TRACE ELEMENTS IN COAL FROM COLLINSVILLE, BOWEN BASIN, AUSTRALIA – IN-GROUND MODE OF OCCURRENCE AND BEHAVIOUR DURING UTILISATION.

Robert John Boyd
B.Sc., M.Sc.(hons) (Geol); Dip Environmental Science.

A Thesis Submitted to The School of Earth Sciences for the Degree of Doctor of Philosophy in Geology.

James Cook University.
Townsville, Queensland
Australia.

September 2004
STATEMENT OF ACCESS

I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and;

I do not wish to place any further restriction on access to this work.

Or

I wish this work to be embargoed until:

Permission from the sponsor is gained

Or

I wish the following restrictions to be placed on this work:

__

Signature

__

Date 14/4/05
ELECTRONIC COPY

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Signature

29/4/05.

Date
STATEMENT OF SOURCES

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Signature

12/4/05
Date
Abstract.

Analysis of samples gathered during delineation of a coal resource is becoming increasingly sophisticated as various organisations attempt to predict and understand the technological behaviour of the mined product. Analysis to determine the concentration of trace elements in coal is becoming more prevalent, and not just merely for academic curiosity. Increased environmental awareness has impelled the need to consider potential negative impacts on the ecosystem caused by liberation of trace elements from coal during utilisation.

The aims of this thesis are to: 1) Determine the concentration of trace elements in coal seams mined to supply the Collinsville pulverised fuel combustion plant at the Collinsville open cut, Northern Bowen Basin, Australia; 2) Determine the mineralogy and, using graphical relationships, the likely mode of occurrence of trace elements in the sampled pits; 3) Determine the mode of occurrence of trace elements in the pulverised fuel of the Collinsville power plant using the USGS sequential leaching method, and contrast the results with the same analysis for an unrelated fuel from another coal fired power utility (Mitsui Mining’s Omutu City plant, Kyushu, Japan); 4) Examine the partitioning behaviour of trace elements in the Collinsville power utility, and contrast the results with the partitioning behaviour of trace elements in the Mitsui combustion utility to assess the influence of trace element mode of occurrence on partitioning behaviour; 5) Examine the mobility of trace elements from solid ash waste from the Collinsville power utility, and compare with the mobility of trace elements from the Mitsui power utility solid waste to assess the influence of mode of occurrence on the leachability of trace elements and; 6) Determine the partitioning behaviour of trace elements in carbonisation of Bowen seam coal at the Bowen coke works and compare with the partitioning behaviour of the same elements in combustion.

Lithotype logging of coal exposed in the highwalls of the Blake Central, Blake West and Bowen No.2 pits was undertaken. Of particular note was the presence of dull heat affected coal toward the roof of the Blake Central pit seam, toward the floor of the
Bowen No.2 pit seam, and the presence of bed-parallel intrusions within the seam in the Blake West pit. In the Blake West pit seam, the intrusion caused thermal alteration of the coal to coke over a 60cm zone immediately adjacent to the intrusion with a further 1.10-1.25m zone of dull heat altered coal beyond the coked zone. In the Blake Central, 4.5m of dull heat-affected coal occurred near the roof of the seam. In the Bowen No.2 pit, 1.2m of heat-affected coal occurred near the floor of the seam. Beyond the heat affected zone, lithotype logging of the Blake seams noted a number of rock partings, but no convincing dulling upward cycles due to progressive drying of the mire, noted in other studies of Permian coal, were found. No partings were found in the Bowen seam and only one convincing dulling upward cycles was logged. In part the absence of dulling upward cycles is due to heat alteration of the coal, but the numerous influxes of sediment laden water into the Blake seam mire also acted to terminate any significant dulling upward cycles by raising both nutrient levels and the water table.

Following lithotype logging, channel sampling of the pits resulted in a total of 76 samples, 25 from the Blake Central pit, 36 from the Blake West pit and 15 from the Bowen No.2 pit. The channel sampling intervals were determined approximately by coal lithotype interval, with some amalgamations to restrict sample numbers. The channel samples were analysed for proximate analysis, coal petrography and vitrinite reflectance (selected samples) and for major and trace elements using XRF and INAA.

The lithotype logs, proximate analysis data and coal petrography were integrated to infer the depositional environment of the Blake and Bowen seams. The generally high ash yield, common stone bands, low sulphur content of the coal and rare pyrite in the Blake seam suggests the depositional environment was a Class 3 topotelmitic peat with a variable water table. The moderate ash yield, the absence of common stone bands, sulphur contents of ~2% and the moderate pyrite content of the coal in the Bowen seam suggests the depositional environment was a Class 2 topotelmitic peat with a high water table.
The igneous intrusions have caused extensive alteration of vitrinite to semi-coke, a general decrease in the volatile matter content and an increase in the vitrinite reflectance \([\text{Ro}(\text{max})]\) toward the intrusion.

Mineralogy was calculated from major and trace elements using normative analysis, calibrated by XRD analysis of low temperature ash from selected samples. The mineralogy of the Blake seam samples is dominated by kaolinite, with subordinate quartz, illite, feldspar, and siderite, and minor concentrations of pyrite, goceixite, goyazite and anatase. The mineralogy of the Bowen seam samples is dominated by kaolinite, with subordinate quartz, illite and pyrite, and minor concentrations of siderite, goceixite, goyazite and anatase/ rutile/ iron oxides.

The concentration of trace elements in the channel samples was determined by INAA and XRF. The INAA and XRF concentrations of iron and uranium show a reasonable statistical relationship suggesting the two analysis methods are consistent with each other. The concentration of trace elements in the Blake and Bowen seams is generally low compared to world average ranges for coal and to crustal averages. Only gold, copper, hafnium, thorium and ytterbium were found to be above the world coal average range in the Blake seam. Only gold and copper were found to be above world coal average range in the Bowen seam coal.

