THE INCIDENCE OF PLANT-PARASITIC NEMATODES ON SUGARCANE IN QUEENSLAND, AND STUDIES ON PATHOGENICITY AND ASSOCIATED CROP LOSSES, WITH PARTICULAR EMPHASIS ON LESION NEMATODE (*PRATYLENCHUS ZEAE*)

Thesis submitted by

Brenden Leslie BLAIR
B. App. Sc.
Royal Melbourne Institute of Technology
in March 2005

For the degree of Doctor of Philosophy
in Microbiology and Immunology
within the School of Biomedical Sciences
James Cook University
STATEMENT OF ACCESS

I, the undersigned, the author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and I do not wish to place any further restriction on access to this work.

…………………………….. May 2005
(Brenden Blair)
STATEMENT OF SOURCES
DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given. Data contributed by fellow researchers in collaborative experiments is acknowledged and identified in the text in *italics*.

------------------------------- May 2005
(Brenden Blair)
ELECTRONIC COPY

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library is an accurate copy of the print thesis submitted, within the limits of the technology available.

……………………………. May 2005

(Brenden Blair)
ABSTRACT

In Queensland, sugarcane has been cropped as a monoculture for 80 years or more in most districts. In the last 30 years, plough-out and replant (no fallow) has increased, as has reliance upon inorganic fertilisers, and intensive tillage to remove soil compaction. An associated decline in the productive capacity of the soil to grow sugarcane has been identified, and has been termed ‘yield decline’ (YD). Root health and sugarcane yields are increased after fallowing, crop rotation, and soil fumigants (Magarey and Croft 1995; Garside et al. 2001; Meyer and Van Antwerpen 2001), implicating root pathogens in YD. However, in the past, nematode studies have been confined to testing the economics of using nematicides.

It was the objective of this work to explore the association between plant-parasitic nematodes and sugarcane in Queensland. Firstly, this thesis examines the incidence of nematodes on field crops. The regional distribution of nematodes is reported, together with nematode populations and dynamics relating to (a) root habit, (b) root distribution across the row to inter-row profile, and (c) temporal changes during the crop cycle.

Secondly, this thesis explores the parasitism of Queensland sugarcane by nematodes, and role in YD. The importance of sett roots, nematodes, and general YD biota on early plant establishment from 0-100 days after planting is examined in field miniplots. Crop losses due to nematodes are assessed at 16 field sites using non-volatile nematicides, and the pathogenicity of Pratylenchus zeae is examined in glasshouse pots and field miniplots.

The lesion nematode (P. zeae) was found to be ubiquitous in sugarcane fields, and usually at higher densities than other species. The density of root-knot nematode (Meloidogyne spp.) was also high in sandy soils (<20% clay), but a high proportion of other soils also contained this nematode, albeit at lower densities. The ectoparasites, spiral nematode (Helicotylenchus dihystera), stubby-root nematode (Paratrichodorus minor) and stunt nematode (Tylenchorhynchus annulatus) were also detected in a high number of fields (>66%). Historically, the sugar industry has perceived nematode problems to be confined to very sandy soils in south
Queensland. However, plant-parasitic nematodes occur in all soils, suggesting a more widespread role in YD.

Within sugarcane fields, nematodes were distributed in aggregated patterns. Thus, densities of lesion nematode varied up to five-fold across short distances (1.4 m) even at a constant distance (20 cm) from the sugarcane stool. Ring and spiral nematode were more aggregated than lesion nematode, perhaps due to more sedentary feeding habits and greater sensitivity to edaphic gradients (eg. soil texture and moisture) across the field at the macro-distributional level. The ‘negative binomial model’ was used to predict the sampling effort required to estimate mean nematode densities with degrees of precision.

Mean nematode densities across the row, near row (20-30 cm from the stool), and inter-row were very similar during the crop cycle. Because high densities of nematodes were regularly recovered from ‘near the row’ this zone was recommended for standard sampling. During the crop cycle, nematode densities were related to the volume of the root system and its growth rate, as influenced by season. Because sugarcane develops a new root system annually, nematode densities increased and then declined each year. At planting, up to 400 lesion nematodes and up to 100 spiral nematodes/200 mL of soil were present, which was usually more than other pest species (<50 nematodes/200 mL of soil). Lesion nematode generally persisted at higher densities than other pest species during the crop cycle.

