
Access to this file is available from:

References

References

References

References

References

References

Appendices

Supplementary Table S.1. Primers used for the genes under investigation in the qRTPCR experiment. The best Tblastx match and E value are shown for the EST sequence corresponding to the indicated accession number. The *Symbiodinium*-specific PCNA primers were designed on the same sequences used in Boldt et al. (2009).

<table>
<thead>
<tr>
<th>Genes</th>
<th>Accession number</th>
<th>Best Tblastx match</th>
<th>E value</th>
<th>Forward primer</th>
<th>Reverse primer</th>
<th>Amplicon size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAPDH</td>
<td>DYS18 497</td>
<td>AL7225 28</td>
<td>2E-29</td>
<td>GA00C T00 TOGCA0AFTTGT</td>
<td>TOACTCTTCTG00CTAC</td>
<td>96</td>
</tr>
<tr>
<td>rpL14a</td>
<td>DYS57 592</td>
<td>AE0370 307.62</td>
<td>1E-03</td>
<td>CATTAA00G05 ATCCATTC</td>
<td>TOACTCTTCTG00CTAC</td>
<td>99</td>
</tr>
<tr>
<td>rpS7</td>
<td>DYS56 041</td>
<td>DQ09 435</td>
<td>6E-10</td>
<td>A00CAAA 00 A00T TOGTO00</td>
<td>GA0000T GC00T AC0TT00</td>
<td>92</td>
</tr>
<tr>
<td>cpSR10</td>
<td>DYS56 592</td>
<td>AE0370 357.59</td>
<td>1E-04</td>
<td>CTGAAGA TOGCA0AFTTGT</td>
<td>A00CACTG00T GC00A00T</td>
<td>100</td>
</tr>
<tr>
<td>Ctg3235</td>
<td>DYS56 066</td>
<td>AE0370 791.78</td>
<td>3E-10</td>
<td>T00CA00 TOG 0000TACCA</td>
<td>GC00TAC00T GC00CT00</td>
<td>92</td>
</tr>
<tr>
<td>Ctg1913</td>
<td>DYS56 358</td>
<td>AE0370 359.68</td>
<td>0E-02</td>
<td>CCAAGGATGCTAATTCAACCG</td>
<td>CAC00A00G 0000CACAA</td>
<td>102</td>
</tr>
<tr>
<td>Ade1</td>
<td>DYS59 995</td>
<td>AE0370 392.69</td>
<td>0E-04</td>
<td>G00T ATGAA CCTCTAAT00 AA0TGG</td>
<td>A00C00AC AC00ACAA</td>
<td>100</td>
</tr>
<tr>
<td>Am01</td>
<td>DYS64 439</td>
<td>AE0370 319.45</td>
<td>6E-10</td>
<td>CAT00T00 AA00C 0000TAC</td>
<td>CTCTCTCCTG00CTTT00</td>
<td>105</td>
</tr>
<tr>
<td>Am05</td>
<td>DYS65 128</td>
<td>AE0370 277.20</td>
<td>9E-10</td>
<td>T000 TO00 T000 AA00TGG</td>
<td>TO00 AT00C00AA00TCTC00</td>
<td>104</td>
</tr>
<tr>
<td>Am06</td>
<td>DYS64 412</td>
<td>DQ09 435</td>
<td>3E-10</td>
<td>O00AA00 G00T00 T000 AC00GT</td>
<td>000AAA00 AC00CTC</td>
<td>100</td>
</tr>
<tr>
<td>Am08</td>
<td>DYS59 710</td>
<td>AE0370 349.54</td>
<td>4E-10</td>
<td>CCAACG00 A00GA00CTTCA00C</td>
<td>TTT00 AT00C00 T00A00TCTG00</td>
<td>106</td>
</tr>
<tr>
<td>Am09</td>
<td>DYS57 399</td>
<td>E00TCTB 19</td>
<td>2E-10</td>
<td>GC00C AAA CCTCTG00TGG</td>
<td>AT00C00 AT00C00 T00A00t</td>
<td>95</td>
</tr>
<tr>
<td>Am10</td>
<td>DYS59 443</td>
<td>AE0370 296.05</td>
<td>5E-10</td>
<td>CA0000 T00G00CTG00TGG</td>
<td>G00TCTG00T GC00CT00</td>
<td>108</td>
</tr>
<tr>
<td>Am11</td>
<td>DYS57 399</td>
<td>AE0370 196.55</td>
<td>5E-10</td>
<td>O00CT00 AT00T000 ACA00G</td>
<td>000TO00A00T00T000</td>
<td>103</td>
</tr>
<tr>
<td>SmpCNA</td>
<td>FR366577</td>
<td>FP034828</td>
<td>2E-10</td>
<td>T00G00T00CA00 G00A00G C00T00A00</td>
<td>T00G00A00GC00A00G 000T000</td>
<td>131</td>
</tr>
</tbody>
</table>

Supplementary Table S.2. Ranking of the candidate ICGs according to their M and CV values (Hellemans et al. 2007) calculated between healthy-looking and severely bleached samples across the nine colonies used in qRTPCR experiment.

