A 

comparison of experimental and calculated values of 

piozometric heact l,as made at a number of points throughout 

the flow marl,ed as A to N in Fig. 7-2-1. Table 7-2-1 shows 

the experimental values as 1rell as values obtained from the 

Darcy, Forchheimer and exponential relation solutions. The 

experimental measurements were obtained from the tapping 

points on the steel side of the flume. 

POi~-
-- I Piezometric Head (tt) 

1-- - -
Experi~ntal Forchheimer Exponential. Da:r:cy I 

.. A .99 .99 ,99 .99 

B .98 .98 .98 .98 

Cl .95 .95 .95 .93 

C2 .96 .95 .95 .94 

Dl .39 .90 .90 ;88 

D2 .90 .90 .90 .88 

El ,83 .86 .86 .84 

E2 .86 .86 .86 .84 

Fl .79 .82 .82 .79 

F2 .80 .83 .83 .80 

Gl .75 .78 .78 .75 

L .69 .71 .71 .68 

M .58 .62 .62 .59 
N .46 .50 .50 .49 

TABLE 7-2-1 PIEZOMETRIC HEAD VALUES FOR FLOTi I 
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The maximum discrepancy of any calculated piezometric 

head from the corresponding experimental one is' approxim

ately 8 percent and for most points the discrepancy is 

less than 4 p'ercent. At some points the Darcy solution 

for piezometric head actually agrees with the experimental 

measurement more 8~ccurately than the nonlinear solution. 

However, the difference betw:een all c:alculatod values at 

any point is small and all give acceptable agroement, ,nth 

the experimcmtal measurement. 

The most significant advantage of the finite element 

solution for nonlinear flo" is that it enablos an £!.ccurate 

calculation of discharge. The difficulty in obtuining a 

value of the disch£!.rge from Darcy's Law hus already boen 

noted because of the continuous variation in permeability 

,-nth velocity. This problem does not arise with the 

nonlinear flow equations provided the coefficients can be 

assum",d cwnstant throughout the range of velocities 

encountered. 

The dischargc was calculated from the nonlinear finite 

element solutions at £!. number of vertical sections 

throughout the bank. The dischargO' obtained experimentally 

,{as .076 cusecs/ft. The average value calculated from the 

fini te el emcmt Fcrchheimer solution was .. 073 cusecs/ft, 

TIhile that obtained from the exponential relation wa.S .071 
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cusecs/ft. Thus both theoretical values agreG well with 

thG experimental one. 

The numerical analysis Tras continu.ed until thG changG 

in the piGzomGtric hGad at any point bGtvoen successive 

iterations was .00001 ft. ThG fini tG elGmGnt network 

employed in the solutions is depictGd in Fig. 7-2-2. 

Although the grid size is reasonably coarso, evaluation of 

dischargo at different vertical sections in a continuity 

check shoircd that the variation from the mean value was 

IGSS th:m :!:. 0.3 percent. ThG discharges calculatGd at the 

vertical grid linGs dGsignated in Fig. 7-2-2 are listed in 

Tab1 e 7-2-2. 

Grid Line as Depicted Total Calculated Discharge 
in Fig. 7-2'-2 (cusec sift) from Forchheimor 

Solution -
A-A .0732 

B-B .0735 

c-c .0735 

D,-D .0735 

E-E .0735 

F-F .0735 
- - - -

TABLE 7-2-2 
DISCHARGE AT n:RTICAL GRID LINES FROM THE FINITE E.'LEMENT 

SOLUTION 

The table shows that con-cinuity 1S satisfied to within 

a total variation of 0.4 percent for thG .lines given. 
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Since the discharge quantities are obtained from the 

velocity and -bhe length of grid by an integration procedure, 

in which -bhe errors in the numericul results tend to 

accumulate, -Ghe agreement between the quantities at the. 

different soctions indicates. a satisfactory' numerical 

solution. Analysis of the resul-Gs from -bhe Darcy and 

exponential relations leads -Go similar conclusions regarding 

the accuracy of the numerical solutions. 