Trace element mode of occurrence was inferred using graphical relationships between normative mineral and trace element concentrations. In the Blake seam, arsenic, possibly chromium, copper, mercury, nickel and lead were inferred to be associated with pyrite. Bromine, cobalt, selenium, and zinc appeared to be organically bound. Cerium, caesium, europium, lanthanum, rubidium, and scandium showed a graphical relationship with illite. However, cerium, europium, lanthanum and scandium, along with hafnium, lutetium, neodymium, samarium, terbium, thorium, uranium and vanadium also showed a graphical relationship with goceixite or goceixite plus goyazite. It was inferred the latter group of elements are associated with monazite or zircon. In addition to the REE phosphate mode of occurrence, some rare earth elements also showed an affinity for
kaolinite. Thorium and uranium were also inferred to be associated with feldspars. Antimony, tantalum and ytterbium were found to be dominantly associated with kaolinite.

In the Bowen seam, arsenic, cobalt, possibly chromium, copper, mercury, molybdenum, nickel, lead, antimony, selenium and zinc showed a graphical relationship with pyrite. The elements cerium, hafnium, neodymium, rubidium, samarium, tantalum, thorium, uranium and tungsten all showed significant graphical relationships with the anatase/ rutile/ FeO grouping of minerals. It is inferred that the relationship is due to the presence of monazite, zircon, xenotime, REE phosphates, tungstates or other trace minerals, the distribution of which mirrors the distribution of the anatase/ rutile/ FeO grouping. Uranium and thorium were inferred to be associated with REE phosphates and zircon respectively, plus illite. The elements bromine, europium, lanthanum, terbium and vanadium were inferred to be associated with illite. A mixed illite/ heavy mineral suite mode of occurrence is inferred for samarium, tantalum, thorium and uranium. The elements caesium, lutetium, scandium, and ytterbium were inferred to be associated with kaolinite.

The effect of igneous intrusions on the concentration of a number of minerals and trace elements was also examined. The presence of semi-coke or an inferred distance of heat alteration was used to distinguish heat affected and unaffected samples. Depletion or enrichment of minerals and elements was inferred using ply thickness weighted average concentration figures for altered and unaltered samples and trends of concentration change toward the intrusion. Some consistent changes in the concentration of trace elements and minerals were found across all three pits sampled. The minerals siderite and pyrite are depleted in the heat affected zone, but goyazite is enriched, particularly toward the margins of the heat affected zone. The elements bromine and strontium (the latter mirroring the goyazite trend) are concentrated in the heat affected zone. The elements cobalt, mercury, manganese (mirroring the pyrite trend), nickel and possibly arsenic and zinc are depleted in heat affected samples from all three pits sampled. The inconsistent behaviour of some other trace elements (molybdenum, chromium and
possibly selenium) in response to the igneous intrusion appears to be the result of different modes of occurrence of trace elements between pits.

Samples of pulverised fuel were collected from the Collinsville and Japanese (Mitsui) pulverised fuel utilities. The concentration of major and trace elements was determined by INAA, XRF and (for the Collinsville sample) ICP-MS & ICP-AES. INAA analysis suggests gold, cerium, cobalt, europium, hafnium, lanthanum, lutetium, molybdenum, neodymium, scandium, selenium, samarium, strontium, tantalum, thorium, tungsten and ytterbium are at the upper end or above the world average concentration range in the Collinsville pulverized fuel. Only gold, hafnium and thorium are at the upper end or above the world coal concentration range in the Japanese pulverized fuel.

Sequential leaching of the pulverised fuels was undertaken according to the USGS protocol. The sequential leach data was interpreted to infer trace element mode of occurrence in the pulverised fuel. A number of significant differences in the mode of occurrence of antimony, arsenic, chromium, cobalt, nickel, selenium, uranium and zinc were found between the two combustion plants studied. The element vanadium had almost identical modes of occurrence in fuel from both plants studied.

A comparison of trace element mode of occurrence determined for the Collinsville power utility pulverised fuel by sequential leaching with mode of occurrence determined for the in-ground feed coals using graphical methods showed a reasonable level of agreement. It is concluded that the use of two methods of determining mode of occurrence provides better definition of mineral type in some cases. For example a siderite mode of occurrence could be determined using graphical relationship whereas the sequential leach data gave only a carbonate mode of occurrence. Further, the sequential leach data solved the problem of parallel graphical relationships. For example, galena was determined to be the mode of occurrence of lead from the sequential leach data, whereas graphical relationships indicated a pyrite mode of occurrence because of the relationship with sulphur.
Combustion of coal occurs in three phases, namely devolatilisation, combustion of the volatile matter, and combustion of the residual char. Mineral matter may be excluded from the residual char particles due to desegregation and separation in the milling process, or included within the char particle. During combustion, trace elements partition between the bottom ash, the fly ash, and flue gas (lost up the stack). The concentration of trace elements in ash samples from the Collinsville and Mitsui power utilities was determined by INAA and XRF. The partitioning behaviour of the trace elements is examined by calculating relative enrichment values for the trace elements. Generally the partitioning behaviour and classification of trace elements in this study matched those found in previous published studies for a given element.

The relative enrichment trends of elements exhibiting significant differences in mode of occurrence between the two combustion plants sampled (ie antimony, arsenic, chromium, cobalt, nickel, selenium, uranium and zinc plus vanadium) were examined to determine the control of mode of occurrence on the partitioning behaviour. It is hypothesised that the relative volatility of a particular element in combustion reflects the temperature at which the host mineral or the organic matter thermally decomposes. Thus organically bound elements should be more volatile than pyrite associated elements, which should be more volatile than carbonate associated elements, which should be substantially more volatile than silicate associated elements. Other factors that may influence partitioning behaviour such as the major element chemistry of the ash, plant design and operating conditions, and temperature variations within the combustion chamber were discounted as significantly influencing relative enrichment differences for the two combustion plants studied. It is concluded that element mode of occurrence has a strong influence on the relative volatility of a given element, and that comparison of sequential leach results from two pulverised fuel utilities has the potential allow prediction of the relative volatility of trace elements in combustion. Some complications may arise due to exclusion of some mineral grains and localised variations in the oxidation state within the combustion zone.

