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Abstract — A comparative study of unloaded Q-

factor measurements of a TE011 mode sapphire 
dielectric resonator with unloaded Q-factor value of 
731,000 at a frequency of 10 GHz and temperature of 
65 K using two best Q-factor measurement methods 
are presented. The Transmission (TMQF) and 
Reflection methods are based on relevant 
multifrequency S-parameter measurements and circle-
fitting procedures to compute the unloaded Q-factor of 
the resonator. For accurate comparison of the methods 
a delay compensation procedure (introduced in the 
TMQF technique to remove delay due to noncalibrated 
cables) has been applied also to the reflection data. 

 
I. INTRODUCTION 

 
Accurate measurements of microwave properties of 

materials using dielectric resonators require precise 
computations of the unloaded Q factor of the resonator. 
There are various methods which enables measurement 
the Q-factors of microwave resonators [1-14]. However, 
not all of them take into account practical effects 
introduced by a real measurement system. The practical 
effects include noise, crosstalk, coupling losses, 
transmission line delay, and impedance mismatch. 
Inadequate accounting of the practical effects may lead to 
significant uncertainty in the Q-factor obtained 
[8,13,14,15]. 

Two of the most accurate and practical Q-factor 
methods used today include the Reflection method for 
reflection mode resonators [1] and the Transmission Mode 
Quality Factor Technique for transmission mode 
resonators [13,15]. The methods involve circle-fitting 
procedures applied to multiple data points representing S-
parameter responses of the resonator around the 
resonance. The circle fitting techniques have become a 
popular choice for determination Q-factors of dielectric 
resonators because measurements of S-parameters can be 
done accurately and conveniently using vector network 
analysers. 

This paper presents results of the accuracy comparison 
of the Reflection method and the TMQF technique.  
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TRANSMISSION AND REFLECTION MODE 
HODS FOR COMPUTATION OF THE Q-FACTOR 

e Transmission Mode Q-Factor (TMQF) method and 
Reflection Mode method applicable to resonators 
ing in the transmission mode and the reflection mode 

based on the circuit models of a dielectric resonator 
m shown in Fig. 1 and Fig. 2 respectively. 
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1 Circuit model of a transmission mode dielectric 
nator system used to develop the Transmission Mode 
actor technique [13]. 
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2 Circuit model of a reflection mode dielectric 
nator system used to develop the Reflection Mode 
od[1]. 

 of the circuits shows an ideal resonator connected to 
ternal circuit, and incorporates elements to account for 
sy coupling and coupling reactance (Rs and Xs). The 
amental equations to calculate the unloaded Qo-factor 
 the loaded QL-factor and the coupling coefficient(s) 
he transmission and reflection mode resonators are: 

( )Q Qo L= + +1 1 2β β  (1) 

( )Q Qo L= +1 β       (2) 



The loaded QL-factor and the coupling coefficients are 
determined from the circle fitting procedures of the Q-
factor methods, which requires measurements of S-
parameter response(s) of the resonator around the 
resonance. Relationships describing S21, S11, and S22 with 
QL, β1 and β2 for the TMQF technique are given below 
after [13,15]: 
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where ωo and ωL are the unloaded and loaded resonant 
frequencies[13]. For the Reflection Mode method [1], the 
fundamental equation relating S11 with QL and β is: 
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, d2 is a complex constant, S11d is the 

detuned value of S11 at frequencies far from the resonant 
frequency, and 
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For transmission (S21) and reflection (S11 or S22) 
parameters of the dielectric resonator system around 
resonance, the path of the S-parameter vector traced in the 
complex plane is ideally a circle referred as a ‘Q-circle’. 
The Q-circle for all three S parameters has the functional 
form [1]: 
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where a1, a2 and a3 are three complex constants, and ‘t’ is a 
normalised frequency variable defined by the following 
function of frequency: 

( )L

L

t 2
ω− ω=

ω
 (7) 

The constants a1, a2 and a3 are computed using the 
Fractional Linear Curve Fitting Technique applied to N 
points measured around the resonance [1]. 

In both the transmission mode and reflection mode 
methods, the loaded QL-factor is simply: 

Im[ ]L 3Q a=  (8) 
However, for the transmission mode method QL-factor is 
obtained from the circle-fitting to the S21 Q-circle, while 
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e coupling coefficient β for the reflection mode 

nator [1] is considered to be a sum of lossless βi and 
 parts βL: 
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total port coupling coefficient is simply computed 
 the respective diameters dQ and dL of the Q-circle 
coupling loss circle as: 
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coupling loss circle shown in Fig. 3 is defined as the 
e that lies tangential to the-reflection S11 Q-circle and 
nit circle [1]. The diameters of the Q-circle and the 
ling loss circle are determined using equations (12) 

(13) respectively: 
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re the detuned value Sppd is the value of the S-
meter at frequencies far away from the resonant 
uency. 

