ResearchOnline@JCU

This file is part of the following reference:

Moran, Corey Stephen (2006) Osteoprotegrin: a pathological role in human abdominal aortic aneurysm. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/1283/

If you believe that this work constitutes a copyright infringement, please contact <u>ResearchOnline@jcu.edu.au</u> and quote <u>http://eprints.jcu.edu.au/1283/</u>

OSTEOPROTEGERIN:

A PATHOLOGICAL ROLE IN HUMAN ABDOMINAL AORTIC ANEURYSM

Thesis submitted by

Corey Stephen MORAN BSc. (UQ) MSc. (UQ)

October 2006

for the Degree of Doctor of Philosophy in the School of Medicine James Cook University, Queensland, Australia

Principal Supervisor

Professor Jonathan Golledge, MA Mchir FRACS

Co-Supervisor

Associate Professor Natkunam Ketheesan, MD PhD

Financial Support

School of Medicine Postgraduate Stipend, James Cook University Faculty of Medicine Health and Molecular Sciences Doctoral Research Scheme, James Cook University National Health and Medical Research Council, Australia

ELECTRONIC COPY

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Signature

Date

STATEMENT OF ACCESS

I, the undersigned author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and;

I do not wish to place any further restriction on access to this work

Signature

Date

Declaration

I declare that this work is my own and has not been submitted in any other form for another degree or diploma at any university or institution of tertiary education. Information derived from the published or unpublished works of others has been acknowledged in the text and a list of references is given.

Corey Stephen Moran October 2006

Declaration on Ethics

The research presented and reported in this thesis was conducted within the guidelines for research ethics outlined in the *National Statement on Ethics Conduct in Research Involving Human* (1999), the *Joint NHMRC/AVCC Statement and Guidelines on Research Practice* (1997), the *James Cook University Policy on Experimentation Ethics. Standard Practices and Guidelines* (2001), and the *James Cook University Statement and Guidelines on Research Practice* (2001). The proposed research methodology received clearance from the James Cook University Experimentation Ethics Review Committee (approval numbers H1464 and A964)

October 16, 2006

Corey Moran

(Date)

Acknowledgements

The production of this thesis would not have been possible without the opportunity given me, nor without the endless support and encouragement from a number of people throughout my term of study. It is to these people that I wish to extend my gratitude.

First, I must thank my mentors Professor Jonathan Golledge and Associate Professor Natkunam Ketheesan. I am sincerely grateful for their supervision, guidance, and friendship during my candidature, but most of all, for their continuing belief in my abilities as a scientist when at times I was not so sure.

Deep thanks go to Dr Moira McCann for both her willingness and patience in getting me started in the right direction. I extend my appreciation to Dr Mirko Karan for his friendship, guidance, and brain-storming sessions, and to Dr Paula Clancy for her guidance and technical assistance. The time and efforts of Dr Bradford Cullen and Mrs Frances Wood in their work with the mouse model which provided me with tissue samples and data is gratefully acknowledged. A warm thankyou goes to my fellow PhD candidate and office buddy throughout my study, Simone Mangan, for her companionship, tolerance, and support. Very special thanks go to Dr Maria Nataatmadja from the Department of Medicine, University of Queensland for her direction in VSMC culture, and to Drs Frank Quigley and Indijit Virdi of The Townsville and Mater Misericordiae hospitals for their assistance in providing aortic tissue samples. I must also thank the James Cook University School of Medicine for financial and administrative support that allowed me to undertake research on a stimulating and worthwhile project.

Communications & Awards

1. CONFERENCES

Moran CS, McCann M, Karan M, Quigley F, Lam AKY, Ketheesan N, Golledge J.*Osteoprotegerin (OPG): A role in the pathogenesis of human abdominal aortic aneurysm*? Xth meeting of the Australian Vascular Biology Society (AVBS); Ballarat, Victoria, Australia; September 2003. (Poster presentation)

Moran CS, McCann M, Karan M, Quigley F, Virdi I, Lam AKY, Ketheesan N, Golledge J. *Osteoprotegerin: A key cytokine in abdominal aortic aneurysm*. XIIIth International Vascular Biology Meeting (IVBM); Toronto, Canada; June 2004. (Poster presentation)

