ResearchOnline@JCU

This file is part of the following reference:

Lisoweic, Nicholas John (2005) Combining microstructural analysis with EPMA monazite geochronology to constrain progressive stages of orogenesis in the Appalachians. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/1285/

The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact <u>ResearchOnline@jcu.edu.au</u> and quote <u>http://eprints.jcu.edu.au/1285/</u>

Combining microstructural analysis with EPMA monazite geochronology to constrain progressive stages of orogenesis in the Appalachians

Volume I: Text.

Thesis submitted by

Nicholas John Lisowiec BSc(Hons) Adelaide

in December 2005

for the degree of Doctor of Philosophy

in the School of Earth Sciences

James Cook University

STATEMENT OF ACCESS

I, the undersigned, author of this work, understand the James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Thesis network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and I do not wish to place further restriction on access to this work.

Nicholas Lisowiec

Date

STATEMENT OF SOURCES

DECLARATION

I declare that this thesis is my own work and has not been submitted in any other form for another degree or diploma at any university of other institution of tertiary education. Information derived from published or unpublished work of others has been acknowledged in the text and a list of references is given.

Nicholas Lisowiec

Date

STATEMENT ON THE CONTRIBUTION OF OTHERS

T.H. Bell provided supervision, guidance and editorial assistance for this body of work. Funding for fieldwork and analyses was provided from an ARC Large grant to T.H. Bell, and a JCU Doctoral Merit Research Scheme grant to myself. Stipend support was received from a JCU School of Earth Sciences and an Australian Postgraduate Award (APA) Scholarship.

Kevin Blake provided invaluable assistance in setting up and running the EPMA and contributed significant amounts to the techniques used here. Paul Evins provided technical and data handling advice and reviewed earlier versions of this thesis, which lead to significant improvements. Discussions with Cameron Huddlestone-Holmes, David Donald and Joe Pyle, helped improve the statistical sections of the thesis. Cameron also helped with obtaining some of the data. Joe contributed advice on technical issues, and reviewed an earlier version of the first chapter, which resulted in substantial changes and improvements.

ACKNOWLEDGEMENTS

I would like to thank Tim Bell for giving me the opportunity to firstly do a PhD and then encourage me to complete it (pretty much) within the planned timeframe, especially after the first 12 months were a failure. Andrew Ham and Cameron Huddlestone-Holmes are particularly thanked for helping me initially refocus my project, during Tim's absence.

Kevin Blake is thanked for his invaluable assistance and his continuing efforts to setup and refine the techniques used in this study. Without Kevin, this project would not have happened. Paul Evins is also thanked for his efforts in helping develop the techniques of monazite analysis and chemical dating at all levels. Discussions with Paul have helped me define many of the concepts and strategies used during the project.

I would like to thank past and present members of SAMRI and other individuals within the department. The people around me during my time at JCU have made the experience enjoyable, and helped me learn a lot.

My family down in Adelaide are thanked for encouraging me to initially make the trek to North Queensland and being wiling to help me whenever I needed it ever since.

Finally, I would like to save my biggest thank you to (and), whose love and support has always been appreciated. The final year of PhD has been interesting and eventful and we have only become closer because of it.

TABLE OF CONTENTS: VOLUME I

Statement of Access	ii
Statement of Sources	iii
Statement on the Contribution of Others	iv
Acknowledgements	V
Table of Contents, Volume I	vi
Table of Contents, Volume II	ix
Thesis Introduction and Outline	1

Chapter 1. Precision estimation in electron microprobe monazite dating: Repeated measurements versus statistical (Poisson) based calculations 10

Abstract		11
1. Introdu	action	11
2. Precisi	on in monazite dating	13
2.1.	Repeated measurements on a "compositional domain"	13
2.2.	Poisson statistics in electron microprobe analysis	15
2.3.	Other considerations	17
2.4.	Comparing the different methods	18
3. Methods		19
3.1.	Analytical conditions for monazite data	19
3.2.	Monte Carlo simulation	20
4. Result	s and discussion	21
4.1.	Measured concentrations, ages and errors	21
4.2.	Comparing the error values	24
4.3.	Assessment of the Monte Carlo technique	25
4.4.	Potential uses of Poisson statistics	26
5. Conclusions		27
6. Refere	nces	28

Chapter 2. Overprinting Acadian amphibolite-grade orogenesis in the Taconic Appalachian Blue Ridge: New ages and approaches using monazite

	-	-			
Abstract					32
1. Introduction					33
2. Data handling/r	eduction ba	ackgroun	d		35