Lesion nematode was pathogenic to sugarcane in 1.5 L pots, reducing root weight and sometimes reducing shoot biomass. In 50 L pots, this nematode caused a general blackening of roots and reduced fine root length by over 50%. Shoot biomass was generally not reduced, suggesting that YD is induced by a combination of root pathogens.

At planting, prior studies have related poor primary tiller emergence to poor sett root growth in field soil (Cadet and Spaull 1985; Garside et al. 2002 a; Pankhurst et al. 2002). However, this study showed that buds can rely entirely upon the stem cutting to shoot and become established primary tillers. It was concluded that damaged buds, dormant buds, a poorly nurtured seed source, and poor sett root growth, all contribute
to poor primary tiller establishment. Deleterious soil biota and nematodes also reduced the health and volume of shoot roots, which reduced the number of secondary tillers emerging at early establishment. While the experimental sites had a history of consistent fumigation responses (>80%), nematicide responses were quite variable (0-50%). Experiments in glasshouse pots confirmed that nematodes contribute in part to fumigation responses in YD soils.

To assess crop losses, nematodes were controlled for the entire crop cycle using non-volatile nematicides at 16 field sites. Fertile sandy loam to clay soils were chosen where losses from nematodes have only been speculated on previously. While poor tillering due to serious nematodes problems is well documented in sandy soils (<10% clay) in Queensland and around the world (Bull 1981; Spaull and Cadet 1990), stalk numbers were increased with nematicides only at some of the sites reported in this thesis. This contrast was attributed to the relatively low populations of root-knot nematodes (*Meloidogyne* spp.) at planting, and higher soil fertility. However, stalk length was significantly increased in nematicide-treated plots at most sites. Thus, responses in harvest yield of 0-20 T/ha were usually observed in both plant and ratoon crops. Untreated crop yields were average for the surrounding districts, as were nematode densities, suggesting the responses were robust across regions. Upon extrapolation, lost productivity from nematodes is estimated at over A$ 100 million annually. These results indicate that nematodes are a subtle but important pest, and contribute to YD on the sandy loam to clay soils on which 95% of Australia’s sugarcane is grown.

The environment and/or level of crop management influenced yield losses from nematodes, and nematicides responses were related to the control of a number of species, especially in ratoons. However, lesion nematode was correlated most consistently with reduced sugarcane yield. It was concluded that lesion nematode is the most important nematode pest of sugarcane in Queensland, and contributes to YD by reducing the health of primary and secondary roots, and by decreasing the length and number of fine roots.
ACKNOWLEDGEMENTS

I am indebted to a number of people and organisations that assisted in implementing this research program and documenting its results.

Firstly, the encouragement, drive and support of my great father, David George Blair (1933-2004), is acknowledged in fostering my scientific development and making this thesis a reality. Thanks, of course, to the unwavering support of my mother, Nancye Blair.

It is with great gratitude that I acknowledge the guidance, patience, and constructive criticism of Dr Graham Stirling (Biological Crop Protection) and Professor Warren Shipton (James Cook University) in supervising my progress.

It has been a pleasure dealing with members of the Yield Decline Joint Venture who have imparted their invaluable experience upon me in formulating progressive aims in the research process. In particular I acknowledge Dr Graham Stirling, Dr Alan Garside, Dr Mike Bell, Dr Clive Pankhurst and Dr Robert Magarey.

Co-workers that assisted in either implementing, monitoring and/or harvesting some experiments are thanked, specifically Dr Clive Pankhurst, Christina D’Amato, Julie Pattemore, Daniel Roberts, Norm King, Martin Braddick, Dan King, Dennis Bull, Rod Sollitt and Keith Sloan. In formatting this document, the assistance of Sonya Long, Kim Lonie and David Grace is appreciated. I thank Helen Bramley for her diligent proof reading and compiling.

The offices of Queensland Department of Primary Industries and Bureau of Sugar Experiment Stations are acknowledged for making equipment and office space available. I greatly appreciated the efforts of Dr Alan Garside and Dr Robert Troedson in lobbying for stipend funding to complete this thesis. My thanks to the Sugar Research and Development Corporation for stipend funding.