Moran CS, Karan M, Quigley F, Ketheesan N, Golledge J. *Therapeutic relevance of osteoprotegerin (OPG) in human abdominal aortic aneurysm (AAA).* XIth meeting of the Australian Vascular Biology Society (AVBS); Barossa Valley, South Australia; September 2004. (Oral presentation)

Moran CS, Golledge J. *Interaction between ang-II, OPG, and PPARy in human AAA: A therapeutic pathway?* XIIIth meeting of the Australian Vascular Biology Society (AVBS); Gold Coast, Queensland; September 2006. (Poster presentation)

2. PAPERS

Moran CS, McCann M, Karan M, Norman P, Ketheesan N, Golledge J. Association of osteoprotegerin with human abdominal aortic aneurysm progression. *Circulation* 2005;111:3119-3125

Moran CS, Ketheesan N, Golledge J. Interaction between angiotensin II, osteoprotegerin, and peroxisome proliferator-activated receptor gamma in human AAA. *Arterioscler Thromb Vasc Biol* (Submitted)

Moran CS, Ketheesan N, Golledge J. Modulation of aortic smooth muscle cell phenotype by osteoprotegerin and AAA pathogenesis. (Manuscript in preparation)

Moran CS, Kazi M, Ketheesan N, Golledge J. OPG inhibits VSMC proliferation via dephosphorylation of Erk and inhibition of the MAP-Kinase transduction pathway. (Manuscript in preparation)

3. AWARDS

- Chemicon Prize in Biology and Genetics, Poster presentation, 3rd JCU Natural Sciences Fesitval, 2006
- John Shaw Biomedical Postdoctoral Fellowship, National Heart Foundation, Australia (2005).
- Doctoral Merit Research Prize, Faculty of Medicine, JCU (2004).
- Student Award, Oral presentation, AVBS Meeting, Barossa Valley (2004).

Abstract

Rupture of Abdominal Aortic Aneurysm (AAA) is the end-stage, catastrophic failure of the aneurysmal aortic wall and is associated with a mortality rate of up to 95 percent. Presently, surgery is the only treatment option available but carries with it a mortality rate of up to five percent and is usually reserved for repair of aneurysms showing high probability of rupture. What is required for the treatment of AAA, and essentially the basis of research in this area, is to understand the pathology of the disease well enough so that non-surgical intervention aimed at inhibiting small aneurysm progression can be developed.

The lack of non-invasive medical treatment for the disease, especially at the initial stages of development, stems from an incomplete understanding of its pathogenesis. Despite extensive laboratory and clinical research, the precise mechanisms leading to aneurysm formation remain unclear. The hallmark features of an aneurysmal aortic wall are degradation and fragmentation of the medial extracellular matrix (ECM), and significant reduction in smooth muscle cell (SMC) density, believed to be associated with the marked cellular inflammatory response also observed in the aneurysmal tissue.

A newly identified member of the tumour necrosis factor receptor superfamily known as osteoprotegerin (OPG) is constitutively expressed within the human artery wall and, under pathological conditions, is upregulated and associated with vascular disease. Elaboration on the involvement OPG of in AAA will determine its potential as a pharmacological target for the treatment of aneurysmal disease.

The focus of this study was to understand whether OPG might be important in the development of AAA. Two hypotheses were proposed:

- 1. Expression of OPG is upregulated in the aneurysmal aorta
- 2. Osteoprotegerin actively promotes aneurysm phenotype within the aortic wall

The specific aims of the study were to:

- a) Assess relationship between aortic concentration of OPG and the presence of aneurysm
- b) Define possible mechanism(s) by which OPG may be functionally active in the promotion of aneurysm development
- c) Modulate aortic expression of OPG and assess the effect on aneurysm development