31

THESIS INTRODUCTION AND OUTLINE

Introduction

Microstructural relationships between porphyroblasts and the matrix have been frequently used to infer the relative timing of porphyroblast growth in deformed and metamorphosed terrains (Bell and Rubenach, 1983; Bell et al., 1986; Schulz, 1990; Barker, 1994; Williams, 1994). Although the interpretation of inclusion trail geometries is still controversial (Bell et al., 1992; Passchier et al., 1992; Williams and Jiang, 1999; Ikeda et al., 2002), quantification, by way of foliation intersection/inflection axes preserved in porphyroblasts (FIAs), has shown that long histories and multiple periods of growth can be preserved (Bell and Hayward, 1991; Bell et al., 1995; Bell et al., 1998). As such, inclusion trails have been used to locally track the deformation and metamorphic history that predates the development of the matrix foliations that are finally preserved in rocks (Bell and Hickey, 1999; Stallard and Hickey, 2001; Stallard et al., 2003; Bell et al., 2004; Cihan and Parsons, 2005).

Whilst relative timing constraints on numerous sample suites have been obtained using the FIA method, chemical and absolute time data for these interpretations is required. Microstructurally, successive portions of garnet porphyroblasts generally do not correlate with the chemical zoning patterns of major cations, despite these porphyroblasts preserving a multi-stage growth history (e.g. Bell and Kim, 2004). One explanation for this has been based around the effects of deformation partitioning and reactivation of pre-existing foliations controlling the location and timing of porphyroblast growth (Bell et al., 2004). In these models, differentiated crenulation cleavage development stops porphyroblast growth because the resultant strain softening prevents microfracture, which is essential for the rapid access of components to and from the growth site. When later deformation resumes, porphyroblast growth resumes provided the deformation partitions through that location, until differentiated cleavage again begins to develop, and growth again ceases. If no significant changes have occurred in temperature (T), pressure (P) or composition (X), then on resumption of growth there should be no (or little) effect on compositional zoning. The ability to constrain absolute time and test whether this is the case is, therefore, very important. Fine-scale isotopic dating of garnet is difficult and expensive, particularly when inclusion-rich porphyroblasts are the subject of study (e.g. DeWolf et al., 1996; Vance et al., 1998; Prince et al., 2000). The dating of accessory minerals such as monazite provides a viable alternative for constraining different generations of porphyroblast growth and/or foliation development.

Monazite [(LREE)PO₄] incorporates appreciable amounts of Th and U and is highly resistant to Pb-loss through either volume diffusion (Seydoux-Guillaume et al., 2002; Cherniak et al., 2004), or metamictisation (Ewing and Haaker, 1980; Meldrum et al., 1997). Consequently, it is widely used to date metamorphic, igneous and hydrothermal events. Monazite contains little or no common Pb (Parrish, 1990). Therefore, it can be chemically dated in-situ on the electron probe microanalyser (e.g. Suzuki and Adachi, 1991; Montel et al., 1996; Rhede et al., 1996; Cocherie et al., 1998; Crowley and Ghent, 1999; Williams et al., 1999; Jercinovic and Williams, 2005; Pyle et al., 2005). Advantages of the electron probe microanalyser (EPMA) include the small spatial resolution (down to 1 μ m), minimal sample damage and the ability to get compositional data for each spot analysed. High detection limits (which generally preclude dating monazites younger than approximately 50 Ma), large errors in precision, and the inability to assess potential discordancy between ²³⁸U-²⁰⁶Pb and ²³⁵U-²⁰⁷Pb ages, are some potential problems (Montel et al., 1996; Cocherie and Albarede, 2001). However, used within its limits, monazite dating on the EPMA has the potential to provide crucial absolute time constraints on both porphyroblast growth and foliation development (Bell and Welch, 2002; Williams and Jercinovic, 2002).

Whilst monazite is an ideal accessory mineral to date garnet growth events, it is not necessarily present around the garnet isograd. The monazite stability field in metapelites commonly appears to be at a higher grade than that of garnet. Consequently, it is mostly present as inclusions in garnet porphyroblast rims and/or higher grade phases. This restricted one of the aims in this study, the dating of FIA events, which, at present, has only been attempted by Bell and Welch (2002). Nevertheless, both detailed microstructural and monazite analyses have been combined to solve particular metamorphic and deformation timing problems within the Appalachians of eastern North America. Three different areas are examined, two in the southern Appalachians and the third in the New England. Between these regions, over 150 million years of orogenesis, within three major events are recorded. The protocol for analysing monazite was (and still is) a continual process of refinement and learning. As such, the data presented here reflects this natural progression, and some of the methods used during the early parts of this project were improved on in the later parts. The data presented here has been obtained as accurately as possible and where any doubts existed regarding the results they were either re-checked using the current EPMA setup or addressed within the thesis.

