COASTAL THEMES
AN ARCHAEOLOGY OF THE SOUTHERN CURTIS COAST, QUEENSLAND
SEAN ULM
Terra Australis reports the results of archaeological and related research within the south and east of Asia, though mainly Australia, New Guinea and island Melanesia — lands that remained terra australis incognita to generations of prehistorians. Its subject is the settlement of the diverse environments in this isolated quarter of the globe by peoples who have maintained their discrete and traditional ways of life into the recent recorded or remembered past and at times into the observable present.

Since the beginning of the series, the basic colour on the spine and cover has distinguished the regional distribution of topics as follows: ochre for Australia, green for New Guinea, red for South-East Asia and blue for the Pacific Islands. From 2001, issues with a gold spine will include conference proceedings, edited papers and monographs which in topic or desired format do not fit easily within the original arrangements. All volumes are numbered within the same series.

List of volumes in Terra Australis

Volume 4: Recent Prehistory in Southeast Papua. B. Egloff (1979)
Volume 10: The Emergence of Mailu. G. Irwin (1985)
Volume 14: 30,000 Years of Aboriginal Occupation: Kimberley, North-West Australia. S. O’Connor (1999)
Coastal Themes: An Archaeology of the Southern Curtis Coast, Queensland

Sean Ulm
THE RESEARCH DOCUMENTED here represents the first systematic archaeological work in this area of the southeast Queensland coast and was undertaken as a major part of a larger, multi-component project concerning archaeology and cultural heritage in the traditional country of Gooreng Gooreng speaking people. Sean’s task was to build upon the results of exploratory site survey and excavation to address two key concerns. The first was the relationship of patterns of cultural change in his study area to those described elsewhere in southeast Queensland. The second was to ensure that any such comparisons were taphonomically well-founded, particularly with regard to the analytical integrity of the shell middens upon which he and other coastal researchers in Australia rely so heavily.

Sean took to this task with a vengeance, closely surveying a large area of landscape and excavating an array of site types to provide himself with a solid sample of the archaeological variation thus revealed. Though most were not archaeologically rich, these sites provided substantial grist for Sean’s taphonomic mill, prompting him to adapt conjoining techniques to work on bivalve shellfish — a simple but clever innovation — as well as to undertake much more sophisticated work on local variation in correction factors for the radiocarbon dating of marine shell. In the end, he was able to distil the three-phase cultural sequence he describes in this volume, ‘hygienically’ dated on the basis of reliable correction coefficients and demonstrably high degrees of stratigraphic integrity in his middens. The patterns he identified accord with those from other parts of coastal southeast Queensland, suggesting widespread major restructuring of coastal occupation strategies in the archaeologically very-recent past, and particularly the last 1,000 years. Sean was also able to demonstrate that Aboriginal people were still using the area, and often the same sites that had been used for substantial periods in pre-European times, well after they disappeared from the documentary historical record, thus emphasising the importance of archaeology as an independent record of Aboriginal life in the historical period.

Ian Lilley
MANY, MANY PEOPLE contributed to the completion of the research reported in this monograph. My greatest debt in producing this work is to my University of Queensland supervisors Jay Hall (School of Social Science) and Ian Lilley (Aboriginal and Torres Strait Islander Studies Unit) and my de facto supervisor Michael Williams (Aboriginal and Torres Strait Islander Studies Unit) who have been with me every step of the journey.

I thank members of the Gooreng Gooreng community who collaborated on this project and gave me the opportunity to work in their country. In particular I thank Colin Johnson, Hilton (Charlie) Johnson, Mervyn Johnson, Ron Johnson (Sr), Ron Johnson (Jr), Vicki Johnson (and the rest of the Johnson Family), Cedric Williams, James Williams and Michael Williams (and the rest of the Williams Family), Connie Walker and Michael Hill.

I thank the Gurang Land Council Aboriginal Corporation and the Queensland Environmental Protection Agency for their continuing assistance and participation in the project.

The advice and assistance of the Agnes Water-Town of Seventeen Seventy community has been critical to the success of this project. In particular, I would like to acknowledge the support of Denis Dray, Neil Teague and Kris Hall (Queensland Parks and Wildlife Service), Georgia and Tony Isaacs, Jan and David McKauge (The Beach Shacks), Neil, Des, Betty and Katherine Mergard and Glen Finlay (1770 Environmental Tours).

I thank the many specialists who freely (well, mostly) gave up their time to answer many questions and undertake collaborative research on various aspects of the project: Errol Beutel (Queensland Museum) identified bottle glass; Stuart and Shirley Buchanan (Coral Coast Publications) discussed historical information; Maria Cotter (University of New England) provided palaeoenvironmental data; Stephen Cotter (University of Canberra) identified stone raw materials and undertook LA-ICP-MS analyses; Tracy Frank (University of Queensland) provided advice on stable isotopes and obtained stable O and C data; Luke Godwin (Central Queensland Cultural Heritage Management) provided access to reports; Tom Higham (Oxford Radiocarbon Accelerator Unit, University of Oxford) advised on marine reservoir issues; Vojtech Hlinka (University of Queensland) identified fish remains; Ian Loch (Australian Museum) provided live-collected shell samples; Alan Hogg, Fiona Petchey and Matthew Phelan (University of Waikato Radiocarbon Dating Laboratory) undertook the majority of dating and provided advice on sample selection and marine reservoir issues; Paula Reimer (Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory) generously provided advice and datasets crucial to the completion of the marine reservoir study; John Stanisic, Darryl Potter and Thora Whitehead (Queensland Museum) helped identify shellfish and provided live-collected shell specimens; Errol Stock (Griffith University) helped with geoarchaeological sampling and provided advice on geomorphology; John Turunen (Keilar Fox and McHie Pty Ltd) undertook mapping and digital
terrain modelling; Deborah Vale (University of New England) examined and identified fish remains; Steve Van Dyck (Queensland Museum) undertook preliminary identification of marine mammal and marine reptile remains.

Fieldwork and radiocarbon dating was funded by: the Australian Heritage Commission National Estate Grants Program (Chief Investigator: Ian Lilley); Australian Institute of Aboriginal and Torres Strait Islander Studies (G97/6067 and G98/6113) (Chief Investigator: Sean Ulm); Australian Research Council Large (A10027107) (Chief Investigator: Ian Lilley) and Small Grant (00/ARCSO15) (Chief Investigator: Ian Lilley); Australian Institute of Nuclear Science and Engineering (AINSE) (Grant #98/048) (Chief Investigator: Bill Boyd); School of Social Science, University of Queensland (Chief Investigator: Sean Ulm); and, Dr Joan Allsop Australian Studies Fund Award (Chief Investigator: Sean Ulm). The Aboriginal and Torres Strait Islander Studies Unit and School of Social Science at the University of Queensland provided laboratory and storage facilities.

