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“It is precisely for this that I love geology. It is infinite and ill defined: like poetry, it 

immerses itself in mysteries and floats among them without drowning. It does not 

manage to lay bare the unknown, but it flaps the surrounding veils to and fro; and every 

so often gleams of light escape and dazzle one’s vision.” 
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ABSTRACT 

 

The large scale Wernecke Breccia system occurs throughout the 13 km-thick Early 

Proterozoic Wernecke Supergroup (WSG) and is spatially associated with regional-

scale faults. Breccia emplacement made use of pre-existing crustal weaknesses and 

permeable zones; metaevaporitic rocks in the lower WSG may be intimately related to 

breccia formation. The breccia bodies host vein and disseminated iron oxide-copper-

gold ± uranium ± cobalt mineralisation and are associated with extensive sodic and/or 

potassic metasomatic alteration overprinted by pervasive carbonate alteration. Multiple 

phases of brecciation, alteration and mineralisation are evident. Six widely spaced 

breccia bodies that occur in different part of the WSG were examined in this study (i.e. 

Slab, Hoover, Slats-Frosty, Slats-Wallbanger, Igor and Olympic). New information 

includes geological, paragenetic, geochronological, isotopic, fluid inclusion 

thermometric and compositional data. 

 Re-Os analyses of molybdenite from a late-stage vein that cross-cuts breccia 

gave model ages of 1601 ± 6 and 1609 ± 6 Ma. These ages range from older than to 

within error of the ca. 1594.8 ± 4.6 Ma published U-Pb (titanite) date for breccia in the 

same area. A second molybdenite sample from a late-stage vein gave a Re-Os model 

age of 1648 ± 5.97 Ma. This date is considered analytically sound but the significance 

of it is not clear as it is believed to cut the ca. 1595 Ma breccia. Step heating 40Ar-39Ar 

analyses carried out on muscovite from Wernecke Breccia matrix, a syn-breccia vein 

and two late-stage veins yielded dates of  1178.0 ± 6.1, 1135.0 ± 5.5, 1052 ± 10 and 

996.7 ± 8 Ma respectively. These dates are significantly younger than the minimum age 

(ca. 1380 Ma) of Wernecke Breccia indicated by cross-cutting relationships and must 

have been reset. Samples submitted for U-Pb and Pb-Pb analyses gave discordant 

results that cannot be used to constrain the age of Wernecke Breccia or Wernecke 

Supergroup.  

Fluids that formed Wernecke Breccia were hot (185-350 oC), saline (24-42 wt. 

% NaCl eq.) NaCl-CaCl2 brines. Isotopic compositions for hydrothermal minerals range 

from: � 13Ccarbonate � -7 to +1 ‰ (PDB), 	 18Ocarbonate � -2 and 20 ‰ (SMOW), 

	 34Spyrite/chalcopyrite � -13 to +14 ‰ (CDT) and 	 34Sbarite 
���
�������� . Calculated � 18Ofluid 

-8 to +14 ‰.  The isotopic compositions indicate fluids were likely derived from 

formation/metamorphic water mixed with variable amounts of organic water ± evolved 
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meteoric and/or evolved seawater. Metals and sulphur were probably derived from host 

strata and fluids circulated via tectonic (and/or gravity) processes. Magmatic waters are 

considered less likely as a fluid source because the isotopic data do not have a magmatic 

signature and mafic to igneous rocks spatially associated with the breccia are 

significantly older (i.e. ca. 1710 vs. 1600 Ma) thus ruling out a genetic connection. This 

suggests IOCG mineralisation can occur in non-magmatic environments and a division 

of the broad IOCG class into magmatic and non-magmatic end-members, with hybrid 

types in between, is suggested that reflects the involvement of magmatic and non-

magmatic fluids. Wernecke Breccia and Redbank are representative of non-magmatic 

end-members, Lightning Creek is a magmatic end-member and hybrid types include 

Ernest Henry and Olympic Dam. 
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supported breccia, Olympic area, c) breccia with abundant clasts of earlier breccia, 

Slab area, d) photomicrograph of Wernecke Breccia matrix (crossed polars) made 

up dominantly of sedimentary rock fragments, carbonate, feldspar, lesser quartz and 
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breccia-associated IOCG prospects included in this study (modified from 

Thorkelson, 2000). 

