ResearchOnline@JCU

This file is part of the following reference:

Johnson, Kate (2005) Load-Deformation Behaviour of Foundations Under Vertical and Oblique Loads. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/1313

The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact <u>ResearchOnline@jcu.edu.au</u> and quote http://eprints.jcu.edu.au/

THESIS

JAMES COOK UNIVERSITY

SCHOOL OF ENGINEERING

www.eng.jcu.edu.au

LOAD-DEFORMATION BEHAVIOUR OF FOUNDATIONS UNDER VERTICAL AND OBLIQUE LOADS

Kate Johnson

Thesis submitted to the School of Engineering in fulfilment of the requirements for the degree of **Doctor of Philosophy** (Civil Engineering)

<u>May 2005</u>

ABSTRACT

The work in this thesis explores the load-deformation behaviour of shallow and pile foundations under axial and oblique loads.

 A statistical review was performed on five popular shallow foundation settlement methods, which showed that different prediction methods could give highly variable results for the same foundation and soil conditions. The probability of failure charts allowing direct comparison between methods is presented, based on the statistical work.

There are 40+ settlement methods available for predicting the settlement of shallow foundations in granular soil. There is no way to account for the differences between settlement methods, other than assume one specific design criterion for every method. For example, limiting the settlement of a shallow foundation to 25 mm is a design criterion that is commonly used. From previous statistical work, it is shown that the Terzaghi and Peck method is more conservative than the method developed by Berardi and Lancellotta. The work in this thesis produced 'probability of failure charts', and the charts give the probability that the settlement for the commonly used methods will exceed an actual design value in the field. These charts allow users to design shallow foundations on the basis of an acceptable failure probability, instead of using one settlement criterion for every settlement method.

• A finite element analysis was performed on obliquely loaded piles. The analysis showed that the axial and lateral load components, and moment capacity of a pile is reduced if multiple load types act in unison. Combination loading also affects the pile head displacement. The oblique interaction charts herein allow the ultimate capacity and pile head displacement for a pile under combination loading to be estimated.

From the literature review of pile foundations, it is found that the influence due to combination loading is not well defined (i.e. axial loads, lateral loads and moments all acting at once). Previous work has shown that combination loading reduces the ultimate capacity of a pile, and the influence on pile head displacement has not been quantified. The influence of combination loading on pile capacity and settlement was explored, with the use of a finite element computer package entitled ABAQUS. The results from the numerical modelling are summarised into easy-to-use design charts, allowing the user to quantify the reduction in ultimate capacity and influence in settlement.

ELECTRONIC COPY AND STATEMENT ON SOURCES DECLARATION

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library is an accurate copy of the print thesis submitted, within the limits of the technology available.

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of other has been acknowledged in the text and a list of references is given.

/ ~ | Kate Johnson _____

1st August 2005

Date

STATEMENT OF ACCESS

I, the undersigned, the author of this thesis, understand that James Cook University will make available for use within the University Library and, by microfilm or other means, allow access to other users in other approved libraries. All users consulting this thesis will have to sign the following statement:

In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author, and to make proper public written acknowledgement for any assistance, which I have obtained from it.

Beyond this, I do not wish to place any restriction on access to this thesis.

1st August 2005

/ \/ Kate Johnson

Date

ACKNOWLEDGEMENTS

The journey has been filled with many challenges and personal tests of will. I had the pleasure of working with some interesting people along the way. Firstly, I would like to extend my warm thanks to my supervisor Dr. W. Karunasena. His kind and approachable manner was much appreciated. Karu's patience and ability to reason through problems provided a platform for me to move towards my aims.

I would also like to thank my second supervisor Dr. N. Sivakugan. Siva allowed me many opportunities to enhance my skills as a teacher and a consultant. His questioning mind made me pay attention to fine detail. I chose Siva as a supervisor, because he was enthusiastic about the discipline of geotechnical engineering at James Cook University.

I liked working with the technical support people at James Cook University. A thankyou to Mr Stuart Petersen, Mr Curt Arrowsmith, Mr Warren O'Donnell, Mr John Ellis, and all the technicians in the laboratory. Year after year, the technicians make equipment to help the PhD and undergraduate students in their experimental work. They are inspiring and hard working members of the JCU community.

