Struvite Crystallization from Nutrient Rich Wastewater

Thesis submitted by
Md. Imtiaj Ali BSc (Civil Engineering) Rajshahi University of Engineering and Technology (Bangladesh), MSc (Civil-Environment Engineering) University Technology Malaysia (Johor), MIEAust

July 2005

For the degree of Doctor of Philosophy
In the School of Engineering
James Cook University
I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

_______________________________ _______________
Signature Date
STATEMENT OF ACCESS

I, the undersigned, the author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the copyright Act and;

In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author, and to make proper public written acknowledgement for any assistance, which I may have obtained from it.

Beyond this, I do not wish to place any restriction on access to this thesis.

__
Signature

__
Date
STATEMENT OF SOURCES

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institute of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in this text and a list of references is given.

__ __________
Signature Date
ACKNOWLEDGEMENTS

I would like to thank a number of people for their help during the course of this research. I am particularly indebted to my supervisor Dr. Philip Andrew Schneider, for providing me with the opportunity to study with him, for his help and encouragement throughout all stages of this work.

I would also like to thank the AAC staff at JCU particularly Dr. Yee Hu and Dr. Kevin Blake. I am also indebted to Mr. David Kaupilla at JCU mechanical workshop for the technical support of the reactor set up. I also want to extend my thanks to Dr. Paul Britton for his help with the temperature controller set up.

Special thanks are due to Neale Hudson (Queensland DPI) for providing financial and technical support to conduct this research. I am grateful to JCU School of Engineering, JCU research office to provide my scholarship.

Finally I would like to thank my family and friends for their unconditional support, encouragement, willingness to help, and friendship.
DEDICATION

Dedicated to

My Mother
Discharge of untreated nutrient-rich wastewater is a problematic issue, which may cause root burning and eutrophication of receiving water. It is also a problematic issue due to the formation of crystalline deposits in waste water systems. The recovery of nutrients using a crystallization technique may provide a value added product. The recovered product is struvite, which is chemically known as magnesium ammonium phosphate hexahydrate. The key focus of this research is the modeling and simulation of struvite growth, which incorporates solution chemistry and thermodynamics, kinetics of growth and process description of the recovery system. This research also focuses on the strategy of struvite crystallization in a fed batch system, to avoid spontaneous precipitation. A fully integrated control strategy in pilot scale is developed in this research. This control strategy is based on feedback control, maintaining constant supersaturation throughout the crystallization. The development and commissioning of experiments includes investigation of suitable seeds, automatic temperature control, operating zone of crystallization and correct design of the pilot scale reactor. Experimental investigation showed a precise stability of the controlled supersaturation. Moreover, size independent growth is indicated in this investigation. An ensemble of experimental data is combined with a dynamic model to carry out parameter estimation of struvite growth kinetic parameters using gPROMS.
TABLE OF CONTENTS

STATEMENT OF ACCESS .. i
STATEMENT OF SOURCES .. ii
ACKNOWLEDGEMENTS .. iii
DEDICATION ... iv
ABSTRACT .. v
TABLE OF CONTENTS ... vi
LIST OF TABLES .. xii
LIST OF FIGURES ... xv

INTRODUCTION 1

1.1 Problem Statement ... 1
1.2 Objectives ... 2
1.3 Layout of the Thesis ... 3
1.3.1 Chapter 1 - Introduction ... 3
1.3.2 Chapter 2 - Literature Review .. 3
1.3.3 Chapter 3 - Derivation of the Mathematical Model 3
1.3.4 Chapter 4 - Experimental Setup ... 4
1.3.5 Chapter 5 - Results and Discussion from Experiments 4
1.3.6 Chapter 6 - Results and Discussion from Simulation 4
1.3.7 Chapter 7 - Conclusion ... 5
1.3.8 Chapter 8 – Recommendations for Future Research 5

LITERATURE REVIEW 6

2.1 Research Perspective ... 6
EXPERIMENTAL SETUP

4.1 Introduction...51
4.2 Determination of the Operating Zone of Struvite Crystallization51
4.3 Selection of Seed Materials ..52
4.4 Moisture Analysis..53
4.5 Design of the Fed-batch Pilot Scale Reactor ..54
4.6 Design of Experiment ...59
4.6.1 Chemical and Physical Analyses ..59
4.6.2 Sample Preservation and Storage ...60
4.7 Chapter Summary ...60