2. Simplified geology map of the study area (for details see Thorkelson, 2000 and 

Thorkelson et al., 2002). Legend shows approximate stratigraphic position of IOCG 

prospects included in this study. Slats-F = Slats-Frosty, Slats-W = Slats Wallbanger. 

3. Simplified paragenesis for prospects in the Wernecke Mountains: a) Slab, b) 

Hoover, c) Slats-Frosty, d) Slats-Wallbanger, e) Igor and f) Olympic prospects. NB: 

paragenetic stages apply only to a specific area, e.g. Slab stage 3 A#B%C&C(<&:+D-E/F�G�H4:�I%A
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inclusions in f; Slats-Frosty area - h) ferroan dolomite-pyrite-fluorite vein cutting 

hematite-altered metasiltstone; the fluorite contains pseudosecondary fluid 

inclusions, i) fluorite in h), note fluid inclusion trails parallel to fractures that do not 
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extend beyond the fluorite crystal, j) and k) liquid + vapour fluid inclusions in 

fluorite; Igor area – l) Wernecke Breccia sample with large barite and magnetite 

crystals, m) barite crystal in area shown in l); and Olympic area – n) Wernecke 

Breccia sample used for fluid inclusion analysis, o) quartz grain from breccia matrix 

with fluid inclusions in the outer rim, p) ferroan dolomite-quartz-chalcopyrite±pyrite 

vein and q) dolomite with primary fluid inclusions. 

5. Summary of fluid inclusion data for samples from the Wernecke Mountains area. Th 

= final homogenisation temperature; NaCl eq wt % = equivalent weight % NaCl. 

See Table 1 caption for details of salinity calculations. 

6. Comparison of fluid composition for inclusions from the Slab, Hoover, Slats-Frosty, 

Igor and Olympic areas using the NaCl-CaCl2-H2O system. 

7. K 18 LNM>O+PRQRSTQ-U 13C results for samples of hydrothermal carbonate from the Slab, 

Hoover, Slats-Frosty, Slats-Wallbanger, Igor and Olympic areas. Also shown are 

results for samples of host WSG limestone/dolostone from FLG, Quartet Group and 

GLG. 

8. LVM&O+P/W3XYXTU 18O v O=PRQZSTQ-U 13C results for carbonate samples from the Wernecke 

Mountains. Also shown are fields for common large earth reservoirs that are 

important in hydrothermal systems. Fields are from Taylor (1974), Sheppard (1977), 

Graham and Harman (1983), and Hoefs (1987) as compiled in Rollinson (1993). 

Mean values for Paleoproterozoic carbonates are from Shields and Veizer (2002). 

FLG = Fairchild Lake Group, Quartet Group = Quartet Group, GLG = Gillespie 

Lake Group. 

9. U 34S results for samples from the Slab, Hoover, Slats-Frosty, Slats-Wallbanger, Igor 

and Olympic areas. See text for discussion. 

10. LVM&O+P/W3XYXTU 34S results for samples from the Wernecke Mountains. Also shown are 

fields for common large earth reservoirs that are important in hydrothermal systems. 

Fields are from Chambers (1982), Kerridge et al. (1983) and Chaussidon et al. 

(1989) as compiled in Rollinson (1993). 

11. []\;^`_a^>bdc+e3\�c=fT\�eg_1h3ikj 18Owater l h=mRnRfTnoj Dwater values for mineral separates of biotite, 

muscovite and actinolite from Wernecke samples. See Appendix VII for sample p�q3rts=uwv;x4y1v;z4{Trg|`} 18Owater values for biotite and muscovite were calculated using the ~��/�+�+���;�4�&�+���;�(���3�(�T�g���;�4�T�-��~d���>���>�k���=���&�(���`�
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were calculated using the fractionation equations of Suzuoki and Epstein (1976). 
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� 18Owater �+�>� � Dwater values for actinolite were calculated using the fractionation 

equations of Zheng (1993) and Graham et al. (1984) respectively for Tremolite. 