Solid combustion wastes (fly ash and bottom ash) are commonly disposed of in landfill and impoundment facilities. Unless the landfill is impermeable to water, disposal of solid
wastes in such fashion allows interaction with the hydrogeological system and could lead to detrimental environmental impacts. Leaching of indicative “total waste” composites made up by blending fly ash and bottom ash samples from each power utility in an 80/20 proportion was undertaken using the TCLP protocol. The concentration of trace elements in the leachates was compared to recreational water and drinkwater guideline values. The concentration of barium, manganese, and selenium in the Collinsville leachate exceeds both the recreational and drinkwater guideline concentrations. The concentration of nickel in the Collinsville leachate was found to exceed the recommended drinkwater concentration, but is below recreational water guideline value. The concentration of boron and selenium in the Mitsui leachate was found to exceed both the recreational and drinkwater guideline values. The concentration of barium in the Mitsui leachate was found to exceed the drinkwater standard. The concentration of an element in the ash sample was found to be a poor indicator of the mobility of the element.

Elements that showed substantial differences in mode of occurrence in the pulverised fuel (ie antimony, arsenic, chromium, cobalt, nickel, selenium, uranium and zinc plus vanadium) were examined to assess the influence of mode of occurrence on the leachability of the element from solid combustion waste. It is concluded that, where the difference in element mobility between the two composite ash samples is significant, mode of occurrence does exert some control on the proportion of a trace element in the ash that can be mobilised by the TCLP protocol. In particular, trace elements present in coal associated with silicates appear substantially unavailable for mobilisation by the TCLP protocol.

The concentration of trace elements in samples of feed coal, coke and breeze from the Bowen coke works was determined by INAA and XRF. A new index (the CRE index) was developed to characterise the enrichment or depletion of trace elements in the coke and breeze. Coke is classified as enriched (Class 1), neither enriched nor depleted (Class 2), depleted (Class 3) or highly depleted (Class 4). Breeze was classified as enriched (denoted “e”), neither enriched nor depleted (denoted “a”) and depleted (denoted “d”).
Comparison of the partitioning behaviour of trace elements in combustion and carbonisation was undertaken by comparing the RE and CRE data. It is concluded that all but the most volatile elements (sulphur, selenium, arsenic and tungsten) are substantially retained in the coke. The substantial retention of trace elements in coke is likely due to the lower temperature at which carbonisation occurs compared to pulverised fuel combustion temperatures. The behaviour of trace elements in the breeze is similar to their behaviour in combustion, being controlled by mode of occurrence and element volatility. Trace elements associated with pyrite are generally enriched in the breeze, excepting highly volatile elements such as sulphur, selenium and arsenic, which appear to substantially volatilise. Silicate associated elements and those elements associated with heavy minerals are also generally non-volatile excepting tungsten that is depleted in the coke and breeze.

The concentration of trace elements in the pit channel samples and in the pulverised fuel sample suggest the elements barium, selenium, mercury, thorium, copper, manganese, nickel and vanadium warrant further investigation in Collinsville pit and combustion wastes. The data suggests the elements thorium, boron, selenium and barium warrant further investigation in the Japanese combustion plant. Further work to verify that relative differences in mode of occurrence inferred from USGS sequential leaching are useful as indicators of trace element volatility and leachability is recommended.

The environmentally significant trace elements cobalt, molybdenum, antimony, strontium, zinc and possibly arsenic and chromium are enriched in the breeze samples from the Bowen coke works. Leaching studies to determine the proportion and concentration of trace elements in the leachate upon disposal of the waste is worth consideration. Further studies to characterise trace element partitioning during carbonisation in a slot oven are recommended.
Acknowledgements.

I would like to thank the following people for their assistance with this PhD.

My supervisor Dr Peter Crosdale, who organised research grants and a scholarship at James Cook University, provided accommodation to the entire family for our first two weeks in Townsville, provided training in the petrography of Australian coals, introduced me to all the right people (and a few of the wrong ones at wine club) and then watched bemused as we all moved back to New Zealand ten months later to resume full time employment. Dr Crosdale also undertook a thorough and useful review of manuscript drafts. Thank you for your technical advice, encouragement and forbearance. I did eventually finish the thesis!

Mr Ray Slater (then Resource Management Superintendent at the Collinsville coal mine) for his considerable help and advice, the benefit of his expertise on the Collinsville operations, organising access to the mine to undertake sampling, and organising the saving of splits of the Bowen coke works train samples. Thank you also to Theiss mining contractors, Collinsville for covering the cost of the proximate analysis of the pit channel samples.

Mr Ian Borthwick for providing access to the Collinsville power utility and gathering samples of pulverised fuel, bottom ash and fly ashes.

Mr Oki Nishioka for organising the gathering of coal and ash samples at Mitsui Mining’s Omutu City pulvrised coal combustion utility in Kyushu, Japan.

Mr John Laidlaw for allowing access to the Bowen coke works and for gathering samples of coke and breeze over several months.

Messrs Hugh McMillan and Trevor Daly of SGS Ngakawau, New Zealand for undertaking low temperature ashing and sulphur analysis of numerous samples.

Dr Jane Newman for agreeing to train me (once again!) in the measurement of vitrinite reflectance and coal petrography point counting. Also for the encouragement that a PhD could be completed part time and some inspirational discussions on coal science over a lot of years. Mr Colin Nunweek is thanked for mounting the petrographic samples under Dr Newman’s supervision.

Thanks to the Geology Department, University of Canterbury, New Zealand for providing access to use the petrographic microscope. Particular thanks to Dr Kerry Swanson, who always seemed to have an appropriate sized “bit of wire” to carry out the odd technical fix.
Dr Nigel Newman of CRL Energy for undertaking low temperature ashing and organising XRD analysis of selected samples, and for some useful observations on the results.