RESULTS AND DISCUSSION FROM EXPERIMENT 62

5.1 Introduction...62
5.2 Identification of the Metastable Supersaturation Zone.......................................62
5.3 Effect of Seed Type on Struvite Crystallization...64
5.4 Analysis of Moisture Content of Struvite ...73
5.5 Control Strategy ..75
5.5.1 Composition of Feed Solution ..76
5.5.2 Stoichiometry of Feed Solution ..78
5.5.3 Preliminary Reduction of Supersaturation of Reactive Concentration83
5.5.4 Poor Control (Extreme Supersaturation) due to Acid-base Neutralization85
5.5.5 Summary of the Control Strategy ...87
5.6 Other Operational Issues ...89
5.6.1 Temperature Control during Crystallization...89
5.6.2 Particle Breakage Investigations ..91
5.6.3 Dosing Point Selection ..92
5.7 Conditions for the Controlled Fed-batch Experiments93
5.8 Results of Controlled Fed-batch Experiments ..95
5.8.1 Characterization of Experimental Control ..95
5.8.2 Characterization of Struvite Crystal ...100
5.9 Yield Analysis ...104
5.10 Discussion ..108
5.11 Chapter Summary ...111

RESULTS AND DISCUSSION FROM SIMULATION113
6.1 Introduction ..113
6.2 Solution Chemistry of Struvite ..114
6.3 Sensitivity of Supersaturation due to Solution Concentration120
6.4 Parameter Estimation Modeling ...121
6.5 Est.type 1 ..124
6.5.1 Results of Parameter Estimation Model (Est.type 1)129
6.5.2 Error Analysis (Est.type 1) ...134
6.6 Est.type-2 ..138
6.6.1 Results of Parameter Estimation Modeling (Est.type 2)139
6.6.2 Error Analysis (Est.type 2) ...145
6.7 Est.type 3 ..146
6.7.1 Results of Parameter Estimation Modeling (Est.type 3)146
6.7.2 Error Analysis (Est.type 3) ...150
6.8 Est.type 4, Est.type 5 and Est.type 6 ...154
6.8.1 Error Analyses ...156
6.9 Selection of the Finest Model ...158
6.10 Discussion ...161
E.1 gPROMS Coding for Thermodynamic Modeling237

APPENDIX F 243
F.1 Modeling of PHREEQC for Design the Feed Mixing243

APPENDIX G 248
G.1 PHREEQC Thermodynamic Modeling to Design the Minimum Operating Supersaturation ...248

APPENDIX H 249
H.1 CSD Data for Particles for the Observation of Particles Breakage249

APPENDIX I 250
I.1 Experimental Data for Fed-batch Experiment250

APPENDIX J 254
J.1 Description of gPROMS Functions ..254
J.2 Exporting the Output to Microsoft Excel ..256

APPENDIX K 258
K.1 Fischer Information Matrices ...258

APPENDIX L 264
L.1 Model Response in terms of Saturation Index (Est.type 4)264

APPENDIX M 266
M.1 Model Response in terms of Saturation Index (Est.type 5)266

APPENDIX N 268
N.1 Model Response in terms of Saturation Index (Est.type 6)268
LIST OF TABLES

Table 2.1 Characteristics of pig effluent of different Queensland’s piggeries:
concentrations are in mg/l (Hudson 2003)... 13

Table 2.2 Clarification of struvite solubility based on Figure 2.4 21

Table 3.1 Values of equilibrium constants for complexes presented in equations
3.2 - 3.9 and 3.14 ... 35

Table 3.2 Ionic contributions B+ , B-, δ+ , δ. for determination of constant B1
according to equation (3.20) (Sohnel and Garside 1992) 36

Table 5.1 Summary of experiment of struvite crystal growth using different seed
particles... 72

Table 5.2 Possible combination of feed solution.. 76

Table 5.3 Different conditions of experiments .. 95

Table 5.4 Flow-rate of reactant feed at different Saturation Index.............. 100

Table 5.5 Yield analysis of the fed-batch controlled experiment (expt 1, 2 and 3 as
mentioned in the previous sections)... 107

Table 6.1 Pond data of magnesium, ammonium and phosphate (Hudson 2003) 114

Table 6.2 Input concentration for the sensitivity study.............................. 120

Table 6.3 Summary of parameter estimation approach 124

Table 6.4 Initial conditions of the solution concentration and reactor volume... 126

