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INTRODUCTION

Many of the world’s sea turtle populations have
experienced drastic reductions due to overexploita-
tion, pollution, anthropogenic disturbances, habitat
degradation and predation (see Johannes & Macfar-
lane 1991, Harris et al. 2000, Lutcavage et al. 2003,
Moore et al. 2009). Even though some populations of
sea turtles have started to recover (Chaloupka et al.
2008), sea turtles are still recognized as species of con-
servation concern and are protected under various
conventions, legislations and treaties. There has been
recent concern that climate change will cause further

declines in sea turtle populations and exacerbate this
status (Fuentes et al. 2009a, 2010a, Hawkes et al. 2009,
Poloczanska et al. 2009). This is because sea turtles
have life cycle history (e.g. slow growth rate, late
maturity) and physiology (e.g. temperature-dependent
sex determination) traits that make them extremely
sensitive to climate change (Spotila & Standora 1985,
Janzen 1994, Davenport 1997, Hawkes et al. 2009).
Arguably, the more detectable effects of climate
change on sea turtles will occur during their terrestrial
reproductive phase (egg laying, egg incubation and
hatchling success) since there are clear and relatively
straightforward effects of warmer temperature, sea-
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level rise and cyclonic activity on sea turtle nesting
sites and reproductive output (Hawkes et al. 2009, Witt
et al. 2010).

Considering the potential effects of climate change
on sea turtles, studies have begun to predict how spe-
cific climatic processes will affect sea turtles’ terrestrial
reproductive phase (Hawkes et al. 2009, Poloczanska
et al. 2009). Up until 2009, most of the studies focused
on the potential effects of warmer temperatures (Hays
et al. 1999, 2003, Glen & Mrosovsky 2004, Hawkes et
al. 2007, Fuentes et al. 2009b, 2010a,b) or sea-level rise
(Fish et al. 2005, 2008, Baker et al. 2006, Fuentes et al.
2010c). A warmer temperature poses serious threats to
sea turtle populations since sex determination and
hatching success are  influenced by nest temperature.
Warmer sand temperatures may skew sea turtle popu-
lation sex ratios towards predominantly females and
decrease hatching success, as eggs may be consis-
tently exposed to temperatures that exceed thermal
mortality thresholds (Yntema & Mrosovsky 1980,
Spotila & Standora 1985, Ackerman 1997, Davenport
1997, Matsuzawa et al. 2002, Carthy et al. 2003). Sea-
level rise can cause loss and alteration of nesting
beaches and increase egg mortality (Fish et al. 2005,
2008, Baker et al. 2006, Mazaris et al. 2009, Fuentes et
al. 2010c).

Cyclonic activity can have further impacts on sea tur-
tles’ reproductive output. Cyclones can affect sea tur-
tles in the long term, over several generations, by
removing and altering their nesting habitat (i.e.
through beach erosion) and in the short-term incuba-
tion period (6 to 8 wk), by increasing localized (tempo-
ral and spatial) mortality of their eggs (Milton et al.
1994, Martin 1996, Pike & Stiner 2007). In addition,
because both incubation duration and gender of sea
turtle hatchlings is affected by the sand temperature
during incubation (Miller & Limpus 1981, Morreale et
al. 1982), cooling from increased rainfall and cloud
cover during cyclonic events can play a role in influ-
encing phenotype and sex ratios of hatchlings from
eggs deposited on beaches (Reed 1980, Godfrey et al.
1996, Houghton et al. 2007). A further and less fre-
quently documented effect of cyclones on turtles is the
increased probability of stranding events (see Limpus
& Reed 1985).