Thanks to Paul Aurisch (Figs 9.9–9.10, 9.12), Ian Lilley (Figs 2.12, 7.3) and the Queensland Environmental Protection Agency (Fig. 2.13) for permission to reproduce photographs. All unacknowledged photographs are my own work. Thanks to Jean Andrews for permission to reproduce Figure 3.3 from Sea Shells of the Texas Coast (1971). The Queensland Department of Natural Resources, Mines and Water gave permission to reproduce the aerial photographs in Figures 9.2 and 13.1.

Many people have also assisted in the field and laboratory. Thanks to Paul Aurisch, Desley Badrick, Estelle Baker, Damien (Brutus) Bauer, Delyna Baxter, Joann Bowman, Kylie Bruce, Melissa Carter, Val Chapman, Araluen Cotter, Maria Cotter, Stephen Cotter, Tony Eales, Kyleigh Engeman, Joe Firinu, Victoria Francis, Renee Gardiner, Greg Gilles, Jay Hall, Colleen Hanahan, Vojtech Hlinka, Angela Holden, Alex Hunt, Charlie (Hilton) Johnson, Amanda Kearney, Jenna Lamb, Michelle Langley, Daniel Leo, Sarah L’Estrange, Ian Lilley, Mark Limb, Patricia Livsey, Geraldine Mate, Emma Miles, Lucile Myers, Carly Naughton, Lad Nejman, Alison Neuendorf, Stephen Nichols, Antje Noll, Sue Nugent, Cyndi Osborne, Bev Rankine, Coen Rankine, Ian Rankine, Chris Reid, David Reid, Pene Reid, Ralph Reid, John Richter, Evelyn Riddle, Richard Robins, Yolanda Saurez, Stephen Skelton, Linda Tebble, Joy Thompson, Sophie Thompson, Thomas Twigg, Phyllis Ulm, Deborah Vale, Helen Vale, Kim Vernon, Kristen Ward, Bill Wedge, Shaun Wiggins, Cedric Williams, Dany Williams, Michael Williams, Alex Wisniowiecka, Amy Wood and Paul Wood. In particular I would like to single out Chris Chicoteau, Jill Reid, Karen McFadden, Gail Robertson, Catherine Westcott and Nathan Woolford for being regular (and sometimes long-term) field participants. Tony Eales, Victoria Francis, Kim Vernon, Gail Robertson and Jenna Lamb examined various artefacts for use-wear and residues.

For assistance in preparing this manuscript for publication I thank Sue O’Connor, Marjorie Sullivan, David Frankel, Bill Boyd, Ian Lilley, Catherine Westcott, Jill Reid, Antje Noll and the staff at Pandanus Books, especially Emily Brissenden.

My extended family has once again kept me relatively sane during the completion of this research. Thanks to the Rankine Family, Reid Family, Ulm Family, Williams Family and my Unit Family. They have shown me that there is a world outside my office walls, although at times I found it hard to believe. Finally, a special thanks to Jill Reid for endless support and too many years without weekends.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>vii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>ix</td>
</tr>
<tr>
<td>1 Introduction: investigating the archaeology of the southern Curtis Coast</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>The continental narrative</td>
<td>1</td>
</tr>
<tr>
<td>Refining mid-to-late Holocene chronologies</td>
<td>5</td>
</tr>
<tr>
<td>Rockshelters versus open sites: some sampling issues</td>
<td>7</td>
</tr>
<tr>
<td>Rockshelters versus open sites: some taphonomic issues</td>
<td>8</td>
</tr>
<tr>
<td>Background to the study</td>
<td>10</td>
</tr>
<tr>
<td>The study region</td>
<td>10</td>
</tr>
<tr>
<td>Aims of the study</td>
<td>11</td>
</tr>
<tr>
<td>2 The study region: the southern Curtis Coast</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>13</td>
</tr>
<tr>
<td>Physical setting</td>
<td></td>
</tr>
<tr>
<td>Geology and geomorphology</td>
<td>14</td>
</tr>
<tr>
<td>Climate</td>
<td>17</td>
</tr>
<tr>
<td>Hydrology</td>
<td>17</td>
</tr>
<tr>
<td>Flora</td>
<td>18</td>
</tr>
<tr>
<td>Fauna</td>
<td>18</td>
</tr>
<tr>
<td>Palaeoenvironment and environmental change</td>
<td>20</td>
</tr>
<tr>
<td>Cultural setting</td>
<td>22</td>
</tr>
<tr>
<td>Previous archaeological research</td>
<td>25</td>
</tr>
<tr>
<td>Gooreng Gooreng Cultural Heritage Project</td>
<td>27</td>
</tr>
<tr>
<td>Other dated archaeological sites in the region</td>
<td></td>
</tr>
<tr>
<td>Agnes Beach Midden (ABM)</td>
<td>30</td>
</tr>
<tr>
<td>Middle Island Sandblow Site (MISS)</td>
<td>31</td>
</tr>
<tr>
<td>Round Hill Creek Mound (RHCM)</td>
<td>33</td>
</tr>
<tr>
<td>Worthington Creek Midden (WCM)</td>
<td>33</td>
</tr>
<tr>
<td>Discussion</td>
<td>34</td>
</tr>
<tr>
<td>Summary</td>
<td>35</td>
</tr>
<tr>
<td>3 Methods of investigation</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>37</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Excavation strategy</td>
<td>37</td>
</tr>
<tr>
<td>Excavation methods</td>
<td>38</td>
</tr>
<tr>
<td>Radiocarbon dating and calibration</td>
<td>39</td>
</tr>
<tr>
<td>Marine and estuarine reservoir effects</td>
<td>39</td>
</tr>
<tr>
<td>Radiocarbon age calibration</td>
<td>40</td>
</tr>
<tr>
<td>Dating terminology</td>
<td>40</td>
</tr>
<tr>
<td>Laboratory analyses</td>
<td>41</td>
</tr>
<tr>
<td>Invertebrate remains</td>
<td>41</td>
</tr>
<tr>
<td>Vertebrate remains</td>
<td>44</td>
</tr>
<tr>
<td>Stone artefacts</td>
<td>45</td>
</tr>
<tr>
<td>Non-artefactual stone</td>
<td>45</td>
</tr>
<tr>
<td>Charcoal</td>
<td>45</td>
</tr>
<tr>
<td>Organic material</td>
<td>45</td>
</tr>
<tr>
<td>Age-depth curves and analytical units</td>
<td>45</td>
</tr>
<tr>
<td>Summary</td>
<td>45</td>
</tr>
<tr>
<td>4 Marine and estuarine reservoir effects in central Queensland:</td>
<td>47</td>
</tr>
<tr>
<td>Determination of ΔR values</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>47</td>
</tr>
<tr>
<td>Background</td>
<td>49</td>
</tr>
<tr>
<td>Australian marine reservoir studies: a review</td>
<td>51</td>
</tr>
<tr>
<td>The original study</td>
<td>51</td>
</tr>
<tr>
<td>Further studies</td>
<td>53</td>
</tr>
<tr>
<td>The present study: methods</td>
<td>55</td>
</tr>
<tr>
<td>Results</td>
<td>56</td>
</tr>
<tr>
<td>Live-collected known-age samples</td>
<td>56</td>
</tr>
<tr>
<td>Archaeological shell/charcoal paired samples</td>
<td>57</td>
</tr>
<tr>
<td>Temporal variability or $\Delta R(t)$</td>
<td>61</td>
</tr>
<tr>
<td>Discussion</td>
<td>61</td>
</tr>
<tr>
<td>Summary</td>
<td>64</td>
</tr>
<tr>
<td>5 Bivalve conjoin analyses: assessing site integrity</td>
<td>65</td>
</tr>
<tr>
<td>Introduction</td>
<td>65</td>
</tr>
<tr>
<td>Background</td>
<td>65</td>
</tr>
<tr>
<td>General methods and approach</td>
<td>68</td>
</tr>
<tr>
<td>Seven Mile Creek Mound bivalve conjoin analysis</td>
<td>69</td>
</tr>
<tr>
<td>Introduction</td>
<td>69</td>
</tr>
<tr>
<td>Aims</td>
<td>69</td>
</tr>
<tr>
<td>Methods</td>
<td>70</td>
</tr>
<tr>
<td>Results</td>
<td>70</td>
</tr>
<tr>
<td>Bivalve conjoin analysis blind test</td>
<td>71</td>
</tr>
<tr>
<td>Introduction</td>
<td>71</td>
</tr>
<tr>
<td>Aims</td>
<td>71</td>
</tr>
<tr>
<td>Methods</td>
<td>71</td>
</tr>
<tr>
<td>Results</td>
<td>72</td>
</tr>
<tr>
<td>Discussion</td>
<td>72</td>
</tr>
<tr>
<td>Summary</td>
<td>77</td>
</tr>
<tr>
<td>6 Seven Mile Creek Mound</td>
<td>79</td>
</tr>
<tr>
<td>Introduction</td>
<td>79</td>
</tr>
</tbody>
</table>
7 Mort Creek Site Complex