Thesis Outline

The thesis consists of four sections, each written as independent bodies of work with the intention that they will be submitted as papers for publication in international journals. The chapters follow a progression from early work involving data handling and determining the precision of EPMA monazite ages, to combining monazite and garnet chemistry, microstructural classification and chemical ages to interpret the metamorphic and deformational history of the study areas. The main text of the thesis is in Volume I and figures and tables are presented in Volume II. References are given at the end of each section in Volume I and appendices are included at the end of Volume II.

The first chapter addresses how different studies have quoted precision errors in EPMA monazite ages, particularly with the "single-spot" method (where an "age" is calculated from the Pb, Th, U concentration for each data point). Two different techniques have been used, one utilising counting statistics and the other the variation within a group of individual ages/dates. By comparing the methods with a dataset from a homogeneous monazite grain, the potential underestimation of precision from counting statistics is highlighted. This chapter is a major revision of a manuscript submitted to Chemical Geology in late 2004.

The second chapter follows on from above by evaluating a non parametric (bootstrap) method for calculating precision errors in heterogeneous monazite grains/domains. Methods to chemically and microstructurally interpret individual grains in metamorphic rocks are also presented. These techniques are applied to data from the Murphy Syncline, North Carolina with the results addressing previous uncertainties as to whether regional metamorphism was Taconic (Ordovician), Acadian (Silurian-Devonian), or a combination of both events.

A narrow, fault-bounded belt of meta-sediments and meta-volcanics that extends across northern Georgia is the subject of Chapter 3. These rocks have an uncertain metamorphic age, although they contain excellent microstructures, both within garnet porphyroblasts and the matrix that potentially record a prolonged metamorphic history. Whilst the rare monazite inclusions prevented a detailed study of the porphyroblast history, the data that was obtained provides interesting insights into the metamorphic and structural development of the region.

The final chapter presents the results of an extensive study to determine the earliest stages of porphyroblast growth within meta-pelites from north-central Massachusetts. The rocks here contain multiple FIA sets within the porphyroblasts, despite the matrix having been heavily sheared late in the metamorphic history. Qualitative analysis of garnet-monazite equilibrium was undertaken in some samples to correlate monazite ages to periods of garnet porphyroblast growth. The results are interpreted with respect to the possible pattern of early metamorphism and the also the tectonic setting of metamorphism prior to shearing.

References

- Barker, A.J., 1994. Interpretation of porphyroblast inclusion trails: limitations imposed by growth kinetics and strain rates. Journal of Metamorphic Geology, 12, 681-694.
- Bell, T.H., Forde, A. and Wang, J., 1995. A new indicator of movement direction during orogenesis: measurement technique and application to the Alps. Terra Nova, V. 7, 500-508.
- Bell, T.H., Ham, A.P. and Kim, H.S., 2004. Partitioning of deformation along an orogen and its effects on porphyroblast growth during orogenesis. Journal of Structural Geology, 26, 825-845.
- Bell, T.H. and Hayward, N., 1991. Episodic metamorphic reactions during orogenesis; the control of deformation partitioning on reaction sites and reaction duration. Journal of Metamorphic Geology, 9, 619-640.