Al-bhough the piezometric heads calculated from the 

two nonlineer sol u-tions generally agree to wi thin 1 porcent, 

the difference in discharge values is greater, with the 

Forchheimer resul t giving slightly be-bter agreemcm-G with 

tho· experimental value. Similarly, although there is only 

a small difference between piezometric heeds obtained frem 

the Darcy and nonlinear solutions, the effect on discharge 

is significant. Thus, if an attempt is made to calcul,,-be 

the di scharge by applying one of the nonlinear flow 

eq_uaticns to -bhe Darcy hoad values, it is found that there 

is a discrepancy' of up to 2D percent botween discharge 

values calculated at differon-b sections -Ghroughout the bank. 

It is expected that this discrepancy would be considerably 

magnified in flOTT through prototypo rockfill banks and in 

such flows the advantages of the nonline·ar solution would 

also be more significant. 
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The experimcmtal free surfaco for this flo,; is sho','m 

in Fig. 7-2-3, together with the theoretical free surface 

for both Darcy and nonlinear flow', The tTro nonlinear 

relations, Forchheimer and e:lCponential, again give virtually 

coincidenJG results and the equal head lines sho1m in Fig, 

7-2-3 are obtained from the finite element solution for 

Forchheimer flow. 

A comparison of experimental and calculated values of 

piezometric head was made at -tho points throughout the flow 

marked A to N in Fig. 7-2-3 and these are given in 'Table 

7-2-3. 

P'Oi~ 

A 
B 
Cl 

C2 
Dl 
D2 
El 
E2 
Fl 
F2 

Gl 

G2 

L 
M 

N . 

- ---------------.------------.------., 
-~-

Experimental I Forch --
1.21 1. 
1. 21 1. 
1.16 1. 

1.18 1, 

1.09 L 
1.11 1. 
1.02 1. 
1.05 1. 
~96 , 

.98 1. 

.90 • 

.90 • 

.80 , 

.64 • 

.48 • -

Piezometric Head (ft) 

21 

20 
16 

18 
10 
11 
05 
06 
99 
01 

93 

95 

83 
68 

51 

Ex onential 

1. 21 

1.20 
1.16 

1.18 
1.10 
loll 
1.05 

1.06 
.99 

1.01 

0 93 
.95 

.83 
',68 
.51 ' 

Darcy_ 

1.21 

1.19 
1.14 

1.16 
L07 
1.08 
1.01 

1.02 
;95 

.97 

.89 

.90 

.78 

.65 

.51 

TABLE 7-2-3 PIEZOMETRIC HEAD VALUES FOR FLOW 2 
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Th.o results Sh01T trends similar to -those which vrore evident 

mth flow No.1, the maximum discre}Jancy of ,my calculated 

piezomotric hec,d from the corresponding experimental one 

being approximately 6 percent in this case. 

Discharge calculations again yield good agreement with 

the experimental result: 

Experimental discharge = .114 cusecs/ft 

Theoretical discharge (Forchhoimer) = .110 cusecs/ft 

Theoretical discharge (exponential) = .107 cusecs/ft. 

Tho Forchheimer result again shows a small but significant 

increase in accuracy over tho exponential one. 

Tho fini to element network used 1'n1S similar to the~t 

for· flo~r No •. l and discharge calculations at ve~rious 

vertical grid lines showed that continuity lms satisfied to 

2~ similar degree of accuracy as for flow No .1. 

7 .. 2.2 flow "bhrough a b~ with alLiillIt£rvious cut-off wall 

A solution was carried out for t'To flows through a bank 

wi th a sloping impervious cut-off wall. For flow No.1 the 

hoadwater height was 1.383 ft. and thore was no ts,ilwater. 