Introduction
Site description and setting
Previous investigations
Excavation methods
Cultural deposit and stratigraphy
Radiocarbon dating and chronology
Stratigraphic integrity and disturbance
Laboratory methods
Cultural materials
Invertebrate remains
Vertebrate remains
Stone artefacts
Other remains
Discussion
Summary

8 Pancake Creek Site Complex

Introduction
Site description and setting
Excavation methods
Cultural deposit and stratigraphy
Radiocarbon dating and chronology
Stratigraphic integrity and disturbance
Laboratory methods
Cultural materials
Invertebrate remains
Vertebrate remains
Stone artefacts
Other remains
Discussion
Summary

9 Ironbark Site Complex

Introduction

terra australis 24
xiii
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site description and setting</td>
<td>131</td>
</tr>
<tr>
<td>Excavation methods</td>
<td>135</td>
</tr>
<tr>
<td>Cultural deposit and stratigraphy</td>
<td>139</td>
</tr>
<tr>
<td>Radiocarbon dating and chronology</td>
<td>144</td>
</tr>
<tr>
<td>Stratigraphic integrity and disturbance</td>
<td>146</td>
</tr>
<tr>
<td>Laboratory methods</td>
<td>147</td>
</tr>
<tr>
<td>Cultural materials</td>
<td>147</td>
</tr>
<tr>
<td>Invertebrate remains</td>
<td>147</td>
</tr>
<tr>
<td>Vertebrate remains</td>
<td>151</td>
</tr>
<tr>
<td>Stone artefacts</td>
<td>152</td>
</tr>
<tr>
<td>Glass artefacts</td>
<td>152</td>
</tr>
<tr>
<td>Other remains</td>
<td>154</td>
</tr>
<tr>
<td>Discussion</td>
<td>154</td>
</tr>
<tr>
<td>Summary</td>
<td>156</td>
</tr>
</tbody>
</table>

10 **Eurimbula Creek 1**

Introduction 157
Site description and setting 157
Excavation methods 160
Cultural deposit and stratigraphy 160
Radiocarbon dating and chronology 161
Stratigraphic integrity and disturbance 162
Laboratory methods 162
Cultural materials 162
Invertebrate remains 162
Vertebrate remains 163
Other remains 166
Discussion 166
Summary 167

11 **Eurimbula Creek 2**

Introduction 169
Site description and setting 169
Excavation methods 171
Cultural deposit and stratigraphy 171
Radiocarbon dating and chronology 172
Stratigraphic integrity and disturbance 173
Laboratory methods 173
Cultural materials 173
Invertebrate remains 173
Other remains 174
Discussion 176
Summary 176

12 **Eurimbula Site 1**

Introduction 177
Site description and setting 177
Previous investigations 180
Excavation methods 184
Cultural deposit and stratigraphy 184
Radiocarbon dating and chronology 186
Stratigraphic integrity and disturbance 188
Laboratory methods 189
Cultural materials 189
 Invertebrate remains 189
 Vertebrate remains 194
 Stone artefacts 196
 Other remains 197
Discussion 197
Summary 199

13 Tom’s Creek Site Complex 201
 Introduction 201
 Site description and setting 204
 Excavation methods 207
 Cultural deposit and stratigraphy 207
 Radiocarbon dating and chronology 209
 Stratigraphic integrity and disturbance 210
 Laboratory methods 212
 Cultural materials
 Invertebrate remains 212
 Vertebrate remains 218
 Stone artefacts 220
 Glass artefacts 222
 Other remains 223
Discussion 223
Summary 224

14 Synthesis of results: towards an archaeology of the southern Curtis Coast 225
 Introduction 225
 Regional site chronology 226
 Regional site contents 232
 Shellfish remains 232
 Fish remains 234
 Charcoal 236
 Stone artefacts 236
 Regional patterns in site structure 238
 Discussion 240
 Modelling regional settlement histories 241
 Phase I (pre-4,000 BP–1,500 BP) 241
 Phase II (c.1,500 BP–c.AD 1850s) 243
 Phase III (c.AD 1850s–c.AD 1920s) 244
 Summary 245

15 Wider implications and conclusions 247
 Introduction 247
 Key findings 247
 Regional context and implications 248
Regional occupation before the late Holocene 248
Reduced occupation or abandonment of the coastal zone in the late Holocene 250
The antiquity of marine fishing 251
Localisation of resource use 251
Wider implications 252
Methodological implications 254
Dating strategies and chronological control 254
Integrity of open sites 254
Discussion 255
Conclusion 255

References 257

Appendices 279

Appendix 1 280
Radiocarbon dates: technical data

Appendix 2 283
Recorded archaeological sites on the southern Curtis Coast

Appendix 3 293
Site name synonyms for recorded sites on the southern Curtis Coast