During the course of my research I enlisted the help of two undergraduate students who worked under my direction. The two undergraduate students were:

- Mr Andrew Guazzo worked with me for the experimental pile phase (Chapter 6). Andrew and I spent a great deal of time setting up apparatuses, testing the smallscale piles and analysing the results. Andrew had a very good attitude even when we were shovelling 7 tonne of sand back and forth.
- Mr Paul Lemcke worked with me exploring the influence of pile shape on the capacity of a pile. Paul was patient while we worked some long days and late nights to obtain a numerical ABAQUS model, which would be suitable for the pile shape research.

A thank-you to Dr J Eckersley (Coffey). I thank John for his council and guidance, and I liked being challenged by his inquisitive mind. He gave me some good ideas when I have needed them most.

My final acknowledgement is to my parents. I thank them for their support during the high and low points throughout the years. I have memories of working through the nights trying to solve problems with the numerical modelling. My mother sat in my office to offer support, and my father rang to see if I was successful. They made me feel part of a team and never gave up on me. THANK-YOU. I think we can have a vacation now...

Finally, I have chosen two poems to close the acknowledgement section of this thesis.

Does the road wind up-hill all the way? Yes, to the very end. Will the day's journey take the whole long day? From morn to night, my friend.

Christina Rossetti

"Over the Mountains Of the Moon Down the Valley of the Shadow, Ride, boldly ride," The shade replied, "If you seek for Eldorado!"

Edgar Allan Poe

CONTENTS

Abstra	ict		II
Statem	nent of	Sources Declaration	IV
Statem	nent of .	Access	V
Ackno	wledge	ements	VI
Table	of Cont	tents	VIII
List of	Tables	3	XIII
List of	Figure	s	XV
Notati	ons		XXI
Chapt	ter 1:	Introduction	1
1.1	Gener	al	1
1.2	Histor	ry of Shallow and Pile Foundations	3
1.3	Resea	rch Objectives and Aims	4
1.4	Thesis	s Overview	8
Chapt	ter 2:	Literature Review – Shallow Foundations	10
2.1	Gener	al	10
2.2	Accur	acy and Reliability	10
2.3	Shallo	w Foundation Settlement Prediction Methods	11
	2.3.1	Terzaghi and Peck Method	12
	2.3.2	Burland and Burbidge Method	12
	2.3.3	Berardi and Lancellotta Method	13
	2.3.4	Schmertmann Method	13
2.4	Result	ts from the Reliability Analysis	13
2.5	Soil V	ariability	15
2.6	Statist	cical Review of Settlement for Shallow Footings	17
Chapt	ter 3:	Settlement Predictions in Granular Soil:	
		A Probabilistic Approach	23
3.1	Genera	al	23
3.2	Statisti	ical Analysis	23
3.2.1	Settler	ment Ratio Probability Density Function	24

3.2.2	Proba	bilistic Design Charts	27
Chap	ter 4:	Soil Strength and Constitutive Behaviour	34
4.1	Gener	al	34
4.2	Const	itutive Models	34
	4.2.1	General Background	34
	4.2.2	Types of Constitutive Models	36
	4.2.3	Linear Elastic Constitutive Model	37
	4.2.4	Non-Linear Elastic Constitutive Model	38
	4.2.5	Mohr-Coulomb's Model	39
	4.2.6	Drucker Prager Model	41
4.3	Deter	mination of Sand Constitutive Properties	42
	4.3.1	Correlations for Friction Angle of Sand	42
	4.3.2	Correlations for Dilatancy of Sand	55
	4.3.3	Correlations for Elastic Modulus of Sand	58
	4.3.4	Poisson's Ratio (v) of Sand	64
Chap	ter 5:	Estimating Shallow Foundation Behaviour using	
		Numerical Models	66
5.1	Gener	al	66
5.2	Behav	iour Criteria and Numerical Model Development	69
	5.2.1	Shallow Foundation Failure Mechanism	69
	5.2.2	Development of Shallow Foundation ABAQUS Model	70
		5.2.2.1 Shallow Foundation Model Types	71
		5.2.2.2 General Model Characteristics	74
5.3	Predic	ction of Shallow Foundation Behaviour	77
	5.3.1	Symposium Footing Size and Soil Profiles	77
	5.3.2	Prediction of Symposium Footing Behaviour	80
5.4	Comp	arison of Symposium Results	87
Chap	ter 6:	Literature Review – Piles	94
6.1	Gener	al	94