My thanks for the general advice and help from Alan Hurney and Derek Finlayson, and my apologies to those I have been remiss in overlooking.
TABLE OF CONTENTS

STATEMENT OF ACCESS ..i
STATEMENT OF SOURCES ... ii
STATEMENT OF ELECTRONIC COPY .. iii
ABSTRACT ...iv
ACKNOWLEDGEMENTS .. vii
TABLE OF CONTENTS ... viii
LIST OF FIGURES ... xiii
LIST OF PLATES .. xviii
LIST OF TABLES ... xx
LIST OF ABBREVIATIONS ..xxiv

CHAPTER 1: A review of the parasitism of sugarcane roots by nematodes:
A Queensland perspective. ...1

1.1 Preamble..1
1.2 Introduction ..1
1.3 Endoparasitic nematodes ..2
 1.3.1 Pratylenchus spp. ..2
 1.3.2 Meloidogyne spp. ...5
 1.3.3 Effect on planted crops ...5
 1.3.4 Effect on ratooned crops ...7
1.4 Ectoparasitic nematodes ...8
 1.4.1 Helicotylenchus spp. ..9
 1.4.2 Tylenchorhynchus spp ..9
 1.4.3 Trichodorus and Paratrichodorus spp...............................9
1.5 Co-pathogenic relationships ...10
1.6 Effect of soil physical factors ..12
1.7 Nematode control with biocides ...14
 1.7.1 Fumigants ...14
 1.7.2 Non-volatile nematicides ..15
 1.7.2.1 Time of application and rate16
 1.7.2.2 Effect of water availability17
 1.7.2.3 Effect of soil type - south Queensland18
 1.7.2.4 Effect of soil type - north Queensland19
1.8 Host resistance/tolerance to nematodes ..20
1.9 Biological control..21
CHAPTER 6: Glasshouse experiments to evaluate non-volatile nematicides as a research tool to assess nematode damage to sugarcane

6.1 Introduction ... 66
6.2 Materials and Methods ... 67
 6.2.1 General methods ... 67
6.2.2 Fenamiphos experiment .. 68
6.2.3 Aldicarb experiment ... 69
6.2.4 Sorghum and sugarcane susceptibility to YD 69
6.3 Results .. 70
 6.3.2 Fenamiphos experiment .. 70
6.3.3 Aldicarb experiment ... 72
6.3.4 Sorghum and sugarcane susceptibility to YD 75
6.4 Discussion .. 77

CHAPTER 7: Pathogenicity of lesion nematode (Pratylenchus zeae) to sugarcane in short-term pot experiments 80
7.1 Introduction .. 80
7.2 Materials and Methods ... 80
 7.2.1 General methods ... 80
7.2.2 Mode of inoculation ... 82
7.2.3 Inoculum density ... 82
7.2.4 Influence of watering regime .. 83
7.3 Results .. 83
 7.3.2 Mode of inoculation ... 83
7.3.3 Inoculum density ... 85
7.3.4 Influence of watering regime .. 88
7.4 Discussion .. 89

CHAPTER 8: Pathogenicity of lesion nematode (Pratylenchus zeae) to sugarcane in field microplots ... 93
8.1 Introduction .. 93
8.2 Materials and Methods ... 93
8.3 Results .. 95
8.4 Discussion .. 99
CHAPTER 9: The role of sett roots and shoot roots in the establishment
of sugarcane planted into yield decline soils.........................101
 9.1 Introduction...101
 9.2 Materials and Methods...102
 9.2.1 General methods ...102
 9.2.2 Experiment 1...103
 9.2.3 Experiment 2...104
 9.3 Results..105
 9.3.2 Experiment 1...106
 9.3.3 Experiment 2...111
 9.4 Discussion...117

CHAPTER 10: The role of plant-parasitic nematodes in reducing
sugarcane yields and yield components on fertile
soils of the south and central Queensland coast122
 10.1 Introduction...122
 10.2 Materials and Methods...123
 10.2.1 Field details...123
 10.2.2 Experimental design..124
 10.2.3 Nematicide program..125
 10.2.4 Nematode and crop sampling..................................126
 10.2.5 Regional trend between nematode densities
 and yield..128
 10.2.6 Statistical analyses and correlations............................129
 10.3 Results..129
 10.3.1 Nematodes on plant crops...129
 10.3.2 Nematodes on ratoon crops..130
 10.3.3 Plant crop yields...136
 10.3.4 Ratoon crop yields...139
 10.3.5 Root health...139
 10.3.6 Commercial cane sucrose (CCS).................................142
 10.3.7 Relationships between nematode density
 and plant crop response...142
 10.3.8 Relationships between nematode density
 and ratoon crop response...148
 10.4 Discussion..153
 10.4.1 Plant crop establishment..153
 10.4.2 Final yield...155
 10.4.3 Ratooning...156
CHAPTER 11: General discussion ...162