Appendix 4 297
Excavation data

Appendix 5 313
Shellfish reference collection
List of Figures

1.1 The Australian region, showing places mentioned in the text (after Allen and O’Connell 1995:vi). 5
1.2 Distribution of dated archaeological sites in Queensland with a Holocene component (Ulm and Reid 2000:3). 8
2.1 The Gooreng Gooreng Cultural Heritage Project study area, showing major towns and the general distribution of Gooreng Gooreng speakers (heavy line) (after Horton 1994; Williams 1981). The southern Curtis Coast study area is shown by the box. 15
2.2 The southern Curtis Coast study area, showing all recorded archaeological sites as triangles (after Ulm and Lilley 1999). Site designations are shown for sites which are not illustrated in Figs 2.9–2.11. Heavy black lines on Middle Island indicate the general location of extensive low density shell deposits. 16
2.3 General view of estuary and near-coastal ranges across Jenny Lind Creek. Such estuaries are common in the region and support diverse populations of marine life. Facing southwest. 19
2.4 Freshwater wetlands adjoining the upper reaches of Round Hill Creek. This swamp is part of a vast network of interconnected wetland areas located in the swales between ridge systems. Facing north. 19
2.5 Example of recent bank recession of the north bank of Middle Creek, showing concrete stairs once used to access the beach from the top of the erosion bank some 15m away from the contemporary section. Facing northwest. 19
2.6 Beach ridge vegetation in Eurimbula National Park, including weeping cabbage palm communities (*L. australis*) and bracken (*P. esculentum*). 20
2.7 Mud ark (*A. trapezia*) in a dense paddock of seagrass (*Z. capricornia*) in the middle of Round Hill Creek. The presence of mud ark valves in sites dated to 4,000 BP indicate that seagrass beds are a long-term feature of the local environment. Facing west. 20
2.8 Cluster of telescope mud whelk (*T. telescopium*) on the mangrove fringe of Eurimbula Creek. These whelks are abundant throughout the region, although virtually absent from archaeological deposits. Facing west. 20
2.9 Northern segment of the southern Curtis Coast study area showing recorded archaeological sites as triangles in the Hummock Hill Island and Seven Mile Creek areas. EPA site numbers are shown. Sites without a ‘JE:’ prefix have a ‘KE:’ prefix which has been omitted owing to space limitations. 28
2.10 Central segment of the southern Curtis Coast study area showing recorded archaeological sites as triangles in the Turkey Beach, Rodds Peninsula and Middle Island areas. EPA site numbers are shown where available. Sites without a ‘JF:’ prefix have a ‘KE:’ prefix which has been omitted owing to space limitations. Sites with a ‘SCC’ prefix are currently unregistered sites. 28
2.11 Southern segment of the southern Curtis Coast study area showing recorded archaeological sites as triangles in the Agnes Water, Round Hill Creek, Eurimbula Creek and Middle Creek areas. EPA site numbers are shown. All sites have a ‘KE:’ prefix which has been omitted owing to space limitations. 29
2.12 Stone-walled tidal fishtrap at Richards Point on Rodds Peninsula. This is one of two such features recorded in the study region. The second fishtrap is located in Mort Creek 4km to the south (see Chapter 8). Facing north (Photograph: Ian Lilley). 31
2.13 Scarred tree on eucalypt at Agnes Water (KE:A60) (Photograph: Environmental Protection Agency).

2.14 Agnes Beach Midden. Facing southwest.

2.15 Worthington Creek Midden. Facing northwest.

2.16 Middle Island Sandblow Site, showing pipi (*D. deltoides*) scatter on the surface of the sandblow. A range of cultural and non-cultural material is exposed on the eastern margin of the sandblow. Facing north.

2.17 Middle Island Sandblow Site, showing microgranite grinding implement located on the surface of the sandblow. Obviously modified and apparently unmodified pieces of stone are common along the eastern margin of the sandblow. Facing south.

3.2 Bivalve terminology and measured attributes (after Claassen 1998:21; Hedley 1904).

4.1 Map of Australia, showing places mentioned in the text. The boxed area indicates the southern Curtis Coast study area.

4.2 (a) Part of the central Queensland coast showing the location of ‘pre-bomb’ live-collected shell specimens (⬛) and (b) estuaries and archaeological sites (▲) discussed in the text. SMCM=Seven Mile Creek Mound; MCSC=Mort Creek Site Complex; PCSC=Pancake Creek Site Complex; ISC=Ironbark Site Complex; ES1=Eurimbula Site 1; TCSC=Tom’s Creek Site Complex; ABM=Agnes Beach Midden.

4.3 Example of ΔR calculation method for pair NZA-12117/Wk-8326 (see caption for Table 4.6).

4.4 ΔR values calculated for the southern Curtis Coast.

4.5 Calibrated radiocarbon age-ranges from the Seven Mile Creek Mound, using various ΔR values (see Table 4.7).

5.1 Schematic representation of conjoin identification procedure. O=individual *A. trapezia* valve. In this matrix, left and right valves are arranged in descending size order. See text for details.

5.2 Maximum vertical distance separating all conjoined valve-pairs, Seven Mile Creek Mound, Square A.

5.3 Distribution of identified *A. trapezia* valve-pairs (n=61), Seven Mile Creek Mound, Square A. An additional 22 valve-pairs encountered as articulated specimens during excavation are shown as short horizontal lines down the right hand side of the figure (see Chapter 6). Line termination points indicate the vertical mid-points of the excavation units from which conjoining valves were recovered. Short horizontal lines indicate valve-pairs identified within excavation units. Not to scale on the horizontal axis.

5.4 Particle size distribution of *A. trapezia* after heating at various temperatures and then mechanical destruction for 30 seconds (after Robins and Stock 1990:98).

5.5 Fragmentation of *A. trapezia*, Seven Mile Creek Mound, Square A, expressed as the number of fragments per 100g of shell.

6.1 The Seven Mile Creek catchment area showing the location of the Seven Mile Creek Mound as a triangle. Dark grey shading indicates the general extent of mangrove, saltflats and claypans.

6.2 Topographic map of the site area, showing the position of the excavation. The site datum is shown as a triangle. Dashed lines indicate the location of the tide strand line during the period of excavation. The wide shaded line denotes a 4WD track on the edge of the saltflats. Contours in 10cm intervals.

6.3 General view of the Seven Mile Creek Mound. Note the low fringing mangroves on the intertidal flats through the gap in trees at rear left of frame. Facing south.
6.4 General view of the completed excavation. Note the dark zone of grass root penetration at the top of the deposit. Facing north.

6.5 General view of completed excavation (Squares D–A). Note the stratigraphic break at the base of the shell deposit. Facing north.

