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Abstract

Phytotechnology utilises the unique biochemical processes of plants to
manage and remediate contaminants such as heavy metals, hydrocarbons,
radionuclides and pesticides from soil and water. The use of z situ biological
systems to rehabilitate large volumes of contaminated soil has enormous
potential for application around the globe, particularly in the mining and
metal production industries. This study investigated the use of two
phytotechnologies (pastoral vegetation covers and chemically-assisted
phytoextraction) as environmental tools to manage mine tailings and soil
contaminated with mine tailings at the BHPBilliton Cannington Ag-Pb-Zn
Mine. The study was conducted in accordance with the mine’s
Environmental Management Overview System (EMOS) and employed the
Australian and New Zealand Environment and Conservation Council
(ANZECC) Investigation Guidelines for heavy metal and metalloid

contamination of industrial and commercial soil.

Selected pasture plant species (Chloris gayana, Crotalaria novae-hollandiae,
Cymbopogon  ambiguus, Cymbopogon bombycinus, Cyperus victoriensis, Gomphrena
canescens and Triodia molesta) were cultivated in soil contaminated with mine
tailings (60 ug Ag g, 2039 ug As g, 30 ug Cd g, 11950 ug Pb g and 4150
ug Zn g ). The addition of 5 wt% to 35 wt% mine tailings to uncontaminated
soil significantly improved the biomass production of Chloris gayana. In
contrast, the biomass production of the remaining species (all native pasture
plants) was significantly reduced on soil contaminated with 5 wt% to 35 wt%
mine tailings. The pasture plant species accumulated low concentrations of
heavy metals and metalloids from soil contaminated with mine tailings,
indicating their suitability for the revegetation of pastoral lands. In addition,
limestone amendments to soil contaminated with mine tailings effectively
improved the revegetation potential of Cymbopogon ambiguns, Cymbopogon

bombycinus and  Crotalaria novae-hollandiae on soil contaminated with mine

vil



tailings, in addition to reducing the uptake of heavy metals and metalloids by

the plants.

The chemically-assisted phytoremediation of soil contaminated with mine
tailings was investigated using Chloris gayana, Crotalaria novae-hollandiae,
Cymbopogon bombycinus and Cyperus victoriensis and soil amendments of EDTA,
DTPA, EDDS, ammonium thiosulphate, ammonium thiocyanate and
thiourea. Plant uptake of heavy metals and metalloids resulting from the
application of the soil amendments indicated that, based upon published
models for the technology, no pasture plant species would be suitable for the
chemically-assisted phytoremediation of contaminated soil at the Cannington
mine. Crotalaria novae-hollandiae and Cyperus victoriensis, however, did tolerate the
effects of ongoing soil treatments with EDTA and EDDS, while
accumulating modest quantities of heavy metals and metalloids, suggesting
that vegetation covers with these plants could be used to phytoremediate low

levels of soil contamination.

The leaching of Ag, Pb and Zn from mine tailings using weekly amendments
of low-ionic-strength solutions of EDTA, ammonium thiosulphate,
ammonium thiocyanate, thiourea and sodium cyanate was investigated over a
three-month period. EDTA, ammonium thiosulphate and ammonium
thiocyanate leached significant quantities of metals from the mine tailings
over an approximate eight-week leaching period. EDTA solutions were
found to dissolve large quantities of Pb (28.1%) and Zn (12.6%) from the
mine tailings. Zinc dissolution was also high using a solution of ammonium
thiosulphate (12.1%) and Ag dissolution was only notable using an
ammonium thiocyanate solution (83.7%). The data indicate that chemical
leaching of the Cannington mine tailings using low-ionic-strength solutions
may remove a large proportion of the wastes contained heavy metals thus
increasing metal production at the site, in addition to decontaminating a

hazardous mine waste material.
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This research project concludes that the pasture plant species investigated are
highly suited to the revegetation of soil contaminated with mine tailings. In
addition, the study concludes that the native pasture plant species that were
deemed appropriate for phytotechnology applications at the Cannington
mine are not suitable for the chemically-assisted phytoremediation of soil
contaminated with mine tailings. The study also concludes that periodic
leaching of the mine tailings using chemical reagents employed for
phytoextraction applications has the potential to elevate metal production by

reprocessing the waste while also reducing its toxicity and environmental risk.
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Glossary of Terms

Chelate: A large molecular weight organic compound, such as EDTA,
DTPA and EDDS, having the ability to form soluble complexes
with metallic ions (SSSA, 2004).