CHAPTER 12: Collaborated research relating to nematodes173
 12.1 General physical, chemical and biological
 sub-optimalities associated with yield decline (YD)173
 12.2 Effects of chemical biocides and breaks from the
 sugarcane monoculture on soil biota and sugarcane yield.....174
 12.3 Effect of crop history and organic matter on the
 suppression of YD biota ...175
 12.4 Collaborated (minor author) papers and text related
 to nematodes, and participation by B Blair178

REFERENCES ...180
APPENDICES ..196
LIST OF FIGURES

CHAPTER 4

Figure 4.3.1.1	Diagrammatic representation of *Pratylenchus zeae* dispersed in the soil across Site 1, formulated from 49 points taken 20 cm from the edge of the stool to a depth of 30 cm.	42
Figures 4.3.1.2 and 4.3.1.3	Nematode frequency distributions (histograms) and dispersion statistics in the soil at Site 1, generated from 49 points across the plot (5 × 6 m).	43
Figure 4.3.1.4	Correlations between precision achieved and sampling effort (sub-samples bulked) at Site 1.	44
Figures 4.3.2.1 and 4.3.2.2	*Pratylenchus zeae* frequency distributions (histograms) and dispersion statistics in soil and roots at Site 2, generated from 84 points across the plot (120 × 220 m).	45
Figures 4.3.2.3 and 4.3.2.4	Ectoparasite frequency distributions (histograms) and dispersion statistics in soil and roots at Site 2, generated from 84 points across the plot (120 × 220 m).	46
Figure 4.3.2.5	Correlation between precision achieved and sampling effort (sub-samples bulked) at Site 2.	46

CHAPTER 5

Figure 5.3.1.1a	*Pratylenchus zeae* on a sugarcane crop after a ploughed-out fallow and a herbicide fallow (bottom), and environmental conditions (top) at the site at Tully (LSD bars shown when P<0.05).	54
Figure 5.3.1.1b	*Pratylenchus zeae* in the row centre, near row and inter-row of a sugarcane crop after a ploughed-out fallow (A) and a herbicide fallow (B) (LSD bars shown when P<0.05).	55
Figure 5.3.2.1	Lesion nematode (*Pratylenchus zeae*) in the soil (A) and roots (B) through progressive crop stages, in a selection of sugarcane fields in north Queensland.	56
Figure 5.3.1.2a	*Helicotylenchus dihystera* on a sugarcane crop after a ploughed-out fallow and a herbicide fallow (bottom), and environmental conditions (top) at the site at Tully (LSD bars shown when P<0.05).	58
Figure 5.3.1.2b	*Helicotylenchus dihystera* in the row centre, near row and inter-row of a sugarcane crop after a ploughed-out fallow.	59
(A) and a herbicide fallow (B) (LSD bars shown when P<0.05).

Figures 5.3.2.2 and 5.3.2.3 Spiral nematode (*Helicotylenchus dihystera*) in the soil (A) and other nematodes in the soil (B) through progressive crop stages, in a selection of sugarcane fields in north Queensland.

CHAPTER 6

Figure 6.3.2.1 Nematodes in untreated and fenamiphos-treated soil in glasshouse pots after 60 days (at harvest). (Values in parentheses are back transformed means. LSD compares treatment differences between the same nematode species).

Figure 6.3.3.1 Nematodes in untreated and aldicarb-treated soil in glasshouse pots after 80 days (at harvest). (Values in parentheses are back-transformed means. LSD compares treatment differences between densities of the same nematode species).

Figure 6.3.4.1 Nematodes present at harvest (60 days) around sugarcane roots following different soil treatments (LSD compares treatment differences between densities of the same nematode species).

Figure 6.3.4.2 Nematodes present at harvest (70 days) around sorghum roots following different soil treatments (LSD compares treatment differences between densities of the same nematode species).

CHAPTER 7

Figure 7.3.2.1 The effect of soil treatments and mode of inoculation on (a) nematode density in the soil and (b) *Pratylenchus zeae* density in the roots (Values in parentheses are back-transformed means. LSD bars represent P=0.05).