Cyclonic frequency, intensity, distribution and sea-
sonality are predicted to alter with climate change
(Walsh & Ryan 2000, Webster et al. 2005, Abbs et al.
2007, Leslie et al. 2007, Kuleshov et al. 2008). Thus, the
effects of cyclones on sea turtle nesting grounds and
reproductive output and the frequency with which
nesting grounds are hit by cyclones are likely to
change (Van Houtan & Bass 2007, Munday et al. 2008).
However, there have been only a few studies that have
investigated how future cyclonic activity will affect tur-

tle populations (e.g. Pike & Stiner 2007, Van Houtan &
Bass 2007). These studies have concentrated on how
projected intensification of cyclonic activity will affect
sea turtles and have found that intensification of
cyclones will reduce hatching success at sea turtle
nesting grounds (Van Houtan & Bass 2007). However,
no study to date has considered or investigated how
the predicted changes in cyclone frequency may affect
sea turtle populations.

To address this, we investigated the effects of the
projected change in the frequency of cyclones by 2055
and 2090 at nesting grounds used by 4 sea turtle spe-
cies: green turtle Chelonia mydas; flatback turtle
Natator depresus; hawksbill turtle Eretmochelys
imbricata; and loggerhead turtle Caretta caretta,
across a large geographic region — the eastern Aus-
tralian coast. To investigate this we used outputs from
a total of 11 downscaled regional climate model simu-
lations for an A2 greenhouse gas emission scenario.
Further, we compared the nesting phenology of each
sea turtle population with the temporal scale of
cyclonic activity at the study region to investigate
whether the timing of sea turtle nesting affects their
vulnerability to cyclonic activity.

METHODS

Study region. This study focused on the eastern
Queensland coast and adjacent islands of the Great
Barrier Reef World Heritage Area and Torres Strait
(Fig. 1). This region contains 7 globally significant pop-
ulations of sea turtles: (1) the southern Great Barrier
Reef (sGBR), (2) the Coral Sea (CS) and (3) the north-
ern Great Barrier Reef (nGBR) green turtle populations
(the latter is the largest green turtle population in the
world, Limpus et al. 2003), (4) the Gulf of Carpentaria
(GC) flatback, (5) the eastern Australian (EA) flatback
populations (flatback populations are endemic to Aus-
tralia), (6) the hawksbill population (one of the largest
nesting populations of hawksbill turtles in the world,
Dobbs et al. 1999) and (7) the eastern Australian (EA)
loggerhead population (Fig. 1).

Nesting data. Information on the distribution and
timing of nesting for each turtle population was gath-
ered from published material (Limpus 1971, Limpus et
al. 1993, 2003, Dobbs et al. 1999, Limpus & Miller 2000,
Harvey et al. 2005) and used to generate a GIS-based
layer of nesting locations and times. For the purpose of
the present study, minor rookeries (<10 nesting turtles
yr–1) are not represented in the nesting layers.

Historical cyclone data. Temporal information on cy-
clone activity in the study region was obtained from the
Australian Bureau of Meteorology for years from 1961 to
2000. Data produced before the 1960 to 1961 seasons
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were not used due to lack of observations
before this time (Holland 1981).

Regional climate models. Climate simu-
lations were generated using the Common-
wealth Scientific and Industrial Research
Organisation (CSIRO) Conformal-Cubic
Atmospheric Model (CCAM) (McGregor
2005, McGregor & Dix 2008). As CCAMs
are computationally expensive to run, re-
sults for one emission scenario (A2) only
were modeled. The A2 scenario describes a
very heterogeneous world, with a continu-
ously increasing human population. Eco-
nomic development is primarily regionally
oriented and per capita economic growth
and technological change is more frag-
mented and slower than for other scenarios
(IPCC 2007). CCAM is a global climate
model that uses a stretched grid, formed by
projecting the panels of a cube onto the sur-
face of the Earth. The cube is then stretched
so that the area of interest (Australia) is sim-
ulated at a high resolution (approximately
65 km grid), with resolution then decreasing
with distance from Australia.