Serum OPG was correlated with aneurysm growth rate in 146 men with small AAA followed by ultrasound for 3 years (R=0.20; P=0.04), and a demonstrated predictor of aneurysm expansion on multiple-regression analysis (P=0.02; coefficient 1.33, SE 0.51) in a model consisting of patient age, diabetic status, smoking history, initial aortic diameter, serum cholesterol, and C-reactive protein. Western analysis showed 3-fold, 8-fold, and 12-fold greater OPG concentrations in human AAA biopsies compared to age and gender-matched atherosclerotic narrowed aorta (AOD; 1.4±0.1 ng/mg tissue vs 0.5 ± 0.1 ng/mg tissue; P=0.002), post-mortem non-diseased abdominal aorta (PAA; 1.4 ± 0.1 ng/mg tissue vs 0.2 ± 0.1 ng/mg tissue; P<0.001), and non-diseased thoracic aorta (TA; 1.4 ± 0.1 ng/mg tissue vs 0.1 ± 0.06 ng/mg tissue; P < 0.001), respectively. Resident vascular smooth muscle cells (VSMC) and infiltrating macrophages were identified as primary sources for OPG within the aneurysmal aortic media. The association between aortic expression of OPG and the presence of AAA was confirmed in an animal model of experimental aneurysm formation, in which levels of OPG protein were 4-fold greater in aneurysmal aortic tissue compared to non-aneurysmal tissue. Furthermore, aortic tissue levels of OPG in this model correlated strongly with vessel diameter.

Healthy human aortic VSMC incubated with recombinant human OPG (0-20 ng rhOPG/10⁵ cells/ml/24h) developed an aneurysmal phenotype defined by dosedependent impaired cell proliferation (P<0.001), increased apoptosis (P<0.01), decreased interleukin (IL)-6 expression (P<0.001), and increased matrix metalloproteinase (MMP)-9 activity (P=0.01). Gene expression in OPG-treated VSMC reflected these results exhibiting downregulation of genes associated with cell growth and survival, and upregulation of genes that negatively regulate cell growth and promote cell death.

Incubation of human monocytic cells with OPG (0-20 ng rhOPG/10⁵ cells/ml/24h) resulted in up to a 2-fold dose-dependent increase in IL-6 production in lipopolysaccharide (LPS)-activated cells (P=0.005). In addition, OPG (1 ng/10⁵ cells/ml/24h) acted to induce a 2-fold increase in MMP-9 expression (P<0.001), with a 1.5-fold increase in MMP-2 production (P=0.01) in resting human monocytic cells.

Treatment of human AAA tissue in culture with the angiotensin II receptor blocker, Irbesartan, and the peroxisome proliferator-activated receptor gamma (PPAR γ) ligands, Pioglitazone and Rosiglitazone, inhibited OPG production by up to 50%, as well as reducing inflammatory cytokine, and proteolytic enzyme production. The effects produced by thiazolidinedione treatment on aneurysm tissue *ex vivo* were reproduced *in vivo*. Both aortic expression of OPG and MMP activity within aortic tissue from a mouse model of experimental aneurysm formation were downregulated significantly with Pioglitazone medication.

This study demonstrates for the first time the association of OPG with AAA and identifies a possible key role for the protein in the promotion of an aneurysmal phenotype within the normal aortic wall. The ability of existing medication to limit this action potentially opens a therapeutic pathway through which to limit aneurysm expansion in humans by targeting arterial expression of OPG.

Contents

DECLARATION STATEMENT OF ACCESS DECLARATION ON ETHICS ACKNOWLEDGEMENTS COMMUNICATIONS & AWARDS ABSTRACT LIST OF TABLES LIST OF FIGURES ABBREVIATIONS		i i iii iii iv vi xiv xv xviii
СНА	PTER 1 INTRODUCTION	1
СНА	PTER 2 LITERATURE REVIEW	4
2.1	AORTIC STRUCTURE IN HEALTH	4
2.1.1	The Aortic Wall	4
2.1.2	Aortic Extracellular Matrix: Tunica Media	6
	2.1.2.1 Collagen	6
	2.1.2.2 Elastin	6
2.1.3	Aortic Response to Change: Vascular Remodeling	9
	2.1.3.1 Extracellular Proteolytic Systems	10
	(i) Plasminogen/Plasmin System	10
	(ii) The Matrix Metalloproteinase (MMP) System	12
	2.1.3.2 Vascular Cell (SMC) Apoptosis	15
	2.1.3.3 Vasculopathology of Ageing	20
2.2	THE ANEURYSMAL AORTA	23
2.2.1	Clinical Background	23
	2.2.1.1 Definition	23
	2.2.1.2 Prevalence	23
	2.2.1.3 Risk Factors	24
	2.2.1.4 Natural History	25
	2.2.1.5 Management Options	26
2.2.2	Pathogenesis of Abdominal Aortic Aneurysms	27
	2.2.2.1 Altered Matrix Biology	28
	(1) Elastin (ii) Collegen	29
	a Collagen Synthesis	31
	b. Collagen Metabolism	31
	(iii) Other ECM Components	33
	2.2.2.2 Proteolytic Degradation of the Aortic Media	34
	(i) MMP-2	34
	(11) MMP-9 (iii) MMP 12	37
	(III) WIWIF-12 2223 Aberrant Remodeling and AAA	<i>31</i> 20
	2.2.2.3 Aberranii Kenioueung unu AAA 2.2.2.4 Inflammation and AAA	29 42
	(i) Proinflammatory Cytokines	42
	(ii) Inflammatory-cell Recruitment	43
	(iii) Angiotensin II	44
	(iv) Hypoxia-induced Inflammation	45