The free surfaco position obtained from the ForchhGimer 

flow equation and JGhe exponential relation are in close 

agreement as are the equal head lines. The free surface 

line and the equal head lines for the Forchheimer solution 

are plotted in Fig. 7-2-4. The positions of the 
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experimental free surface and the Darcy free surface are 

also shofm in Fig. 7--2-4. A comparison of the e-xperimental 

and calculated values of piezometric head at discrete points 

(marked A to N in Fig. 7-2-4) is given in Table 7-2-4. 

-----
Point I -

":Exporiment 

A 1. 383 

B 1.379 1.379 1.379 1.371 

Cl .85 .95 .95 .96 

C2 1. 358 1.356 1.356 1.331 
C3 1.379 1. 374 1.374 1.371 

Dl .85 .95 .95 .98 
D2 1.19 1.17 1.17 1.17 

El .83 .93 .93 .96 

E2 .84 .95 .95 .93 

E3 .89 098 .98 1.00 

Fl .80 .89 .89 .90 
F2 .81 .90 .90 .91 
F3 .83 .91 .91 .93 
Gl .76 .84 .84 .84 
G2 .75 .85 .85 .84 
Ll .68 .75 075 .73 
L2 .69 .75 0'75 .73 
M .57 .62 .62 .60 
N .41 045 .45 .44 

TABLE 7-2-4 
PIEZOMETRIC HEAD VALUES FOR FLOVl No.1 WITK CUT-OFF WALL 

.A consideration of the results shol7"s t..lJ.at good agreement 

between calculatod and observed g.uanti ties is obtained 

up'stream of the cut-off wall but that the agreement on the 

downstream side is less accurate. .A problem "w:i.th numerical 
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analyses is that i J
& is sometimes difficlil t to predict the 

degree of accuracy of the rosul ts. Some indication of the 

accuracy may be determined by so 1 ving a given PTO bl em wi th 

a particular mesh size and solving the same problem with 

a finer mesh and comparing the results. A solution for 

this flow problem was therefore obtained using 100 nodes 

and about 160 elements and then another solution using 

approximately 300 nodes and 500 elements was carried out. 

The results of the finer grid solution showed only slightly 

better agreoment ,rith the experimental ones. The difference 

between the "two solutions a"t" various points was usually less 

than 2 percent. The results given in Fig. 7-2-4 and Table 

7-2-4 are for the fine grid solution. 

Some idea of "tho accuracy of the numerical results 

may also bo obtained by carrying out a continuity check. 

Calculation of discharge from the nonlinear finite element 

solution at various vertical sections shorred that 

continuity is satisfied to within:!: 3 percent for sections 

throughout the florr including sections above the cut-off 

traIl. 

The finer grid finitG element networll: used in the 

solutions is depicted in Fig. 7-2-5 and the discharge from 

the Forchheimer solu"bion at, the sections designated in 

Fig. 7-2-5 are given in Table 7-2-5. 
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- -
Grid Line as Depicted Total Calculated Discharge 

(eusecs/ft) . in Fig. 7-2-5 
Forchheimer Solution 

---
A-A .091 

B-B .089 

C-C .088 

D-D .092 

E-E .093 

F-F .093 

G-G .093 
-- --

TABLE 7-2-5 
DISCHARGE AT VERTICAL GRID LINES FOR FLOW WITH CUT-OFF 

WALL 

Although the agreement of values in Table 7-2-5 could 

be impTovod by more iterations and by using a finer grid, 

experience has shovm that the final average calculated 

discharge and the piezometric heads at the nodes would not 

be significantly affecte·d. 

The experimental discharge was observed to be ,083 

cusecs/ft.· The average value calculated ·from the Forchheimer 

solution was ,091 cusecs/ft. while that from the oxponential 

relation was .090 cusecs/fi. Although values of piezometric 

head obtained from the Darcy solution agree quite closely 

with those from the nonlinear solutions, discharge 

c.alculations from these Darcy head values are again 

inaccurate·. For the second flow investigated, the 

upstream water level was 1.18 ft. and the downstream level 



280. 

