This file is part of the following reference:

Access to this file is available from:

http://eprints.jcu.edu.au/1278/

The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact ResearchOnline@jcu.edu.au and quote http://eprints.jcu.edu.au/1278/
THE EPIDEMIOLOGY OF MELIOIDOSIS IN PAPUA NEW GUINEA

A Thesis submitted by
Jeffrey Mitchell WARNER B.App.Sci (MLS) (CSU)
in December, 2004

for the degree of Doctor of Philosophy in
the discipline of Microbiology and Immunology
of the School of Biomedical Science at
James Cook University, Townsville
DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references given.

J M Warner
December 2004

STATEMENT ON ACCESS TO THESIS

I, the undersigned, the author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian digital Theses Network, for use elsewhere.

I understand that, as unpublished work a thesis has significant protection under the Copyright Act and;

I do not wish to place any further restriction on access to this work.

J M Warner
December 2004

STATEMENT ON THE CONTRIBUTION OF OTHERS

I acknowledge the help and support of Mr Daniel Gal, Mr Mark Mayo and Prof. Bart Currie in the preparation of the macro restriction digest gels. Also, the help of Dr Catriona McElene in the preparation of the PCR gels. Finally I acknowledge the help of Dr Bryant Allen for access to the PNGRIS and preparation of biogeographical maps.

J M Warner
December 2004
ACKNOWLEDGMENTS

This project has been much more than a study to fulfill the requirements of a PhD, more a fulfilment of ideas and seeds of inspiration planted through my career over the years by many mentors. I thank Roderick Hughes who over 20 years ago trained me in bacteriology but, perhaps more importantly, also started me thinking about the world around me and my part in it; the late Peter Hunt, a veteran medical technologist and leader of the MLT program at the then Riverina College of Advanced Education whose stories of working in the developing world set the vision and inspired me; Mark Stewart senior microbiologist at Mona Vale Hospital who taught me the importance of quality; the late Ian Mogg for his encouragement to fulfil my dreams.

In PNG I thank Dr Graham and Pat Tucker for their inspiration and encouragement during my first “tour” in 1992. The Asia Pacific Christian Mission for enabling me to work in PNG and the opportunity for a life changing experience. My expatriate friends in PNG, Dr David and Ali Learoyd, Keith and Rose Pauley and Keith and Norma Briggs. I particularly thank Dr Wayne Melrose who introduced me to PNG and has provided me with support ever since.

The opportunity to present this work as a PhD candidate at James Cook University (JCU) came with the support and encouragement of Associate Professor Robert Hirst. I thank him for this opportunity, his academic mentoring, editing skills and friendship. At JCU I also wish to thank Associate Professor Warren Shipton for his friendship, wisdom and insights into biogeography, Dr Graham Burgess for his help with ELISA development and thesis construction, Dr Lee Skerratt and Associate Professor Leigh Owens for their help with statistics. Thanks to Donna Rudd for sacrificing her research so I could finish mine (your turn now!). Many colleagues provided encouragement and helped with self belief when times were bad, many thanks to all.
This project was undertaken concurrently with my day job of establishing and teaching the Medical Laboratory Science degree at JCU. I thank the students who it has been my pleasure to teach for the past six years. I can no longer blame old lectures, late practical marking and bad temper on an unfinished thesis. I hope now this project is completed, we can work together in unravelling all the questions it has raised as we develop the graduate Medical Laboratory Science program.

To my practical helpers at JCU Drs Cat McElene, Brad Cullen, Ray Layton for their help with molecular biology. To Dr Jan Smith and Ruth Campbell for their ELISA support. The School of Biomedical Science technicians, past and present for putting up with my thieving and disorganised prac sessions. Thanks for the haircuts Helen! At Menzies School of Health Research Professor Bart Currie, Mark Mayo and Daniel Gal for their help with molecular epidemiology. At the Australian National University, Dr Bryant Allen for access to the PNG Resource Information System and preparation of the maps. I look forward to further collaboration. To Clement and staff of the microbiology laboratory at Port Moresby, many thanks for help during the Port Moresby based study.

Funding for this work was provided by BHP Community Trust and the Asian Pacific Foundation, many thanks for their interest in a “boutique infectious disease” of the developing world.

