Impacts of agriculture and restoration of the habitat values, water quality and fish assemblages of a tropical floodplain.

Thesis submitted by

Colton Nicholas Perna BSc (Hons)

September 2003

Thesis submitted for the research Degree of Master of Science in Zoology and Tropical Ecology within the School of Tropical Biology James Cook University

September 2003
I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and, by microfilm or other means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement:

In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper public written acknowledgment for any assistance which I have obtained from it.

Beyond this, I do not wish to place any restrictions on access to this thesis.

__________________________ ______________
Colton Perna Date
I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

_________________________ __________________

Colton Perna Date
Abstract

Fish assemblages in two floodplain sub-catchments of the Burdekin River, north Queensland, were examined over two years, in relation to habitat condition water quality and the effects of habitat rehabilitation. The main study sites were located along Sheep Station Ck and Warren’s Gully which are overflow channels or sub-catchments of the Burdekin delta. Artificially high flows are maintained in these streams as water from the Burdekin River is pumped through them to supply downstream irrigation needs. In general, the study sites were moderately to highly impacted by riparian clearing, modified flow regimes and weed infestations. Weed infestations appeared to be linked with the imposition of a modified flow regime as remnant sites had far less cover of weeds than sites with modified flow. Sites in the upper floodplain, Burdekin River and Barratta Ck had highest habitat values.

Water quality was highly variable across sites, streams and over time. Oxygen concentration was identified as a major determinant of fish diversity, so the dynamics of dissolved oxygen were a major focus of this study. Flow, habitat condition and weed infestation were identified as the main drivers of oxygen in the streams. The introduced Water hyacinth (Eichhornia crassipes) had a major impact on oxygen as it essentially blocks oxygen exchange with the water. Modified flows appear to benefit weed growth, through continuous nutrient supply. Loss of riparian habitat improves growing conditions for weeds and increases water temperature, further impacting oxygen content in the water.

Habitat condition had a major influence on fish assemblages. Species richness and abundance were highest in sites of good habitat condition. Sites within the distribution systems (Sheep Station Ck and Warren’s Gully) had the most impacted fish assemblages. The abundances of exotic species (both real and relative) decreased with increase in habitat condition. The most abundant fish species were (i) small, highly tolerant gudgeons, (ii) the introduced Mosquito fish (Gambusia holbrooki) and (iii) larger Tarpon (Megalopes cyprinoides), which is a facultative air breather. The small species appeared to favour degraded lagoon habitats but it appears that as habitat condition improves and more predatory species occur, the abundance of these small species decreases.

During the sampling period a local project was initiated using an aquatic weed harvester to remove weed infestations from lagoons on Sheep Station Ck. Weeds were harvested from Payard’s Lagoon in August 2000. Three samples were taken before weed removal and six after weed removal to examine temporal changes in fish assemblages and water quality. There was an immediate improvement in oxygen content in the month after weed removal and this
improvement persisted for a further year. The abundance of native fish species increased rapidly after weed removal. Gudgeons were the most abundant. Over the study period these abundances gradually declined due largely to the re-colonisation by predators, previously excluded from the lagoon by poor habitat and water quality condition. A number of species moved into the experimental site from a refuge site in the inlet and during a flood event. The most notable of these species is Bony bream (*Nematalosa erebi*), a species that is very intolerant of hypoxia. As more natural native habitat conditions re-established, the abundance of exotic species (*G. holbrooki*) decreased. However, fish assemblages could not fully return to natural because of combined barriers to access by estuarine species (e.g., flow control devices, bund walls and hypoxic lagoons), and poor linkage to remnant refuges.
Table of Contents

STATEMENT OF ACCESS ii
STATEMENT OF SOURCES DECLARATION iii
ABSTRACT iv
TABLE OF CONTENTS vi
LIST OF TABLES ix
LIST OF FIGURES xi
LIST OF PLATES xiv
ACKNOWLEDGEMENTS xv

Chapter 1 Floodplain functions and Impacts with reference to fish habitat 1
 1.1 Tropical Floodplain ecology 1
 1.2 Australian floodplain fish ecology 3
 1.3 Agricultural impacts and floodplain habitat function in tropical Australia. 6
 1.3.1 Impacts of the Burdekin floodplain 8
 1.4 Aims, and structure of this thesis 9