- Bell, T.H. and Hickey, K.A., 1999. Complex microstructures preserved in rocks with a simple matrix; significance for deformation and metamorphic processes. Journal of Metamorphic Geology, 17, 521-535.
- Bell, T.H., Hickey, K.A. and Upton, G.J.G., 1998. Distinguishing and correlating multiple phases of metamorphism across a multiply deformed region using the axes of spiral, staircase and sigmoidal inclusion trails in garnet. Journal of Metamorphic Geology, 16, 767-794.
- Bell, T.H., Johnson, S.E., Davis, B., Forde, A., Hayward, N. and Witkins, C., 1992. Porphyroblast inclusion-trail orientation data; eppure non son girate! Journal of Metamorphic Geology, 10, 295-307.
- Bell, T.H. and Kim, H.S., 2004. Preservation of Acadian deformation and metamorphism through intense Alleghanian shearing. Journal of Structural Geology, 26, 1591-1613.
- Bell, T.H. and Rubenach, M.J., 1983. Sequential porphyroblast growth and crenulation cleavage development during progressive deformation. Tectonophysics, 92, 171-194.
- Bell, T.H., Rubenach, M.J. and Fleming, P.D., 1986. Porphyroblast nucleation, growth and dissolution in regional metamorphic rocks as a function of deformation partitioning during foliation development. Journal of Metamorphic Geology, 4, 37-67.
- Bell, T.H. and Welch, P.W., 2002. Prolonged Acadian orogenesis: revelations from foliation intersection axis (FIA) controlled monazite dating of foliations in porphyroblasts and matrix. American Journal of Science, 302, 549-581.
- Cherniak, D.J., Watson, E.B., Grove, M. and Harrision, T.M., 2004. Pb diffusion in monazite: A combined RBS/SIMS study. Geochimica et Cosmochimica Acta, 68 (4), 829-840.
- Cihan, M. and Parsons, A., 2005. The use of porphyroblasts to resolve the history of macro-scale structures: an example from the Robertson River Metamorphics, North-Eastern Australia. Journal of Structural Geology, 27, 1027-1045.
- Cocherie, A. and Albarede, F., 2001. An improved U-Th-Pb age calculation for electron microprobe dating of monazite. Geochimica et Cosmochimica Acta, 65 (24), 4509-4522.
- Cocherie, A., Legendre, O., Peucat, J.J. and Kouamelan, A.N., 1998. Geochronology of polygenetic monazites constrained by in situ electron microprobe Th-U-total lead determination: Implications for lead behaviour in monazite. Geochimica et Cosmochimica Acta, 62 (14), 2475-2497.
- Crowley, J.L. and Ghent, E.D., 1999. An electron microprobe study of the U-Th-Pb systematics of metamorphosed monazite: the role of Pb diffusion versus overgrowth and recrystallization. Chemical Geology, 157, 285-302.
- DeWolf, C.P., Ziessler, C.J., Halliday, A.N., Mezger, K. and Essene, E.J., 1996. The role of inclusions in U-Pb and Sm-Nd garnet geochronology: Stepwise dissolution experiments and trace uranium mapping by fission track analysis. Geochimica et Cosmochimica Acta, 60, 121-134.
- Ewing, R.C. and Haaker, R.F., 1980. The metamict state: Implications for radiation damage in crystalline waste forms. Nuclear and Chemical Waste Management, 1, 51-57.
- Ikeda, T., Shimobayashi, N., Wallis, S.R. and Tsuchiyama, A., 2002. Crystallographic orientation, chemical composition and three dimensional geometry pf sigmoidal garnet: evidence for rotation. Journal of Structural Geology, 24, 1633-1646.

- Jercinovic, M.J. and Williams, M.L., 2005. Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: Background acquisition, interferences, and beam irradiation effects. American Mineralogist, 990, 526-546.
- Meldrum, A., Boatner, L.A. and Ewing, R.C., 1997. Displacive radiation effects in the monazite- and zircon-structure orthophosphates. Physical Review B, 56, 13805-13814.
- Montel, J.-M., Foret, S., Veschambre, M., C, N. and Provost, A., 1996. Electron microprobe dating of monazite. Chemical Geology, 131, 37-53.
- Parrish, R.R., 1990. U-Pb dating of monazite and its application to geological problems. Canadian Journal of Earth Science, 27, 1431-1450.
- Passchier, C.W., Trouw, R.A.J., Zwart, H.J. and Vissers, R.L.M., 1992. Porphyroblast rotation: eppur si muove? Journal of Metamorphic Geology, 10, 283-294.
- Prince, C.I., Kosler, J., Vance, D. and Gunther, D., 2000. Comparison of laser ablation ICP-MS and isotope dilution REE analyses - implications for Sm–Nd garnet geochronology. Chemical Geology, 168, 255-274.
- Pyle, J.M., Spear, F.S., Wark, D.A., Daniel, C.G. and Storm, L.C., 2005. Contributions to the precision and accuracy of chemical ages of monazite. American Mineralogist, 90, 547-577.
- Rhede, D., Wendt, I. and Förster.H.-J., 1996. A three-dimensional method for calculating independent chemical U/Pb- and Th/Pb-ages of accessory minerals. Chemical Geology, 130, 247-253.
- Schulz, B., 1990. Prograde-retrograde P-T-t-deformation path of Austroalpine micaschists during Variscan continental collision (Eastern Alps). Journal of Metamorphic Geology, 8, 629-643.
- Seydoux-Guillaume, A.-M., Paquette, J.-L., Wiedenbeck, M., Montel, J.-M. and Heinrich, W., 2002. Experimental resetting of the U-Th-Pb systems in monazite. Chemical Geology, 191, 165-181.
- Stallard, A.R. and Hickey, K.A., 2001. Shear zone vs folding origin for spiral inclusion trails in the Canton Schist. Journal of Structural Geology, 23 (12), 1845-1864.
- Stallard, A.R., Hickey, K.A. and Upton, G.J., 2003. Measurement and correlation of microstructures: the case of foliation intersection axes. Journal of Metamorphic Geology, 21 (3), 241-252.
- Suzuki, K. and Adachi, M., 1991. Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime. Geochemical Journal, 25, 357-376.
- Vance, D., Meier, M. and Oberli, F., 1998. The influence of high U-Th inclusions on the U-Th-Pb systematics of almandine-pyrope garnet: results of a combined bulk dissolution, stepwise-leaching, and SEM study. Geochimica et Cosmochimica Acta, 62, 3527-3540.
- Williams, M.L., 1994. Sigmoidal inclusion trails, punctuated fabric development and interactions between metamorphism and deformation. Journal of Metamorphic Geology, 12, 1-21.
- Williams, M.L. and Jercinovic, M.J., 2002. Microprobe monazite geochronology: putting absolute time into microstructural analysis. Journal of Structural Geology, 24, 1013-1028.