	2.2.2.5 Smooth Muscle Cell Apoptosis in AAA	45
2.3	OSTEOPROTEGERIN	47
2.3.1	Characterization	47
2.3.2	Gene Organization and Protein Structure	48
	2.3.2.1 The OPG Gene	48
	2.3.2.2 The OPG Protein	49
2.3.3	OPG and the Vascular System	54
	2.3.3.1 The Skeletal-Vascular Link	54
	2.3.3.2 Association of OPG with Vascular Disease	55
2.4	SUMMARY	58
СНА	PTER 3 GENERAL MATERIALS AND METHODS	60
3.1	HUMAN TISSUE STUDIES	60
311	Preparation and Storage of Human Serum	60
312	Collection of Vascular Tissue	60
313	Preparation and Storage of Bionsies	61
314	Histology	61
5.1.1	(i) Tissue and Slide Preparation	61
	(ii) Haematoxylin and Eosin Stain	62
	(iii) Immunohistochemistry	62
3.1.5	Tissue Protein Extraction and Quantification	63
3.1.6	Western Blot Analysis	63
	(i) Protein Separation and Transfer (ii) Protein Detection and Viguelization	64
217	(ii) Protein Detection and Visualization Gelatin Zymography	64 65
3.1.7	NUTPO STUDIES	65
3. 2	Coll Culture	05
3.2.1	(i) Human Vascular Smooth Muscle Cells	65 65
	(ii) Monocytic THP-1 Cells	66
	(iii) Human Aortic Macrophages and Peripheral Blood Mononuclear Cells	66
	(iv) Cell Passaging	67
	(v) Cell Storage	67
	(vi) Irypan Blue Exclusion Test of Cell Viability (vii) Cell Culture Immunocutochemistry	68 60
322	(vii) Cen Culture	69
323	Enzyme-linked Immunoassay	70
324	Fluorescence-activated Cell Scanning	70
5.2.1	(i) Cell Fixation	70
	(ii) Cell-surface Staining	71
	(iii) Intracellular Staining	71
3.2.5	Assessment of Cell Proliferation	72
3.2.6	Assessment of Cell Apoptosis	72
	(i) Plasma Membrane Asymmetry (Annexin V Labeling)	72
2.2.7	(11) DNA Fragmentation	72
3.2.7	(i) Purification	/3
	(i) Assessment of Purification Vield and Stability	73
3.3	MOUSE MODEL OF AAA	74
3.3.1	Animals	74
332	Aneurysm Formation	74
333	Assessment of Aneurysm Development	75
2.2.2		10