Chapter 2 Study area and study sites 11
 2.1 Introduction 11
 2.2 Major influences on fish habitat in the Burdekin floodplain 15
 2.3 Sampling sites 18
 2.3.1 Methods for site specific habitat evaluation 18
 2.4 The ten main study sites 21
 2.4.1 Sheep Station Creek NBWB 21
 2.4.2 Warren’s Gully/ Saltwater Creek SBWB 23
 2.5 The fifteen remnant sites 29
 2.5.1 Barratta Creek Catchment 29
 2.5.2 Burdekin River sites 34
 2.5.3 Upper Burdekin Floodplain levee lagoons 35
 2.5.4 South Burdekin water board irrigation splash pool 37
 2.5.5 Plantation Creek sub-catchment NBWB 40
 2.5.6 Kalamia Creek sub-catchment NBWB 40
 2.5.7 Sheep Station Creek sub-catchment remnant site 40
 2.6 Summary 42

Chapter 3 Water quality 45
 3.1 Introduction and aims 45
 3.1.1 Oxygen in water 45
4.4.3 Irrigation impacts on fish assemblages in Sheep Station and Warren’s Gully Creeks

Chapter 5 Effects of weed removal on fish communities and water quality at Payard’s Lagoon

5.1 Introduction and aims

5.1.1 Aims

5.2 Methods

5.2.1 The weed removal project

5.2.2 Fish surveys

5.2.3 Water quality

5.2.4 Statistical analysis

5.3 Results

5.3.1 Fish assemblage structure in Payard’s Lagoon

5.3.2 Temporal variation in assemblage structure by techniques

5.3.3 Contribution of *Gambusia* to assemblage structure

5.3.4 Recruitment of species, invasion and direct recruitment

5.3.5 Temporal variation in oxygen content and the impact of *E. crassipes*

5.4 Discussion

5.4.1 Temporal changes in oxygen content resulting from weed removal

5.4.2 Recovery of native macrophytes after weed removal

5.4.3 Major changes in fish assemblages

a) Changes in fish communities in response to water quality changes

b) Fish species invasions after weed removal

c) Fish recruitment and predation

5.4.4 Long-term effects of weed removal

Chapter 6 Summary

6.1 The Burdekin floodplain, a highly modified landscape

6.2 Restoring fish habitat and water quality a case study

6.3 Conclusions and recommendations

References
List of Tables

Table 2.1 Summary data for riparian and instream community and condition in Sheep Station Creek main sites 24

Table 2.2 Summary data for riparian and instream community and condition in Warren’s Gully main sites 30

Table 2.3 Riparian community and condition assessment for all remnant sites sampled throughout floodplain. 38

Table 2.4 Summary of all sites by condition, location, flow and E. crassipes infestation 44

Table 3.1. Regional data on percent saturation of oxygen in floodplain habitats. 48

Table 3.2. Average of Total N and P, nitrate, Filterable Reactive Phosphorus (FRP), ammonia, Total Suspended Solids and chlorophyll a for ten sites 63

Table 3.3 Estimated total nitrogen and phosphorus input loading in remnant lagoons (no artificial flow) and lagoons with modified flows 67

Table 3.4 Estimates of total nitrogen and phosphorus input loading in Payard’s and Fowler’s if no modified flow was present 67

Table 3.5 Notional measure of total nitrogen and phosphorus concentration in Payard’s and Fowler’s, with no flow, that would be needed to equal the input load from pumping 67

Table 4.1 Sampling schedule for all 25 sites over the study period. 75

Table 4.2 Fish families and species recorded during this project, across the Burdekin floodplain. 76

Table 4.3 Habitat condition, collecting methods used and species list for each of the 25 study sites 77

Table 4.4 Total number of fishes collected by each sampling technique. 78

Table 4.5 Total abundance of species caught by technique in the 10 main study sites only. 80

Table 4.6 Species composition, site condition and dissolved oxygen concentration. 81

Table 4.7 Number of sites within each condition category in which selected fish species were recorded. 84

Table 4.8 Comparison of values by one-way ANOVA. 85

Table 4.9 F values and related statistics for a two-factor ANOVA comparing species abundance (Log10 transformed) in dip net samples in 10 main study sites. 87

Table 4.10 F values and related statistics for a two-factor nested ANOVA comparing species richness in dip net samples from 10 main sites. 87
Table 4.11 F values and related statistics for a two-factor ANOVA comparing native species abundance (Log_{10} transformed) of dip net samples in 10 main sites and stream.

Table 4.12 F values and related statistics for a two-factor ANOVA comparing native species abundance

Table 4.13 F values and related statistics for a two-factor ANOVA comparing proportion of total abundance contributed by exotics

Table 4.14 F values and related statistics for a two-factor ANOVA comparing proportion of total abundance contributed by exotics

Table 4.15 F values and related statistics for a two-factor ANOVA comparing total abundance

Table 4.16 F values and related statistics for a two-factor ANOVA comparing total abundance

Table 4.17 F values and related statistics for a two-factor ANOVA comparing species richness

Table 4.18 F values and related statistics for a two-factor ANOVA comparing species richness

Table 4.19 Stocking data from Burdekin Fish Stocking Association for *L. calcarifer* stocking locations and rates.

