ResearchOnline@JCU

This file is part of the following reference:

Horwood, Paul Francis (2005) Detection and further characterisation of the toxins and associated genes of Bacillus cereus. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/1301/

If you believe that this work constitutes a copyright infringement, please contact <u>ResearchOnline@jcu.edu.au</u> and quote <u>http://eprints.jcu.edu.au/1301/</u>

Detection and Further Characterisation

of the Toxins and Associated

Genes of Bacillus cereus

Thesis submitted by Paul Francis Horwood BSc (Hons) In July 2005

For the degree of Doctor of Philosophy in Microbiology and Immunology at James Cook University

Statement on Access to this Thesis

I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere. I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and I do not wish to place further restriction on access to this work.

P.F. Horwood

July 2005

Statement of Sources

Declaration

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from published or unpublished work of others has been acknowledged in the text and a list of references is given.

P.F. Horwood

July 2005

Statement of the Contribution of Others

This project was supervised by Dr. Graham Burgess, Microbiology and Immunology, James Cook University, Townsville Australia and Dr. Jane Oakey, Oonoonba Veterinary Laboratory, Queensland Department of Primary Industries and Fisheries, Townsville Australia. All editorial and proofreading assistance was obtained from Dr. Graham Burgess and Dr. Jane Oakey.

This project was financially supported by the Rural Industries Research and Development Corporation (RIRDC), Ricegrowers Cooperative and James Cook University. I am grateful for the financial assistance from each of the participants. Salary contributions were provided in the form of a stipend from Australian Postgraduate Awards (APA).

P.F. Horwood

July 2005

Acknowledgements

First and foremost I would like to thank my fantastic supervisors Dr. Graham Burgess and Dr. Jane Oakey. Graham, thankyou for always having time for my many questions and motivating me throughout my project. Jane, thankyou for being my mentor and inspiring me to become a microbiologist (its all your fault!).

I would like to thank all of the staff and postgraduate students from Microbiology and Immunology at James Cook University, who were always ready to give a helping hand or give advice. In particular I would like to thank Ramon Layton who helped me with much of the molecular work in this thesis and also the PCR-ELISA protocol. Also thanks to all of the techies who made my work much easier throughout the years.

Thankyou to Maria Andersson (Department of Applied Chemistry and Microbiology, University of Helsinki, Finland), Melissa Toh (Department of Food Science and Technology, University of New South Wales, Sydney, Australia), Per Einar Granum (Department of Pharmacology, Microbiology and Food Hygiene, Norwegian School of Veterinary Science, Oslo, Norway), Lars Andrup (Nat. Inst. Occup. Health, Copenhagen, Denmark) and John Bates (Queensland Health Scientific Services, Brisbane, Australia) for sharing *Bacillus* strains with me and giving me much needed advice when it was requested. Thankyou to Mohammed Marahiel (Philipps University of Marburg, Marburg, Germany) for his advice on the new and confusing world of peptide synthetases.

Thankyou to all of my friends for keeping me sane throughout my studies. A huge thankyou to my family - for all of their love and support. I would especially like to thank my folks for their emotional and financial support throughout all the years of my studies – thanks guys I couldn't have done it without you.

The research presented in this thesis was funded by the Rural Industries Research and Development Corporation and the Ricegrowers Cooperative.

Abstract

The food poisoning bacterium *Bacillus cereus* produces a large array of potentially pathogenic substances including four haemolysins, three different types of phospholipase C, the emetic toxin (cereulide) and at least five enterotoxins. The relative importance of these metabolites to the pathogenicity of *B. cereus* strains has not been fully elucidated. The major goals of this project were to evaluate existing toxin detection methods, develop improved methods of detecting pathogenic strains of *B. cereus* and to characterise the genes associated with the production of cereulide.