Thanks to the United States Geological Survey, particularly Dr Bob Finkelman and Dr Curtis Palmer for undertaking sequential leaching analysis of the Collinsville pulverised fuel as part of the world Coal Quality Database programme; also for supplying a number of useful papers and some helpful correspondence. Also particular thanks to Dr Palmer who assisted with the preparation and explanation of the chondrite normalised plots.

Dr Zhongsheng Li, for setting up and running the sequential leaching of the Japanese pulverised fuel sample at Canterbury University, Christchurch, New Zealand.

Particular thanks to Solid Energy New Zealand, especially Mr Barry Bragg, for organising substantial funding to cover the XRF analytical costs over the latter stages of this project and providing an extra week of leave a year for the past three years.

Thanks to Dr Doug Lewis who inspired a enthusiasm for research and technical reading, and Mr Frank Taylor who gave me my first coal job and instilled a sense of the value of practical geology. Thanks also to my “room mate” at Solid Energy Jonny McNee for the laughs.

My parents, David and Anne, who taught me the value working to achieve a goal, and have continuing to be there for advice, encouragement and the occasional meal and accommodation for studies in Christchurch.

And finally to my wife Fran, who packed up the household to move to Australia so I could quit work and go back to uni, and then packed it up to move back again so I could go back to work and study as well!!; who watched family finances disappear into the analytical bills black hole and assorted text books; who understood when I disappeared night after night into the study and worked at weekends instead of doing the garden; who listened to my inane ravings, and who remained lovingly supportive. Also to my children Erica and Michelle, who have had to be content with short hours (and temper) from their father for the last five years. I could not have done it without you and I cannot thank you enough. I love you all.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement of Access</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>x</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xix</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xxviii</td>
</tr>
<tr>
<td>List of Appendices</td>
<td>xxxii</td>
</tr>
<tr>
<td>Statement of Sources</td>
<td>xxxiii</td>
</tr>
</tbody>
</table>

Chapter 1 Literature Review

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0. Chapter Resume</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Trace Elements of Environmental Interest</td>
<td>8</td>
</tr>
<tr>
<td>1.3. Geological Aspects of Trace Elements in Coal</td>
<td>10</td>
</tr>
<tr>
<td>1.3.1. Concentration of Trace Elements in Coal</td>
<td>10</td>
</tr>
<tr>
<td>1.3.1.1. Definitions</td>
<td>10</td>
</tr>
<tr>
<td>1.3.1.2. Comparison of Trace Element Concentrations</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2. Mode of Occurrence</td>
<td>13</td>
</tr>
<tr>
<td>1.3.2.1. Introduction</td>
<td>13</td>
</tr>
<tr>
<td>1.3.2.2. Methods of Determining Modes of Occurrence</td>
<td>14</td>
</tr>
<tr>
<td>1.3.3. Controls on Trace Element Occurrence in Coal</td>
<td>19</td>
</tr>
<tr>
<td>1.3.3.1. Sediment Provenance</td>
<td>19</td>
</tr>
<tr>
<td>1.3.3.2. Depositional Environment</td>
<td>21</td>
</tr>
<tr>
<td>1.3.3.3. Fixation of Elements by Plants and Plant Debris</td>
<td>24</td>
</tr>
<tr>
<td>1.3.3.4. Coal Rank</td>
<td>26</td>
</tr>
<tr>
<td>1.3.3.5. Geochemical Nature of Groundwater and Country Rocks</td>
<td>27</td>
</tr>
</tbody>
</table>
1.3.3.6. Summary – Geological Aspects of Trace Elements in Coal

1.4. Trace Elements in Coal Combustion
1.4.1. Introduction
1.4.2. Definitions
1.4.3. Partitioning of Trace Elements in Combustion
1.4.4. Controls on Trace Element Partitioning in Combustion
1.4.4.1. Elemental Volatility
1.4.4.2. Mode of Occurrence
1.4.4.3. Collection Point and Characteristics of the Ash.
1.4.4.4. Combustion Regime
1.4.5. The Environmental Importance of Fly Ash
1.4.6. Fly Ash Leaching
1.4.7. Case Studies
1.4.8. Conclusions – Coal Combustion Aspects of Trace Elements

Chapter 2 Study Aims and Methods.

2.0. Project Design
2.1. Aims
2.2. Methods
2.3. Analytical Methods
2.3.1. Instrumental Neutron Activation Analysis (INAA)
2.3.2. X-Ray Fluorescence (XRF)
2.3.3. Inductively Coupled Mass Spectrometry (ICP-MS)
2.3.4. Miscellaneous
2.3.5. X-Ray Diffraction (XRD)
2.3.6. Coal Petrography and Vitrinite Reflectance Analysis
2.3.7. Leaching Methods
2.4. Comparison of INAA and XRF Analytical Results
2.5. Concluding Remarks

Chapter 3 Collinsville OpenCut: Coal Characterisation, Trace Element Concentration and Mode of Occurrence.

3.0. Chapter Resume

3.1. Samples

3.2. Coal Characteristics

3.2.1. The Blake Seam

3.2.2. The Bowen Seam

3.2.3. Mineral Matter from Normative Analysis

3.2.3.1. Blake Central and Blake West Normative Analysis

3.2.3.1.2. Bowen No.2 Normative Analysis

3.2.3.1.3. Tabulated Normative Mineral Assemblages

3.3. Trace Element Concentration and Mode of Occurrence

3.3.1. Trace Elements in the Blake Seam

3.3.1.1. Concentration of Trace Elements in the Blake Seam

3.3.1.2. Mode of Occurrence of Trace Elements in the Blake Seam

3.3.2. Trace Elements in the Bowen Seam

3.3.2.1. Concentration of Trace Elements in the Bowen Seam

3.3.2.2. Mode of Occurrence of Trace Elements in the Bowen Seam

3.3.3. Concluding Remarks on Inference of Mode of Occurrence Inferences Using Graphical Relationships.

3.4. The Effect of Igneous Intrusions on the Concentration of Trace Elements in the Blake and Bowen Seam Samples.
3.4.1. Trends of Enrichment and Depletion of Trace Elements at Collinsville 152
3.4.2. Comparison of the Influence of Intrusions on Trace Elements at Collinsville with Other Examples 162
3.5. Chapter Summary 168

Chapter 4 Trace Element Concentration and Mode of Occurrence in Selected Pulverised Fuel Combustion Plant Samples.