Table 5.1 Abundances of fishes recorded by each method in Payard’s Lagoon before and after weed removal

Table 5.2 Results of independent t-test on summary data for Payard’s Lagoon

Table 5.3 Results of independent t-test, showing only species with significantly different means between treatments

Table 5.4 Results of independent t-test, showing only species with significantly different means between treatments

Table 5.5 Results of independent t-test, showing only species with significantly different means between treatments, on total species abundance
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Maps of Australian tropics and study area</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Annual rainfall at Home Hill</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Aerial image of study area showing location of all study sites</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Pump rates over last three years, Sheep Station and Warren’s Gully</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Aerial image of main study sites on Sheep Station Ck</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Aerial image of main study sites on Warren’s Gully/Saltwater Ck</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>Aerial image showing connection from Dick’s Bank to the high value remnant Castelanelli’s Lagoon</td>
<td>26</td>
</tr>
<tr>
<td>2.7</td>
<td>Aerial image of all sites across floodplain showing distribution by conditions.</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>Oxygen cycling in Keelbottom Ck lentic lagoon site showing natural lentic oxygen cycling</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>Lagoon Creek storm event</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>Fowler's Lagoon diel Oxygen cycle</td>
<td>55</td>
</tr>
<tr>
<td>3.4</td>
<td>Princess Lagoon diel Oxygen cycle</td>
<td>55</td>
</tr>
<tr>
<td>3.5</td>
<td>Munro's Lagoon diel Oxygen cycle</td>
<td>56</td>
</tr>
<tr>
<td>3.6</td>
<td>24 hour oxygen cycles at Fowler’s, Princess and Munro’s</td>
<td>56</td>
</tr>
<tr>
<td>3.7</td>
<td>Saltwater Lagoon diel Oxygen cycle</td>
<td>57</td>
</tr>
<tr>
<td>3.8</td>
<td>Inkerman Lagoon diel Oxygen cycles for three flow conditions</td>
<td>57</td>
</tr>
<tr>
<td>3.9</td>
<td>Dick's Bank Lagoon diel cycling</td>
<td>59</td>
</tr>
<tr>
<td>3.10</td>
<td>Gorizia's Lagoon diel cycling at 3 flow regimes</td>
<td>59</td>
</tr>
<tr>
<td>3.11</td>
<td>Jack's Lagoon spot measurements</td>
<td>60</td>
</tr>
<tr>
<td>3.12</td>
<td>Kelly's diel Oxygen cycles at No Flow and First Flush</td>
<td>60</td>
</tr>
<tr>
<td>3.13</td>
<td>Castinalli’s Lagoon diel cycling over two days</td>
<td>62</td>
</tr>
<tr>
<td>3.14</td>
<td>Clay hole diel cycling</td>
<td>62</td>
</tr>
<tr>
<td>3.15</td>
<td>Median of a) TSS (mg/L) and b) chlorophyll (µg /L)</td>
<td>65</td>
</tr>
<tr>
<td>3.16</td>
<td>Median of a) phosphorus (µg P/L) and b) FRP (µg P/L)</td>
<td>65</td>
</tr>
<tr>
<td>3.17</td>
<td>Median of a) total nitrogen (µg N/L) and b) nitrate (µg N/L)</td>
<td>66</td>
</tr>
</tbody>
</table>
Figure 3.18 Median of total ammonia (µg N/L) 66

Figure 4.1 Semi-Strong Hybrid Multidimensional Scaling ordination plot of species by sites matrix using total species richness at all 25 sites and including all sampling methods. 82

Figure 4.2 A) Abundance of *Hypseleotris* spp. for all sites and all methods, across condition, B) abundance of *A. graeffei* for all sites and all methods, across condition (all sites all methods). 83

Figure 4.3 Proportion of exotics to the total species richness for all sites and all methods, across three streams (all sites all methods). 85

Figure 4.4 Total species abundance in dip net samples of 10 main sites, in two conditions 88

Figure 4.5 Total species richness in dip net samples of 10 main sites, across sites 88

Figure 4.6 Abundance of native species in dip net samples of 10 main sites, by condition 89

Figure 4.7 Total native species abundance in dip net samples of 10 main sites, by site 89

Figure 4.8 Proportion of exotics to total species abundance in dip net samples of 10 main sites, by condition 90