6.6 Stratigraphic section, Seven Mile Creek Mound, Squares A–D.

6.7 Distribution of identified *A. trapezia* valve-pairs (n=61), Seven Mile Creek Mound, Square A. An additional 22 valve-pairs encountered as articulated specimens during excavation are shown as short horizontal lines down the right hand side of the figure. Line termination points indicate the vertical mid-points of the excavation units from which conjoining valves were recovered. Short horizontal lines indicate valve-pairs identified within excavation units. Not to scale on the horizontal axis. See Chapter 5 for details of methods.

6.8 Abundance of oyster (*S. glomerata*).

6.9 Abundance of hairy mussel (*T. hirsutus*).

6.10 Abundance of mud ark (*A. trapezia*).

6.11 Abundance of scallop (*P. sugillata*).

6.12 Abundance of fish bone.

6.13 Abundance of charcoal.

6.14 Abundance of artefactual stone.

6.15 Abundance of non-artefactual stone.

6.16 Relative contribution of dominant shellfish taxa. Note that XU1 is excluded as it contained negligible quantities of shell (see Appendix 4).

7.1 The Mort Creek catchment area. Dark grey shading indicates the general extent of mangrove, saltflats and claypans. Dashed lines denote 4WD tracks.

7.2 Topographic map of the Mort Creek Site Complex. Contours are in 0.5m intervals. Dark grey shading indicates the general extent of mangroves. Dots indicate auger test holes (not all shown).

7.3 Chenier ridge at the Mort Creek Site Complex extending into Rodds Harbour. Facing southwest (Photograph: Ian Lilley).

7.4 General view of completed excavation, Squares A–D. Note continuous microgranite bedrock across the base of the excavation. Facing north.

7.5 General view of completed excavation, showing the section of Squares C–D. Note shell layer across the upper 20cm of the deposit. Facing east.

7.6 Stratigraphic section, Mort Creek Site Complex, Squares A–D.

7.7 Distribution of identified *A. trapezia* valve-pairs (n=10), Mort Creek Site Complex, Square C. Line termination points indicate the vertical mid-points of the excavation units from which conjoining valves were located. Short horizontal lines indicate valve-pairs identified within excavation units. Not to scale on the horizontal axis. See Chapter 5 for details of methods.

7.8 Abundance of mud ark (*A. trapezia*).

7.9 Abundance of oyster (*S. glomerata*).

7.10 Abundance of whelk (*P. ebininus*).

7.11 Abundance of fish bone.

7.12 Abundance of organic material.

7.13 Abundance of charcoal.

7.14 Abundance of artefactual stone.

7.15 Abundance of non-artefactual stone.

8.1 The Pancake Creek catchment area showing the location of the Pancake Creek Site Complex. Dark grey shading indicates the general extent of mangrove, saltflats and claypans.
8.2 Detail of the site area showing the location of excavated squares and beach ridge vegetation units. 3a= *Corymbia intermedia* tall woodland with shrub/heath midstratum; 3b= *C. tessellaris*, *C. intermedia* tall to very tall woodland with *Livistona decipiens*/*Melaleuca dealbata* and shrub understorey; 3c= *L. decipiens*/*Melaleuca* tall forest/tall open forest with emergent *Eucalyptus tereticornis*/*C. intermedia*; 3d= *L. decipiens* open forest; 3e= *Acacia julifera*/*A. flavescens* tall shrubland; 3f= *M. dealbata* open forest; 5a= *C. tessellaris* woodland with understorey of low microphyll vine thicket; 5c= *Casuarina equisetifolia* low open woodland; 5d= Tall open shrubland (windsheared vegetation) (after QDEH 1997).

8.3 Eroding bank in the vicinity of Squares G–H showing displaced trees and shell. Facing southwest.

8.4 General view of completed excavation at Squares C–F. Facing south.

8.5 Close-up view of concentration of *A. trapezia* valves encountered in Square H, XU9, at a depth of 26–30cm. These shells date to around 600 years ago and include a single valve conjoin. Facing southeast.

8.6 Stratigraphic section, Pancake Creek Site Complex, Squares A–B.

8.7 Stratigraphic section, Pancake Creek Site Complex, Squares C–F.

8.8 Stratigraphic section, Pancake Creek Site Complex, Squares G–H.

8.9 Abundance of oyster (*S. glomerata*).

8.10 Abundance of mud ark (*A. trapezia*).

8.11 Abundance of whelk (*P. ebininus*).

8.12 Abundance of scallop (*P. sugillata*).

8.13 Abundance of hairy mussel (*T. hirsutus*).

8.14 Abundance of organic material.

8.15 Abundance of charcoal.

8.16 Abundance of non-artefactual stone.

9.1 The Middle Creek catchment area showing the location of the Ironbark Site Complex (ISC) and nearby excavated sites (EC1=Eurimbula Creek 1; EC2=Eurimbula Creek 2; ES1=Eurimbula Site 1; TCSC=Tom’s Creek Site Complex). Dark grey shading indicates the general extent of mangrove, saltflats and claypans. Dotted shading indicates land above 200m. Solid dots indicate local population centres.

9.2 Aerial view of the Ironbark Site Complex, showing the maximum extent from the creek of shell and stone exposed at the surface (heavy line) and the general location of excavation squares (after BPA Run 15D/79, 30 July 1996). Based on data provided by the Department of Natural Resources and Mines, Queensland 2006, which gives no warranty in relation to the data (including accuracy, reliability, completeness or suitability) and accepts no liability (including without limitation, liability in negligence) for any loss, damage or costs (including consequential damage) relating to any use of the data.

9.3 Site plan of Ironbark Site Complex, showing area of Squares A–M. Contours are in 0.5m intervals. Rock outcrops and low density artefactual material continue for a further c.50m southwest of the limits of this plan.

9.4 Site plan of Ironbark Site Complex, showing area of Square N. Contours are in 0.5m intervals. Only cycads over 50cm in trunk height are shown.

9.5 Site plan of Ironbark Site Complex, showing area of Squares O–P. Contours are in 0.5m intervals. Tree stumps are shown on the fringing beach.

9.6 Site plan of Ironbark Site Complex, showing area of Squares Q–R. Contours are in 0.5m intervals.

9.7 General view of the western side of the quarry sloping into Middle Creek, showing a massive core in centre foreground. Middle Island in background. Facing north.

9.8 Surface of Square E, XU1, showing photographic recording method. Facing north.
9.9 Large flake (FS54) manufactured on non-local banded rhyolite recovered from the surface of Square G on the quarry. Note the heavy edge-damage along the distal margin. Scale=1cm (Photograph: Paul Aurisch).

9.10 Water-rounded microgranite hammerstone (FS88) exhibiting impact-pitting recovered from the surface of Square J on the quarry. Several similar artefacts were noted eroding from adjacent midden deposits. Bustard Head, some 11km to the north is the nearest source of this raw material. Scale=1cm (Photograph: Paul Aurisch).

