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Introduction 

 

Microstructural relationships between porphyroblasts and the matrix have been 

frequently used to infer the relative timing of porphyroblast growth in deformed and 

metamorphosed terrains (Bell and Rubenach, 1983; Bell et al., 1986; Schulz, 1990; 

Barker, 1994; Williams, 1994). Although the interpretation of inclusion trail geometries 

is still controversial (Bell et al., 1992; Passchier et al., 1992; Williams and Jiang, 1999; 

Ikeda et al., 2002), quantification, by way of foliation intersection/inflection axes 

preserved in porphyroblasts (FIAs), has shown that long histories and multiple periods 

of growth can be preserved (Bell and Hayward, 1991; Bell et al., 1995; Bell et al., 

1998). As such, inclusion trails have been used to locally track the deformation and 

metamorphic history that predates the development of the matrix foliations that are 

finally preserved in rocks (Bell and Hickey, 1999; Stallard and Hickey, 2001; Stallard 

et al., 2003; Bell et al., 2004; Cihan and Parsons, 2005). 

Whilst relative timing constraints on numerous sample suites have been 

obtained using the FIA method, chemical and absolute time data for these 

interpretations is required. Microstructurally, successive portions of garnet 

porphyroblasts generally do not correlate with the chemical zoning patterns of major 

cations, despite these porphyroblasts preserving a multi-stage growth history (e.g. Bell 

and Kim, 2004). One explanation for this has been based around the effects of 

deformation partitioning and reactivation of pre-existing foliations controlling the 

location and timing of porphyroblast growth (Bell et al., 2004). In these models, 

differentiated crenulation cleavage development stops porphyroblast growth because 

the resultant strain softening prevents microfracture, which is essential for the rapid 
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access of components to and from the growth site. When later deformation resumes, 

porphyroblast growth resumes provided the deformation partitions through that 

location, until differentiated cleavage again begins to develop, and growth again ceases. 

If no significant changes have occurred in temperature (T), pressure (P) or composition 

(X), then on resumption of growth there should be no (or little) effect on compositional 

zoning. The ability to constrain absolute time and test whether this is the case is, 

therefore, very important. Fine-scale isotopic dating of garnet is difficult and expensive, 

particularly when inclusion-rich porphyroblasts are the subject of study (e.g. DeWolf et 

al., 1996; Vance et al., 1998; Prince et al., 2000). The dating of accessory minerals such 

as monazite provides a viable alternative for constraining different generations of 

porphyroblast growth and/or foliation development. 

Monazite [(LREE)PO4] incorporates appreciable amounts of Th and U and is 

highly resistant to Pb-loss through either volume diffusion (Seydoux-Guillaume et al., 

2002; Cherniak et al., 2004), or metamictisation (Ewing and Haaker, 1980; Meldrum et 

al., 1997). Consequently, it is widely used to date metamorphic, igneous and 

hydrothermal events. Monazite contains little or no common Pb (Parrish, 1990). 

Therefore, it can be chemically dated in-situ on the electron probe microanalyser (e.g. 

Suzuki and Adachi, 1991; Montel et al., 1996; Rhede et al., 1996; Cocherie et al., 1998; 

Crowley and Ghent, 1999; Williams et al., 1999; Jercinovic and Williams, 2005; Pyle 

et al., 2005). Advantages of the electron probe microanalyser (EPMA) include the 

small spatial resolution (down to 1 �m), minimal sample damage and the ability to get 

compositional data for each spot analysed. High detection limits (which generally 

preclude dating monazites younger than approximately 50 Ma), large errors in 

precision, and the inability to assess potential discordancy between 238U-206Pb and 235U-

207Pb ages, are some potential problems (Montel et al., 1996; Cocherie and Albarede, 
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2001). However, used within its limits, monazite dating on the EPMA has the potential 

to provide crucial absolute time constraints on both porphyroblast growth and foliation 

development (Bell and Welch, 2002; Williams and Jercinovic, 2002). 

Whilst monazite is an ideal accessory mineral to date garnet growth events, it is 

not necessarily present around the garnet isograd. The monazite stability field in 

metapelites commonly appears to be at a higher grade than that of garnet. 

Consequently, it is mostly present as inclusions in garnet porphyroblast rims and/or 

higher grade phases. This restricted one of the aims in this study, the dating of FIA 

events, which, at present, has only been attempted by Bell and Welch (2002). 

Nevertheless, both detailed microstructural and monazite analyses have been combined 

to solve particular metamorphic and deformation timing problems within the 

Appalachians of eastern North America. Three different areas are examined, two in the 

southern Appalachians and the third in the New England. Between these regions, over 

150 million years of orogenesis, within three major events are recorded. The protocol 

for analysing monazite was (and still is) a continual process of refinement and learning. 

As such, the data presented here reflects this natural progression, and some of the 

methods used during the early parts of this project were improved on in the later parts. 

The data presented here has been obtained as accurately as possible and where any 

doubts existed regarding the results they were either re-checked using the current 

EPMA setup or addressed within the thesis. 

 

Thesis Outline 

The thesis consists of four sections, each written as independent bodies of work 

with the intention that they will be submitted as papers for publication in international 
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journals. The chapters follow a progression from early work involving data handling 

and determining the precision of EPMA monazite ages, to combining monazite and 

garnet chemistry, microstructural classification and chemical ages to interpret the 

metamorphic and deformational history of the study areas. The main text of the thesis is 

in Volume I and figures and tables are presented in Volume II. References are given at 

the end of each section in Volume I and appendices are included at the end of Volume 

II.  

The first chapter addresses how different studies have quoted precision errors in 

EPMA monazite ages, particularly with the “single-spot” method (where an “age” is 

calculated from the Pb, Th, U concentration for each data point). Two different 

techniques have been used, one utilising counting statistics and the other the variation 

within a group of individual ages/dates. By comparing the methods with a dataset from 

a homogeneous monazite grain, the potential underestimation of precision from 

counting statistics is highlighted. This chapter is a major revision of a manuscript 

submitted to Chemical Geology in late 2004. 

The second chapter follows on from above by evaluating a non parametric 

(bootstrap) method for calculating precision errors in heterogeneous monazite 

grains/domains. Methods to chemically and microstructurally interpret individual 

grains in metamorphic rocks are also presented. These techniques are applied to data 

from the Murphy Syncline, North Carolina with the results addressing previous 

uncertainties as to whether regional metamorphism was Taconic (Ordovician), Acadian 

(Silurian-Devonian), or a combination of both events. 

A narrow, fault-bounded belt of meta-sediments and meta-volcanics that 

extends across northern Georgia is the subject of Chapter 3. These rocks have an 
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uncertain metamorphic age, although they contain excellent microstructures, both 

within garnet porphyroblasts and the matrix that potentially record a prolonged 

metamorphic history. Whilst the rare monazite inclusions prevented a detailed study of 

the porphyroblast history, the data that was obtained provides interesting insights into 

the metamorphic and structural development of the region. 

The final chapter presents the results of an extensive study to determine the 

earliest stages of porphyroblast growth within meta-pelites from north-central 

Massachusetts. The rocks here contain multiple FIA sets within the porphyroblasts, 

despite the matrix having been heavily sheared late in the metamorphic history. 

Qualitative analysis of garnet-monazite equilibrium was undertaken in some samples to 

correlate monazite ages to periods of garnet porphyroblast growth. The results are 

interpreted with respect to the possible pattern of early metamorphism and the also the 

tectonic setting of metamorphism prior to shearing. 
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