Figure 7.3.3.1 The effect of soil treatments and inoculum density on (a) nematode density in the soil and (b) *Pratylenchus zeae* density in the roots (Values in parentheses are back-transformed means. LSD bars represent P=0.05).

Figure 7.3.3.2 Relationship between the mean inoculum density (P_i) of *Pratylenchus zeae* and mean root and shoot growth, and nematode multiplication.

Figure 7.3.4.1 Multiplication of *Pratylenchus zeae* on sugarcane in glasshouse pots at two watering regimes.
CHAPTER 8

Figure 8.3.1 Multiplication of *Pratylenchus zeae* on sugarcane in microplots after inoculation at five different population densities. 96

Figures 8.3.2a-8.3.2d Effect of the mean inoculum density (P₁) of *Pratylenchus zeae* on mean (a) number of shoots, (b) length of the primary shoot and (c) number of leaves. 96

CHAPTER 9

Figure 9.3.2.1 Percent of primary shoots establishing from buds on old and new stem cuttings, relating to sett root weight. 107

Figure 9.3.2.2 Effect of sett root pruning and soil treatment on number of shoots emerging from the soil (U = untreated, F = fumigated, LSD bars represent P=0.05). 110

Figure 9.3.3.1 Effect of sett root pruning and soil treatment on number of Q117 shoots emerging from the soil in Experiment 2 (U = untreated, F = fumigated, LSD bars represent P=0.05). 113

Figure 9.3.3.2 Effect of sett root pruning and soil treatment on number of Q138 shoots emerging from the soil in Experiment 2 (U = untreated, F = fumigated, LSD bars represent P=0.05). 113

CHAPTER 10

Figure 10.3.1.1 Plant crop and 1st ratoon densities of *Pratylenchus zeae* in soil and roots in untreated and nematicide-treated sugarcane, at a rain-fed site (1) in south Queensland. 134

Figure 10.3.1.2 Plant crop and 1st ratoon densities of (A) *Pratylenchus zeae* and (B) *Meloidogyne* spp. in soil and roots in untreated and nematicide-treated sugarcane, at a rain-fed site (4) in south Queensland. 134

Figure 10.3.1.3 Plant crop and 1st ratoon densities of (A) *Pratylenchus zeae* and (B) *Meloidogyne* spp. in soil and roots in untreated and nematicide-treated sugarcane, at Elliot Heads (Site 7a) in south Queensland. 135

Figure 10.3.1.4 Plant crop and 1st ratoon densities of (A) *Pratylenchus zeae* and (B) *Meloidogyne* spp. in soil and roots in untreated and nematicide-treated sugarcane, at Bundaberg (Site 9) in south Queensland. 135
Figure 10.3.1.5 Plant crop and 1st ratoon densities of (A) *Pratylenchus zeae* and (B) *Meloidogyne* spp. in soil and roots in untreated and nematicide-treated sugarcane, at Childers (Site 6) in south Queensland.

Figure 10.3.3 Number of tillers emerging and developing into mature stalks at some sites in south Queensland.

Figure 10.3.7.1 Plant crop increases in established stalks (SN₁) at 200 DAP due to the nematicide, relating to the density of total nematodes (endoparasites + ectoparasites) at planting (Pᵢ), and EM.

Figure 10.3.7.2 Plant crop increases in stalk length at 200 DAP due to the nematicide, relating to the density of total nematodes (endoparasites + ectoparasites) at planting (Pᵢ).

Figure 10.3.7.3 Plant crop increases in stalk length/m² of treated plot at 200 DAP, relating to the density of total nematodes (endoparasites + ectoparasites) at planting (Pᵢ).

Figure 10.3.7.4 Plant crop increases in established stalks (SN) due to the nematicide, relating to the density of lesion nematode controlled inside roots at 100-150 DAP, and EM.

Figure 10.3.7.5 Plant crop increases in established stalks (SN) due to the nematicide, relating to the density of endoparasites controlled inside roots at 150-200 DAP, and EM.

Figure 10.3.7.6 Plant crop increases in stalk length at 200 DAP due to the nematicide, related to the density of lesion nematode controlled inside roots at 100-150 DAP, and EM.

Figure 10.3.7.7 Plant crop increases in final yield due to the nematicide, related to the density of lesion nematode controlled inside roots at 100-150 DAP, and EM.

Figure 10.3.7.8 Plant crop increases in final yield due to the nematicide, related to the density of endoparasites controlled inside roots at 150-200 DAP, and EM.