6.2 Piles Subjected to Oblique Loading 95

6.3	Pile Ir	nstallation Techniques	101
6.4	Curren	nt Design Techniques	103
	6.4.1	Piles subjected to Axially Compressive Loading in Sand	104
	6.4.2	Piles subjected to Axially Uplift Loading	106
	6.4.3	Piles subjected to Lateral Loading	110
6.5	Finite	Element Method (FEM)	114
Chaj	pter 7:	Small-Scale Model Pile Tests	120
7.1	Gener	al	120
7.2	Appar	atuses Used for Small-Scale Pile Testing	120
	7.2.1	Model Piles	121
	7.2.2	Tank	121
	7.2.3	Main Loading Frame	122
	7.2.4	Pile Jacking Frame	123
	7.2.5	Pile Loading Equipment	124
	7.2.6	Measuring Devices	127
7.3	Metho	odology for Model Pile Testing	128
	7.3.1	Experimental Sand Properties and Sand Placement	129
	7.3.2	Sand Bed Properties	132
	7.3.3	Model Pile Placement	133
	7.3.4	Load-Displacement Testing	134
7.4	Load	Settlement Results for Model Piles	134
	7.4.1	Compressive Axial Load Test Results	135
	7.4.2	Compressive Oblique Load Test Results	137
	7.4.3	Horizontal Load Results	139
7.5	Exper	imental Observations	141
	7.5.1	Surface Displacement Prior to Loading	141
	7.5.2	Surface Displacement Post Loading	143
Chaj	pter 8:	Numerical Pile Model Development and Verification	145
8.1	Gener	al	145
8.2	Numer	rical Model Algorithms and Behaviour Criteria	145
	8.2.1	General Finite Element Algorithms	146

	8.2.2	Implementation of Constitutive Model into Finite Element Model	149
	8.2.3	Implementation of Interface Frictional Criteria in Finite	
		Element Model	152
		8.2.3.1 Surface-Based Contact	153
		8.2.3.2 Contact Elements	155
		8.2.3.3 Models of Interaction	155
	8.2.4	Initial Stress States	158
8.3	Constr	ruction of Finite Element Model in ABAQUS	161
	8.3.1	Problem Geometry and Boundary Conditions	161
	8.3.2	Finite Element Pile Mesh	164
8.4	Verifie	cation of ABAQUS Pile Model	166
	8.4.1	Predictions for Cast-In-Place Piles	166
	8.4.2	Predictions for Impact Driven Piles	169
	8.4.3	Discussion of Verification Results	171
Chap	ter 9:	Oblique Interaction Charts for Piles	178
9.1	Genera	al Introduction	178
9.2	Nume	rical Model Cases	178
9.3	Result	s from Numerical Analysis	188
9.4			
95	Compa	arison of FEM Results with Other Theoretical Methods	195
).5	Compa Develo	arison of FEM Results with Other Theoretical Methods opment of Three Dimensional Oblique Charts	195 198
).5	Compa Develo 9.5.1	arison of FEM Results with Other Theoretical Methods opment of Three Dimensional Oblique Charts General	195 198 198
).5	Compa Develo 9.5.1 9.5.2	arison of FEM Results with Other Theoretical Methods opment of Three Dimensional Oblique Charts General Cast-in-Place Pile with Free and Fixed Head, and Up Thrust	195 198 198
7.5	Compa Develo 9.5.1 9.5.2	arison of FEM Results with Other Theoretical Methods opment of Three Dimensional Oblique Charts General Cast-in-Place Pile with Free and Fixed Head, and Up Thrust Combination Loading	195 198 198 199
).5	Compa Develo 9.5.1 9.5.2 9.5.3	arison of FEM Results with Other Theoretical Methods opment of Three Dimensional Oblique Charts General Cast-in-Place Pile with Free and Fixed Head, and Up Thrust Combination Loading Cast-in-Place Pile with Free and Fixed Head, and Compression	195 198 198 199
	Compa Develo 9.5.1 9.5.2 9.5.3	arison of FEM Results with Other Theoretical Methods opment of Three Dimensional Oblique Charts General Cast-in-Place Pile with Free and Fixed Head, and Up Thrust Combination Loading Cast-in-Place Pile with Free and Fixed Head, and Compression Combination Loading	 195 198 198 199 203
	Compa Develo 9.5.1 9.5.2 9.5.3 9.5.4	arison of FEM Results with Other Theoretical Methods opment of Three Dimensional Oblique Charts General Cast-in-Place Pile with Free and Fixed Head, and Up Thrust Combination Loading Cast-in-Place Pile with Free and Fixed Head, and Compression Combination Loading Impact Driven Pile with Free Head and Uplift	 195 198 198 199 203
	Compa Develo 9.5.1 9.5.2 9.5.3 9.5.4	arison of FEM Results with Other Theoretical Methods opment of Three Dimensional Oblique Charts General Cast-in-Place Pile with Free and Fixed Head, and Up Thrust Combination Loading Cast-in-Place Pile with Free and Fixed Head, and Compression Combination Loading Impact Driven Pile with Free Head and Uplift Combination Loading	 195 198 198 199 203 206
	Compa Develo 9.5.1 9.5.2 9.5.3 9.5.4 9.5.5	arison of FEM Results with Other Theoretical Methods opment of Three Dimensional Oblique Charts General Cast-in-Place Pile with Free and Fixed Head, and Up Thrust Combination Loading Cast-in-Place Pile with Free and Fixed Head, and Compression Combination Loading Impact Driven Pile with Free Head and Uplift Combination Loading Impact Driven Pile with Free Head and Compression	 195 198 198 199 203 206
	Compa Develo 9.5.1 9.5.2 9.5.3 9.5.4 9.5.5	arison of FEM Results with Other Theoretical Methods opment of Three Dimensional Oblique Charts General Cast-in-Place Pile with Free and Fixed Head, and Up Thrust Combination Loading Cast-in-Place Pile with Free and Fixed Head, and Compression Combination Loading Impact Driven Pile with Free Head and Uplift Combination Loading Impact Driven Pile with Free Head and Compression Combination Loading	 195 198 199 203 206 209
	Compa Develo 9.5.1 9.5.2 9.5.3 9.5.4 9.5.5 9.5.6	arison of FEM Results with Other Theoretical Methods opment of Three Dimensional Oblique Charts General Cast-in-Place Pile with Free and Fixed Head, and Up Thrust Combination Loading Cast-in-Place Pile with Free and Fixed Head, and Compression Combination Loading Impact Driven Pile with Free Head and Uplift Combination Loading Impact Driven Pile with Free Head and Compression Combination Loading Impact Driven Pile with Free Head and Compression	 195 198 199 203 206 209 210