The CCAM simulations were based on
the outputs from general circulation models
(GCM) (Table 1) sourced from the Inter-
governmental Panel on Climate Change
(IPCC) CMIP3 archive and were down-
scaled using 2 different methods. (1) The
bias-corrected sea surface temperature
(SST) method forced the model with bias-
corrected sea surface temperatures only.
This method has the advantage that the
cold sea surface temperature bias in the
central equatorial Pacific, which is a char-
acteristic of many GCMs, is not included
in these simulations and, thus, the CCAM
simulations develop large-scale circula-
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Fig. 1. Eastern Queensland, Australia, showing the locations of the 7 popula-
tions of sea turtles nesting in this region. GC: Gulf of Carpentaria; CS: Coral
Sea; EA: eastern Australia; sGBR: southern Great Barrier Reef; nGBR: northern 

Great Barrier Reef

Host model Institution Downscaling method

ECHAM5 Max Planck Institution Bias-corrected SST (SST)
GFDL 2.0 NOAA Geophysical Fluid Dynamics Laboratory Bias-corrected SST (SST)
GFDL 2.1 NOAA Geophysical Fluid Dynamics Laboratory Bias-corrected SST (SST)
MIROC 3.2 - medres CCSR/NIES/FRCGC, Japan Bias-corrected SST (SST)
Mk3.5 - A2 – B35 Australian Commonwealth Scientific and Research Organization Bias-corrected SST (SST)
UK HADCM3 Hadley Centre in the UK Bias-corrected SST (SST)
ECHAM5 Max Planck Institution Large-scale forcing (forced)
GFDL 2.1 NOAA Geophysical Fluid Dynamics Laboratory Large-scale forcing (forced)
MIROC 3.2 - medres CCSR/NIES/FRCGC, Japan Large-scale forcing (forced)
Mk3.5 - A2 – B35 Australian Commonwealth Scientific and Research Organization Large-scale forcing (forced)
Mk3.0_A2_M20th Australian Commonwealth Scientific and Research Organization Large-scale forcing (forced)

Table 1. Conformal-cubic atmospheric host models and downscaling method used to investigate cyclonic activity for 2055 and 
2090 at nesting sites used by sea turtle populations nesting on the eastern Queensland coast. SST: sea surface temperature
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tions that are unaffected by these biases. This tech-
nique allows long (140 yr) simulations to be conducted;
however, there are indications that this technique does
not account for the intermodel variability seen
between the host models (Abbs 2009). (2) The large-
scale forcing (forced) method nudges the CCAM solu-
tion towards the large-scale winds, temperatures and
pressures from the host GCM. Both simulations use
‘uncorrected’ SSTs from the host model, so the result-
ing simulations may develop large-scale circulations
that are a response to the SST biases of the host model.
Simulations with forced nudging can only use 20 yr
time slice experiments for 2046 to 2065 and 2081 to
2100, due to the lack of atmospheric forcing data for
other periods. However, these simulations have the
advantage that they account for the intermodel vari-
ability seen between the host models (Abbs 2009).

Tropical cyclone-like vortices (TCLVs) were detected
from daily outputs from the CCAM. The TCLV detection
and tracking scheme used here is modified from that of
Nguyen & Walsh (2001). The scheme searches for low
pressure systems that have the physical characteristics of
tropical cyclones (e.g. high wind speeds, rotation of
winds and a warm core). These TCLVs are ‘tracked’ in
subsequent outputs and the results collated to yield a
population of modeled TCLVs that are subsequently
analysed to identify possible changes in their frequency.