- Williams, M.L., Jercinovic, M.J. and Terry, M.P., 1999. Age mapping and dating of monazite on the electron microprobe: Deconvoluting multistage tectonic histories. Geology, 27 (11), 1023-1026.
- Williams, P.F. and Jiang, D., 1999. Rotating garnets. Journal of Metamorphic Geology, 17, 367-378.

3. Regional geology		37
4. Sample	e selection and analytical procedures	38
4.1.	Microstructural/textural classification	38
4.2.	EPMA analysis	39
4.3.	Age calculation and error propagation	40
4.4.	Analytical concerns	41
4.5.	Bootstrap method	42
5. Monazite chemistry and Th-U-Pb dates		43
5.1.	Sample CH22	43
5.2.	Sample CH27	45
5.3.	Sample CH35	45
5.4.	Sample CH62	47
6. Discus	sion	49
6.1.	Evaluation of technique	49
6.2.	Interpretation of ages	50
6.3.	Tectonic framework	52
7. Conclu	isions	53
8. References		54

Chapter 3. Alleghanian amphibolite facies tectonism within the southern BlueRidge Appalachians59

Abstract		60
1. Introd	uction	61
2. Region	nal geology	62
3. Sampl	e selection and methods	63
3.1.	Description of samples	63
3.2.	Sample selection and monazite locating procedure	64
3.3.	EPMA analysis	65
3.4.	Analytical concerns	66
3.5.	Monazite age and error calculation	67
4. Result	s	68
4.1.	CA5	69
4.2.	CA14	70
4.3.	CA17a	70
4.4.	CA30	71

	4.5.	Additional errors from excess LREE and Si	72
5.]	Discuss	ion	73
	5.1.	Monazite behaviour during foliation development	73
	5.2. and/or	Correlation of monazite grains to periods of foliation development porphyroblast growth	75
	5.3.	Interpretation of ages	78
	5.4.	Tectonic implication of ages	79
6.]	Referer	ices	81

Abstract		8
1. Introdu	action	8
2. Geolog	zical background	8
-	ption of samples and previous work	9
4. Analyt	ical procedures	9
4.1.	EPMA analysis	9
4.2.	Analytical concerns	9
4.3.	Monazite age and error calculation	9
5. Results	s and interpretation	9
5.1.	K38	9
5.2.	K53	9
5.3.	K63	9
5.4.	K45	9
5.5.	Other samples	9
5.6.	Accuracy of results	10
5.7.	Summary of Northfield and Wendell syncline samples	10
5.8.	Mount Mineral Formation summary	10
6. Discus	sion	10
6.1.	Pattern of metamorphism in central Massachusetts	10
6.2.	Implications for P-T paths	10
6.3.	Tectonic synthesis	10
7. Refere	nces	10

Thesis Conclusions

TABLE OF CONTENTS: VOLUME II

Chapter 1. Precision estimation in electron microprobe monazite dating:	Repeated
measurements versus statistical (Poisson) based calculations	1