Chap	ter 10: D	Discussion of Numerical Results for Piles	219
10.1	Genera	1	219
10.2	Oblique	e Interaction Charts and Comparison with Experimental Data	219
10.3	Compa	rison between Numerical and Theoretical Results	227
10.4	Influen	tial Factors on Design Charts	230
	10.4.1	Soil Properties	230
	10.4.2	Influence of Pile Installation Technique	231
	10.4.3	Influence of Vertical Stress Fields	232
	10.4.4	Pile Head Fixity	233
10.5	Influen	ce of Pile Shape	234
10.6	Design	Examples	235
	10.6.1	Determining the Ultimate Load of an Example Pile	235
	10.6.2	Determining the Pile Head Displacement of an Example Pile	237
Chap	ter 11:	Conclusions and Recommendations	239
11.1	Conclu	sions and Recommendations for Shallow Foundations	239
11.2	Conclu	sions and Recommendations for Pile Foundations	240
REFI	ERENCE	ES	243
APPE	ENDIXE	S	
Apper	ndix A:	Probability of Failure - Shallow Foundations	253
Appei	ndix B:	Texas '94 Symposium SPT Results and Interpretation	266
Appei	ndix C:	Small Scale Model Test Pile Procedures	272
Appei	ndix D:	Laboratory Testing Results for Experimental Sand	278
Appei	ndix E:	Experimental Results from Model Piles	292
Appei	ndix F:	Mesh Configuration of Constructed Pile	304
Appei	ndix G:	ABAQUS Code	307
Арреі	ndix H:	Verification Results	320
Аррен	ndix I:	ABAQUS Case Results	332
Appei	ndix J:	Sample Calculations	401
Appei	ndix K:	Pile Article	406