was .12 ft. The free surface position ·and equal head lines 

from the Forchheimer solution are plotted in Fig. 7-?..-6 

together with the positions of the free surface obtained 

experimentally and from the Darcy solution. The results 

sho~T similar trends to those obtained for the first flow 

except that the nonlinear Forchheimer solution gives a 

decidedly more accurate pTediction of the free surface 

line'in thi s case than does the Darcy sol u-bion. The' 

piezometric head values obtained from the nonlinear flow 

solution at points within the flow region also agree more 

closely with the experimental measurements than do those 

from the Darcy solution. A calculation of discharges 

8_cross various vertical grid lines throughout the· flow

shorrBa that continui -ty was satisfied to a similar degree 

of accuracy as for flow'No.l. 

The experimentally measured ill scharge for thi s second 

flo~r. was .058 cusecs Tlhile that obtained from both the 

Forchheimer and exponential solutions was .065 cusecs. 

Although the Forchheimer solution gives more accurate 

resul ts -than the Darcy solution there is still a discrep

ancy betvreen calculated and observed piezometric heads 

especially on the dormstream side of the cut-off wall. 

Some of this discrepancy between the calculated and 

experimental values may be due to the complexity of the 
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lower impervious boundary. Singularities arise at abrupt 

changes in direction of the flO'T boundaries and those 

cannot be easily allowed for in a numerical solution to 

nonlinear partial differential equations. The only 

allowance for singularities made in the analysis was to 

use a finer grid size around the corners at the top of 

the cut-off wall. 

Part of the discrepancy may also be explained by the 

actual nature of the floYT passing over the imll which 

probably does not conform well to the continuous saturated 

flow· condi tion assumed in the analysis. In the experimental 

te·sts some aerification of the florl" occurred as it passed 

over the cut-off wall with a resul t that only a mean 

position of ~~e free surface could be plotted. Parkin 

(1963a) has called this the free-fall region. 

In vieW' of the difficulties in accounting for this 

aerified nature of the floYT in any analytical solution the 

calculated values of piezometric head and discharge are 

acceptable results. 



CHAPTER a 
CONCLUSIOHS 

8.1 Nonl inea:r ,Head Loss f/..el,,§tions in Por2.lls Media FloTT 

The realisation of the limited validity of the Darcy 

linear law of head loss for flow through porous media at 

high Reynolds numbers has led researchers to formulate 

nonlinear relaiions that will accurately predict the head 

loss over an extended re,nge of Reynolds numbers. The 

suggested forms of the appropriate nonlinear relations 

have varied considerably. ~TO of the most common forms 

for flow of TT8 .. ter through coarse granular material s are 

the Forchheimer and exponential equations. The Forchheimer 

rela-bion is wri t""Gen as: 

i = aV + bV2 
•••• 8.1-1 

while the exponential relation is: 

i = cVU • .. .. 8.1-2 

in which i is the hydraulic gradient, V is johe average 

m8,croscopic velocity and a, b, c and mare J"erms 1ihich 

depend on the properties of the fluid and medium. 

Deductions from the Navier-Stokes equations (Irmay, 

1958; Sunada, 1965) have sho,m that the Forchheimer equation 

can be derived by a dimensional approach, but further 

consideration (S-tark and Volker, 1967; SJoark, 1969) has shoim 

that the coefficients a and b will only be stricUy constant 

283. 
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for a constant velocity profile of flow. Numerical 

solutions of the Navier-Stokes equations (Stark, 1968), 

for flow 'chrough idealised media, have ShOl'ffi that the 

velocity profile varies with the Reynold.s number so that 

a and b depend on the Reynolds number. However these 

solutions have also ShOl'ffi that the velocity profile and 

therefore the values of a and b change slowly with changes 

in Reynolds number so that constant values of a and b can 

be· applied, with small error, over a r3.uge of Reynolds 

numb~~ Experimental measurements of hydraulic gradient and 

velociJGY, for flow through coarse grained materials, have 

been carried out by numerous authors and have supported 

the above conclusions. To ensure best accuracy of results, 

the coefficients a and b should be determined by curve 

fi tting to the velo·ci ty and hydraulic gradient resul ts 

over the Reynolds number range under consideration·, 

The exponent,ial head loss relation has also been 

supported by many authors and has been applied in the 

analysis of some practical floT! situations. This r·elation 

however has been suggested on the basis of experimental 

resul ts and theoretical justification for it has not been 

reported as for the Forchheimer relation. 