4.0. Chapter Resume 170
4.1. Sample Description 170
4.2. Sample Analysis 174
4.3. Analysis Results 177
4.4. Mode of Occurrence from Sequential Leach Data 180
4.5. Mode of Occurrence for Other Elements Analysed for Individual Coals 197
4.6. Significant Differences in the Mode of Occurrence Between the Collinsville and Japanese Pulverised Fuel Samples 207
4.7. Chapter Summary 211

Chapter 5 Trace Element Partitioning Behaviour in Pulverised Fuel Combustion.

5.0. Chapter Resume 213
5.1. Sample Description 213
5.2. Factors Other than Mode of Occurrence Affecting Partitioning Behaviour 217
5.3. Partitioning Behaviour 218
5.4. Comparison of Partitioning Behaviour 247
5.5. Chapter Summary 252
Chapter 6 Trace Element Partitioning Behaviour in Carbonisation.

6.0. Chapter Resume 254
6.1. Samples 254
6.2. Analysis Results 255
 6.2.1. Coal Quality 255
 6.2.2. Trace Element Partitioning Behaviour 256
 6.2.3. Grouping of Elements by Partitioning Behaviour in Carbonisation 290
6.3. Comparison of Coke Breeze and Soil Element Concentrations 293
6.4. Chapter Summary 295

Chapter 7 Leachability of Trace elements from Solid Waste from Pulverised Fuel Combustion.

7.0. Chapter Resume 296
7.1. Samples 296
7.2. Results 297
 7.2.1. Concentration of Trace Elements in Combustion Wastes and Soils 297
 7.2.2. Concentration of Trace Elements in TCLP Leachates Compared to Water Quality Guidelines 298
 7.2.3. Proportion of Trace Elements in Solid Waste Mobilised by the TCLP Protocol 302
7.3. Discussion 307
7.4. Chapter Summary 309
Chapter 8 Synthesis.

8.0. Chapter Resume

8.1. Assessment of Trace Element Mode of Occurrence – Comparison of Graphical and Statistical Results

8.2. The Control of Mode of Occurrence on Trace Element Partitioning and Leachability
 8.2.1. The Control of Mode of Occurrence on Trace Element Partitioning
 8.2.2. The Control of Mode of Occurrence on Trace Element Leachability

8.3. Comparison of the Partitioning Behaviour of Trace Elements in Combustion and Carbonisation

8.3. Chapter Summary

Chapter 9 Conclusions and Further Work.

9.0. Pit Sample Data
 9.0.1. Depositional Environment of the Blake and Bowen Seams.
 9.0.2. Concentration and Mode of Occurrence of Trace Elements in the Blake and Bowen Seams
 9.0.3. The Effect of Igneous Intrusions on the Coal and on the Concentration of Trace Elements.

9.1. Combustion Sample Data
 9.1.1. The Control of Mode of Occurrence on Trace Element Partitioning Behaviour in Combustion and Carbonisation
 9.1.2. The Control of Mode of Occurrence on Trace Element Mobility from Carbonisation Waste Material

9.2. The Control of Mode of Occurrence on Trace Element Partitioning Behaviour in Carbonisation. 349

9.4. Further Work 351

References Cited 355
List of Figures.

Chapter 1.

Figure 1.1. General Representation of the Effects of Increases of Concentration of a Trace Element 6
Figure 1.2. Classification of Elements by Their Behaviour During Combustion and Gasification 33
Figure 1.3. The Relationship Between Particle Deposition in Lungs and Particle Diameter 43

Chapter 2.

Figure 2.1. Sample BC6.37-6.55 vs Repeat 1 57
Figure 2.2. Sample BO2.60-2.90 vs Repeat 2 57
Figure 2.3. Sample Train 213 vs Repeat 3 57
Figure 2.4. Sample U3 Fly Ash vs Repeat 4 58
Figure 2.5. Comparison of Ash Percent, Proximate and 400°C Ashing Methods 61
Figure 2.6. Schematic Diagram Showing the Principal Components of an ICP-MS Instrument 62
Figure 2.7. Iron by INAA vs Iron by XRF 66
Figure 2.8. Uranium by INAA vs Uranium by XRF 67

Chapter 3.