Magmatic water and formation waters fields are from Taylor (1974). Meteoric water 

line is from Epstein et al. (1965) and Epstein (1970). The metamorphic waters field 

is from values in Taylor (1974) and Sheppard (1981) as compiled by Rollinson 

(1993). The fields for felsic magma and high temperature volcanic vapour are from 

Taylor (1992) and Giggenbach (1992) as shown in Hedenquist et al. (1998). 

Composition of ancient seawater from Sheppard (1986). Isotopic trends are given 

for: 1) seawater undergoing evaporation (Knauth and Beeunas, 1986), 2) meteoric  

waters undergoing exchange with 18O in minerals, 3) evaporation of meteoric water 

and 4) isotopic compositions of Salton Sea and Lanzarote geothermal waters 

compared to their local meteoric waters (Sheppard, 1986). Black bars beneath the 
���` ¢¡¤£¥ �¦`§�¨/©��=¨/©«ª3�3¬;ª+§T¬;�=­Y©�®k¯ 18Owater values for calcite, dolomite and siderite from the 

Slab, Hoover and Igor areas using the fractionation factors of Zheng (1999). 

12. Examples of isochores from the Slab and Igor prospects. Diagrams were constructed 

using the programme Flinc-Calc that is based on the equations of Zhang and 

Fratz(1987) and Brown (1998).  

13. Log fO2 – log fS2 plot for Slab area fluids. The following equations were used to 

define the mineral stability fields. Log K values were calculated for temperature = 

300 oC and pressure = 2500 bars using the programme “The Geochemists 

Workbench”® release 4.0.2 (GWB uses information from many sources, these are 

compiled for e.g. in Johnson et al., 1992). 

Reaction used Equation Log K 

Pyrite-Magnetite:  3 FeS2 + 2 O2(g) = Fe3O4 + 3 S2(g) -4.6 

Pyrite-Hematite:  4 FeS2 + 3 O2(g) = 2 Fe2O3 + 4 S2 (g) 33.88 

Pyrrhotite-Magnetite:  6 FeS + 4 O2(g) = 2 Fe3O4 + 3 S2 55.34 

Bornite-Chalcopyrite:  Cu5FeS4 + 4 FeS2 = 5 CuFeS2 + S2 83.64 

Graphite-CO2(g):  C + O2(g) = CO2(g) -6.93 

Calcite-gypsum:  2 CaCO3 + S2(g) + 3 O2(g) + 4 H2O = 2 CaSO4 + 2 CO2(g) 36.13 
 

14. Plots of pH versus log fO2 for the Slab area. a) using a medium value for log aH2S 

of  -2.6, b) using a low value for log aH2S of  -3.23 and c) using a high value for log 

aH2S of  - °3±³²�´T±Vµ·¶>¸º¹T»&¼�½¢¾�½;»(¿À¼-»�Á]Â Ã 34
i  contours are also shown  in a); Numbers in Ä>Å`ÆÈÇ3É-Å4Ê¤Ë�Å4Ê4Ì�Å4Í�ÎwÉÐÏ+Î/ÇVÑ&Ò 34

pyrite Ó ÏÕÔ¢Í&ÇÕÉoË+Ï3Ô;Ë+ÍTÔÖÏ+Ì1Ç�×6ÍÀÉ�Ø;Ê>ÙÚÑ&Ò 34 Û Ü  = 0 ‰ (right side) and 
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Þ�ß 34 àgá  = 18 ‰ (left side). The shaded oval shows approximate fluid conditions at 

Slab. The position of sulphur isotope contours were calculated using the method of 

Ohmoto (1972) and the following conditions: temperature = 300 oC, pressure = 2.5 

kb, ionic strength = 3.2 (based on fluid inclusion data). Molality of species was 

calculated using the programme “The Geochemists Workbench”® release 4.0.2; the 

following species were most abundant. 