LIST OF TABLES

<u>Table</u> <u>Description</u>

<u>Page</u>

1.1	Current techniques for pile design in granular soil	6
2.1	Reliability results by Tan and Duncan (1991)	13
2.2	Reliability results by Berardi and Lancellotta (1994)	14
2.3	Reliability results by Sivakugan and Johnson (2002)	14
2.4	Recommended coefficients of variation (Harr, 1987)	16
2.5	Summary of statistical parameters (Johnson, 1999)	22
3.1	The probability of exceeding 25mm settlement in field	32
4.1	Standard field-testing procedure	43
4.2	Some selected correlations for sand friction angles in	
	terms of blow counts	48
4.3	Commonly used correlations to determine friction angle	
	of experimental sand	54
4.4	Dilation angle for experimental sand	57
4.5	Popular correlations for Young's modulus (E) of sand using	
	SPT results	59
4.6	Final correlations for E_s based on a study of available	
	popular correlations	64
4.7	Typical ranges for Poisson's ratio of sand	65
5.1	Footing and general soil characteristics for symposium	66
5.2	Footing dimensions and assumed soil profile under footings	78
5.3	Author's FEM results for symposium footings	88
5.4	Prediction comparison for individual predictors	89
5.5	FEM Comparison	92
6.1	Ultimate loads for Prideaux (1998) model piles in dense sand	98
6.2	Ultimate loads for Prideaux (1998) model piles in	
	saturated loose sand	98
6.3	Advantages/disadvantages of various settlement	
	prediction methods	107
7.1	Number of tests for each load case	129
7.2	Grain size distribution	129

7.3	Sand characteristics	130
7.4	Experimental sand bed properties	133
7.5	Sand material properties	133
8.1	Case study results.	175
9.1	Results from the numerical modelling of free head,	
	cast-in-place, and uplift combination-loaded piles	189
9.2	Results from the numerical modelling of free head,	
	cast-in-place, and compression combination-loaded piles	191
9.3	Results from the numerical modelling of fixed head,	
	cast-in-place, and uplift/compression combination-loaded piles	192
9.4	Results from the numerical modelling of free head, impact driven	,
	and uplift combination-loaded piles	193
9.5	Results from the numerical modelling of free head, impact driven	,
	and compression combination-loaded piles	194
9.6	Comparison of numerical results against existing techniques	196
9.7	Design ratios for uplift cast-in-place free head piles	200
9.8	Design ratios for uplift cast-in-place fixed head pile	202
9.9	Design ratios for compression cast-in-place free head piles	204
9.10	Design ratios for compression cast-in-place fixed head piles	205
9.11	Design ratios for uplift impact driven free head piles	207
9.12	Design ratios for down thrust impact driven free head piles	209
10.1	Experimental small-scale test pile results conducted as part	
	of current research	221
10.2	Experimental small-scale test pile results conducted by	
	Prideaux (1998)	222

LIST OF FIGURES

<u>Figure</u>	Description	<u>Page</u>
1.1a	Typical failure mechanism for shallow footing (Craig, 1992)	1
1.1 b	Typical construction layout for shallow footing	1
	(http://www.ce.washington.edu/~liquefaction/selectpiclique	
	/kobe95/foundation1.jpg)	
1.2	Typical cast-in-place pile layout	2
	(http://www.valpo.edu/clir/images/construction/092602/	
	092602-2.jpg)	
1.3	Bunces Pile Enginer (left) and Vaulone's Pile Engine (right)	4
	(http://www.geoengineer.org/oldpiles.html)	
2.1	Reliability	11
2.2	Actual settlement versus predicted settlement using	18
	Terzaghi and Peck	
2.3	Actual settlement versus predicted settlement using	18
	Burland and Burbidge	
2.4	Actual settlement versus predicted settlement using	19
	Berardi and Lancellotta	
2.5	Actual settlement versus predicted settlement using	19
	Schmertmann	
2.6	Space of Pearson's probability distributions	21
2.7	Schematic representations of probability distributions	21
3.1	The histogram and beta distribution of settlement ratios	
	for Terzaghi and Peck (1967) method	25
3.2	The histogram and beta distribution of settlement ratios	
	for Burland and Burbidge (1985) method	26
3.3	The histogram and beta distribution of settlement ratios	
	for Schmertmann et al. (1978) method	26
3.4	The histogram and beta distribution of settlement ratios	
	for Berardi and Lancellotta (1994) method	27
3.5	The design chart for Terzaghi and Peck (1967) method	28
3.6	The design chart for Schmertmann et al. (1978) method	29
3.7	The design chart for Burland and Burbidge (1985) method	30