Figure 3.1. Location of Collinsville Coalmine 70
Figure 3.2. Stratigraphic Column for the Collinsville Coal Measures. 71
Figure 3.3. Relative Location of the Pits Sampled for this Study 74
Figure 3.4. In-Pit Bench in the Blake Central pit, Blake Seam 75
Figure 3.5. Coal Degeneration in the Highwall of the Blake Central Pit, Blake Seam, Following Exposure to the Weather 75
Figure 3.6. Bed-Parallel Igneous Intrusions in the Blake West Pit, Blake Seam 76
Figure 3.7. Close-up of Igneous Intrusions in the Blake West Pit, Blake Seam 76
Figure 3.8. Strip Log of Pit Samples from the Blake Central Pit 80
Figure 3.9. Blake Central Pit Inertinite vs Volatile Matter 82
Figure 3.10. Blake Central Distance from Roof of Seam (m) vs Volatile Matter (daf) 82
Figure 3.11. Semi-coke in the Bowen Seam Coal, Bowen No.2 Pit 83
Figure 3.12. Strip Log of Pit Samples from the Blake West Pit 86
Figure 3.13. Blake West Pit Inertinite vs Volatile Matter 90
Figure 3.14. Blake West Distance from Roof of Seam (m) vs Volatile Matter (daf) 90
Figure 3.15. Strip Log of Pit Samples from the Bowen No.2 Pit 95
Figure 3.16. Bowen No.2 Pit Inertinite vs Volatile Matter 96
Figure 3.17. Bowen No.2 Distance from Roof of Seam (m) vs Volatile Matter (daf) 97
Figure 3.18. Sodium vs Potassium, Blake Central Samples 101
Figure 3.19. Sodium vs Potassium, Blake Central Samples Excluding One High Potassium Figure 101
Figure 3.20. Sodium vs Potassium, Blake West Samples 102
Figure 3.21. Phosphorous vs Barium, Blake Central Samples 105
Figure 3.22. Phosphorous vs Barium, Blake West Samples 106
Figure 3.23. Residual Phosphorous vs strontium, Blake Central Samples 106
Figure 3.24. Residual Phosphorous vs strontium, Blake West Samples 107
Figure 3.25. Iron vs Manganese, Blake Central Samples 112
Figure 3.26. Iron vs Manganese, Blake West Samples 113
Figure 3.27. Residual Iron Left After Siderite Calculation vs Sulphur, Blake Central Samples 114
Figure 3.28. Residual Iron Left After Siderite Calculation vs Sulphur, Blake West Samples 115
Figure 3.29. Ash vs Residual Sulphur Left After Pyrite Calculation, Blake Central Samples 115
Figure 3.30. Ash vs Residual Sulphur Left After Pyrite Calculation, Blake West Samples 116
Figure 3.31. Iron vs Magnesium, Blake Central Samples 117
Figure 3.32. Iron vs Magnesium, Blake West Samples 117
Figure 3.33. Iron vs Total Sulphur, Bowen No.2 Samples 122
Figure 3.34. Ash vs Total Sulphur, Bowen No.2 Samples 122
Figure 3.35. Residual Iron vs Manganese, Bowen No.2 Samples 124
Figure 3.36. Residual Iron vs Magnesium, Bowen No.2 Samples 124
Figure 3.37. Residual Iron vs Titanium, Bowen No.2 Samples 125
Figure 3.38. Hafnium vs Uranium, Blake Central 138
Figure 3.39. Hafnium vs Uranium, Blake West 139
Figure 3.40. Thorium vs Uranium, Blake Central 139
Figure 3.41. Thorium vs Uranium, Blake West 139
Figure 3.42. Ash vs Tungsten, Blake Central 141
Figure 3.43. Ash vs Tungsten, Blake West 141
Figure 3.44. Chondrite and Ash normalised REE concentration, Blake Central 142
Figure 3.45. Chondrite and Ash normalised REE concentration, Blake West 143
Figure 3.46. Hafnium vs Uranium, Bowen No.2 149
Figure 3.47. Thorium vs Uranium, Bowen No.2 149
Figure 3.48. Chondrite and Ash normalised REE concentration, Bowen No.2 150
Figure 3.49. Strip Log Showing Vertical Changes in Minerals and Trace Elements in the Blake Central Pit Seam 157
Figure 3.50. Strip Log Showing Vertical Changes in Minerals and Trace Elements in the Blake West Pit Seam 158
Figure 3.51. Strip Log Showing Vertical Changes in Minerals and Trace Elements in the Bowen No.2 Pit Seam

Chapter 4.

Figure 4.1. Schematic of the Collinsville Coal Fired Power Plant
Figure 4.2. Schematic of the Mitsui Mining Coal Fired Power Plant
Figure 4.3. Positions for Isokinetic Sampling
Figure 4.4. INAA/ XRF Results vs the USGS Results for Collinsville Pulverised Fuel
Figure 4.5. INAA/ XRF Results vs MW-ICP-MS Results for Japanese Pulverised Fuel
Figure 4.6. Proportions of Antimony Leached
Figure 4.7. Proportions of Arsenic Leached
Figure 4.8. Proportions of Barium Leached
Figure 4.9. Proportions of Beryllium Leached
Figure 4.10. Proportions of Boron Leached
Figure 4.11. Proportions of Chromium Leached
Figure 4.12. Proportions of Cobalt Leached
Figure 4.13. Proportions of Copper Leached
Figure 4.14. Proportions of Lead Leached
Figure 4.15. Proportions of Manganese Leached
Figure 4.16. Proportions of Nickel Leached
Figure 4.17. Proportions of Selenium Leached
Figure 4.18. Proportions of Tin Leached
Figure 4.19. Proportions of Uranium Leached
Figure 4.20. Proportions of Vanadium Leached
Figure 4.21. Proportions of Zinc Leached
Figure 4.22. Proportions of Cadmium and Molybdenum Leached
Figure 4.23. Proportions of Rare Earth Elements Leached
Figure 4.24. Proportions of Aluminium, Bromine & Phosphorous Leached
Figure 4.25. Proportions of Row 4 Transition Metals Leached
Figure 4.26. Proportions of Heavy Metals Leached
Figure 4.27. Proportions of Group I and II Elements Leached

Chapter 5.

Figure 5.1. The Collinsville Coal Fired Power Station
Figure 5.2. Relative Enrichment of Silicon
Figure 5.3. Relative Enrichment of Aluminium
Figure 5.4. Relative Enrichment of Iron
Figure 5.5. Relative Enrichment of Magnesium
Figure 5.6. Relative Enrichment of Sodium
Figure 5.7. Relative Enrichment of Titanium
Figure 5.8. Relative Enrichment of Manganese
Figure 5.9. Relative Enrichment of Phosphorous
Figure 5.10. Relative Enrichment of Sulphur
Figure 5.11. Relative Enrichment of Gold
Figure 5.12. Relative Enrichment of Arsenic
Figure 5.13. Relative Enrichment of Boron
Figure 5.14. Relative Enrichment of Barium
Figure 5.15. Relative Enrichment of Cobalt
Figure 5.16. Relative Enrichment of Chromium
Figure 5.17. Relative Enrichment of Copper
Figure 5.18. Relative Enrichment of Caesium
Figure 5.19. Relative Enrichment of Mercury
Figure 5.20. Relative Enrichment of Molybdenum
Figure 5.21. Relative Enrichment of Nickel
Figure 5.22. Relative Enrichment of Lead
Figure 5.23. Relative Enrichment of Rubidium
Figure 5.24. Relative Enrichment of Antimony
Figure 5.25. Relative Enrichment of Selenium
Figure 5.26. Relative Enrichment of Tin
Figure 5.27. Relative Enrichment of Thorium
Figure 5.28. Relative Enrichment of Uranium
Figure 5.29. Relative Enrichment of Vanadium
Figure 5.30. Relative Enrichment of Tungsten
Figure 5.31. Relative Enrichment of Zinc
Figure 5.32. Relative Enrichment of Cerium
Figure 5.33. Relative Enrichment of Europium
Figure 5.34. Relative Enrichment of Hafnium
Figure 5.35. Relative Enrichment of Iridium
Figure 5.36. Relative Enrichment of Lanthanum
Figure 5.37. Relative Enrichment of Lutetium
Figure 5.38. Relative Enrichment of Neodymium
Figure 5.39. Relative Enrichment of Scandium
Figure 5.40. Relative Enrichment of Samarium
Figure 5.41. Relative Enrichment of Strontium
Figure 5.42. Relative Enrichment of Tantalum
Figure 5.43. Relative Enrichment of Terbium
Figure 5.44. Relative Enrichment of Ytterbium