3.4	STATISTICS	75
3.4.1	Human Studies	
3.4.2	Animal Model	
CHAI	PTER 4 FEASIBILITY STUDIES AND PROTOCOL	
	OPTIMIZATIONS	77
4.1	INTRODUCTION	77
4.2	R&D DuoSet [®] ELISA for OPG and IL-6	77
4.2.1	Study Design	77
4.2.2	Results and Conclusion	78
4.3	ANTIGEN EPITOPE RETRIEVAL FOR OPG IMMUNOSTAINING	79
4.3.1	Study Design	79
4.3.2	Results and Conclusion	80
4.4	WESTERN BLOT ANALYSIS FOR OPG	81
4.4.1	Study Design	81
4.4.2	Results and Conclusion	82
4.5	ISOLATION AND CULTURE OF VSMC	83
4.5.1	Study Design	84
4.5.2	Results and Conclusion	84
4.6	MACROPHAGE ISOLATION FROM AAA TISSUE	86
4.6.1	Study Design	86
4.6.2	Results and Conclusion	86
4.7	DETERMINATION OF VSMC PROLIFERATION	87
4.7.1	Aim of Study	87
4.7.2	Results and Conclusion	88
4.8	LPS-ACTIVATION OF THP-1 CELLS	89
4.8.1	Study Design	89
4.8.2	Results and Conclusion	90
4.9	EXTRACTION OF VSMC RNA	90
4.9.1	Study Design	91
4.9.2	Results and Conclusion	91
4.10	EXPLANT CULTURE OF HUMAN AAA TISSUE	92
4.10.1	Study Design	92
4.10.2	Results and Conclusion	92
4.11	ANIMAL MODEL FOR AAA	93
4.11.1	Study Design	93
4.11.2	Results and Conclusion	94
4.12	DETERMINATION OF DOSE-RANGE OF rhOPG FOR IN VITRO	
	STUDIES	95
4.12.1	Study Design	96
4.12.2	Results and Conclusion	96
CHAI	TER 5 OSTEOPROTEGERIN AND THE PRESENCE OF	00
= 1	AORTIC ANEURYSM	98
5.1		98
5.2	EXPERIMENTAL METHODS	99
5.2.1	Relationship between serum levels of OPG and AAA	99
5.2.2	Comparison of OPG levels in aneurysmal versus non-aneurysmal	
	aortic tissue	99

5.2.3	Secretion of OPG by vascular and inflammatory cells within the	
	aneurysm wall	99
5.2.4	Expression of aortic OPG in experimental AAA	100
5.3	RESULTS	100
5.3.1	Serum levels of OPG are weakly with aneurysm growth rate	100
5.3.2	OPG is upregulated in human aneurysmal aorta compared with non-	
	aneurysmal aorta	102
5.3.3	OPG is secreted at high levels by medial smooth muscle cells and	
	inflammatory cells within the human aortic aneurysm wall	104
5.3.4	OPG concentration is higher in aneurysmal aorta compared to non-	
	aneurysmal aorta and correlates with aortic diameter in a mouse model	105
5 A	01 AAA.	107
5.4.	DISCUSSION	108
CHA	PTER 6 BIOLOGICAL ACTION OF OPG IN AAA	
	PATHOGENESIS	110
6.1	INTRODUCTION	110
6.2	EXPERIMENTAL METHODS	111
6.2.1	OPG and proliferation of normal human aortic VSMC	111
6.2.2	OPG and apoptosis in normal human aortic VSMC	111
6.2.3	Effect of OPG on IL-6 production and gelatinase activity in normal	
	human aortic VSMC	112
6.2.4	Effect of OPG on IL-6 production and gelatinase activity in human	
	Monocytic cells	112
6.3	RESULTS	112
6.3.1	Recombinant human OPG inhibits proliferation in normal human VSMC	112
6.3.2	Recombinant human OPG promotes apoptosis in normal	
	human VSMC	113
6.3.3	Recombinant human OPG inhibits IL-6 production and augments	
	MMP-9 activity in normal human VSMC	116
6.3.1.	Recombinant human OPG stimulates IL-6 production and MMP-9	
	activity in THP-1 cells	117
6.4.	DISCUSSION	120
CHA	PTER 7 MECHANISMS OF OPG-INDUCED ANEURYSMAL	
	PHENOTYPE IN HUMAN ABDOMINAL AORTIC VSMC	122
7.1	INTRODUCTION	122
7.2	EXPERIMENTAL METHODS	123
7.2.1	Preparation of control and OPG-treated VSMC	123
7.2.2	Gene Expression	123
7.3	RESULTS	124
7.3.1	Yield and purity of VSMC mRNA	124
7.3.2	OPG regulates expression of genes governing VSMC growth	
	and survival	126
7.4	DISCUSSION	128