A large number of foodborne and clinical strains of *B. cereus* were tested for diarrhoeal toxin production using previously reported methods, including polymerase chain reaction (PCR), gel diffusion haemolysis, Vero cell cytotoxicity and two commercially available diarrhoeal toxin detection kits. The genes for all five of the diarrhoeal toxins (haemolysin BL, enterotoxin T, non-haemolytic enterotoxin, enterotoxin FM and cytotoxin K) have been characterised and subsequently PCR primers have been designed to detect these genes. The PCR methods for three of these toxins (HBL, enterotoxin T and enterotoxin FM) were utilised to determine the prevalence of toxin genes in *B. cereus*. The gene for enterotoxin FM was the most commonly detected with 86.8% of the isolates containing this gene, followed by haemolysin BL (50%) and enterotoxin T (42.6%). The Vero cell cytotoxicity assay was deemed to be the most useful detection method due to its ability to detect actual toxicity, regardless of which of the five diarrhoeal toxins the strain in question was able to produce.

Currently there are no simple and reliable methods available for detection of emetic strains of *B. cereus*. The most commonly used method of detecting emetic strains of *B. cereus* is the HEp-2 cell cytotoxicity assay. Cereulide causes vacuolation of the HEp-2 cell mitochondria. This effect is transitory and often difficult to identify. Finlay *et al.* (1999) improved this method by utilising the tetrazolium salt MTT (3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide). Although this method was sensitive and removed the subjectivity inherent in the original method, the MTT assay produces an insoluble, crystalline formazan end product that requires an additional step to solubilise the product before the absorbance readings can be taken. This method was improved by replacing MTT with the next generation tetrazolium salt, MTS (3-(4,5-

vi

dimethythiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2*H*-tetrazolium). The advantages of MTS over MTT include the rapidity of colour development, the storage stability of MTS and the ability to return the sample to the incubator to await further colour development. A large number of *B. cereus* strains were tested using the HEp-2/MTS assay. The results correlated exactly with the HEp-2 mitochondrial assay. However, the sensitivity of the assay was increased and the visualisation of results relied upon observing a colour change reaction that negated the subjectivity of the original method.

Cereulide bears a close resemblance to metabolites produced by non-ribosomal peptide synthetases (NRPS) from the genera *Bacillus* and *Streptomyces*. Turgay and Marahiel (1994) developed universal primers to detect a 500 base pair (bp) region that has been highly conserved in all of the NRPS genes sequenced thus far. These primers were utilised to determine if production of cereulide is linked to peptide synthetases. Two previously reported emetic strains of *B. cereus* were tested using the NRPS primers, resulting in 497 bp products, which were subsequently cloned and the nucleotide sequence determined. The nucleotide and translated amino acid sequences showed a high degree of homology with other peptide synthetases, such as surfactin, gramicidin, bacitracin, tyrocidine and lichenysin. Primers were designed from variable regions of the NRPS consensus sequence to be specific for the B. cereus NRPS gene sequence. A PCR-ELISA detection system was also developed to increase the specificity of the assay. Analysis of a large number of emetic and non-emetic strains of B. cereus showed that the PCR primers distinguished between emetic and non-emetic strains. This PCR method will greatly improve food laboratories' abilities to detect strains of B. cereus capable of causing emesis and also enable a preventative approach to be applied to the control of emetic food poisoning.

A wide variety of other *Bacillus* species were tested for toxin genes using previously published enterotoxin PCRs and the novel cereulide PCR developed in this study. One strain of *B. thuringiensis* (BT1) contained all three of the enterotoxin genes that were targeted. One strain of *B. circulans* (2715) contained the gene for enterotoxin FM. A strain of *B. licheniformis* (BL1) and a strain of *B. subtilis* (BS1) contained the gene for cereulide.

vii

Table of Contents

Title Page	i
Statement of Access	ii
Statement of Sources	
Statement of the Contribution of Others	iv
Acknowledgements	V
Abstract	
Table of Contents	
List of Tables	xiii
List of Figures	xiv
List of Abbreviations	xvi