Projected changes in TCLV frequency were calcu-
lated for future climates representative of 2055 and
2090 using TCLV detections for 2046 to 2065 and 2081
to 2100, respectively. All changes are relative to aver-
age annual simulated cyclone frequency representa-
tive of the 1961 to 2000 climate. To quantify the clima-
tological accuracy of each of the 11 simulations we
created a scale factor that compares modeled simula-
tion of past TC activity (1961 to 2000) with observa-
tions of past TC activity. For this, we simulated past TC
activity (1961 to 2000) using each of the 11 models and
then compared the results with the observed cyclonic
activity acquired from the Australian Bureau of Meteo-
rology (see ‘Historical cyclone data’). A scale factor of 1
is ideal, meaning that the model predicted accurately
the observed frequency of cyclones in the past; a scale
value of 0.5 overrepresents past cyclone occurrence by
2 times and a scale value of 2 underrepresents past
cyclone occurrence by one-half.

RESULTS

Historical cyclonic activity and nesting phenology

Sea turtles nesting on the eastern Queensland coast
have historically (1961 to 2000) been hit by a low num-
ber of cyclones a year (average, 0.125 to 1.75 ± 0.32

[mean ± SE] cyclones yr–1). The frequency of cyclone
hits at each nesting ground varied among the different
sea turtle populations as a result of the spatial distribu-
tion of their nesting grounds. Populations nesting on
the southern and eastern Queensland coasts and on
the Coral Sea, such as the sGBR and CS green turtle
population, the EA flatback turtle population and the
EA loggerhead turtle population, generally had a higher
frequency of cyclonic activity (0.73 ± 0.035, 1.64 ± 0.2,
0.79 ± 0.2, 0.73 ± 0.3 hits yr–1, respectively) than did
populations with nesting grounds in the Torres Strait
region and the northern and eastern Queensland
coasts, such as the nGBR green turtle population and
the hawksbill turtle population (0.48 ± 0.08 and 0.46 ±
0.04 hits yr–1, respectively) (Fig. 2). No pattern was
found in relation to the average intensity of cyclones at
nesting grounds used by the various sea turtle popula-
tions. The CS green turtle population was hit on aver-
age by more intense cyclones (average intensity of 2.1)
and the EA flatback turtle population was hit on aver-
age by cyclones with lower intensity (average intensity
of 1.66).

Historically (1961 to 2000) cyclonic activity has oc-
curred between November and May in the study re-
gion, with peak cyclone activity occurring during Feb-
ruary (30.8% of cyclones, 1.2 hits yr–1) and January
(23.8% of cyclones, 0.9 hits yr–1) (Fig. 3).

Peak nesting for the 3 green turtle populations
(December to January) and the hawksbill population
(January to February) coincides with peak cyclone
activity (January to February). Peak nesting for the
loggerhead and EA flatback turtle populations occurs
in December (before the peak cyclone season), but a
high proportion of their eggs are still incubating during
the peak of the cyclone season (Fig. 3). In contrast, the
peak of the nesting season (July to September) for
the GC flatback turtle population occurs outside the
cyclone season.

Regional climate models

According to the scale factor developed for testing
historical empirical data, there is no ‘best’ model for the
study region, but some model simulations are better
than others for the different populations of sea turtles
(scale factor ranged from 0.7 to 38, where for a scale
factor of 1, the model accurately predicts observed cy-
clonic activity; for a scale factor of 0.5, the model over-
represents cyclone occurrence by 2 times; and for a
scale factor of 2, the model underrepresents cyclone oc-
currence by one-half) . Overall, the downscaled NOAA
Geophysical Fluid Dynamics Laboratory (GFDL) 2.1
models (both the SST and forced) best simulated the
observed cyclonic activity (average scale factors of 1.2
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and 0.94, respectively). The forced Mk3.5 simulations
generated the worst results for the study region and
usually underrepresented the observed cyclonic activ-
ity at all of the nesting grounds (average scale factor of
18.38) (Table 2). Thus, the results from the forced
Mk3.5 simulations are not presented in this paper.