3.8	The design chart for Berardi and Lancellotta (1994) method	31
4.1	Ideal stress-strain material assumed for most structural materials	35
4.2	Stress-strain relationship for elasto-plastic material	35
4.3	Typical linear elastic and non-linear elastic soil response	38
4.4	Mohr-Coulomb failure line	39
4.5	Mohr-Coulomb failure surface (Chen and Saleeb, 1983)	40
4.6	Drucker-Prager failure surface (Chen and Saleeb, 1983)	41
4.7	Typical shear stress (τ) vs. effective normal stress (σ ')	
	relation for sand (Craig, 1992)	46
4.8	Typical shear stress (τ) vs. axial strain (ϵ_a) for a sand	
	(Craig, 1992)	47
4.9	Shear stress vs. axial strain for experimental sand	50
4.10	Shear stress vs. effective normal stress for experimental sand	50
4.11	Typical plot of void ratio vs. horizontal displacement for sand	
	(Craig, 1992)	51
4.12	Void ratio vs. axial strain for experimental sand	51
4.13	Relationship between vertical effective stress and field	
	blow count N (Alpan, 1967)	53
4.14	Typical vertical displacement vs. horizontal displacement	
	plot for sand (Yasufuku et al., 2004)	56
4.15	Horizontal displacement vs. vertical displacement for	
	experimental sand	56
4.16	Approximation of dilation, ψ (Bolton, 1987)	57
4.17	Typical stress-strain relationship for sand	58
4.18	Non-dimensional Young's modulus vs. field blow count	
	for normally consolidated sand	62
4.19	Non-dimensional Young's modulus vs. field blow count	
	for preloaded sand or sand exposed to driving forces	62
4.20	Line of best fit for non-dimensional Young's modulus	
	vs. field blow count of normally consolidated sand	63
4.21	Line of best fit for non-dimensional Young's modulus vs. field blo	ЭW
	count of preloaded sand or sand exposed to pile driving forces	63

5.1a	Cross-section A-A	67
5.1b	Layout of test footings for Federal Highway Administration	
	Symposium	68
5.2	The bearing capacity failure diagram from Terzaghi	
	(Cernica, 1995)	70
5.3	The domain example for finite element problem	71
5.4	Idealized sensitivity plot	72
5.5	Shallow footing coarse mesh	72
5.6	Shallow footing medium mesh	73
5.7	Shallow footing fine mesh	73
5.8	Shallow footing quadratic mesh	74
5.9	Lines of symmetry for square footing	75
5.10	Final model boundary conditions	75
5.11	Displacement of rigid footing under load	76
5.12	Footing 1 load-displacement prediction	81
5.13	Footing 2 load-displacement prediction	82
5.14	Footing 3 load-displacement prediction	83
5.15	Footing 4 load-displacement prediction	84
5.16	Footing 5 load-displacement prediction	85
5.17	Frequency histogram for techniques in symposium	87
5.18	Footing 1 comparative histogram	90
5.19	Footing 2 comparative histogram	90
5.20	Footing 3 comparative histogram	91
5.21	Footing 4 comparative histogram	91
5.22	Footing 5 comparative histogram	92
6.1	Vertically installed pile subjected to oblique loading	96
6.2 a)	Experimental results from Eckersley et al. (1996)	99
6.2 b)	Interaction diagram for horizontal and vertical components	99
6.3	In-plane and out-of-plane loading of a pile	100
6.4	Cast-in-place pile installation process	101
6.5	Impact driven pile installation process	102
6.6	Forces acting on a single axially loaded pile	104
6.7	Pile subjected to uplift forces	110
6.8	Generalized forces acting on a laterally loaded short rigid pile	111