Chapter 1. General Introduction and Literature Review	1
1.1 General Introduction	2
1.2 The Taxonomy of Genus <i>Bacillus</i>	3
1.2.1 Bacillus	
1.2.2 Bacillus subgroup 1	
1.2.3 Homology in <i>Bacillus</i> subgroup 1	4
1.3 Bacillus cereus: The Organism and its Characteristics	5
1.3.1 The history of <i>Bacillus cereus</i> food poisoning	5
1.3.2 The characteristics of <i>Bacillus cereus</i>	5
1.3.3 The isolation and identification of <i>Bacillus cereus</i>	6
1.3.4 Serotyping of <i>Bacillus cereus</i>	8
1.3.5 The genome of <i>Bacillus cereus</i>	
1.4 The Ecology of <i>Bacillus cereus</i>	9
1.4.1 <i>Bacillus cereus</i> in the environment	9
1.4.2 Bacillus cereus in food	9
1.5 Symptoms of <i>Bacillus cereus</i> Food Poisoning	11
1.5.1 The diarrhoeal syndrome	11
1.5.2 The emetic syndrome	12
1.6 Epidemiology of <i>Bacillus cereus</i>	12
1.6.1 The incidence of <i>Bacillus cereus</i> food poisoning	12
1.6.2 Transmission of <i>Bacillus cereus</i>	14
1.7 Virulence Factors of <i>Bacillus cereus</i>	15
1.7.1 The diarrhoeal toxins	15
1.7.1.1 Haemolysin BL	15
1.7.1.2 Enterotoxin T	17
1.7.1.3 Non-haemolytic enterotoxin	17
1.7.1.4 Enterotoxin FM	18
1.7.1.5 Cytotoxin K	
1.7.2 The emetic toxin (cereulide)	
1.7.3 Haemolysins	
1.7.3.1 Haemolysin 1	22
1.7.3.2 Haemolysin 2	23
1.7.4 Phopholipases C	23
1.7.4.1 Phosphatidylinositol hydrase	23
1.7.4.2 Phosphatidylcholine hydrolase	23
1.7.4.3 Sphingomyelinase	24

1.7.5 PlcR: A regulator of extracellular virulence	
gene expression	24
1.7.6 The spore	26
1.8 Toxin Detection Methods	27
1.8.1 Diarrhoeal toxin detection methods	27
1.8.1.1 Commercial diarrhoeal enterotoxin	
immunoassay kits	27
1.8.1.2 Cell cytotoxicity assays	29
1.8.1.3 Conventional detection methods	
1.8.1.4 Polymerase chain reaction	30
1.8.1.5 Gel diffusion assay for haemolysin BL	30
1.8.2 Cereulide detection methods	31
1.9 Control of <i>Bacillus cereus</i> Food Poisoning	32
1.10 Major Objectives of the Project	32

Chapter 2. General Materials and Methods	34
2.1 Bacterial Strains Used in the Study	35
2.2 Maintenance of <i>Bacillus</i> spp. Culture Collection	
2.2.1 Cryopreservation of <i>Bacillus</i> isolates	
2.2.2 Examination of strains for purity	39
2.2.3 Holbrook and Anderson spore stain	39
2.3 Maintenance of Cell Lines (HEp-2 and Vero Cells)	
2.3.1 Culture and maintenance of cell lines	40
2.3.2 Cryopreservation of cells	40
2.3.3 Thawing of cells	41
2.3.4 Cell count	41
2.4 Bacterial Culturing for Enterotoxin Assays	41
2.5 PCR General Methods	42
2.5.1 Boiling extraction method	42
2.5.2 Gel electrophoresis	42