Figure 10.3.7.9 Plant crop increases in final yield due to the nematicide, related to the density of endoparasites controlled in soil at 150-200 DAP, and EM.

Figure 10.3.8.1 Ratoon crop increases in stalk length around 200 DAR due to the nematicide, related to the density of ectoparasites controlled in soil at 80-180 DAR.
Figure 10.3.8.2 Ratoon crop increases in stalk length around 200 DAR due to the nematicide, related to the density of endoparasites controlled in soil at 80-180 DAR.

Figure 10.3.8.3 Ratoon crop increases in stalk length around 200 DAR due to the nematicide, related to the density of endoparasites controlled inside roots at 150-200 DAR.

Figure 10.3.8.4 Ratoon crop increases in stalk length/m² of treated plot at around 200 DAR, relating to the density of total nematodes (endoparasites + ectoparasites) in soil at 80-180 DAR.

Figure 10.3.8.5 Ratoon crop increases in final yield due to the nematicide, related to the density of endoparasites controlled in soil at 80-180 DAR.

Figure 10.3.8.6 Ratoon crop increases in final yield due to the nematicide, related to the density of endoparasites controlled inside roots at 150-200 DAR.

Figure 10.3.8.7 Ratoon crop increases in final yield due to the nematicide, related to the density of ectoparasites controlled in soil at 80-180 DAR.

APPENDICES

Appendix 9.3.3a and 9.3.3b Effect of sett root pruning and soil treatment on number of shoots emerging from the soil in Experiment 1 (U = untreated, F= fumigated, LSD bars represent P=0.05).

Appendix 9.3.4a and 9.3.4b Effect of sett root pruning and soil treatment on number of Q117 shoots emerging from the soil in Experiment 2 (U = untreated, F= fumigated, LSD bars represent P=0.05).

Appendix 9.3.4c and 9.3.4d Effect of sett root pruning and soil treatment on number of Q138 shoots emerging from the soil in Experiment 2 (U = untreated, F= fumigated, LSD bars represent P=0.05).
LIST OF PLATES

CHAPTER 1

Plate 1.3.1.1	*Pratylenchus zeae* parasitising a secondary root-tip of sugarcane (magnification × 50).	3
Plate 1.3.1.2	*Pratylenchus zeae* and eggs inside a tertiary root of sugarcane (magnification × 100).	3
Plate 1.3.1.3	Lesions on new primary roots from the entry of *Pratylenchus zeae* (magnification × 2).	4
Plate 1.3.2	Terminal galls on the primary roots of sugarcane cultivar Q141 caused by *Meloidogyne javanica* Treub (magnification × 1/2).	4

CHAPTER 3

| Plate 3.2.1 | Regions (survey areas) of sugarcane production surveyed for nematodes. | 32 |

CHAPTER 8

| Plate 8.3.2 | Roots of sugarcane (cultivar Q124) from fumigated soil (A) without nematodes and (B) inoculated with 350 *Pratylenchus zeae*/200 mL of soil. | 98 |

CHAPTER 10

| Plate 10.3.5 | Visual differences in roots from untreated (left) and nematicide-treated (right) plots, at Sites 1, 2 and 3 in south Queensland. Courtesy of G Stirling. | 140 |

APPENDICES

<p>| Appendix Plate 9.2 | Representative ‘old’ (left) and ‘new’ (right) buds. | 203 |
| Appendix Plate 9.3.5 | Representative unshaved (above) and 100% shaved (below) stem cuttings. | 203 |
| Appendix Plate 9.3.6 | Setts with 75% of root primordia removed, showing root growth only from the unshaved area. | 204 |
| Appendix Plate 10.2.1 | Regions of sugarcane production in south (see Map 1) and central Queensland (see Map 2) where crop losses were assessed. | 205 |
| Appendix Plate 10.2.2 | Sites where crop losses were assessed in south Queensland. | 206 |</p>
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Sites where crop losses were assessed in central Queensland.</th>
<th>207</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 10.2.3</td>
<td>Root health ratings used, according to root growth.</td>
<td>209</td>
</tr>
</tbody>
</table>
LIST OF TABLES

CHAPTER 1
Table 1.3-4 Nematode densities considered responsible for reduced sugarcane growth.
Table 1.6 Effect of clay content on sugarcane yields and related nematicide responses (Donaldson 1985).