Figure 4.9 Total species abundance in gill nets for 9 main study sites, by condition 91

Figure 4.10 Species richness in gill net samples for 9 main sites, by condition 92

Figure 5.1 Species richness for all methods and for each method separately over nine surveys in Payard’s Lagoon 104

Figure 5.2 Semi-Strong Hybrid Multidimensional Scaling ordination plot for nine surveys using all methods (gill, dip and seine nets) at Payard’s Lagoon 105

Figure 5.3 Total species richness and abundance for gill net samples over 8 surveys in Payard’s Lagoon 106

Figure 5.4 Total species richness and abundance for dip net samples over nine surveys in Payard’s Lagoon. 107

Figure 5.5 Proportion of *Gambusia* to the total fish abundance in dip net sample over nine surveys in Payard’s Lagoon 108

Figure 5.6 Comparison of total species richness before and after weed removal in Payard’s Lagoon and Kelly’s Lagoon (Sheep Station remnant site). 108

Figure 5.7 Semi-Strong Hybrid Multidimensional Scaling ordination plot from 4 lagoons along Sheep Station Ck 109
Figure 5.8 Length frequencies for *Gambusia holbrooki* in Payard’s Lagoon 113

Figure 5.9 Length frequency for *Nematalosa erebi* in Payard’s Lagoon 114

Figure 5.10 Boxplot graph of *N. erebi* lengths over five surveys 115

Figure 5.11 Length frequency for *Megalops cyprinoides*, at Payard’s Lagoon 116

Figure 5.12 Length frequency for *Hypseleotris* spp. at Payard’s Lagoon 117

Figure 5.13 Length frequency for *Glossamia aprion* in Payard’s Lagoon 118

Figure 5.14 Boxplot for percent saturation of oxygen, data was logged at the outlet of Payard’s Lagoon 119

Figure 5.15 Boxplot for percent saturation of oxygen, data was logged at the inlet of Payard’s Lagoon 120

Figure 5.16 Boxplot for percent saturation of oxygen before and after weed and removal one year after weed removal. 121

Figure 5.17 Processes by which *Eichhornia crassipes* blocks re-aeration pathways 123
List of Plates

<table>
<thead>
<tr>
<th>Plate 2.1 Fish migration barriers</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 2.2 Sheep Station Ck main sites</td>
<td>25</td>
</tr>
<tr>
<td>Plate 2.3 Warren’s Gully main sites</td>
<td>31</td>
</tr>
<tr>
<td>Plate 2.4 Barratta Ck sites</td>
<td>33</td>
</tr>
<tr>
<td>Plate 2.5 Burdekin River sites and Horseshoe Lagoon</td>
<td>36</td>
</tr>
<tr>
<td>Plate 2.6 Upper floodplain levee lagoon sites, and Hutchings and Castelanelli’s</td>
<td>41</td>
</tr>
</tbody>
</table>
Acknowledgments

I would like to thank the following: firstly Mike Cappo, without whom this thesis would be half of what it is: he is a dedicated fish biologist with a passion for science and just a touch of perfectionism (remember the 6 P’s); the landholders, especially Archie and Kim Dawen who extended hospitality and a beautiful beach laboratory for our field trips; others such as Frank and John Gorizia, Mick Magatelli, Lou Louizo, Bruno Milani, Les Cox, Morry Kelly, Brian Strathde, Percy Jack and many others had a good amount of knowledge and input that was invaluable (not to mention equipment to get us out of sticky situations); my advisors Richard Pearson and Brad Pusey, who both braved many a rough draft and the final product is much better for it; the Australian Centre for Tropical Freshwater Research whose combined expertise has taught me much over the past four years; Barry Bulter who can make one’s head swell with information, in a good way of course, and Damien Burrows who was always on hand for support and advice; my wife Kerry, who has supported my many days away and recently my many nights away and the way to grumpy mornings; my daughters Finula and Kaliska who give me inspiration and hope every day.

I would like also to thank the Natural Heritage Trust which financially supported this project; the Burdekin Shire Council who worked with me on timing and methods for the weed removal works; the North and South Burdekin Water Boards (especially Graham Laidlow from the NBWB and Bill Lowis from the SBWB) who gave financial and in-kind support to this project, without which the weed removals would not have been possible; the Bowen-Burdekin Integrated Floodplain Management Advisory Committee, especially Les Searle and Terri Buono; Les Searle and Jim Tait for writing and inspiring this project and trustingly handed it over to me and Terri Buono who was always on hand to get press releases out and keep me in the spotlight when I just wanted to hide out.