Chlorinated solvents: Organic solvent containing chlorine atoms, e.g.,
methylene chloride and 1,1,1-trichloromethane, which are used in

aerosol spray containers and in traffic paint (SSSA, 2004).

Ligand: A low molecular weight molecule or ion capable of sharing an
electron pair during bonding, such as sulphate (SO,”), thiosulphate
(S,05%), cyanate (OCN") and thiocyanate (SCN) (SSSA, 2004).

Metallothioneins (MTs): Low molecular weight proteins and polypeptides
involved in the intracellular fixation and regulation of zinc and
copper in plants and in neutralising the effects of toxic elements

such as cadmium and mercury (SSSA, 2004).
PAHs: Polyaromatic hydrocarbons (SSSA, 2004).

PCB: Polychlorinated biphenyl; a pathogenic and teratogenic industrial
compound used as a heat-transfer agent; PCBs may accumulate in

human or animal tissue (SSSA, 2004).

Phytochelatin (PCs): Any of a group of plant peptides that bind metals (Cd,
Zn, Cu, Pb, Hg) and play important roles in the detoxification of
heavy metals (particularly Cd) in plants (BioTech, 2004).

Pyrrolizidine alkaloids: A group of alkaloids characterized by a nitrogen-
containing necine, occurring mainly in specimens of the
Boraginaceae, Compositeae and Leguminosae plant families