9.12 Close-up view of edge-ground hatchet (FS2747) (Photograph: Paul Aurisch).

9.13 Stratigraphic section, Ironbark Site Complex, Squares L–M.

9.14 Stratigraphic section, Ironbark Site Complex, Square N.

9.15 Stratigraphic section, Ironbark Site Complex, Squares O–P.

9.16 Stratigraphic section, Ironbark Site Complex, Squares Q–R.

9.17 Abundance of artefactual stone.

9.18 Abundance of artefactual stone.

9.19 Abundance of oyster (*S. glomerata*).

9.20 Abundance of oyster (*S. glomerata*).

9.21 Abundance of charcoal.

9.22 Abundance of charcoal.

9.23 Abundance of pumice.

9.24 Abundance of pumice.

9.25 Weight-depth distribution of individually provenanced artefacts greater than 30mm in maximum dimension, Square E (n=784).

10.1 The Eurimbula Creek catchment area showing the location of Eurimbula Creek 1 (EC1) and nearby excavated sites (ISC=Ironbark Site Complex; EC2=Eurimbula Creek 2; ES1=Eurimbula Site 1; TCSC=Tom’s Creek Site Complex). Dark grey shading indicates the general extent of mangrove, saltflats and claypans. Dotted shading indicates land above 200m. Solid dots indicate local population centres.

10.2 Site plan of Eurimbula Creek 1 area. Contours are in 0.5m intervals.

10.3 Excavations in progress at Squares A–D, showing cattle track on western (left) margin of the excavation. Facing north.

10.4 General view of completed excavation, Squares A–D, showing transect through erosion bank. Facing north.

10.5 General view of completed excavation, Squares A–D, showing transect through erosion bank. Facing east.

10.6 Stratigraphic section, Eurimbula Creek 1, Squares A–D.

10.7 Abundance of oyster (*S. glomerata*).

10.8 Abundance of oyster (*S. glomerata*).

10.9 Abundance of charcoal.

10.10 Abundance of charcoal.

10.11 Abundance of pumice.

10.12 Abundance of pumice.

11.1 Site plan of Eurimbula Creek 2 area. Contours are in 0.5m intervals. Only major trees in the immediate area of the excavation are shown.

11.2 General view of location of Square A, showing disturbance zone to the northeast (rear left) of the excavation. Facing east.

11.3 General view of completed excavation, Square A, showing a large root protruding from the east section. Facing north.

11.4 General view of completed excavation, showing disturbance zone to the east (right) of the excavation. Facing north.
11.5 Stratigraphic section, Eurimbula Creek 2, Square A. 172
11.6 Abundance of oyster (*S. glomerata*). 174
11.7 Abundance of charcoal. 175
11.8 Abundance of pumice. 175
11.9 Abundance of organic material. 175
12.1 Lower reaches of Round Hill Creek, showing the location of Transects A, B and C at Eurimbula Site 1. Dark grey shading indicates the general extent of mangrove vegetation. Stippling indicates the general location of intertidal flats. Dashed lines are sealed roads. 178
12.2 Location of test pits along Transects A, B and C at Eurimbula Site 1, showing topography in the immediate area of the transects. 182
12.3 General view of steep c.2m high erosion bank at the southern end of Eurimbula Site 1 fronting Round Hill Creek. Facing northwest. 182
12.4 Large stone artefact (FS1/2001) manufactured on rhyolitic tuff located mid-way down the erosion bank. Facing west. 182
12.5 Cleaned c.2.5m high section of erosion bank located along the southern third of the site, showing dark band of coffee rock mid-way down the profile. Facing west. 183
12.6 General view of completed excavation, Square E1, showing shell lens mid-way down the western profile. Facing west. 183
12.7 Close-up view of mud ark (*A. trapezia*) shell lens encountered during excavation, Square E1, XU10. Facing west. 183
12.8 General view of completed excavation at Squares A–D. Note large roots towards the top of the profile. Facing southwest. 183
12.9 Stratigraphic section, Eurimbula Site 1, Squares A–D. 186
12.10 Age-depth relationship of all radiocarbon determinations obtained at Eurimbula Site 1 (n=12). The linear regression shown only includes the six dates obtained on charcoal samples from Transect A, Squares A–D, E1–E2. 187
12.11 Abundance of artefactual stone. 190
12.12 Abundance of fish bone. 190
12.13 Abundance of oyster (*S. glomerata*). 191
12.14 Abundance of mud ark (*A. trapezia*). 191
12.15 Abundance of dominant shell taxa. 191
12.16 Abundance of organic material. 192
12.17 Abundance of charcoal. 192
12.18 Abundance of charcoal. 192
13.1 Aerial view of the Tom’s Creek Site Complex area (after BPA Run 10B/57, 30 July 1996). The dashed box encloses the approximate area shown in Fig. 13.2. Based on data provided by the Department of Natural Resources and Mines, Queensland 2006, which gives no warranty in relation to the data (including accuracy, reliability, completeness or suitability) and accepts no liability (including without limitation, liability in negligence) for any loss, damage or costs (including consequential damage) relating to any use of the data. 203
13.2 Site plan of area of Squares A–S. Contours are in 0.5m intervals. 203
13.3 Schematic diagram of the layout of Squares A–D and E–Q, showing distribution of collected glass artefacts as solid dots (not to scale). 205
13.4 General view of area of glass scatter after removal of leaf litter. Flags indicate the position of glass artefacts. Facing northeast. 206
13.5 Glass artefact (FS188) cached in quinine tree. Facing north. 206
13.6 General view of completed excavation, Squares A–D. Facing northwest. 206
13.7 General view of shell material concentrated on erosion bank of Residual 1. Facing south.

13.8 General view of completed excavation, Squares R–S. Note position of shell material in the upper deposit. Facing north.

13.9 Core taken from below the limits of excavation, Square S. Note distinctive break (at c.75cm below ground surface) between coarse light yellow sands and dark organic muds.

13.10 Stratigraphic section, Tom’s Creek Site Complex, Squares A–D.

13.11 Stratigraphic section, Tom’s Creek Site Complex, Squares R–S.

13.12 Abundance of dominant shell taxa.

13.13 Abundance of dominant shell taxa.

13.14 Abundance of artefactual stone.

13.15 Abundance of artefactual stone.

13.16 Abundance of fish bone.

13.17 Abundance of fish bone.

13.18 Abundance of charcoal.

13.19 Abundance of charcoal.

14.1 Occupation spans of dated sites on the southern Curtis Coast, based on 1σ calibrated age-ranges. Note that a span of 100 years is estimated for the modern dates reported for WCM and EC2.

14.2 Estimated number of dated sites occupied on the southern Curtis Coast in each 500 year period, based on the mid-points of calibrated age-ranges.

14.3 Estimated number of new sites established on the southern Curtis Coast in each 500 year period. Note that the mid-point of the calibrated age-range of the oldest date available for each site is assumed to be the basal age.