Chapter 3. Evaluation of Diarrhoeal Toxin Detection

Methods	44
3.1 Introduction	45
3.2 Materials and Methods	46
3.2.1 Bacterial strains	46
3.2.2 Vero cell cytotoxicity assay	47
3.2.3 Gel diffusion assay for HBL	47
3.2.4 Tecra Bacillus Diarrhoeal Enterotoxin – Visual	
Immunoassay (BDE-VIA)	47
3.2.5 Oxoid Bacillus enterotoxin – Reverse Passive	
Latex Agglutination Assay (BCET-RPLA)	48
3.2.6 PCR methods	48
3.2.6.1 Haemolysin BL PCR protocol	48
3.2.6.2 Enterotoxin T PCR protocol	49
3.2.6.3 Enterotoxin FM PCR protocol	49
3.3 Results	<u>50</u>
3.3.1 Vero cell cytotoxicity	50
3.3.2 Gel diffusion assay	51

3.3.3 Commercially available ELISA assays	
3.3.3.1 Tecra BDE-VIA	
3.3.3.2 Oxoid BCET-RPLA	53
3.3.4 Enterotoxin PCR results	
3.3.4.1 Haemolysin BL PCR	54
3.3.4.2 Enterotoxin T PCR	
3.3.4.3 Enterotoxin FM PCR	
3.4 Discussion	61

Chapter 4. An Improved HEp-2 Cell Cytotoxicity Assay for the Detection of Emetic Strains of *Bacillus cereus*_____63 4.1 Introduction_____64 4.2 Materials and Methods_____66 4.2.1 Survey of food and clinical isolates using the HEp-2/MTS assay_____66 4.2.2 Optimisation of skim milk medium concentration 67 4.2.3 Culture of *Bacillus cereus* 67 4.2.4 Cell cytotoxicity assay_____67 4.2.5 Evaluation of the sensitivity of the HEp-2/MTS assay 68 4.2.6 Reproducibility experiment_____68 4.2.7 Starch hydrolysis assay_____69 4.3 Results694.3.1 Determination of optimal skim milk concentration69 4.3.2 Detection of cereulide production by the HEp-2/MTS assay 70 4.3.3 Valinomycin sensitivity test_____72 4.3.4 Reproducibility of the HEp-2/MTS assay____73 4.3.5 Starch hydrolysis screening assay 74 4.4 Discussion 75

Chapter 5. Antibiotic Sensitivity Experiments	78
5.1 Introduction	
5.2 Materials and Methods	81
5.2.1 Antibiotic resistance experiments	81
5.2.1.1 Antibiotics	81
5.2.1.2 Production of antibiotic discs	81
5.2.1.3 Media and bacterial strains	82
5.2.2 Resistance of Bacillus cereus to higher	
concentrations of valinomycin	82
5.2.3 Resistance of <i>Bacillus cereus</i> to cereulide	83
5.2.3.1 Production of cereulide discs	83
5.2.3.2 Modified CAMP test	83
5.3 Results	
5.3.1 Measurement of antibiotic inhibition zones	84
5.3.2 The effect of the cereulide upon the growth of	
Bacillus cereus	85
5.4 Discussion	

Chapter 6. Non-Ribosomal Peptide Synthetase Genes in	
Bacillus cereus	91
6.1 Introduction	92
6.2 Materials and Methods	96
6.2.1 Preparation of <i>Bacillus</i> DNA	96
6.2.2 Non-ribosomal peptide synthetase PCR	
6.2.3 Secondary PCR	07
6.2.4 Cloning and sequencing	
6.3 Results	98
6.3.1 NRPS PCR	98
6.3.2 Sequencing from plasmid containing NRPS PCR	
amplicon	99
6.3.3 BLASTn search analysis	101
6.3.4 Conversion to protein sequence and BLASTp search	103
6.4 Discussion	107

Chapter 7. Development of a PCR Method to Detect NRPS Genes Associated with the Synthesis

of Cereulide	110
7.1 Introduction	111
7.2 Materials and Methods	112
7.2.1 Preparation of <i>Bacillus</i> DNA	112
7.2.2 Design of <i>Bacillus cereus</i> NRPS PCR	
7.2.3 Design and application of a PCR-ELISA	
detection system	115
7.2.4 Evaluation of PCR for detection of emetic	
strains of <i>Bacillus cereus</i>	116
7.3 Results	116
7.3.1 PCR for the detection of emetic strains of	
Bacillus cereus	116
7.4 Discussion	119
7.4.1 Proposed method for the identification of emetic	
strains of <i>Bacillus cereus</i> from food	121
7.4.1.1 <i>Bacillus cereus</i> isolation from food	
7.4.1.2 Template preparation	
7.4.1.3 Cereulide PCR method	122