Tables		2
Table 1.	Summary of analytical conditions	2
Table 2.	Pb, U and Th concentration and age data	3
Table 3.	Ages with uncertainties	5
Table 4.	Matrix correction uncertainties	7
Table 5.	Linear trends of data	8
Table 6.	Averages for simulated data	9
Figures		10
Fig. 1.	Plots of measured concentration and calculated age	10
Fig. 2.	Plot of absorbed current as a function of time	11
Fig. 3.	Q-Q plot of calculated ages	12
Fig. 4.	Plot of progressive age errors	13
Fig. 5.	Box plot of individual age measurements	14
Fig. 6.	Q-Q plots for Pb and U	15
Fig. 7.	Plot of progressive age errors for simulated data	16
Fig. 8.	Scatter plot of Pb vs age	17

Chapter 2. Overprinting Acadian amphibolite-grade orogenesis in the Taconic Appalachian Blue Ridge: New ages and approaches using monazite

Tables		19
Table 1.	Summary of microstructural position of monazite grains	19
Table 2.	EPMA analytical conditions	20
Table 3.	Summary of monazite data	21
Figures		23
Fig. 1.	Regional geology map of the southern Appalachians	23
Fig. 2.	Map of Murphy Syncline, with sample localities	24
Fig. 3.	Plot of absorbed current as a function of time	25
Fig. 4.	BSE images and plots related to sample CH22	26
Fig. 5.	BSE images of CH22-140-mnz1	27
Fig. 6.	BSE images and plots related to sample CH27	28
Fig. 7.	BSE images and plots related to sample CH35	30

18

Fig. 8.	BSE images and plots related to sample CH62	32
Fig. 9.	Histograms of calculated dates and bootstrap output	34
Chapter 3. Alleg	ghanian amphibolite facies tectonism within the southern Blue	
Ridge Appalach		35
Tables		36
Table 1.	Summary of samples	36
Table 2.	Summary of microstructural position of monazite grains	37
Table 3.	EPMA analytical conditions	38
Table 4.	Summary of monazite data	39
Figures		41
Fig. 1.	Regional geology map of the southern Appalachians	41
Fig. 2.	Geological map showing sample localities	42
Fig. 3.	Photomicrographs of garnet porphyroblasts	43
Fig. 4.	Photomicrographs from sample CA17a	44
Fig. 5.	Plots of absorbed current and measured U and Pb (bkg.) counts	46
Fig. 6.	BSE images and plots related to sample CA5	47
Fig. 7.	BSE images from sample CA14	49
Fig. 8.	BSE images from sample CA17a	50
Fig. 9.	Plots and Y-map of garnet porphyroblast from sample CA17a	52
Fig. 10.	BSE images from sample CA30	54
Fig. 11.	Th/U vs Ce/Y plot for three monazite inclusions in CA30	56
Fig. 12.	BSE images from sample CA30	57
Fig. 13.	Summary of shear sense preserved in CA5-0E-mnz1	58
Fig. 14.	Box plots of mean dates	59
Chanter 4 Pres	ervation of multiple stages of porphyroblast and monazite grow	wth
_	Alleghanian deformation and metamorphism	60
Tables		61
Table 1.	Summary of samples	61
Table 2.	Summary of microstructural position of monazite grains	62
Table 3.	EPMA analytical conditions	64

Table 4.Summary of monazite data65Figures68Fig. 1.Regional geology map of New England region68

Fig. 2.	Geological map of study area showing sample locations	69
Fig. 3.	Results of analyses on Manangotry grain	70
Fig. 4.	BSE images, plots and Y-map related to sample K38	71
Fig. 5.	BSE images, plots and Y-map related to sample K53	73
Fig. 6.	BSE images from sample K53	74
Fig. 7.	BSE images and plots related to sample K63	76
Fig. 8.	BSE images and Y-map from sample K45	78
Fig. 9.	BSE images from sample K52	79
Fig. 10.	BSE images from sample M54	80
Fig. 11.	Box plots of mean dates	81
Fig. 12.	Mn, Mg and Ca maps and line profiles from sample K53	82

Appendices

83

Appendix A: Overview of Monte Carlo error propagation technique

Appendix B: Monazite compositional data and counting errors for Chapter 1

Appendix C: Compositional data, k-ratio errors, calculated dates and Monte Carlo CIs for analyses in Chapter 2

Appendix D: Compositional data, k-ratio errors, calculated dates and Monte Carlo CIs for analyses in Chapter 3

Appendix E: Compositional data, k-ratio errors, calculated dates and Monte Carlo CIs for analyses in Chapter 4

Appendix F: Sample catalogue

Appendix G: Massachusetts sample locations