14.4 Calibrated radiocarbon ages from the southern Curtis Coast (n=58) arranged in order of increasing age. Error bars show the 1σ calibrated age-range. Note the apparent gap between 1,050–1,250 years ago.

14.5 Number of sites on the southern Curtis Coast with central calibrated radiocarbon dates falling in each 500 year period, measured at 250 year intervals. For comparison, the same data are shown for all of southeast Queensland and the Moreton Bay region.

14.6 Summed probability plot of all calibrated radiocarbon ages (n=56) normalised to a maximum of one. Note that the two modern dates reported for WCM and EC2 are excluded.

14.7 Total weight of shell recovered from all excavated sites per 500 year interval. Note logarithmic scale.

14.8 Shellfish diversity calculated using the Shannon-Weaver Function (H’)

14.9 Total weight of fish bone recovered from all excavated sites per 500 year interval.

14.10 Total weight of charcoal recovered from all excavated sites per 500 year interval.

14.11 Total weight of stone artefacts recovered from all excavated sites per 500 year interval.

14.12 Abundance of local (line) versus non-local (black columns) stone artefact raw materials per 500 year interval.

14.13 Estimated site area for excavated sites.

14.14 Shell density as a unit of weight of excavated deposit for excavated sites. Only shell-bearing squares are included in calculations. Note logarithmic scale.

14.15 Shell density as a unit of area of excavated deposit.

14.16 Extrapolated total site shell content based on site area and shell density.

15.1 Southeast and central Queensland showing the location of major archaeological projects.
List of Tables

1.1 Average number of dates/site for various subsets of the radiocarbon dates available for archaeological sites in Queensland (Ulm and Reid 2000).

2.1 Creek/estuary characteristics in the study region (Olsen 1980a:17–25).

2.2 Radiocarbon dates from unexcavated sites in the study region (see Appendix 1 for full radiometric data for each determination). ABM=Agnes Beach Midden; MISS=Middle Island Sandblow Site; RHCM=Round Hill Creek Mound; WCM=Worthington Creek Midden. Dates on shell were calibrated using a ∆R value of +10±7, except Wk-10090 where ∆R= −155±55 (see Chapter 4 for further details).

2.3 Middle Island Sandblow Site, Squares A–E: summary excavation data and dominant materials.

3.1 Summary of excavated sites (arranged north to south).

4.1 Original 1970s series of radiocarbon dates obtained on live-collected marine shell samples from Australian waters presented by Gillespie (1977; Gillespie and Temple 1977). δ13C is an assumed value of 0±2 (Gillespie and Polach 1979:410). Historical ages of shell samples were converted to equivalent global marine model ages using data from Stuiver et al. (1998a). ∆R was calculated by deducting the equivalent marine model age of the historical age of the shell sample from the 14C age of the shell sample (after Stuiver et al. 1986:1020). ∆Rσ = √(σhistorical age2 + σmarine model age2 + σ14C age2) (Gillespie 1982). The uncertainty in the marine model age includes estimated error in the calibration dataset (derived from Stuiver et al. 1998a). Error-weighted means are calculated using formulae in Ward and Wilson (1978). Samples: Mo=Mactra obesa; Pb=Pinna bicolor; Pm=Pinctada margaritifera; Pl=Proxichione laqueata; Dd=Donax deltoides; Kr=Katelysia rhizophora.

4.2 Radiocarbon dates obtained on live-collected marine shell samples of known historical age from the Gulf of Carpentaria (Rhodes et al. 1980). Samples: A=Anadara sp.; Tt=Telescopium telescopium. See caption for Table 4.1 for details of calculations.

4.3 ∆R values for Abraham Reef and Heron Island coral cores (after Reimer and Reimer 2000). Samples: Porites australiensis. See caption for Table 4.1 for details of calculations.

4.4 Post-AD 1950 live-collected shell (Gillespie and Polach 1979:Table 5; Rhodes et al. 1980:Table 1). Samples: Mep=Mytilus edulis planulatus; Pe=Pyrazus ebeninus; V=Volachlamys sp.; Ss=Saccostrea succulata.

4.5 Radiocarbon ages obtained on ‘pre-bomb’ live-collected marine shell samples from central Queensland. Samples: Dd=Donax deltoides; At=Anadara trapezia; Vs=Volachlamys singaporina. See caption for Table 4.1 for details of calculations.

4.6 Shell/charcoal paired samples from the southern Curtis Coast. 14C ages obtained on charcoal samples were reduced by 41±14 years to correct for 14C variation between and northern southern hemispheres (McCormac et al. 2002). An estimate of the atmospheric calibration curve error, derived from an average of estimated error in the 1σ span of the age, was also included. Therefore, atmospheric age σ = √(σ14C age2 + σsouthern hemisphere offset2 + average of calibration curve error2) (Gillespie 1982). Note that the incorporation of southern hemisphere offset error in this formula assumes that each atmospheric conventional radiocarbon age derives from an independent secondary reservoir (see Jones and Nicholls 2001 for discussion). The 1σ range of the 14C value was converted to the equivalent global marine model 1σ range using atmospheric ages interpolated from INTCAL98 to the same calendar year as MARINE98 (Stuiver et al. 1998a). ∆R was
calculated by deducting the mid-point of the equivalent marine model age of the charcoal
determination from the 14C age of the paired marine shell sample. $\Delta R = \sqrt{\sigma_{\text{marine model}}^2 + \sigma_{\text{marine shell}}^2}$ (Gillespie 1982). This method is illustrated for pair NZA-12117/Wk-8326 in Fig. 4.3.

4.7 Calibrated radiocarbon ages from the Seven Mile Creek Mound, using various ΔR values.

5.1 Attributes of articulated *A. trapezia* specimens recovered from the Seven Mile Creek Mound in rank order of correlation coefficient. Note that specimens were only included if there was no damage inhibiting accurate measurement of each attribute on either valve in a pair.

5.2 Attributes of live-collected *A. trapezia* specimens in rank order of correlation coefficient.

5.3 Additional *A. trapezia* conjoin sets, Seven Mile Creek Mound, Square A.

5.4 Summary of maximum distance separating all conjoined *A. trapezia* valve-pairs, Seven Mile Creek Mound, Square A.

5.5 Stratigraphic Unit descriptions, Seven Mile Creek Mound, Squares A–D.

5.6 Radiocarbon dates from the Seven Mile Creek Mound, Square A (see Appendix 1 for full radiometric data for each determination).

5.7 Presence/absence of shellfish identified in the Seven Mile Creek Mound, Square A.

5.8 Metrical data for intact and broken (with umbo) *A. trapezia* valves from the Seven Mile Creek Mound, Square A.

5.9 Fish bone abundance, Seven Mile Creek Mound, Square A.

5.10 Fish bone taxonomic representation, Seven Mile Creek Mound, Square A.

5.11 Stone artefacts from the Seven Mile Creek Mound, Square A.

5.12 Stratigraphic Unit descriptions, Mort Creek Site Complex, Squares A–D.

5.13 Radiocarbon dates from the Mort Creek Site Complex, Squares A–D (see Appendix 1 for full radiometric data for each determination).