6.9	Typical meshed problem domain for FEM	116
7.1	Experimental model pile	121
7.2	Influence zone for a typical driven pile	122
7.3 (a)	Photo of axial loading arrangement	
7.3 (b)	Schematic of axial loading arrangement	124
7.4	Oblique loading cap, axial loading cap,	
	horizontal loading saddle, respectively	125
7.5 (a)	Photo of lateral loading arrangement	125
7.5 (b)	Schematic of lateral loading arrangement	126
7.6 (a)	Photo of oblique loading arrangement	
7.6 (b)	Schematic of oblique loading arrangement	127
7.7	Sieve analysis of experimental sand	130
7.8	Vibrating plate for compaction	132
7.9	Plan view of sand tank and pile layout	
	Note: All dimensions have units of mm	134
7.10	Load-displacement curve for axial load in loose soil	136
7.11	Load-displacement curve for axial load in dense soil	136
7.12	Load-displacement curve for axial load in layered soil	137
7.13	Load-displacement curve for oblique load in loose soil	138
7.14	Load-displacement curve for oblique load in dense soil	138
7.15	Load-displacement curve for oblique load in layered soil	139
7.16	Load-displacement curve for horizontal load in loose soil	140
7.17	Load-displacement curve for horizontal load in dense soil	140
7.18	Load-displacement curve for horizontal load in layered soil	141
7.19	Surface disturbance from placement in loose soil	142
7.20	Surface disturbance from placement in dense soil	143
7.21	Horizontal load on pile with failed pile in foreground	144
7.22	Average surface indentations after pile removal	144
8.1 (a)	Linear elements	147
8.1 (b)	Quadratic elements	148
8.2	Bending nature of linear elements	148
8.3	Penetration restriction between slave and master surfaces	
	(Hibbett et al., 2001)	155
8.4	Interaction between contact pressure and shear stress at	

	interface surface	156
8.5	Relative movement between pile and soil due to	
	surface-based contact	157
8.6	Influence of initial stress in Mohr-Coulomb failure criterion	158
8.7	Initial stress field due to self weight of system	160
8.8	Plan view of axially loaded pile showing line of symmetry	161
8.9	Plan view of obliquely loaded circular pile showing	162
8.10	Boundary conditions for obliquely loaded pile	163
8.11(a)	Plan view of problem	163
8.11(b)	Elevation view of pile-soil problem	163
8.12	Illustrative view of mesh adopted	164
8.13	Case study 1 - large scale, cast-in-place, axial	
	compression loading	167
8.14	Case study 2 - large scale, cast-in-place, axial	
	compression loading	168
8.15	Case study 3 - large scale, cast-in-place, axial uplift loading	168
8.16	Case study 4 - smaller scale, placed in tank, lateral loading	169
8.17	Case study 5 - large scale, impact driven, compression loading	170
8.18	Case study 6 - large scale, impact driven, compression loading	170
8.19	Case study 7 - large scale, impact driven, lateral loading	
	(Hage-Chehade ,1991)	172
8.20	Load-displacement curve for typical pile	173
9.1	The chosen hypothetical numerical modelling cases	180
9.2	Example of pile head fixity	181
9.3	Pile loading (a) Compression load combination	
	(b) Uplift load combination	182
9.4	Typical pile response	183
9.5	Graphical representation offload ratio	185
9.6	Example of load-displacement curve for pure axial	
	uplift of case pile	185
9.7	Example of applied moment	186
9.8	Example of non-dimensional behaviour for Case 18	187
9.9	Example of how failure loads were approximated from	
	numerical results	188

9.10	3D design ratio plot for cast-in-place piles with uplift	
	loading scenarios	199
9.11	3D design ratio plot for cast-in-place piles with	
	compression loading scenarios	206
9.12	3D design ratio plot for impact driven piles with uplift	
	loading scenarios	208
9.13	3D design ratio plot for impact driven piles with compression	
	loading scenarios	210
9.14	2D ratio plots for uplift combination loading scenarios	211
9.15	2D ratio plots for compression combination loading scenarios	212
9.16	2D plot of a cast-in-place lateral pile ratio vs. axial	
	uplift pile ratio	215
9.17	Relationship between load ratios and displacement ratios for uplif	t
	combination, free/fixed head CIP and ID piles	217
9.18	Relationship between load ratios and displacement ratios for	
	compression combination, free head CIP and ID piles	218
10.1	Comparison between experimental and design surface	
	for uplift combination loading	224
10.2	Comparison between experimental and design surface	
	for compression combination loading	224
10.3	Estimated point of contraflexure for a L/d=3 pile	
	in sand, with N=5 based on works by Poulos and Davis (1980)	228
10.4	Estimated point of contraflexure for a L/d=3 pile	
	in sand, with N=5 based on numerical modelling	228
10.5	Estimated point of contraflexure for a L/d=10 pile	
	in sand, with N=30 based on works by Poulos and Davis (1980)	229
10.6	Estimated point of contraflexure for a L/d=10 pile	
	in sand, with N=30 based on numerical modelling	229
10.7	Influence of initial stress in Mohr-Coulomb failure criteria	233

NOTATIONS

The following symbols have been used in multiple locations throughout the document.