(Brown, 2004).
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wt% mine tailings having received weekly amendment with ammonium thiosulphate
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(TSP), ammonium thiocyanate (SCN) and thiourea (THIO) (e.g. 2.0 TSP = 2.0 g TSP per
kg contaminated soil; 0.5 TSP = 0.5 g TSP per kg of soil; etc).
Figure 6-10. The Cd concentrations (ug g) in Chloris gayana grown on soil contaminated with 12.5
wt% mine tailings having received weekly amendment with ammonium thiosulphate
(TSP), ammonium thiocyanate (SCN) and thiourea (THIO) (e.g. 2.0 TSP = 2.0 g TSP per
kg contaminated soil; 0.5 TSP = 0.5 g TSP per kg of soil; etc).
Figure 6-11. The Pb concentrations (ug g") in Chloris gayana grown on soil contaminated with 12.5
wt% mine tailings having received weekly amendment with ammonium thiosulphate
(TSP), ammonium thiocyanate (SCN) and thiourea (THIO) (e.g. 2.0 TSP = 2.0 g TSP per
kg contaminated soil; 0.5 TSP = 0.5 g TSP per kg of soil; etc).
Figure 6-12. The Sb concentrations (ug g) in Chloris gayana grown on soil contaminated with 12.5
wt% mine tailings having received weekly amendment with ammonium thiosulphate
(TSP), ammonium thiocyanate (SCN) and thiourea (THIO) (e.g. 2.0 TSP = 2.0 g TSP per
kg contaminated soil; 0.5 TSP = 0.5 g TSP per kg of soil; etc).
Figure 6-13. The Zn concentrations (ug g) in Chloris gayana grown on soil contaminated with 12.5
wt% mine tailings having received weekly amendment with ammonium thiosulphate
(TSP), ammonium thiocyanate (SCN) and thiourea (THIO) (e.g. 2.0 TSP = 2.0 g TSP per
kg of soil; etc).
Figure 6-14. The Pb concentration (ug g') of Chloris gayana grown on fertilised mine tailings over 42
weeks and treated with chemical amendments (e.g. OSM-EDTA = mine tailings amended
with 300 kg Osmocote fertiliser ha! in addition to receiving periodic amendments of 2.0
g EDTA kg! of fertilised mine tailings; TPP-EDTA = mine tailings amended with 300 kg
Osmocote fertiliser ha! + 300 kg Triphosphate fertiliser ha'l in addition to receiving
periodic amendments of 2.0 g EDTA kg! fertilised mine tailings).
Figure 6-15. The Zn concentration (ug g) in Chloris gayana grown on fertilised mine tailings over 42
weeks and treated with chemical amendments (e.g. OSM-EDTA = mine tailings amended
with 300 kg Osmocote fertiliser ha'! in addition to receiving periodic amendments of 2.0
¢ EDTA kg! fertilised mine tailings; TPP-EDTA = mine tailings amended with 300 kg
Osmocote fertiliser ha! + 300 kg of Triphosphate fertiliser ha'! in addition to receiving
petiodic amendments of 2.0 g EDTA kg! fertilised mine tailings).
Figure 6-16. The Ag concentration (ug g') in Chloris gayana grown on fertilised mine tailings over 42
weeks and treated with chemical amendments (e.g. OSM-EDTA = mine tailings amended
with 300 kg Osmocote fertiliser ha'! in addition to receiving periodic amendments of 2.0
g EDTA kg'! fertilised mine tailings; TPP-EDTA = mine tailings amended with 300 kg of
Osmocote fertiliser ha! + 300 kg Triphosphate fertiliser hal in addition to receiving
petiodic amendments of 2.0 g EDTA kg fertilised mine tailings).
Figure 7-1. Vertical cross sections of the leach columns containing Cannington mine tailings after
12 weekly treatments with 0.1 M and 1 M EDTA, TSP and SCN, and 1 M THIO. 1 M
EDTA was applied once only and treatment with 0.05% NaCN occurred over 8 weeks.........
Figure 7-2. Silver (ug g!) dissolution from Cannington mine tailings using ammonium thiosulphate
(TSP), ammonium thiocyanate (SCN) and thiourea (THIO) (e.g. 1 M'TSP =1 M TSP kg
! mine tailings, 0.1 M TSP = 0.1 M TSP kg'! mine tailings, etc.).
Figure 7-3. Cumulative Ag recovery from Cannington mine tailings leached with ammonium
thiosulphate (TSP), ammonium thiocyanate (SCN) and thiourea (THIO) (e.g. 1 M TSP =
1 M TSP kg! mine tailings, 0.1 M TSP = 0.1 M TSP kg'! mine tailings, etc.). .cccocooveerrrerrerrrenne.
Figure 7-4. Silver (ug g) dissolution from Cannington mine tailings using EDTA and sodium
cyanide solutions (e.g. 1 M EDTA =1 M EDTA kg mine tailings, 0.1 M EDTA = 0.1
M EDTA kg'! mine tailings, etc.).
Figure 7-5. Cumulative Ag recovery from Cannington mine tailings leached with EDTA and
sodium cyanide solutions (e.g. 1 M EDTA =1 M EDTA kg mine tailings, 0.1 M EDTA
= 0.1 M EDTA kg! mine tailings, etc.).
Figure 7-6. Lead (ug g') dissolution from Cannington mine tailings using the various chemical
treatments (e.g. 1 M EDTA = 1 M EDTA kg! mine tailings, 0.1 M EDTA = 0.1 M
EDTA kg! mine tailings, etc.).
Figure 7-7. Cumulative Pb recovery from Cannington mine tailings leached with various chemical
reagents (e.g. 1 M EDTA = 1 M EDTA kg'! mine tailings, 0.1 M EDTA = 0.1 M EDTA
kg1 mine tailings, etc.).
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Figure 7-8. Zinc (ug g') dissolution from Cannington mine tailings using the various chemical
treatments (e.g. 1 M EDTA = 1 M EDTA kg! mine tailings, 0.1 M EDTA = 0.1 M
EDTA kg'! mine tailings, etc.). 204
Figure 7-9. Cumulative Zn recovery from Cannington mine tailings leached with various chemical
reagents (e.g. 1 M EDTA = 1 M EDTA kg'! mine tailings, 0.1 M EDTA = 0.1 M EDTA
kg! mine tailings, etc.). 205
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