Table 6.5 Major statistical information of the estimated response (Est.type 1)... 134
Table 6.6 Percentage deviations of the measured and predicted values (Est.type 1) ... 137
Table 6.7 Objective function contributed for parameter estimation (Est.type 1) 138
Table 6.8 Objective function contributed for parameter estimation (Est.type 2) 144
Table 6.9 Major statistical information of the estimated response (Est.type 2)........ 145
Table 6.10 Percentage deviations of the measured and predicted variables (Est.type 3) .. 150
Table 6.11 Major statistical information of the estimated response (Est.type 3)........ 151
Table 6.12 Objective function contributed for parameter estimation (Est.type 3) 153
Table 6.13 Key statistical information of the estimated response (Est.type 4)...... 157
Table 6.14 Key statistical information of the estimated response (Est.type 5)...... 157
Table 6.15 Major statistical information of the estimated response (Est.type 6).... 157
Table 6.16 Responses of parameter estimation models .. 160
Table 6.17 Estimated results of the seed size ... 161
Table 6.18 Key responses of the parameter estimation modeling 163

Table 7.1 Summary of the parameter estimation results ... 170

Table H.1 Mean particle size of quartz sand during experiment 249

Table I.1 Observations of the mean particle size of developing struvite for experiment-1 ... 250
Table I.2 Observations of the mean particle size of developing struvite for experiment-2 ... 250
Table I. 3 Observations of the mean particle size of developing struvite for experiment-3 .. 250

Table I. 4 Constituents concentration of experiment-1 251

Table I. 5 Constituents concentration of experiment-2 251

Table I. 6 Constituents concentration of experiment-3 252

Table I. 7 Consistency of plastic coating to prevent the dissolution of copper into solution due to corrosion of copper coil (Fed-batch experiment) 253

Table J. 1 Summary of the model response for Mg$^{2+}$, NH$_4^+$ and PO$_4^{3-}$ (concentrations are in molar) ... 257

Table K. 1 Fischer information matrix and computed F-value for Est.type 1 258
Table K. 2 Fischer information matrix and computed F-value for Est.type 2 259
Table K. 3 Fischer information matrix and computed F value for Est.type 3 260
Table K. 4 Fischer information matrix and computed F value for Est.type 4 261
Table K. 5 Fischer information matrix and computed F value for Est.type 5 262
Table K. 6 Fischer information matrix and computed F value for Est.type 6 263

Table N. 1 Objective Function Contributions when supersaturation is expressed in terms of Saturation Index (SI) ... 270
LIST OF FIGURES

Figure 2.1 Electron Micrograph of the typical struvite crystal observed in this research ... 12

Figure 2.2 Struvite deposition in digester pipeline (Snoeyink and Jenkins 1980) .. 14

Figure 2.3 Schematic of diffusion integration process .. 19

Figure 2.4 Operating range of struvite crystallization (Ohlinger 1999) 22

Figure 2.5 Schematic presentation of crystallization at higher supersaturation and controlled (constant) supersaturation .. 23

Figure 2.6 Schematic of MSMPR (A), Fluidized bed reactor (B), and packed bed reactor (C) ... 30

Figure 3.1 Schematic of continuous-discrete struvite reaction system 47

Figure 4.1 Schematic of experimental set-up to determine operating zone of struvite crystallization ... 52

Figure 4.2 Schematic of controlled struvite crystallization 54

Figure 4.3 (A) Front view of struvite reactor, (B) Side view of struvite reactor 56

Figure 4.4 Sampling of struvite crystal through recirculation pump 57

Figure 4.5 Photographic presentation of adjustable recirculation arm of reactor ... 57

Figure 4.6 Schematic of automatic temperature control system 58

Figure 5.1 Identification of the metastable zone for struvite crystallization 63

Figure 5.2 Reaction kinetics during experiment using 0.007 M solution 65

Figure 5.3 Reaction kinetics during experiment using 0.004 M solution 65
Figure 5.4 Reaction kinetics during experiment using 0.003 M solution 66
Figure 5.5 Induction time in struvite system using different seed 67
Figure 5.6 Scanning electron microscopic view of quartz sand seeds (A), Growing
struvite with quartz sand seeds (B) .. 69
Figure 5.7 Magnified scanning electronic microscopic view of growing struvite and
quartz sand seeds ... 69
Figure 5.8 Scanning Electron Microscopic view of borosilicate seeds (A), Growing
struvite along with borosilicate seeds (B) .. 70
Figure 5.9 Scanning Electronic Microscopic View of struvite seed (A), Growing
struvite along with struvite seeds (B) .. 70
Figure 5.10 Development of struvite crystals using different types of seed materials
... 71
Figure 5.11 SEM view of air-dried struvite (A); magnified view of air-dry struvite
(C); temperature dry (100°C) struvite (B); magnified View of
temperature dry struvite (D) ... 73
Figure 5.12 Frequency curves of struvite at different drying conditions 74
Figure 5.13 Decline of struvite moisture content at different temperature (A),
Retention of total mass in drying process at 40°C temperature (B) 74
Figure 5.14 (A) Free Mg$^{2+}$ Concentration in Feed-type M1 and M3 of Titrant-1; (B)
Free NH$_4^+$ and NH$_3$ Concentration in Feed-type M2 and M3 of Titrant-1
(computed using PHREEQC thermodynamic modeling package)........ 78
Figure 5.15 Schematic of feed solution addition (following feed type M1).......... 79
Figure 5.16 (A) Faulty control due to preliminary reduction of reactant
concentration; (B) trend of control expressing P/Mg value of the system
... 84
Figure 5.17. (A) Poor control due to acid-base neutralization; (B) trend of control expressing P/Mg value of the system .. 86