Projected changes in the frequency of cyclones

There was great variability in cyclone frequency
between the various climate models in the regional
predictions for both 2055 and 2090. Nevertheless, the

model simulations that best represent the observed cli-
mate for 1961 to 2000 (i.e. models with scale = 1, see
Table 2) indicate a strong tendency for future decrease
in cyclone numbers per year at the nesting grounds
used by the 7 sea turtle populations (Tables 2 & 3,
Fig. 2). Based on the simulations from the models that
best represent cyclonic activity for each turtle popula-
tion, the frequency of cyclones affecting the study
region will decrease by 18 to 58% and 47 to 82% by
2055 and 2090, respectively. The EA loggerhead turtle
population and the nGBR and sGBR green turtle popu-
lations will probably experience the biggest reduction
in cyclonic frequency at their nesting grounds, with the
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Fig. 2. Recent (1961 to 2000) and projected (for 2055 and 2090) mean annual tropical cyclone frequency hit for each sea turtle
population nesting on the eastern Queensland coast. GBR: Great Barrier Reef. For further details of the models see Tables 1 to 3
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mean annual cyclone hit decreasing from 0.73, 0.48,
and 0.73, respectively, to 0.38, 0.08 and 0.38 hits yr–1,
respectively, by 2090 (Fig. 2).

DISCUSSION

Global warming is expected to alter the frequency,
intensity, distribution and timing of cyclones (Walsh &
Ryan 2000, Webster et al. 2005, Abbs et al. 2007, Leslie
et al. 2007, Kuleshov et al. 2008). These changes will
probably alter the effect of cyclones on various habitats
and biodiversity as well as the exposure (frequency hit)
of these habitats to cyclones (Van Houtan & Bass 2007,
Munday et al. 2008). Indeed, we found that the number

of cyclones that will disturb the nesting grounds used
by the 7 populations of sea turtles in the eastern
Queensland coast is projected to decrease. A reduction
in the frequency of cyclonic activity, as predicted here,
will reduce the frequency of nest disturbance and
lengthen recovery times of nesting grounds after a
cyclonic episode. An intensification of cyclones, as pre-
dicted by other studies (e.g. Knutson & Tuleya 2004,
Kuleshov et al. 2008), will probably cause a reduction
in the number of hatchlings at nesting grounds, as nest
inundation is positively related to cyclone intensity
(Pike & Stiner 2007, Van Houtan & Bass 2007). Further,
if earlier-than-usual tropical cyclone formation and
seasons occur in the Australian region as a result of
projected warmer SST (as suggested by Nicholls 1984),
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Fig. 3. Nesting phenology of each sea turtle population compared with average (1961–2000) monthly tropical cyclone hits in the 
study region. GBR: Great Barrier Reef
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populations of sea turtles that nest earlier in the year,
such as the EA flatback turtle, will probably be more
affected.

Similarly, the impact and disturbance that sea turtle
nesting grounds will experience in the future as a
result of cyclones will also be affected by any change
in the behaviour of sea turtle populations as an adapta-

tion strategy to climate change. For example, if turtles
nesting on the eastern Queensland coast start to nest
earlier as a result of warmer SST, a behavior which has
been observed for loggerhead turtles in Florida
(Weishampel et al. 2004, Pike et al. 2006), the level of
disturbance that they may experience as result of
cyclones may change. Populations of sea turtles may

289

Model Sea turtle population
nGBR CS sGBR GC EA EA Hawksbill
green green green flatback flatback loggerhead

Mk3.0_A2_M20th (forced) 0.8 1.3 1.9 1.4 1.4 1.9 0.8
ECHAM5 (SST) 3.2 1.2 1.7 5.3 1.0 1.7 4.6
GFDL 2.0 (SST) 1.1 1.1 1.2 1.7 0.9 1.2 1.3
GFDL 2.1 (SST) 1.0 1.0 1.0 1.8 1.1 1.0 1.5
MIROC 3.2 – medres (SST) 2.4 1.6 1.4 4.9 1.2 1.4 4.4
Mk3.5 - A2 – B35 (SST) 2.1 1.5 1.7 4.5 1.3 1.7 2.9
UK HADCM3 (SST) 2.9 1.4 1.7 3.3 1.1 1.7 3.6
Mk3.5 - A2 – B35 (forced) 1.7 8.2 38.00 14.00 20.90 37.00 8.9
ECHAM5 (forced) 9.3 1.8 1.3 1.5 1.5 1.3 1.0
GFDL 2.1 (forced) 0.9 0.9 1.1 1.1 0.7 1.1 0.8
MIROC 3.2 - medres (forced) 0.7 4.9 5.7 1.8 5.3 5.6 1.4

