Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary

Naish, Tim R., Woolfe, Ken J., Barrett, Peter J., Wilson, Gary S., Atkins, Cliff, Bohaty, Steven M., Bücker, Christian J., Claps, Michele, Davy, Fred J., Dunbar, Gavin B., Dunn, Alistair G., Fielding, Chris R., Florindo, Fabio, Hannah, Michael J., Harwood, David M., Henrys, Stuart A., Krissek, Lawrence A., Lavelle, Mark, van der Meer, Jaap, McIntosh, William, Niessen, Frank, Passchier, Sandra, Powell, Ross D., Roberts, Andrew P., Sagnotti, Leonardo, Scherer, Reed P., Strong, C. Percy, Talarico, Franco, Verosub, Kenneth L., Vila, Giuliana, Watkins, David K., Webb, Peter-N., and Wonik, Thomas (2001) Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary. Nature, 413 (6857). pp. 719-723.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1038/35099534
 
188
3


Abstract

Between 34 and 15 million years (Myr) ago, when planetary temperatures were 3–4 °C warmer than at present and atmospheric CO2 concentrations were twice as high as today1, the Antarctic ice sheets may have been unstable2, 3, 4, 5, 6, 7. Oxygen isotope records from deep-sea sediment cores suggest that during this time fluctuations in global temperatures and high-latitude continental ice volumes were influenced by orbital cycles8, 9, 10. But it has hitherto not been possible to calibrate the inferred changes in ice volume with direct evidence for oscillations of the Antarctic ice sheets11. Here we present sediment data from shallow marine cores in the western Ross Sea that exhibit well dated cyclic variations, and which link the extent of the East Antarctic ice sheet directly to orbital cycles during the Oligocene/Miocene transition (24.1–23.7 Myr ago). Three rapidly deposited glacimarine sequences are constrained to a period of less than 450 kyr by our age model, suggesting that orbital influences at the frequencies of obliquity (40 kyr) and eccentricity (125 kyr) controlled the oscillations of the ice margin at that time. An erosional hiatus covering 250 kyr provides direct evidence for a major episode of global cooling and ice-sheet expansion about 23.7 Myr ago, which had previously been inferred from oxygen isotope data (Mi1 event5).

Item ID: 13353
Item Type: Article (Research - C1)
ISSN: 1476-4687
Keywords: east Antarctic; ice sheet; Miocene; Oligocene; orbitally
Date Deposited: 06 Dec 2010 00:07
FoR Codes: 04 EARTH SCIENCES > 0499 Other Earth Sciences > 049999 Earth Sciences not elsewhere classified @ 100%
SEO Codes: 97 EXPANDING KNOWLEDGE > 970104 Expanding Knowledge in the Earth Sciences @ 100%
Downloads: Total: 3
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page