5.14 Presence/absence of shellfish identified in the Mort Creek Site Complex, Square C.

5.15 Metrical data for intact and broken (with umbo) *A. trapezia* valves from the Mort Creek Site Complex, Square C.

5.16 Fish bone abundance, Mort Creek Site Complex, Square C.

5.17 Fish bone taxonomic representation, Mort Creek Site Complex, Square C.

5.18 Stone artefacts from the Mort Creek Site Complex, Square C.

5.19 Pancake Creek Site Complex, Squares A–H: summary excavation data and dominant materials.

5.20 Stratigraphic Unit descriptions, Pancake Creek Site Complex, Squares A–B.

5.21 Stratigraphic Unit descriptions, Pancake Creek Site Complex, Squares C–F.

5.22 Radiocarbon dates from the Pancake Creek Site Complex (see Appendix 1 for full radiometric data for each determination).

5.23 Presence/absence of shellfish identified in the Pancake Creek Site Complex, Squares A–H.

5.24 Stone artefacts from the Pancake Creek Site Complex, Squares A–H.

5.25 Ironbark Site Complex, Squares E–R: summary excavation data and dominant materials.

5.26 Stratigraphic Unit descriptions, Ironbark Site Complex, Square E.
9.3 Stratigraphic Unit descriptions, Ironbark Site Complex, Squares L–M. 141
9.4 Stratigraphic Unit descriptions, Ironbark Site Complex, Square N. 142
9.5 Stratigraphic Unit descriptions, Ironbark Site Complex, Squares O–P. 143
9.6 Stratigraphic Unit descriptions, Ironbark Site Complex, Squares Q–R. 144
9.7 Radiocarbon dates from the Ironbark Site Complex (see Appendix 1 for full radiometric data for each determination). * = assumed value only. 145
9.8 Presence/absence of shellfish identified in the Ironbark Site Complex, Squares L–R. 148
9.9 Fish bone abundance, Ironbark Site Complex, Squares N, O and P. 151
9.10 Stone artefacts from the Ironbark Site Complex, Squares E, L–R. 153
10.1 Eurimbula Creek 1, Squares A–D: summary excavation data and dominant materials. 161
10.2 Stratigraphic Unit descriptions, Eurimbula Creek 1, Squares A–D. 161
10.3 Radiocarbon dates from Eurimbula Creek 1 (see Appendix 1 for full radiometric data). 162
10.4 Presence/absence of shellfish identified in Eurimbula Creek 1, Squares A–D. 163
10.5 Fish bone abundance, Eurimbula Creek 1, Squares A–D. 164
11.1 Eurimbula Creek 2, Square A: summary excavation data and dominant materials. 172
11.2 Stratigraphic Unit descriptions, Eurimbula Creek 2, Square A. 172
11.3 Radiocarbon dates from Eurimbula Creek 2 (see Appendix 1 for full radiometric data). 173
11.4 Presence/absence of shellfish identified in Eurimbula Creek 2, Square A. 174
12.1 Fish bone abundance, Eurimbula Site 1, Squares E1–E2. 183
12.2 Eurimbula Site 1, Squares A–D: summary excavation data and dominant materials. Data from Squares E1–E9 are included for comparison (after Ulm et al. 1999a:Appendix A–I). 185
12.3 Stratigraphic Unit descriptions, Eurimbula Site 1, Squares A–D. 185
12.4 Radiocarbon dates from Eurimbula Site 1 (see Appendix 1 for full radiometric data for each determination). E* This date was undertaken on a sample of shell from a dense surface scatter adjacent to Square E7. 187
12.5 Identified *A. trapezia* conjoin sets, Eurimbula Site 1, Squares A–D. 189
12.6 Presence/absence of shellfish identified in Eurimbula Site 1, Squares A–D. 193
12.7 Metrical data for intact and broken (with umbo) *A. trapezia* valves from Eurimbula Site 1, Squares A–D. Note that excavation units for each square have been collapsed for purposes of analysis. Excavation unit depth and size is approximately equivalent across squares for broad comparison. 194
12.8 Fish bone abundance, Eurimbula Site 1, Squares A–D. 195
12.9 Stone artefacts from Eurimbula Site 1, Squares A–D. 197
13.1 Tom’s Creek Site Complex, Squares A–D, R–S: summary excavation data and dominant materials. 208
13.2 Stratigraphic Unit descriptions, Tom’s Creek Site Complex, Squares A–D. 208
13.3 Stratigraphic Unit descriptions, Tom’s Creek Site Complex, Squares R–S. 209
13.4 Radiocarbon dates from the Tom’s Creek Site Complex (see Appendix 1 for full radiometric data for each determination). 210
13.5 Identified *A. trapezia* conjoin sets, Tom’s Creek Site Complex, Squares A–D. 211
13.6 Identified *A. trapezia* conjoin sets, Tom’s Creek Site Complex, Squares R–S. 211
13.7 Presence/absence of shellfish identified in the Tom’s Creek Site Complex, Squares A–S. 213
13.8 Metrical data for intact and broken (with umbo) *A. trapezia* valves from the Tom’s Creek Site Complex, Squares A–D. Note that excavation units for each square have been collapsed for purposes of analysis. Excavation unit depth and size is approximately equivalent across squares for broad comparison. 217
13.9 Metrical data for intact and broken (with umbo) *A. trapezia* valves from the Tom’s Creek Site Complex, Squares R–S. Note that excavation units for each square have been collapsed for purposes of analysis. Excavation unit depth and size is approximately equivalent across squares for broad comparison.

13.10 Fish bone abundance, Tom’s Creek Site Complex, Squares A–D.

13.11 Fish bone abundance, Tom’s Creek Site Complex, Squares R–S.

13.12 Stone artefacts from the Tom’s Creek Site Complex, Squares A–D, R–S.

13.13 Glass artefacts from the Tom’s Creek Site Complex. * indicates glass artefacts recovered beyond the mapping grid (see Fig. 13.3).

14.1 Radiocarbon dates from the southern Curtis Coast excluded from chronological analyses.

14.2 Summed probability distribution of all calibrated radiocarbon dates available from cultural contexts on the southern Curtis Coast (n=56). Excludes the two modern determinations (Wk-7681; Wk-7689). 0* indicates a modern age.

14.3 Radiocarbon ages from the southern Curtis Coast dating to the 1,500–2,000 cal BP interval, calibrated using various ΔR values.

14.4 Top 10 shellfish taxa from all excavated deposits ranked by weight and minimum number of individuals. Note that the four taxa of terrestrial gastropod have been excluded.

14.5 Shell density characteristics of excavated sites arranged in descending order of total estimated shell content.