<u>Symbol</u>	Definition	<u>Units</u>
a	minimum possible value for x	[-]
b	maximum possible value for x	[-]
В	width of footing	[m]
c	cohesion	[kPa]
С	axial compression component of oblique load	[kN]
C _{ER}	hammer efficiency factor	[-]
CIP	cast-in-place pile	[-]
C _N	overburden correction factor	[-]
d	pile diameter	[m]
Dr	relative density	[%]
e	void ratio (used in Chapter 4)	[-]
e	load eccentricity (used in Chapter 6)	[m]
e _{cv}	critical void ratio	[-]
Es	Young's modulus for sand	[MPa]
FOS	factor of safety	[-]
H _u	ultimate lateral capacity under combined uplift and lateral load	[kN]
H _{ult}	ultimate horizontal load	[kN]
H _{uo}	ultimate lateral capacity under pure lateral load	[kN]
	(used by Eckersley et al.(1996))	
ID	impact driven pile	[-]
Ko	at rest earth coefficient	[-]
L	lateral load	[kN]
L _b	embedment length of pile	[m]
М	applied moment	[kN.m]
M _{ult}	ultimate moment capacity of the pile	[kN.m]
Ν	uncorrected blow count or field blow count	[blows/100mm]
N ₆₀	blow count corrected for hammer efficiency	[blows/100mm]

(N ₁) ₆₀ , N _{corr}	blow count corrected for hammer efficiency	[blows/100mm]
	and overburden	
pa	atmospheric pressure	[kPa]
p_{f}	probability of failure	[-]
p_u	soil pressure at depth z	[kPa]
q_{f}	ultimate failure pressure on footing	[kPa]
q _o	surcharge on soil surface	[kPa]
Q _b	end bearing load	[kN]
Q_{f}	shaft friction load	[kN]
Q _{ult}	ultimate bearing load	[kN]
S _x	standard deviation	[-]
T _{un}	net uplift capacity	[kN]
T_{ug}	gross uplift capacity	[kN]
u	pore water pressure	[kPa]
u _x	displacement of the centre of the pile head	[mm]
	in x-direction	
uy	displacement of the centre of the pile head	[mm]
	in y-direction	
uz	displacement of the centre of the pile head	[mm]
	in z-direction	
U	axial uplift	[kN]
W	effective weight of the pile	[kN]
Х	settlement ratio	[-]
\overline{x}	average settlement ratio	[-]
Z	depth from soil surface	[m]
Zr	depth of rotation point	[m]
β(1)	coefficient of skewness	[-]
β(2)	coefficient of kurtosis	[-]
ε _a	axial strain	[-]
ε _x ,	normal strain in x direction	[-]
ε _v	normal strain in y direction	[-]
ε ₇	normal strain in z direction	[-]
~ ه	friction angle	[0]
x \overline{x} z Z_{r} $\beta(1)$ $\beta(2)$ ε_{a} $\varepsilon_{x},$ ε_{y} ε_{z} ϕ	 settlement ratio average settlement ratio depth from soil surface depth of rotation point coefficient of skewness coefficient of kurtosis axial strain normal strain in x direction normal strain in y direction normal strain in z direction friction angle 	[-] [m] [m] [-] [-] [-] [-] [-] [-] [-]

φ' _{cv}	effective friction angle at critical void	[°]
	\approx residual effective friction angle	
φ' _{max}	peak effective friction angle	[°]
σ	normal stress	[kPa]
$\sigma_{ m f}$	failure normal stress	[kPa]
σ'_v	effective vertical stress Overburden Pressure	[kPa]
σ _x	normal stress in x direction	[kPa]
σ _y	normal stress in y direction	[kPa]
σz	normal stress in z direction	[kPa]
σ_1	major principle stress	[kPa]
σ_2	intermediate principle stress	[kPa]
σ ₃	minor principle stress	[kPa]
τ	shear stress	[kPa]
$ au_{\mathrm{f}}$	failure shear stress	[kPa]
ρ	density of sand and pile	[kg/m ³]
μ	coefficient of friction	[-]
ψ	dilation angle (ψ)	[°]