Table 2. Scale factor developed to investigate the accuracy of each conformal-cubic atmospheric host model simulation. 1: model
accurately predicts observed cyclonic activity; 0.5: model over represents cyclone occurrence by 200%; and 2: model underrepre-
sents cyclone occurrence by 50%. Values in bold represent the model results that most accurately simulate cyclonic activity for
each nesting population and those in italics represent those with the most underestimated cyclone occurrence (>2). No models
overestimated cyclone occurrence by 2 or more (<0.5). nGBR: northern Great Barrier Reef; CS: Coral Sea; sGBR: southern Great 

Barrier Reef; GC: Gulf of Carpentaria; EA: eastern Australian; SST: sea surface temperature

Model Sea turtle population
nGBR CS sGBR GC EA EA Hawksbill
green green green flatback flatback loggerhead
(0.48) (1.64) (0.73) (0.61) (0.63) (0.73) (0.46)

Year 2055 2090 2055 2090 2055 2090 2055 2090 2055 2090 2055 2090 2055 2090

Mk3.0_A2_M20th –25.3 –6.9 –8.1 –16.6 44.7 107.6 –17.6 5.5 7.1 75.3 45.9 107.2 –21.5 7.6
(forced)

ECHAM5 (SST) –49.2 –96.4 –57.4 –80.7 10.4 –66.3 –87.6 –57.2 –18.1 –80.3 8.4 –65.9 –72.0 –70.9
GFDL 2.0 (SST) –74.9 –87.2 –50.8 –78.5 –54.4 –79.4 –57.8 –78.0 –54.8 –80.0 –54.9 –78.9 –79.8 –89.2
GFDL 2.1 (SST) –57.9 –82.1 –31.1 –63.1 –58.4 –47.7 –53.8 –81.8 –47.7 –30.8 –58.1 –47.5 –58.1 –82.7
MIROC 3.2 - –87.2 –100.0 –76.5 –98.0 –65.4 –85.0 –92.2 –100.0 –74.7 –87.3 –65.9 –84.8 –98.2 –100.0
medres (SST)

Mk3.5 - A2 - B35 –55.9 –2.6 –24.4 –44.5 –34.8 –66.3 –44.8 25.7 –26.7 –63.2 –33.6 –65.9 –40.8 9.4
(SST)

UK HADCM3 –96.9 –100.0 –35.4 –65.1 –9.1 –45.5 –100.0 –96.2 –3.9 –71.4 –8.7 –45.3 –99.1 –100.0
(SST)

Mk3.5 – A2 – B35 61.0 99.5 –36.4 –0.2 96.8 96.8 97.7 141.6 –98.2 –83.0 96.0 96.0 56.5 201.6
(forced)

ECHAM5 (forced) –33.8 –57.9 –9.0 –28.9 –56.3 –49.0 –30.3 –49.4 –19.8 –41.9 –56.3 –49.8 –41.3 –69.5
GFDL 2.1 (forced) –34.4 –72.8 –40.3 –68.0 –13.6 –70.4 –52.9 –72.0 –49.5 –67.5 –12.9 –70.8 –46.0 –65.5
MIROC 3.2 - –85.1 –100.0 –24.0 –53.1 41.3 –64.2 –91.9 –95.1 108.0 –4.9 37.3 –66.2 –85.4 –100.0
medres (forced)