Chapter 8. Prevalence of Toxin Genes in <i>Bacillus</i> spp	123
8.1 Introduction	124
8.2 Materials and Methods	126
8.2.1 Strains used in the study	126
8.2.2 DNA extraction	127
8.2.3 Haemolysin BL PCR	
8.2.4 Enterotoxin T PCR	
8.2.5 Enterotoxin FM PCR	
8.2.6 Cereulide PCR	
8.3 Results	140
8.3.1 Haemolysin BL PCR results	

133
131
_130
129

Chapter 9. General Discussion	135
9.1 Summary of Objectives	136
9.1.1 Objective 1: Evaluation of enterotoxin detection assays	136
9.1.2 Objective 2: Development of a sensitive cell culture	
method for the detection of cereulide	136
9.1.3 Objective 3: Characterisation of the genes associated	
with the synthesis of cereulide	137
9.1.3 Objective 4: Development of a rapid molecular	
detection method for emetic strains	137
9.2 Further Examination of Results and Recommendations for	
Future Research	138
9.2.1 The pathogenesis of the diarrhoeal syndrome and detection	
of enterotoxigenic strains	138
9.2.2 The genetic differences between emetic and non-emetic	
strains of <i>Bacillus cereus</i>	139
9.2.3 Non-ribosomal peptide synthetases and the	
potential applications	141
9.2.4 <i>Bacillus</i> spp. and the transfer of toxin genes	143
9.2.5 Implications for the prevention of <i>Bacillus cereus</i>	
food poisoning	144
100 0 p01001111 <u>6</u>	
References	_146
Appendix 1. Media Recipes	164
Appendix 2. Absorbency Readings for Sensitivity Determination of the	
Hep-2/MTS Assay Using Valinomycin Dilutions	170
Appendix 3. Publications from this Project	172

List of Tables

Table 1.1 The toxins of Bacillus cereus and their properties	22
Table 2.1 Bacillus cereus diarrhoeal and non-emetic isolates	
Table 2.2 Bacillus cereus emetic isolates	37
Table 2.3 Bacillus cereus food isolates	
Table 2.4 Bacillus spp. isolates	38
Table 3.1 Bacillus cereus strains used in the enterotoxin survey	46
Table 3.2 Previously published PCR primers for the detection of	
enterotoxin genes	48
Table 3.3 Results from the enterotoxin survey for the diarrhoeal isolates	57
Table 3.4 Results from the enterotoxin survey for the emetic isolates	58
Table 3.5 Results from the enterotoxin survey for the food isolates	59
Table 3.6 Summary of results from the enterotoxin assays	60
Table 4.1 Bacillus cereus strains tested for cereulide production	
Table 4.2 Optimisation of skim milk medium for the HEp-2/MTS	
assay to reduce substrate toxicity	70
Table 4.3 HEp-2/MTS Titre results for emetic strains of Bacillus cereus	71
Table 4.4 Starch hydrolysis groupings	75
Table 5.1 Sources and characteristics of antibiotics used for antibiotic	
sensitivity experiments	82
Table 5.2 Measurement of the antibiotic inhibition zones	
Table 5.3 Measurement of inhibitory effect of valinomycin at	
higher concentrations	88
Table 6.1 A list of some important non-ribosomal peptide	
synthetase products	95
Table 6.2 Non-ribosomal peptide synthetase PCR primers	97
Table 6.3 Results from BLASTn (GenBank) search of Bacillus cereus	
NRPS nucleotide sequence	102
Table 6.4 Results from BLASTp (GenBank) search of <i>Bacillus cereus</i>	
NRPS amino acid sequence	105
Table 6.5 Conserved regions located between PCR primers TGD and LGG	109
Table 7.1 Bacillus cereus strains used in the cereulide PCR	112
Table 7.2 Primers developed to detect the NRPS genes associated with	
the synthesis of cereulide	113
Table 7.3 Summary of the cereulide PCR results	118
Table 8.1 Bacillus species and strains used in the study	126
Table 8.2 Bacillus cereus toxin primers	127
Table 8.3 Summary table of PCR results for toxin genes in Bacillus spp.	132
Table 9.1 Table showing the inability of emetic strains to hydrolyse starch	
or produce HBL or enterotoxin T	140