CHA	PTER 8 MODULATION OF OPG IN THE ANEURYSMAL	
	AORTA	132
8.1	INTRODUCTION	132
8.2	EXPERIMENTAL METHODS	133
8.2.1	Effect of AT ₁ R blockade on OPG production in AAA tissue	133
8.2.2	Effect of PPARy activation on OPG production in AAA tissue	133
8.2.3	Effect of activation on aortic expression of PPARy in experimental AAA	134
8.2.4	Effect of PPARy activation on expression of aortic OPG in	
	experimental AAA	134
8.3	RESULTS	135
8.3.1	AT ₁ R blockade suppresses OPG production in AAA tissue	135
8.3.2	PPARγ activation downregulates OPG production in AAA tissue	138
8.3.3	Pioglitazone increases PPARy within the aorta of Angiotensin II-	
	infused mice	141
8.3.4	PPARγ-activator therapy <i>in vivo</i> decreases OPG expression in the	
	experimental aneurysmal aorta	141
8.4	DISCUSSION	143
CHA	PTER 9 GENERAL DISCUSSION	146
APPE	ENDIX 1 REPRODUCIBILITY DATA OF DuoSet [®] OPG ELISA	160
APPH	ENDIX 2 REGULATION OF GENE EXPRESSION IN HEALTHY HUMAN ABDOMINAL AORTIC VSMC BY OPG	163
APPE	ENDIX 3 BUFFERS, GELS, AND SOLUTIONS	177
APPE	ENDIX 4 ETHICS APPROVALS	181
BIBL	IOGRAPHY	185

List of Tables

Table 2.1	MMP subclasses and their extracellular substrates	13
Table 2.2	Feature differences between Apoptosis and Oncosis (Necrosis)	16
Table 2.3	Risk factors for abdominal aortic aneurysms	24
Table 2.4	Differences in MMP expression/activity in AAA and AOD	41
Table 2.5a	Regulation of OPG production (upregulation)	52
Table 2.5b	Regulation of OPG production (downregulation)	53
Table 4.1	Spectrometric analysis of extracted THP-1 RNA	91
Table 4.2	Average quantity of OPG (ng) per milligram of AAA tissue	96
Table 4.3	Average number of VSMC per milligram AAA tissue	97
Table 7.1.	Total RNA yield from control and rhOPG-treated VSMC	124
Table 7.2	OPG-induced change in expression of genes associated with cell-cycle regulation and survival in healthy human aortic VSMC	126
Table 7.3	OPG-induced change in expression of genes associated with growth and extracellular matrix synthesis in healthy human aortic VSMC	127

List of Figures

Figure 2.1	Cross-section through the normal aortic wall	5
Figure 2.2	Lamellar Unit	8
Figure 2.3	Morphological sequence of apoptosis	17
Figure 2.4	Schematic illustrating apoptosis pathway	18
Figure 2.5	Schematic illustrating factors potentially involved in the pathogenesis of aortic aneurysmal disease	28
Figure 2.6	Structure and amino acid sequence motifs of the OPG protein	50
Figure 4.1	Assessment of reproducibility in the R&D DuoSet [®] OPG ELISA	78
Figure 4.2	Effect of antigen epitope retrieval on the immunodetection of OPG in human AAA tissue	80
Figure 4.3	Quantification of immunostain: epitope retrieval versus no epitope retrieval	81
Figure 4.4	Validation of protein extraction and western blot protocols	82
Figure 4.5	Comparison of polyclonal primary antibody versus monoclonal antibody for detection of OPG in human AAA tissue.	83
Figure 4.6	Ratio of CD68-positive cells to α -actin-positive cells from primary culture through to third passage	85
Figure 4.7	Immunohistochemical validation of VSMC isolated by enzymic extraction.	85
Figure 4.8	FACS detection of the macrophage-specific cell surface marker CD71	87
Figure 4.9	DNA synthesis in VSMC isolated from nondiseased and aneurysmal human aorta over 24 hours	88