Table 3. Percentage of predicted changes in cyclone frequency for each sea turtle population under different simulation models
for the years 2055 and 2090. Positive numbers indicate a positive increase in frequency of cyclones; negative numbers indicate a
decrease in cyclonic activity. For comparison, the observed historical frequency of cyclone hits per year for each sea turtle popu-
lation is indicated in parentheses below each sea turtle population. Values in bold represent the most accurate simulations and
those in italics represent the least accurate simulations. nGBR: northern Great Barrier Reef; CS: Coral Sea; sGBR: southern Great 

Barrier Reef; GC: Gulf of Carpentaria; EA: eastern Australian
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also shift their nesting sites to a more southerly beach
to adapt to a rise in sea level or warmer sand tempera-
tures (as suggested by Hays et al. 2001). In this case,
the cyclonic disturbance in their new nesting grounds
may be different, as sea turtle populations with more
southerly nesting grounds have historically had and
are predicted to have a higher frequency of cyclone
hits in a year (see Fig. 2, Table 3).

As discussed above, determining the exact extent of
future cyclonic disturbance to sea turtle populations is
challenging, as there is still high uncertainty in future
projections of cyclonic activity (e.g. Pittock et al. 2006,
Walsh & Pittock 1998) and sea turtles may slowly
respond to future changes in climate and alter their
nesting locations. Indeed, several studies have high-
lighted the uncertainties and variability regarding
future cyclonic activities (e.g. Hughes 2003, Emanuel
et al. 2008). Although predictions of cyclonic activity in
a warming climate do vary, most studies predict an
intensification of the strongest cyclones (Knutson et al.
1998, Walsh & Ryan 2000, Oouchi et al. 2006, Kuleshov
et al. 2008) and a decrease in the global frequency of
cyclones (Bengtsson et al. 1996, 2007, Sugi et al. 2002,
McDonald et al. 2005, Oouchi et al. 2006, Yoshimura et
al. 2006, Vecchi & Soden 2007, Zhao et al. 2009). Pro-
jected cyclonic intensification is likely to occur as a
result of future increases in temperature and the
amount of water vapor, both of which provide more
energy for storms (Bengtsson et al. 2007). The pro-
jected decrease in cyclonic activity is due to a number
of reasons, including an increase in the static stability
and a reduction of tropical vertical atmospheric circu-
lation, caused by large increases in atmospheric water
vapor (Bengtsson et al. 2007) and regional increases in
vertical wind shear (Vecchi & Soden 2007).

Indeed, there was a great variability in the projected
cyclone frequency between the simulations used in
this study. For example, for the sGBR turtle population,
9 of the 11 simulations provide a relatively accurate
representation of tropical cyclone activity affecting
their nesting grounds. Of these 9 simulations, 2 project
an increase in tropical cyclone frequency for 2055, 2
project a small decrease in cyclone frequency and 5
project large decreases in frequency of between 35
and 65%. Thus, while the most likely projection is for a
decrease in tropical cyclone frequency by 2055, the
possibility of an increase for some nesting grounds
needs to be considered in the development of future
management plans for the studied turtle populations.

Nevertheless, as tropical cyclones can severely af-
fect sea turtle nesting ecology (Milton et al. 1994, God-
frey et al. 1996, Martin 1996, Houghton et al. 2007,
Pike & Stiner 2007), it is important that studies con-
tinue to investigate the exposure and effects that sea
turtle nesting grounds will experience in the future

from cyclonic activity. However, as the distribution and
frequency of cyclones is predicted to change, studies
should move beyond investigating how intensification
of cyclones will affect sea turtle populations, and, sim-
ilar to this study, also explore how cyclonic frequency
might change at key nesting grounds and how pre-
dicted changes may influence sea turtle population
structure and demography. This will provide an under-
standing of whether future cyclonic activity will add
additional stress to populations of sea turtles that are
currently unaffected by cyclones.
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