CHAPTER 3
Table 3.3.1 Nematodes found in 135 sugarcane fields in far-north Queensland (Survey Area 1).
Table 3.3.2 Nematodes detected from 29 sugarcane fields in the Mulgrave valley of far-north Queensland (Survey Area 2).
Table 3.3.3 Nematodes in 200 mL of soil, transformedA and compared in separate sugarcane growing catchments of far-north Queensland (Survey Area 1).
Table 3.2 Soil type categories used to describe soils in far-north Queensland sugarcane fields (Survey Area 1).
Table 3.3.4 Nematodes in 200 mL of soil, transformedA and compared in different soil categories and crop stages in far-north Queensland sugarcane fields (Survey Area 1).

CHAPTER 4
Table 4.3.1 Effect of transformations on the dispersion statistics of *Pratylenchus zeae* and *Helicotylenchus dihystera* in the soil at Site 1.
Table 4.3.2 Effect of transformations on the dispersion statistics of nematodes in the soil and *Pratylenchus zeae* in the roots at Site 2.

CHAPTER 6
Table 6.3.2.1 Sugarcane growth in pots in untreated and pasteurised sugarcane soil at different rates of fenamiphos.
Table 6.3.2.2 Effect of fenamiphos (grouped rates) on sugarcane growth in pots in untreated and pasteurised sugarcane soil.
Table 6.3.3.1 Sugarcane growth in pots in untreated and pasteurised sugarcane soil at different rates of aldicarb.
Table 6.3.3.2 Effect of aldicarb (grouped rates) on sugarcane growth in pots in untreated and pasteurised sugarcane soil.

Table 6.3.4.1 Sugarcane and sorghum growth in pots following soil treatment with biocides.

CHAPTER 7
Table 7.3.2.1 Sugarcane growth in a clay loam soil, autoclaved and inoculated with *Pratylenchus zeae*.
Table 7.3.3.1 Sugarcane growth in a sandy loam soil, autoclaved and inoculated with varying densities of *Pratylenchus zeae*.
Table 7.3.4.1 Effect of *Pratylenchus zeae* on sugarcane growth in glasshouse pots at two watering regimes.

CHAPTER 8
Table 8.3.1 Effect of *Pratylenchus zeae* on root weight and shoot growth of sugarcane at harvest.
Table 8.3.2 Effect of *Pratylenchus zeae* on root length and surface area of sugarcane at harvest.

CHAPTER 9
Table 9.3 Rainfall during the two experiments.
Table 9.3.2.1 Effect of soil treatment and root primordia shaving on sett root weight, buds activated and primary shoots established at 100 DAP.
Table 9.3.2.2 Effect of soil treatment and root primordia shaving on shoot roots, shoot weights and shoot numbers per plot at 100 DAP.
Table 9.3.2.3 Linear correlations (R²) between shoot biomass per stool* versus root biomass per stool, using data from individual plots.
Table 9.3.2.4 (Lesion nematode + 0.5)^1/3 per g root, at harvest (100 DAP).
Table 9.3.3.1 Effect of soil treatment and root primordia shaving on sett roots, buds activated and primary shoots established at 70 DAP.
Table 9.3.3.2 Effect of soil treatment and root primordia shaving on shoot roots, shoot weight and secondary shoot numbers, per plot.
Table 9.3.3.3 (Lesion nematode + 0.5)\(^{1/3}\) per g of root, at harvest (70 DAP).

CHAPTER 10
Table 10.2.1 Details and location of nematicide experiments.
Table 10.2.4 Root health ratings for primary and secondary roots, and tertiary roots.
Table 10.2.5 Crop yields used to generate an environment/management (EM) rating for each site.
Table 10.3.1.1 Densities of lesion nematodes (*Pratylenchus zeae*) in untreated soil and roots, and level of control in nematicide-treated plots, at each site.
Table 10.3.1.2 Densities of root-knot nematodes (*Meloidogyne* spp.) in untreated soil and roots, and level of control in nematicide-treated plots, at each site.
Table 10.3.1.3 Maximum mid-season densities of ectoparasitic nematodes/200 mL of soil at each field site.
Table 10.3.3.1 Percent increases in tiller number (SN\(_1\)), stalk number (SN\(_2\)), tiller/stalk length (SL) and stalk diameter (SD) due to the nematicides at sites where these measurements were taken.
Table 10.3.3.2 Final yields in untreated plots, comparison to the district average, and yield improvements when nematodes were selectively controlled.
Table 10.3.5.1 Root health ratings for nematicide-treated and untreated sugarcane where root samples were analysed in south Queensland between March and June.
Table 10.3.5.2 Root health ratings for nematicide-treated and untreated sugarcane where root samples were analysed in central Queensland between March and April.
Table 10.3.6 Commercial cane sucrose (CCS) from stalks in untreated and nematicide-treated plots at harvest.

