
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This file is part of the following reference: 

 

Johnson, Kate (2005) Load-Deformation Behaviour of 

Foundations Under Vertical and Oblique Loads. PhD 

thesis, James Cook University. 

 

 

 

Access to this file is available from: 

 

http://eprints.jcu.edu.au/1313 
 

 
The author has certified to JCU that they have made a reasonable effort to gain 

permission and acknowledge the owner of any third party copyright material 

included in this document. If you believe that this is not the case, please contact 

ResearchOnline@jcu.edu.au and quote http://eprints.jcu.edu.au/ 

ResearchOnline@JCU 

mailto:ResearchOnline@jcu.edu.au


THESIS 
 

JAMES COOK UNIVERSITY 
 

 

SCHOOL OF ENGINEERING 
 
 

 
www.eng.jcu.edu.au 

 
 
 
 
 
 

LOAD-DEFORMATION BEHAVIOUR 
OF FOUNDATIONS 

UNDER VERTICAL AND OBLIQUE LOADS 
 

 
 

Kate Johnson 
 
 
 
 
 
 
 
 

Thesis submitted to the School of Engineering in   
fulfilment of the requirements for the degree of 

Doctor of Philosophy  
(Civil Engineering) 

 
 

May 2005



  

 
 

ABSTRACT 
 

 
The work in this thesis explores the load-deformation behaviour of shallow and pile 

foundations under axial and oblique loads.   

 

• A statistical review was performed on five popular shallow foundation settlement 

methods, which showed that different prediction methods could give highly 

variable results for the same foundation and soil conditions.  The probability of 

failure charts allowing direct comparison between methods is presented, based on 

the statistical work.     

 

There are 40+ settlement methods available for predicting the settlement of shallow 

foundations in granular soil.  There is no way to account for the differences between 

settlement methods, other than assume one specific design criterion for every method.  

For example, limiting the settlement of a shallow foundation to 25 mm is a design 

criterion that is commonly used.  From previous statistical work, it is shown that the 

Terzaghi and Peck method is more conservative than the method developed by Berardi 

and Lancellotta.  The work in this thesis produced ‘probability of failure charts’, and the 

charts give the probability that the settlement for the commonly used methods will 

exceed an actual design value in the field.  These charts allow users to design shallow 

foundations on the basis of an acceptable failure probability, instead of using one 

settlement criterion for every settlement method. 

 

• A finite element analysis was performed on obliquely loaded piles.  The analysis 

showed that the axial and lateral load components, and moment capacity of a pile is 

reduced if multiple load types act in unison.  Combination loading also affects the 

pile head displacement.  The oblique interaction charts herein allow the ultimate 

capacity and pile head displacement for a pile under combination loading to be 

estimated. 

 

 

 II 
 



  

From the literature review of pile foundations, it is found that the influence due to 

combination loading is not well defined (i.e. axial loads, lateral loads and moments all 

acting at once).  Previous work has shown that combination loading reduces the 

ultimate capacity of a pile, and the influence on pile head displacement has not been 

quantified.  The influence of combination loading on pile capacity and settlement was 

explored, with the use of a finite element computer package entitled ABAQUS.  The 

results from the numerical modelling are summarised into easy-to-use design charts, 

allowing the user to quantify the reduction in ultimate capacity and influence in 

settlement. 
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NOTATIONS 
 

The following symbols have been used in multiple locations throughout the document. 

 

Symbol   Definition       Units 
 
 
a     minimum possible value for x     [-] 

b    maximum possible value for x    [-] 

B   width of footing      [m] 

c    cohesion       [kPa] 

C   axial compression component of oblique load  [kN] 

CER    hammer efficiency factor     [-] 

CIP    cast-in-place pile      [-] 

CN    overburden correction factor     [-] 

d    pile diameter       [m] 

Dr    relative density      [%] 

e   void ratio (used in Chapter 4)     [-] 

e    load eccentricity (used in Chapter 6)    [m] 

ecv    critical void ratio       [-] 

Es Young’s modulus for sand               [MPa] 

FOS factor of safety       [-] 

Hu      ultimate lateral capacity under combined uplift   [kN] 

and lateral load 

Hult    ultimate horizontal load     [kN] 

Huo  ultimate lateral capacity under pure lateral load   [kN] 

  (used by Eckersley et al.(1996)) 

ID  impact driven pile      [-] 

Ko at rest earth coefficient     [-] 

L lateral load        [kN] 

Lb  embedment length of pile     [m] 

M       applied moment               [kN.m] 

Mult    ultimate moment capacity of the pile             [kN.m] 

N   uncorrected blow count or field blow count          [blows/100mm] 

N60    blow count corrected for hammer efficiency         [blows/100mm] 
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(N1)60, Ncorr  blow count corrected for hammer efficiency         [blows/100mm] 

and overburden 

pa    atmospheric pressure      [kPa] 

pf    probability of failure      [-] 

pu    soil pressure at depth z     [kPa] 

qf   ultimate failure pressure on footing    [kPa] 

qo   surcharge on soil surface     [kPa] 

Qb    end bearing load      [kN] 

Qf    shaft friction load      [kN] 

Qult   ultimate bearing load       [kN] 

Sx   standard deviation      [-] 

Tun     net uplift capacity                 [kN] 

Tug     gross uplift capacity      [kN] 

u                  pore water pressure      [kPa] 

ux    displacement of the centre of the pile head    [mm] 

in x-direction 

uy    displacement of the centre of the pile head    [mm] 

in y-direction 

uz    displacement of the centre of the pile head    [mm] 

in z-direction 

U   axial uplift        [kN] 

W        effective weight of the pile     [kN] 

 x   settlement ratio      [-] 

   average settlement ratio     [-] 

z    depth from soil surface     [m] 
x

Zr    depth of rotation point      [m] 

β(1) coefficient of skewness     [-] 

β(2) coefficient of kurtosis      [-] 

εa  axial strain        [-] 

εx,     normal strain in x direction      [-] 

εy normal strain in y direction     [-] 

εz normal strain in z direction     [-] 

φ friction angle       [°] 
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φ′cv     effective friction angle at critical void    [°] 

           ≈ residual effective friction angle 

φ′max    peak effective friction angle     [°] 

σ   normal stress        [kPa] 

σf    failure normal stress        [kPa] 

σ′v    effective vertical stress Overburden Pressure   [kPa] 

σx   normal stress in x direction     [kPa] 

σy    normal stress in y direction     [kPa] 

σz    normal stress in z direction     [kPa] 

σ1   major principle stress      [kPa] 

σ2    intermediate principle stress     [kPa] 

σ3    minor principle stress      [kPa] 

τ   shear stress        [kPa] 

τf    failure shear stress      [kPa] 

ρ     density of sand and pile             [kg/m3] 

µ    coefficient of friction      [-] 

ψ   dilation angle (ψ)      [°] 
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