Al though the breall:dol'ffi of Darcy's 1al'l at high Reynolds 

numbers has been widely recognised, the treatment of 
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practical situations involving nonlinear flow has bee'n 

limited. The approach utilised in this thesis has 

incorporated experimental work with materials sufficiently 

coarse to render nonlinear effec"os appreciable. Experi

ments have been carried out over ranges of Reynolds 

numbers for situations similar to those lill~ely to be 

encountered in problems of practical importance. Thus 

the axisymmetric floir tests were performed to investigate 

nonlinear effects in the area adjacent to a well where" the 

veloci ties are high, yrhile the gravel banll experiments in 

the open flume yrere designed to simulate flow through 

rockfill, which is of increasing importance in dam and 

coffer-dam constructions. 

The results of the well flow tests have shown that 

the position of the top flow line and equal head lines 

obtained from the Darcy and nonlinear solutions differ 

appreciably only at large drawdowns. For the confined 

flow experiments the results indicate that the Darcy 

solution for the piezometric head line agrees more closely 

wi th the experimental than the nonlinear solutions. 

However at least part of this discrepancy is considered to 

be due to experimental error" in determining the free 

surfac e, as permeameter re suI ts had shovffi tha"l;" Darcy f s 

Law is decidedly inaccurate, over the Reynolds number 
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range which occurs in the well tests for any particular 

flow. The unconfined axisymmetric flow analyses show,ed 

that both the Forchheimer and exponential relations gave 

better agreement with the experimentally determined flovr 

nets than the Darcy solution. Especially at the highest 

flows in the range investigated, the nonlinear solutions 

give appreciably more accurate resul ts. The two-dimensional 

flow experiments in the open flume showed that the difference 

in flow· nets obtained from the linear and nonlinear 

solutions is quite small for small drarrdolms. In flovr 

through banks of % in. nominal size aggregate the 

difference in the phreatic surfaces is small for all three 

head loss relations and it appears that, in this c2,se, 

the flov net could usually be obtained to sufficient 

accuracy from 2, Darcy solution. The reason for this is 

that, although Darcy's Law does not apply over a wide 

range of Reynolds numbers for such a coarse grained 

material, the variation in average velocity from tha 

up1ltream face to the downstream face of the bank is not 

great and a Darcy solution l'rill therefore be reasonably 

accurate. Nevertheless, the material l~b.ich occurs in 

actual applications may have a nominal particle size of 

the order of 2 ft. or greater and for this material the 

nonlinear effects will be increased so that the error of 
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the Darcy solution for the free surface may then be more 

significant -than in the expGrimGnts re.portGd herGin. 

It is however, in determinations of discharge that 

the solutions for nonl inear porous mGdia :flOYi are 

particularly significant. For the 3/16 in. nominal size 

gravel employed in the well flow experiments it has been 

shown that estimations of discharge from Darcy's Law, 

based on a permeability coefficient determined for any 

particular floTT, will be in error for any other flo1'r~ 

For well tests under field conditions the discharge from 

the pump used in the test is measured. The draw-down. 

betrreen the Dl.unDed well and an observation well located - " 

at a li:noTm dis-Gance away is determined. The Dupuit..:. 

Forchheimer expression is then employed -to calculate the 

average permeability coefficien-t. If the purmeability is 

determined from a flow with a small drfl,wdolm, then for 

thG re,nge of flews and the material used in the experiments, 

this will result in an underestimation of discharge for 

still smaller drawdolms and an overestimation by as much 

as 50 percent for highest dra17dolms. The nonlinear 

relations ho,TGvGr can accuratGly prGdict thG discharge 

to wi thin a few· percent over the "hole range of drawdolms. 