Figure 5.18 Initialization of fed-batch controlled crystallization system 88

Figure 5.19 Rise of temperature of reactive solution due to recirculation pump operation .. 90

Figure 5.20 Control of temperature by automatic temperature control system 90

Figure 5.21 CSD of quartz sand particles during experiment 92

Figure 5.22 Characteristics of struvite CSD in faulty dosing of titrants 93

Figure 5.23 (A) Experimental control; (B) Operating volume in fed-batch action (Expt-1) .. 96

Figure 5.24 (A) Experimental control; (B) Operating volume in fed-batch action (Expt-2) .. 97

Figure 5.25 (A) Experimental control; (B) Operating volume in fed-batch action (Expt-3) .. 98

Figure 5.26 Analysis of struvite by XRD analysis .. 99

Figure 5.27 Characterization of mean particle size of struvite (Expt-1) 101

Figure 5.28 Characterization of mean particle size of struvite (Expt-2) 102

Figure 5.29 Characterization of mean particle size of struvite (Expt-3) 102

Figure 5.30 Characterization of fines during crystallization (Expt-2) 103

Figure 5.31 Effect of reactive solution volume on the mean particle size of struvite .. 103

Figure 6.1 Ionization fraction of fundamental struvite components (Mg$^{2+}$, NH$^+_4$, PO$_4^{3-}$) .. 115

Figure 6.2 Presence of different magnesium complexes in struvite system 116
Figure 6.3 Presence of different phosphate complexes in struvite system 117
Figure 6.4 Presence of different ammonium states in struvite system 118
Figure 6.5 Comparison of solubility products at different pH value 119
Figure 6.6 Solution saturation at different pH value (based on the critical
supersaturation ratio, S_c) .. 119
Figure 6.7 Sensitivity of the critical supersaturation ratio to Mg^{2+}, NH_4^+ and PO_4^{3-}
concentration ... 121
Figure 6.8 Overlay charts of experiment 1 (Est.type 1) 131
Figure 6.9 Overlay charts of experiment 2 (Est.type 1) 132
Figure 6.10 Overlay charts of experiment 3 (Est.type 1) 133
Figure 6.11 Confidence ellipsoid of the estimated growth parameters 135
Figure 6.12 Overlay charts of experiment 1 (Est.type 2) 141
Figure 6.13 Overlay charts of experiment 2 (Est.type 2) 142
Figure 6.14 Overlay charts of experiment 3 (Est.type 2) 143
Figure 6.15 Overlay charts of experiment 1 (Est.type 3) 147
Figure 6.16 Overlay charts of experiment 2 (Est.type 3) 148
Figure 6.17 Overlay charts of experiment 3 (Est.type 3) 149
Figure 6.18 Confidence ellipsoid of the estimated growth parameters 152
Figure 6.19 Comparison of supersaturation expressed by oversaturation (S) and
Saturation Index (SI) using the solution concentration of Expt 1 155

Figure A.1 Description of recirculation pump capacity (Onga 2004) 188

Figure L.1 Overlay charts of experiment 1 (Est.type 4) 264
Figure L.2 Overlay charts of experiment 2 (Est.type 4) 264
Figure L. 3 Overlay charts of experiment 3 (Est.type 4)................................. 265

Figure M. 1 Overlay charts of experiment 1 (Est.type 5).................................. 266
Figure M. 2 Overlay charts of experiment 2 (Est.type 5).................................. 266
Figure M. 3 Overlay charts of experiment 3 (Est.type 5).................................. 267

Figure N. 1 Overlay charts of experiment 1 (Est.type 6)................................. 268
Figure N. 2 Overlay charts of experiment 2 (Est.type 6)................................. 268
Figure N. 3 Overlay charts of experiment 3 (Est.type 6)................................. 269