Figure 4.10	Proliferation in NASMC exposed to increasing concentration of FBS	89
Figure 4.11	Secretion of IL-6 from LPS-stimulated THP-1 cells	90
Figure 4.12	Stability of ribosomal RNA following storage at -20°C for 14 days	91
Figure 4.13	Viability of tissue explants pre-culture and after six days incubation in the absence or presence of treatment	93
Figure 4.14	Suprarenal aortic aneurysms in angiotensin II- infused ApoE ^{-/-} mice	94
Figure 4.15	MMP-9 activity in aortic segments from angiotensin II-infused ApoE ^{-/-} mice and correlation with aortic diameter	95
Figure 5.1	Correlation between serum OPG concentration and aortic diameter and aneurysm growth rate	101
Figure 5.2	Localization and distribution of OPG in healthy human aorta, human aneurysmal aorta, and human occluded aorta	102
Figure 5.3	Over-expression of OPG in human AAA	103
Figure 5.4	OPG expression in human aortic medial VSMC	105
Figure 5.5	Comparison of cellular secretion of OPG	105
Figure 5.6	Detection of intracellular OPG in AAA-derived VSMC by FACS	106
Figure 5.7	Detection of intracellular OPG in AAA-derived macrophages by FACS	106
Figure 5.8	Tissue OPG associated with aneurysm formation in the aorta of angiotensin II-infused ApoE ^{-/-} mice and correlated with aortic diameter	107
Figure 6.1	Inhibition of proliferation in healthy human aortic VSMC by OPG	113
Figure 6.2	Apoptosis in healthy human aortic VSMC induced by rhOPG	114

Figure 6.3	DNA fragmentation induced in normal human aortic VSMC by rhOPG	115
Figure 6.4	Upregulation of MMP-9 and downregulation of IL-6 in normal human aortic VSMC by rhOPG	116
Figure 6.5	Effect of rhOPG-treatment on IL-6 production in resting and LPS-activated THP-1 cells	117
Figure 6.6	IL-6 production in LPS-stimulated THP-1 cells in the presence of rhOPG	118
Figure 6.7	Upregulation of MMP-9 and MMP-2 in LPS- stimulated THP-1 cells	119
Figure 7.1	Stability of extracted VSMC mRNA	125
Figure 7.2	Purity of extracted VSMC mRNA	125
Figure 8.1	Effect of AT ₁ R blocker Irbesartan on MMP-2, 9, and IL-6 production in human AAA tissue explants	136
Figure 8.2	Downregulation of OPG expression in AAA tissue explants by AT_1R blocker Irbesartan	137
Figure 8.3	Downregulation of MMP-9 and IL-6 in human AAA tissue explants by PPAR γ activation	139
Figure 8.4	Downregulation of OPG production in human AAA tissue explants by PPAR γ activation	140
Figure 8.5	Upregulation of aortic PPAR γ in angiotensin II-infused mice by pioglitazone	141
Figure 8.6	Effect of pioglitazone pre-treatment on aneurysm formation in the suprarenal aorta of angiotensin II-infused ApoE ^{-/-} mice	142
Figure 8.7	Downregulation of OPG and MMP-9 production within the suprarenal aorta of pioglitazone-treated angiotensin II-infused ApoE ^{-/-} mice	143
Figure 9.1	Postulated role of OPG in AAA pathogenesis and progression in humans.	154

Abbreviations

AAA	Abdominal Aortic Aneurysm
AAMø	Aortic Aneurysm-derived Macrophage(s)
AASMC	Aneurysm Aortic Smooth Muscle Cell(s)
ACE	Angiotensin Converting Enzyme
AOD	Aortic Occlusive Disease
ApoE (^{-/-})	Apolipoprotein E Gene (homozygous deletion)
AT ₁ R	Angiotensin II Receptor Type 1
DMEM	Dulbecco's Modified Eagles Media
DNA	Deoxyribonucleic Acid
ECM	Extracellular Matrix
ELISA	Enzyme-linked Immunoassay
FACS	Fluorescence-activated Cell Scanning
FBS	Foetal Bovine Serum
IFN	Interferon
IL	Interleukin
IRA	Infra-renal Aorta
LPS	Lipopolysaccharide
MMP	Matrix Metalloproteinase(s)
Mø	Macrophage(s)
NASMC	Normal Aortic Smooth Muscle Cell(s)
OPG	Osteoprotegerin
PAA	Post-mortem non-diseased Abdominal Aorta
PBM	Peripheral Blood Monocyte(s)
PPAR	Peroxisome Proliferator-activated Receptor
RANK	Receptor Activator of NFkB
RANKL (Rkl)	RANK Ligand
rhOPG	recombinant human Osteoprotegerin
RNA	Ribonucleic Acid
SEM	Standard Error of the Mean
SMC	Smooth Muscle Cell(s)
SRA	Supra-renal Aorta
ТА	Thoracic Aorta
TNF	Tumour Necrosis Factor
VSMC	Vascular Smooth Muscle Cell(s)