It is still necessary to determine the appropriate values 

of the coefficients in the head loss relations for the 
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prototype material and for the Reynolds number range 

encounterod in the prototype flows. .A satisfactory 

method of achieving this has been formulated, based on 

permeameter results at different poro si -!:'i es, and using an 

approximate solution for horizontal flow to interpolate 

between the sets of coefficients. 

In flow through rockfill dams and ban1cs in 8,ctual 

pTactice, discharge calculaJoions will usually need to be' 

carried out in Johe de.sign stage, before construction 

commences. For this reason it would not be possible to 

determine the permeability or tho nonlinear head loss 

coefficients from actual flow resul ts. In the gravel 

bank experiments therefore, coefficients in the nonlinear 

head loss equations were obta,ined by fitting curves to 

permeameter test results for a sample packed similarly 

to the prototypH material. Under these conditions, any 

determination of discharge from Darcy's LarT would bo 

difficult because the permoability varies continuously 

over all velocity values used in the p'ermeameter. The 

availability of a nonlinear solution therefore assumes 

greater importance for such situations and this is likely 

to be even more important with the coarser materi al s which 

occur in practice. 

A comparison of the results from the two nonlinear 
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relations (the Forchheimer and exponential) shows that 

both give accurate predictions of discharge and of 

piezometric he2,d values. It was noted in Chapter 2 that 

the Forchheimer equation was theoretically more sound than 

the exponential one. The curve fitting results reinforced 

this conclusion, as a calculation of the standard error of 

es-i;imC',te for the fitted curves showed that in every- case 

the Forchheimer equation fitted all permearneter results 

wi th greater accuracy than did the exponential equation. 

However the resul-ts obtained from application of the two 

equations to practical flow situations showed that, -17hile 

the Forchheimer equation in general gave more accurate 

resul ts, this increased accuracy was on13T significant in 

a limited number of cases. These included axisymmet"ric 

floW' to a well at large drawdoTms and flow- through coarse 

gravel banks. 

Again it is possible that the increase in accuracy of 

the Forchheimer equation may become more appreciable in 

flow through rockfill with the larger particle size likely 

to be met in practice. 

Thus, al though both relations give reasonably accurate 

results, it is considered that analyses should be based on 

the Forchheimor relation because it does give some 

improvement in certain cases and it involves no more 
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difficul ty in the cmalysis than -the exponential reI ation. 

8.2 Finite Dillercmce and Finite ;:!!lement Solutions 

The field differential equations resulting from all 

three head loss relations considered, are partial 

differential equations and for unconfined floTT situations, 

the solution of these equations involves a numerical field 

approach. The two approaches used in this thesis have 

been the finite difference and finite element methods and 

each differential equation has been sho~m to be amenabl e 

to solution by both methods. A brief consideration. of the 

relative merits of the fini te difference and fini to' el ement 

techniques is therefore pertinent. 

The finite el ement method has advantages over "3; finite 

difference auproach when the boundaries of the flow area "-

are irregularly shaped. The elements can be varied in 

size to conform to the boundaries without difficulty and 

no change in the basic program is necessary for any shape. 

The varia,tion in el ement orientation and si ze is catered 

for in the input data. The finite difference method, on 

the other hand, is much less readily adaptable to irregular 

boundaries, especially when a fixed mesh length is assumed 

at interior points in the field. Thus the finite e-l'ement 

method is better sui ted to the analysi s of floTT' through 

dams and banks of placed rockfill where the slopBs of the 
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faces vary and vrherG the lower boundary may not be 

uniform or horizontal. The finite elemsnt method is also 

easily adapted to flow situations involving a nonhomogeneous 

flow field because, provided the boundariGs separating 

different materials are known, the elements can be made to 

conform to these boundaries. The appropriate values of the 

coefficients for each elemGnt can be specified and read in 

as data for the computer program. 