Chapter 5.

Figure 6.1. Bowen Coke Works
Figure 6.2. Quality Parameters of Coal Delivered to the Bowen Coke Works During Time of Sampling
Figure 6.3. Concentration of Silicon in Feed Coal and Coke with Time
Figure 6.4. Silicon CRE for Coke and Breeze with Time
Figure 6.5. Concentration of Aluminium in Feed Coal and Coke with Time
Figure 6.6. Aluminium CRE for Coke and Breeze with Time 259
Figure 6.7. Concentration of Iron in Feed Coal and Coke with Time 260
Figure 6.8. Iron CRE for Coke and Breeze with Time 260
Figure 6.9. Concentration of Sodium in Feed Coal and Coke with Time 261
Figure 6.10. Sodium CRE for Coke and Breeze with Time 261
Figure 6.11. Concentration of Titanium in Feed Coal and Coke with Time 262
Figure 6.12. Titanium CRE for Coke and Breeze with Time 262
Figure 6.13. Concentration of Manganese in Feed Coal and Coke with Time 263
Figure 6.14. Manganese CRE for Coke and Breeze with Time 263
Figure 6.15. Concentration of Phosphorous in Feed Coal and Coke with Time 264
Figure 6.16. Phosphorous CRE for Coke and Breeze with Time 264
Figure 6.17. Concentration of Sulphur in Feed Coal and Coke with Time 265
Figure 6.18. Sulphur CRE for Coke and Breeze with Time 265
Figure 6.19. Concentration of Gold in Feed Coal and Coke with Time 266
Figure 6.20. Gold CRE for Coke and Breeze with Time 266
Figure 6.21. Concentration of Arsenic in Feed Coal and Coke with Time 267
Figure 6.22. Arsenic CRE for Coke and Breeze with Time 267
Figure 6.23. Concentration of Barium in Feed Coal and Coke with Time 268
Figure 6.24. Barium CRE for Coke and Breeze with Time 268
Figure 6.25. Concentration of Bromine in Feed Coal and Coke with Time 269
Figure 6.26. Bromine CRE for Coke and Breeze with Time 269
Figure 6.27. Concentration of Cobalt in Feed Coal and Coke with Time 270
Figure 6.28. Cobalt CRE for Coke and Breeze with Time 270
Figure 6.29. Concentration of Chromium in Feed Coal and Coke with Time 271
Figure 6.30. Chromium CRE for Coke and Breeze with Time 271
Figure 6.31. Concentration of Caesium in Feed Coal and Coke with Time 272
Figure 6.32. Caesium CRE for Coke and Breeze with Time 272
Figure 6.33. Concentration of Hafnium in Feed Coal and Coke with Time 273
Figure 6.34. Hafnium CRE for Coke and Breeze with Time 273
Figure 6.35. Concentration of Molybdenum in Feed Coal and Coke with Time 274
Figure 6.36. Concentration of Nickel in Feed Coal and Coke with Time 275
Figure 6.37. Concentration of Rubidium in Feed Coal and Coke with Time 276
Figure 6.38. Concentration of Antimony in Feed Coal and Coke with Time 276
Figure 6.39. Antimony CRE for Coke and Breeze with Time 277
Figure 6.40. Concentration of Selenium in Feed Coal and Coke with Time 277
Figure 6.41. Selenium CRE for Coke and Breeze with Time 278
Figure 6.42. Concentration of Strontium in Feed Coal and Coke with Time 278
Figure 6.43. Strontium CRE for Coke and Breeze with Time 279
Figure 6.44. Concentration of Thorium in Feed Coal and Coke with Time 279
Figure 6.45. Thorium CRE for Coke and Breeze with Time 280
Figure 6.46. Concentration of Uranium in Feed Coal and Coke with Time 280
Figure 6.47. Uranium CRE for Coke and Breeze with Time 281
Figure 6.48. Concentration of Tungsten in Feed Coal and Coke with Time 281
Figure 6.49. Tungsten CRE for Coke and Breeze with Time 282
Figure 6.50. Concentration of Zinc in Feed Coal and Coke with Time 282
Figure 6.51. Zinc CRE for Coke and Breeze with Time 283
Figure 6.52. Concentration of Cerium in Feed Coal and Coke with Time 283
Figure 6.53. Concentration of Europium in Feed Coal and Coke with Time 284
Figure 6.54. Concentration of Lanthanum in Feed Coal and Coke with Time 284
Figure 6.55. Concentration of Lutetium in Feed Coal and Coke with Time 284
Figure 6.56. Concentration of Neodymium in Feed Coal and Coke with Time 285
Figure 6.57. Concentration of Scandium in Feed Coal and Coke with Time 285
Figure 6.58. Concentration of Samarium in Feed Coal and Coke with Time 285
Figure 6.59. Concentration of Tantalum in Feed Coal and Coke with Time 286
Figure 6.60. Concentration of Terbium in Feed Coal and Coke with Time 286
Figure 6.61. Concentration of Ytterbium in Feed Coal and Coke with Time 286
Figure 6.62. Cerium CRE for Coke and Breeze with Time 287
Figure 6.63. Europium CRE for Coke and Breeze with Time 287
Figure 6.64. Lanthanum CRE for Coke and Breeze with Time 288
Figure 6.65. Lutetium CRE for Coke and Breeze with Time 288
Figure 6.66. Neodymium CRE for Coke and Breeze with Time 288
Figure 6.67. Scandium CRE for Coke and Breeze with Time 289
Figure 6.68. Samarium CRE for Coke and Breeze with Time 289
Figure 6.69. Tantalum CRE for Coke and Breeze with Time 289
Figure 6.70. Terbium CRE for Coke and Breeze with Time 290
Figure 6.71. Ytterbium CRE for Coke and Breeze with Time 290