<table>
<thead>
<tr>
<th>ICGs</th>
<th>M</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rpS7</td>
<td>0.58</td>
<td>29</td>
</tr>
<tr>
<td>GAPDH</td>
<td>0.59</td>
<td>30</td>
</tr>
<tr>
<td>rpL9</td>
<td>0.62</td>
<td>32</td>
</tr>
<tr>
<td>Ctg1913</td>
<td>0.75</td>
<td>32</td>
</tr>
<tr>
<td>Ctg3235</td>
<td>0.68</td>
<td>88</td>
</tr>
<tr>
<td>rpL13</td>
<td>1.31</td>
<td>114</td>
</tr>
</tbody>
</table>
Supplementary Table S.3. MIQE checklist (Bustin et al. 2009).

<table>
<thead>
<tr>
<th>MIQE checklist (Bustin et al. 2009)*</th>
<th>Item to check</th>
<th>Importance</th>
<th>Item to check</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total RNA or cDNA</td>
<td>E</td>
<td></td>
<td>qPCR plate/strip</td>
<td>B</td>
</tr>
<tr>
<td>Control groups and controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative control</td>
<td>E</td>
<td></td>
<td>Positive control</td>
<td>B</td>
</tr>
<tr>
<td>Real-time PCR and sample handling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cDNA or RNA quality</td>
<td>E</td>
<td></td>
<td>qPCR efficiency</td>
<td>B</td>
</tr>
<tr>
<td>Sample preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total RNA or cDNA</td>
<td>E</td>
<td></td>
<td>qPCR plate/strip</td>
<td>B</td>
</tr>
<tr>
<td>RNA quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total RNA or cDNA</td>
<td>E</td>
<td></td>
<td>qPCR plate/strip</td>
<td>B</td>
</tr>
<tr>
<td>Sequence analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical analysis</td>
<td>E</td>
<td></td>
<td>qPCR efficiency</td>
<td>B</td>
</tr>
<tr>
<td>Other procedures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q-PCR (Short)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: The MIQE checklist is a comprehensive guide for the preparation, optimization, and reporting of quantitative real-time PCR data. It includes detailed guidelines for experimental design, sample preparation, and data analysis. The checklist is designed to ensure reproducibility and transparency in the field of gene expression analysis. Each item is rated on a scale from 1 to 6, with 1 indicating a critical requirement and 6 indicating optional or additional information. This table is a simplified version for educational purposes.
Supplementary Fig. S.1. Consistent difference between average quantification cycles of healthy (dark grey) and bleached (light grey) samples in nine colonies, for the best performing ICGs: GAPDH, rpL9 and S7.
Supplementary Fig. S.2. Maximum likelihood tree of the USP domain sequences in animals. The numbers on the nodes indicate their support by a SH-like likelihood ratio test.
Supplementary Fig. S.3. Maximum likelihood tree of the USP domain sequences in animals. The numbers on the nodes indicate their bootstrap support.
Supplementary Fig. S.4. Bayesian tree of the USP domain sequences in all species. The numbers on each node represent the posterior probability.
Supplementary Fig. S.5. Maximum likelihood tree of the USP domain sequences in all species. The numbers on the nodes indicate their support by a SH-like likelihood ratio test.
Supplementary Fig. S.6. Maximum likelihood tree of the USP domain sequences in all species. The numbers on the nodes indicate their bootstrap support.
Supplementary Fig. S.7. Likelihood mapping assessing the monophyly of animal USPs. 79.1% of 10,000 random quartets are consistent with metazoan (a) and non-metazoan sequences (b) grouping separately.
Supplementary Fig. S.8. Multiple sequences alignment of USP domains. Vertical bars indicate an intron between two amino acid positions, left slanted bars indicate that a codon has 1 nucleotide in the 5’ exon and 2 nucleotides in the 3’ exon, right slanted bars indicate that a codon has 2 nucleotide in the 5’ exon and 1 nucleotide in the 3’ exon. The boxes above the alignment denote the approximate position of alpha helices (pink) and beta strands (blue) in the secondary structure of 1MJH. Asterisks under the alignment highlight the position of residues involved in ATP binding in 1MJH. The arrow under the alignment points at the position of the intron conserved between plants and animals.