~lhen compared with the finite differGnce technique, 

the method of finite cl emen-ts has some di sadvantages in 

that, for a given number of grid points, it requires more 

computer storage and mEW require more computer time to 

achieve a given accuracy of solution. Thus for a given 

amount of computer storage and time, a finer grid size 

will usue_lly be possible with the finite difference 

method, although it is usually easier, 17i th the finite 

(dement method, to incorporate a finer mesh in pari;"i'cular 

locations where increased accuracy is desired. 

lfith the finite element approach, the preparation of 

data for large' element nUinbers becomes tedious when this is 

done manually, whereas the finite difference grid netmjrk 

is often set up in the program itself and no such tedium 

is encountered. HOiTever, programs are being developed 

(Zienkie17ic'z, 1967) to produce a finite element network for 
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general field shapes so that this difficulty will eventually 

be elimina:ted for the finite clement method. 

TllG problem of unconfined floTT to a 17ell results in a 

flow field in which the equal head lines at the upstream 

and downstream boundaries CB_n be assumed ver-/,ical; and if 

the medium is homogeneous and 1S underlain by a horizontal 

impervious stratum then a finite difference analysis is 

readily adaptable. The finite element method can, of. 

course, be applied to the analysis of the unconfined 

axi symmetric flo.r situation (Taylor and Brorm, 1967), if 

it is advantageous because of nonhomogeneity of the 

medium or irreg-u:lari ty of the flo1'[ boundaries. 

The two approaches differ in the treatment of thG" 

Neumann boundary conditions. The finite element method 

automatically alloTTs for no floTT across the impervious 

base and acro S8' tho free surface, as a "natural" boundary 

conclition, while this condition has to be incorporated in 

finite difference form in the alternative method. This 

difference becomes significant in the adjustment of the 

free. surface where the finite difference method is 

restricted because of the regular nature of the grid lines. 

Nevertheless, automatic adjustment of the free sur-face 

with the finite element method also introduces complexity 
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in programming because of the need to allow for changes in 

the element networll: in -['he vicinity of the free surface. 

Wi th the continued improvement in capabilities of each 

new generation of computers and with the need to handle 

more compl ex flolT si tuations, it is likely th at th e finite 

element method ,rill be increasingly employed in solutions 

of porous media flow problems. 

8.3 Applications t.Q...PracticaLFlo1'T Situations 

8.3.1 ~ete~mination of coefficients for actual media 

Problems still arise in applying the nonlinear relations 

to practical fl01T si tuations because of the difficulty in 

determining values of the coefficients in the equations for 

naturally occurring materials. Some empirical methods have 

been formulated for determining the coefficients in terms 

of particle size, porosity etc. Engelund (1953) proposed 

eqmd;ions for the coefficients a and b of the Forchheimer· 

relation while Parkin, T.rollope and Lawson (1966) gave a 

nomogram for obtaining the head loss through marbles and 

rock at a range of void ratios, from an exponential head 

loss relation. At their present stage of development such 

empirical methods cannot account for the wide variations 

in properties which occur with porous media in practice, 

as they have been tested for only a very limited range of 

materials. But it is possible that with continued 
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determina tio!1s of co efficients, information may be 

accumulated for a more comprehensive range of media so 

that coefficients 1Till eventually be determined from 

formulae or charts as functions of material gradings, 

porosities, mean particle di8"meter etc. 

Another possible avenue for obtaining required 

coefficients is from solutions to the fundamen-bal Navier-

Stokes equations. At present solutions are only avail able 
Icn',\na" 

for ~ flow and ideali sed parti cl e shapes, but with the 

improvement of numerical methods and computer systems, 

coefficients may eventually be obtained from numerical 

solutions for 3-dimensional fl01r through channels which are 

representative of actual porous media. 