APPENDICES
Appendix 9.3.1 Nematodes in 200 mL of soil at 7 and 50 DAP, and rhizosphere soil at 100 DAP.
Appendix 9.3.2 Nematodes in 200 mL of soil at 7 DAP, and rhizosphere soil at 70 DAP.
Appendix 9.3.3 Sequential stalk emergence in Experiment 1 (see Appendix 9.3.3a and 9.3.3b below).

Appendix 9.3.4 Sequential stalk emergence in Experiment 2 (see Appendix 9.3.4a-9.3.4d below).

Appendix 10.2.3 Details of when aldicarb (A) or fenamiphos (F) were applied at the field sites, and where the nematicide was placed in relation to the trash blanket.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Australian</td>
</tr>
<tr>
<td>BSES</td>
<td>Bureau of Sugar Experiment Stations</td>
</tr>
<tr>
<td>CCS</td>
<td>commercial cane sucrose</td>
</tr>
<tr>
<td>DAP</td>
<td>days after planting</td>
</tr>
<tr>
<td>DAR</td>
<td>days of ratoon</td>
</tr>
<tr>
<td>DOF</td>
<td>days of fallow</td>
</tr>
<tr>
<td>EM</td>
<td>environmental factors and/or level of management</td>
</tr>
<tr>
<td>P<sub>i</sub></td>
<td>nematode density in the soil at planting</td>
</tr>
<tr>
<td>PVC</td>
<td>poly vinyl chloride</td>
</tr>
<tr>
<td>QDPI</td>
<td>Queensland Department of Primary Industries</td>
</tr>
<tr>
<td>®</td>
<td>registered trading name</td>
</tr>
<tr>
<td>SL</td>
<td>stalk length</td>
</tr>
<tr>
<td>SN</td>
<td>shoot or stalk numbers</td>
</tr>
<tr>
<td>YD</td>
<td>yield decline</td>
</tr>
<tr>
<td>UC</td>
<td>University of California</td>
</tr>
<tr>
<td>CEC</td>
<td>cation exchange capacity</td>
</tr>
<tr>
<td>EDB</td>
<td>ethylene dibromide</td>
</tr>
<tr>
<td>Ca</td>
<td>calcium</td>
</tr>
<tr>
<td>K</td>
<td>potassium</td>
</tr>
<tr>
<td>Mg</td>
<td>magnesium</td>
</tr>
<tr>
<td>P</td>
<td>phosphorus</td>
</tr>
<tr>
<td>a.i.</td>
<td>active ingredient</td>
</tr>
<tr>
<td>cv.</td>
<td>cultivar</td>
</tr>
<tr>
<td>dry wt.</td>
<td>oven dry weight</td>
</tr>
<tr>
<td>wt.</td>
<td>weight</td>
</tr>
<tr>
<td>eg.</td>
<td>for example</td>
</tr>
<tr>
<td>i.e.</td>
<td>specifically</td>
</tr>
<tr>
<td>n</td>
<td>number of sub-samples</td>
</tr>
<tr>
<td>no.</td>
<td>number of</td>
</tr>
<tr>
<td>pers comm.</td>
<td>unpublished personal communication</td>
</tr>
<tr>
<td>unpub.</td>
<td>unpublished observation by Blair</td>
</tr>
</tbody>
</table>
spp. species
°C degrees celcius
ha hectares
T/ha tonnes per hectare
ML megalitres
mL millilitres
m metres
cm centimetres
mm millimetres
µm micrometres
kg kilograms
g grams

ANOVA analysis of variance
CV coefficient of variation
E standard error/mean ratio
F test A test of data variance, estimating the probability that observations are random events (eg. P<0.05 = the probability that data sets are random is less than 5%).
LSD least significant difference
ns not significant at P=0.05
P probability
R² coefficient of determination
s² sample variance
0 sample mean
x sample mean in an equation
% percent of
< is less than
≤ equal to or lower than
> is greater than
≅ is approximately equal to
≈ approximately
× multiplied by