List of Figures

Figure 1.1 Bacillus cereus grown on PEMBA	7
Figure 1.2 The structures of cereulide and valinomycin	
Figure 3.1 Vero cell cytotoxicity assay	
Figure 3.2 Gel diffusion assay	
Figure 3.3 Tecra BDE-VIA	52
Figure 3.4 Oxoid BCET-RPLA	
Figure 3.5 PCR to detect the <i>hblA</i> gene of haemolysin BL in	00
strains of <i>Bacillus cereus</i>	54
Figure 3.6 PCR to detect the <i>bceT</i> gene of enterotoxin T in	
strains of <i>Bacillus cereus</i>	55
Figure 3.7 PCR to detect the <i>entFM</i> gene of enterotoxin FM in	
strains of <i>Bacillus cereus</i>	56
Figure 3.8 The prevalence of enterotoxin genes in <i>Bacillus cereus</i>	
Figure 4.1 The HEp-2/MTS assay	
Figure 4.2 Experiment using valinomycin to determine sensitivity	, I
of the HEp-2/MTS assay	72
Figure 4.3 HEp-2/MTS assay reproducibility	73
Figure 4.4 Starch hydrolysis assay	73 74
Figure 5.1 Diagrammatic representation of K ⁺ ionophore carrying a	····· ·
potassium ion into a cell	80
Figure 5.2 Bacillus cereus modified CAMP test	84
Figure 5.3 Effect of valinomycin antibiotic discs upon the growth	
of Bacillus cereus	85
Figure 5.4 Average antibiotic (800 μ g/disc) inhibition zones for emetic	
and non-emetic strains of <i>Bacillus cereus</i>	88
Figure 6.1 General organisation and operation of non-ribosomal	
peptide synthetases	94
Figure 6.2 Molecular structure of cereulide	
Figure 6.3 PCR to detect conserved regions of NRPS genes	
in Bacillus cereus	99
Figure 6.4 An alignment of the forward and reverse sequences	
generated from DNA sequencing (strains F 5881 and NC 7401)	100
Figure 6.5 BLAST alignment for NRPS nucleotide sequence	
Figure 6.6 BLAST alignment for NRPS amino acid sequence	
Figure 6.7 Diagram showing the conserved putative domains identified	
from the BLASTp search of GenBank	104
Figure 6.8 Protein alignment (Genedoc) showing homology between	
NRPS products	106
Figure 6.9 Cereulide NRPS amino acid sequence displaying	
conserved regions	109
Figure 7.1 Amino acid alignment of peptide synthetases showing the	
emetic Bacillus cereus-specific regions that were targeted for	
primer and probe design	114
Figure 7.2 The PCR-ELISA detection system	
Figure 7.3 PCR gel differentiating between emetic and non-emetic	
strains of Bacillus cereus	117
Figure 7.4 Cereulide PCR-ELISA	
Figure 8.1 PCR to detect the <i>hblA</i> gene of haemolysin BL in strains	
of Bacillus spp	128

Figure 8.2 PCR to detect the <i>bceT</i> gene of enterotoxin T in strains	
of Bacillus spp	129
Figure 8.3 PCR to detect the <i>entFM</i> gene of enterotoxin FM in strains	
of Bacillus spp	130
Figure 8.4 PCR to detect the NRPS genes associated with the	
production of cereulide in strains of <i>Bacillus</i> spp	131