For suffici(mtly fine grained materials and where the 

results for at least one prototype flow are available, the 

coefficients may be obtained from pcrmeameter test results 

in conjunction with an approximate analysis of the flow, as 

doscribed in Chapter 6. For some ro·ckfill materials the 

particle size may be too large to allOT! accurate permeameter 

tests and in this case it may be poss.ible to obtain 

coefficients from semi-field type measurements for flow' 

through material in specially constructed flumes, with 

discharges measured by weirs or flow meters. Al though such 

tests may involve substantial cosis, they TrGuld provide 
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the appropriate coefficients for the nonlinear head loss 

relation and a complete analysis of flow through the 

rockfill could then be achieved by solutions based on this 

relation. 

8.3.2 Future ~~li£&tiQQ~~investigations 

In stability analyses of slopes subj ected to water 

flow, the position of the phreatic surface and the 

distribution of piezometric heads within the slope are 

required. Although no consideration of the stability of 

the gravel banl~s has been underJGaken in this thesis, the 

solutions for pie zOliletri c head wi thin the banks woul d be 

directly applicable in such considerations. Solutions for 

the phreatic surface and piezometric heads, from the 

nonlinear equations, could therefore be used in the de-sign 

stage for analysing the stability of proposed rockfill 

structures. 

The practice of allowing rockfill coffer damsio be 

ov.ertopped at pea.1;: floods i-s being utilised to an 

increasing extent in modern dam constructions,·as mentioned 

in Chapter 2. Under these condi tions the analysis of the 

flow· is quite complex because of the different factors 

governing the flow through, and over, the rocll:fill. If 8. 

fini te element approach were devised for analysing the 

part of the fioTT over the rockfill, then by combining this 
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wi th the finite el ement solution fo r nonlinear flow 

~vi thin the rockfill, an overall solution for the problem 

would be possible as mentioned by Fenton (1968). This 

would represent a significant improvement in the analysis 

of the overtopping flow situation. 

The existenc e of nonlinear flow in the area adj acent 

to a pumping well can be adequately accounted for, by 

invohing a nonlinear Forchheimer head loss relation with 

appropriate coefficients, in the solution. Permeameter 

tests on a sample· of sand tal'\:en from the Burdekin River 

area (North Queensland) have she'8 that nonlinear effects 

can be expected at high pl!lllpixlg rates in actual aquifer 

materials but the significance of these effects depends 

on the type of material, its mean particle diameter, 

grading, etc, anet will decrease In th decreasing mean 

particle diameter. However, even in fine grained aquifers, 

the incorporation of a gravel bed in the area adjacent to 

a rGcharge or di scharge well, may be nec essary to ensure 

maximum efficiency. 't'he flow through the gravel bed will 

follow a nonlinear head loss relation so that an appraisal 

of the development of the aquifer system will necessitate 

allowance for tho nonlinear effects and this c.an be 

achieved in a me,nner similar Joo that pXGsented in Chapter 6. 
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Both the finite elemcmt and finite difference methods 

can be oxtended to account for nonhomogeneous media 

pTovided all the relevant coefficients in the head loss 

equations -are kmnm. However, unless tho boundaries 

separating the strata are parallel to the grid lines of 

the finite difference netwo rk, the finite el ement metho d 

will be better suited to these conditions as discussed in 

section 8.2. 

The availability of numerical methods of solution 

for nonlinear flOT[ through porous material s enables a 

thorough investigation of flo~T conditions to be; made in 

the preliminary- or design stage of a proj ect. There is 

the advantage that the consequences of changes in variables 

c;an often be more easily studied than -in medel tests and, 

provided the coefficients in the head loss relatioil_:;( can 

bo obtained for the prototypo material; the nood for 

scaling of rosul ts is eliminated. Flow- pattorns can be 

-ascer:tained from the calculatGd values of piGzometric head 

wi thin tho floTT and discharges can be Gstimated -for 

varying boundary conditions of the- flow. 
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APPENDIX I --

Results for Confined Flow Experiments. 

Flow Nos. 1, 2 and 4. 
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APPENDIX IV 

FloW" Net Resul is for Unconfined. 

Two-Dimensional Flow Through a Permeabl e Wall. 
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