Chapter 9.

Figure 9.1. Collinsville Coalmine Pit Sample Summary. 342
Figure 9.2. Coal Utilisation Summary Diagram - Combustion. 347
Figure 9.3. Coal Utilisation Summary Diagram – Combustion & Carbonisation. 350
List of Tables.

Chapter 1.

Table 1.1. Coal Ash Chemistry and Slagging/ Fouling Characteristics 5
Table 1.2. Trace Elements of Environmental Interest 9
Table 1.3. Content of Environmentally Significant Trace Elements in World Coals 12
Table 1.4. Likely Trace Element Mode of Occurrence from Literature Scores 14
Table 1.5. Percentage of Coal Ash from Various Combustion Configurations 32
Table 1.6. Element Partitioning Class Comparison 34
Table 1.7. Distribution of Elements Among Bottom Ash, Fly Ash and Flue Gas 35

Chapter 2.

Table 2.1. Analytical Methods used in this Study 52
Table 2.2. INAA Element Detection Limits 54
Table 2.3. Repeat Analysis by INAA 56
Table 2.4. Comparison of Ash Percent, Proximate and 400°C Ashing Methods 61

Chapter 3.

Table 3.1. Interpretation of Depositional Environment from Coal Characteristics 91
Table 3.2. Residual Phosphorous in Blake Central Samples following Normative Calculations. 108
Table 3.3. Residual Phosphorous in Blake West Samples following Normative Calculations. 109
Table 3.4. Residual Phosphorous in Bowen No.2 Samples following Normative Calculations. 120
Table 3.5. Normative Mineral Assemblage (ppm) – Blake Central Samples 127
Table 3.6. Normative Mineral Assemblage (ppm) – Blake West Samples 128
Table 3.7. Normative Mineral Assemblage (ppm) – Bowen No.2 Samples 129
Table 3.8. Comparison of XRD and Normative Mineral Assemblages 130
Table 3.9. Concentration of Trace Elements in the Blake Seam Compared to World Coal and Crustal Averages 133
Table 3.10. Mode of Occurrence of Trace Elements in the Blake Seam 136
Table 3.11. Concentration of Trace Elements in the Bowen Seam Compared to World Coal and Crustal Averages 144
Table 3.12. Mode of Occurrence of Trace Elements in the Bowen Seam 146
Table 3.13. Weighted Average Trace Element Concentration in Heat Affected and Unaffected Samples 154

Chapter 4.

Table 4.1. Analysis Results for Collinsville and Japanese Pulverised Fuel Samples by Analysis Method 178
Table 4.2. Raw Sequential Leaching Results 180
Table 4.3. Tabulated Mode of Occurrence from Interpretation of Sequential Leach Data. 206
Table 4.4. The Proportion of Each Trace Element Leached by Each Reagent and the Absolute Differences between Results for the Two Fuel Samples 208
Chapter 5.

Table 5.1. Elemental Concentrations of Major and Trace Elements in Combustion Plant Solid Waste Streams. 216
Table 5.2. Major Element Oxides in Ash 218
Table 5.3. Trace Element Classification into 3 Classes Based on their Behaviour During Combustion in the Boiler and Ducts with their Relative Enrichment Factors (RE) 219
Table 5.4. Partitioning Class of Elements in Collinsville, Mitsui and Literature Example Combustion Plants 252

Chapter 6.

Table 6.1. Classification of Elements by Partitioning Behaviour in Carbonisation. 290
Table 6.2. Classification of Element Partitioning Behaviour in Carbonisation 293
Table 6.3. Trace Element Concentration in Bowen Plant Coke Breeze and World Average Soils 294

Chapter 7.

Table 7.1. Trace Element Concentration in Ash and Bottom Ash 301
Table 7.2. Water Quality Guideline Values and TCLP Concentrations 302
Table 7.3. Analysis of Water from Observation Bores and Duck Pond Adjacent to Collinsville Power Plant Ash Dams 302
Table 7.4. Calculated Proportions of Element Mobilised by the TCLP Protocol 307
Chapter 8.

Table 8.1.	Comparison of Mode of Occurrence from Graphical and Sequential Leaching Methods	311
Table 8.2.	Significant Differences in Mode of Occurrence Related to Volatility and Leachability	323
Table 8.3.	Trace Element Mode of Occurrence and Partitioning Behaviour in Combustion and Carbonisation	332
Table 8.4.	Absolute Difference Between Breeze CRE Figures	337
List of Appendices.

Appendix 1. Health Effects of Trace Elements 381
Appendix 2. Mode of Occurrence of Trace Elements in Coal 397
Appendix 3. Maceral and Ro_{max} Analysis Results 429
Appendix 4. Proximate and Elemental Analysis Results for Collinsville Channel Samples 435
Appendix 5. XRD Analysis of Low Temperature Ash 445
Appendix 6. Graphs to Determine Mode of Occurrence of Trace Elements in Blake Central, Blake West and Bowen No.2 Pits 448
Appendix 7. Proximate and Elemental Analysis Results for Bowen Coke Works Samples 494