List of Abbreviations

/	lesser than
<	
> %	greater than
	percentage
α	alpha
aa	amino acid
approx	approximately
ATCC	American Type Culture Collection
ATP	adenosine triphosphate
β	beta
BCET-RPLA	Bacillus cereus enterotoxin – reverse passive latex agglutination
BDE-VIA	Bacillus diarrhoeal enterotoxin – visual immunoassy
BHI	brain heart infusion
BHIG	brain heart infusion with glucose
BLASTn	basic local alignment sequencing tool (nucleotide)
BLASTp	basic local alignment sequencing tool (protein)
bp	base pairs
°C	degrees Celsius
Ca	calcium
CADM	complete amino acid defined medium
CAMP	Christie, Atkins & Munch-Petersen
cfu	colony forming units
cpe	cytopathic effect
dig	digoxigenin
DMEM	Dulbecco's modified eagle medium
DMSO	dimethylsulfoxide
DNA	deoxyribonucleic acid
dNTP's	generic term for single deoxyribonucleotide
	dATP = deoxyadenine triphosphate
	dCTP = deoxycytosine triphosphate
	dGTP = deoxyguanine triphosphate
	dTTP = deoxythymine triphosphate
	dUTP = deoxyuracil triphosphate
e-value	Expect value
EDTA	ethylene diamine tetra-acetic acid
e.g.	for example (Latin: <i>exemplum gratii</i>)
ELISA	enzyme linked immunosorbent assay
F	Bacillus strains originally from the Public Health Service,
	London, UK
FBS	foetal bovine serum
g	grams
g	centrifugal acceleration relative to Earth's gravity
H	hydrogen
H_2O	water
HBL	haemolysin BL
HCl	hydrogen chloride
hrs	hours
i.e.	that is (Latin: <i>id est</i>)
I.C. IH	Bacillus strains originally from the University of Helsinki,
	Department of Applied Chemistry and Microbiology, Finland

Κ	potassium
Kb	kilobases
KCl	potassium chloride
KDa	kilodaltons
kg	kilograms
L	litres
LB	Luria-Bertani medium
M	molar
MADM	minimum amino acid defined medium
Mb	megabases
	milligrams
mg Mg	magnesium
min	minutes
ml	millilitres
	millimetres
mm mM	
mM MTS	millimolar
MTS	3-(4,5-dimethythiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
እለጥጥ	sulfophenyl)-2 <i>H</i> -tetrazolium
MTT	3-(4,5- dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide
Na	sodium
NaCl	sodium chloride
NC	<i>Bacillus</i> strains originally from the Nagoya City Public Health
	Institute, Nagoya City, Japan
ng	nanograms
NHE	non-haemolytic enterotoxin
nm	nanometres
NRPS	non-ribosomal peptide synthetase
NVH	<i>Bacillus</i> strains originally from the Norwegian School of
DCA	Veterinary Science, Olso, Norway
PC2	physical containment level 2
PC3	physical containment level 3
PCH	phosphatidylcholine hydrolase
PCR	polymerase chain reaction
PEMBA	polmyxin pyruvate egg-yolk bromothymol blue agar
pers. comm.	personal communication
рН	potential of hydrogen
PI	phosphatidylinositol
PIH	phosphatidylinositol hydrase
p-pant	4'-phosphopantetheine
rev	revolutions
RNA	ribonucleic acid
rpm	revolutions per minute
rRNA	ribosomal ribonucleic acid
sec	seconds
sp.	species
spp.	species (plural)
TBST	tris buffered saline with Tween 20
U	units
UK	United Kingdom
μg	micrograms
μl	microlitres
μm	micrometres
	;;

USA	United States of America
UV	ultraviolet
V	volts
w/v	weight/volume
XTT	sodium (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl])-2H-
	tetrazolium-5-carboxanilide

USA	United States of America
UV	ultraviolet
V	volts
w/v	weight/volume
XTT	sodium (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl])-2H-
	tetrazolium-5-carboxanilide