 

Species Molality Mole Fraction 

NaSO4
- 0.6985 0.497 

CaSO4(aq) 0.3741 0.266 

KSO4
- 0.165 0.117 

SO4
-- 0.1623 0.115 

H2S(aq) 2.51E-03 0.002 

HSO4
- 1.54E-03 0.001 

HS- 1.30E-03 0.001 
 
SECTION D 
 
1. Location of selected IOCG districts. Modified from Hitzman (2000). 

2. Location of Wernecke belt, distribution of Wernecke Breccia and location of 

breccia-associated IOCG prospects included in this study (modified from 

Thorkelson, 2000) plus simplified bedrock geology map of the study area (for 

details see Thorkelson, 2000 and Thorkelson et al., 2002, 2003). Legend shows 

approximate stratigraphic position of IOCG prospects studied.  

3. Typical examples of Wernecke Breccia and associated IOCG mineralisation and 

alteration: a) grey sodic-altered breccia, b) red potassic-altered breccia, c) breccia 

with abundant clasts of earlier breccia, Slab area, d) photomicrograph of Wernecke 

Breccia matrix (crossed polars) made up dominantly of sedimentary rock fragments, 

carbonate, feldspar, lesser quartz and minor hematite and magnetite, e) calcite-

chalcopyrite vein cutting FLG, Slab prospect, f) massive chalcopyrite-pyrite vein 

cutting FLG, Slab prospect, g)  chalcopyrite forming matrix to breccia, Hoover 

prospect, h) massive magnetite-coarsely crystalline hematite-ankerite-quartz vein, 

Slats-Frosty area and i) photomicrograph of hematite overgrown by pyrite with 

chalcopyrite filling fractures (reflected light), Olympic prospect. 

4. Fluid temperature and salinity for selected IOCG deposits and prospects. References 

and abbreviations as in Table 1. 
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5. Measured sulphur isotope compositions for mineralisation and calculated oxygen 

isotope compositions for mineralising fluid from selected IOCG deposits. Legend 

shows mineral(s) used for sulphur isotope analysis and mineral used to calculated 

oxygen isotopic composition of fluid. References and abbreviations as in Table 1. * 

Values calculated from actinolite are 5.4 if temperature of 200 oC is used or 9.5 if 

temperature of 450 oC is used (see text for details). For ã 18O values for magmatic, 

metamorphic, formation and meteoric waters and modern seawater – cf. Sheppard, 

1986; Rollinson, 1993. For ã 34S values for mantle and evaporite sources –cf. 

Ohmoto and Goldhaber, 1997.  

6. Suggested classification of IOCG systems into magmatic and non-magmatic end-

members with hybrid IOCG systems in between. Placement in the classification 

indicates the degree of involvement of magmatic and/or non-magmatic fluids in the 

formation of the IOCG system. Placement is also affected by the environment of 

formation of the IOCG system, i.e., magmatic or non-magmatic, which is 

determined by whether or not there is a temporal association with igneous rocks. At 

the non-magmatic end of the IOCG spectrum it is possible for an IOCG system to 

have formed from non-magmatic fluids but to have a temporal relationship with a 

magmatic system, e.g. Salton Sea. See text for discussion and references. 

7. Schematic model showing examples of hydrothermal alteration and mineralisation 

produced by the circulation of non-magmatic fluids (adapted from Barton and 

Johnson, 2000). Voluminous metal-depleted, sodic(-calcic) ± shallow K feldspar-

hematite alteration forms in inflow zones and along the fluid pathway(s) (cf. Barton 

and Johnson, 1996, 2000). Fluids are heated and as they rise and cool they produce 

intense sodic and/or potassic alteration (depends on host rock composition) plus 

overprinting and shallow hydrolytic alteration. Metals are leached along the flow 

path and precipitate due to cooling and/or fluid mixing.  
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