 
3 Q-circle and Coupling Loss circle based on [1] 

the transmission mode resonator, there are two 
ling coefficients and they have been considered in the 



same way as in [1] to consist of the lossless and lossy 
parts. 

p pi pLβ = β +β  (14) 
where the port number is denoted by p (= 1 or 2). 
The equations describing the lossless βpi and lossy βpL 
parts of the port coupling coefficient are different than that 
for the reflection method, and these have been obtained in 
[13,15] as: 
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 (15) 
where d1 is a diameter of port 1 coupling loss circle, d2 is a 
diameter of port 2 coupling loss circle, x is a diameter of 
port 1 (S11) Q-circle, y is a diameter of port 2 (S22) Q-
circle. The diameters of the S11 and S22 Q-circles and 
coupling loss circles for the transmission mode method are 
determined using the same equations (12) and (13) as for 
the reflection mode method. 
 
III MEASUREMENTS OF Qo FACTOR OF THE 
SAPPHIRE DIELECTRIC RESONATOR USING THE 
TRANSMISSION MODE Q-FACTOR METHOD AND 
THE REFLECTION METHOD 

 
The measurement system shown in Fig 4 includes 

HP8722C vector network analyser, vacuum dewar, a 
temperature controller, and a Hakki-Coleman sapphire 
dielectric resonator with copper cavity and 
superconducting end-walls. 
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Fig. 4  Measurement system used in the comparison 
measurements of unloaded Qo-factor of the sapphire 
dielectric resonator. 

The resonator is coupled to the external system (on each 
side) via a coupling loop situated at the end of a semi-rigid 
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e as shown in Fig. 5. The other end of the cable 
ects to a feed-through connector on the wall of the 

ar. Since the dielectric resonator used in the tests is 
ntially a transmission mode resonator, measurements 

eflection Mode resonator tests were made on port 1 
 while the port 2 side was fully decoupled. 

  
5 The TE011 mode sapphire dielectric resonator used 
he Qo-factor comparison tests. 

e comparison test involved using each technique to 
rmine the Qo-factor of the dielectric resonator for 
rent levels of coupling. The transmission mode tests 
ired measurements of three S-parameters (S21, S11, 
S22) for each level of coupling. For the reflection 
e test, only one parameter (S11) was needed. As 
tioned in the Abstract a procedure to remove the phase 
y developed for the TMQF technique has been applied 
e Reflection technique. 

sults of the Qo-factor comparison test for different 
tions of the tips of the coupling loop with respect to 
ateral wall of the cavity are shown in Fig. 6. 
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6 Measured Qo-factor of the sapphire resonator using 
ransmission (TMQF) and Reflection techniques. 



The positions of the loop tips range from 1.5 mm external 
to the cavity to 0.75 mm internal to the cavity (the 
negative values of loop distance in the figure indicates 
positions exterior to the cavity). The value of the Qo-factor 
obtained for the very weak coupling of 730742 was used 
as a reference and shown as the line in Fig. 6. Values of 
coupling coefficients for varying loop positions are listed 
in Table 1. 
 
TABLE 1.  Coupling coefficients obtained for various 
loop positions. 

Loop distance 
in mm 

β1, β2  
(TMQF) 

β 
(Reflection method)

0.750 1.652, 1.381 2.064 
0.375 0.919, 0.806 0.996 
-0.375 0.138, 0.090 - 
-0.750 0.059, 0.041 - 

 

IV. CONCLUSIONS 
 

Results of a comparison study of unloaded Q-factor 
measurements of two best Q-factor determination methods 
have been presented, namely the Transmission Mode and 
Reflection Mode methods. Under the test conditions 
described in III, the results show that the accuracy of the 
two methods are comparable. However the TMQF 
technique enables measurements with small coupling 
coefficients what is not feasible for the Reflection 
technique. The error in Qo-factors is estimated to be less 
than 3% for loop tip distances between –0.4 mm to +0.4 
mm corresponding to port coupling coefficient values 
ranging from about 0.4 to 1.0. For these levels of 
coupling, the observed reflection Q-circles were well-
defined with signal-to-noise ratio greater than 27.5 dB. 

For coupling loop positions larger than 0.4 mm inside 
the cavity, a significant reduction in the Qo-factor obtained 
from both Q-factor methods is observed. The authors 
expect the observed effect is due the presence of the 
coupling loops and semi-rigid cable inside the cavity, 
which reduces the unloaded Qo-factor of the system. 

For loop positions larger than 0.4 mm outside the 
cavity, the coupling becomes so small that reflection S11 
and S22 Q-circles cannot be measured accurately. As 
coupling is gradually reduced, it has been observed that 
measurements of reflection (S11 and S22) Q-circles become 
unreliable well before the same problems with S21 Q-
circles occur following [13]. Hence it is expected that the 
accuracy of the Transmission Mode method can provide 
higher accuracy for very weak coupling conditions, but 
not so weak to encounter unreliable measurements of S21 
Q-circles. 
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