I present this work for Papua New Guinean scientists and clinicians and include details of cases so they are documented for publication. In their description I hope they may trigger awareness when similar cases are encountered in the future.

Finally my extended and personally PNG family. To my friends and adopted relatives at Balimo I say gae kabigibega dae waelabega dima. Without the support of both staff of Balimo Health Centre and the community of Balimo very little of this work would have been possible. To my special friend and wabeya kabeya Daniel Pelowa, no way to repay your enormous contribution, many thanks wabeya, gae
kabigibega - this is as much yours as mine. To my Australian-based family and friends, thanks for sticking by me at a time of acute selfishness.

But to my long suffering wife, [REDACTED] and our other important project of the last five years, our son [REDACTED]. To them I dedicate this work in the memory of the sacrifices they both have endured during their support of me as I have attempted to complete this work. I am coming home now!
ABSTRACT

Melioidosis has only been sporadically reported in PNG and its contribution to the disease burden of Papua New Guineans has been questioned. The rural district of Balimo, located within the Aramia flood plain of the Western province, was chosen to test the hypothesis that melioidosis is under recognised in rural PNG due to a lack of clinical awareness and a poorly resourced laboratory sector. A prospective clinical screening program conducted at Balimo Health Centre revealed melioidosis as the cause of a previously recognised fatal febrile illness affecting children. The implementation of diagnosis and treatment protocols reduced the apparent case fatality rates from 100% to 45%. Although case numbers were small, features of melioidosis in this community include childhood predilection (average age 12-years), a lack of traditional co-morbidity and regional clustering.

Simple methods of isolate identification were tested against gold standards of phenotypic and genotypic techniques and found to be sensitive and sustainable.

An IHA serological study of 747 children demonstrated a correlation between sero-reactivity and clinical incidence. Furthermore, selective culture of 374 soil samples taken from the environment within this region revealed autochthonous *B. pseudomallei* from village communities demonstrated to be melioidosis endemic. Of the 191 samples taken from areas within these villages where children play, 3.7% were found to harbour the organism. DNA macro restriction analysis demonstrated clonality between clinical and environmental strains further substantiating the hypothesis that a driver of childhood predilection is behaviour typical of children which encourages exposure to *B. pseudomallei* from permanently saturated soil and/or water, most likely through preexisting abrasions or pernasal inoculation.

A lack of genetic diversity of *B. pseudomallei* revealed by DNA macro restriction analysis is a feature. This may represent recent importation or the comfortable niche of environment - host cycling of this virulent saprophyte. This is in contrast to the diversity demonstrated in the analysis of the avirulent PNG derived *B. thailandensis*.
In a geographical analysis of the Balimo region, the environmental attributes of low altitude (<600 m), inundation and extent of inundation and hydraquents as the predominate soil type are typical of this melioidosis implicated region. The subsequent mapping of PNG in terms of these attributes revealed only isolated regions which share these features. If the rare reports of melioidosis elsewhere in PNG is an accurate reflection of the national burden of the disease, these environmental attributes may represent important biogeographical boundaries for melioidosis in PNG. These data may serve in the remote sensing of melioidosis in PNG and throughout the Pacific-Australasian region.

To further substantiate the importance of these geographic boundaries, an indirect IgG ELISA-based sero-epidemiological assay was developed using antigen derived from PNG

\textit{B. pseudomallei} and used on samples taken from individuals from 16 regions throughout PNG. The assay was able to detect sero-reactivity that was dependent on region which varied according to degrees of melioidosis prevalence. The true sero-prevalence ranged from 0 - 55%, demonstrating significant spatial sero-clustering. Further, when regions were classified into risk-localities based on sero-reactivity, a correlation was revealed between regions determined high-risk by population sero-reactivity and biogeography.

A prospective study in Port Moresby where 3561 samples were selectively screened for

\textit{B. pseudomallei} demonstrated melioidosis to be endemic in the empirically diagnosed tuberculosis (TB) patient cohort and patients presenting with sepsis associated type 2 diabetes, although the incidence is low.

In demonstrating endemic melioidosis in rural PNG for the first time, it is hoped this work will contribute to decreasing the fatality rates of pneumonia and sepsis in this rural subsistence community and may aid in the uncovering of the submerged iceberg that is melioidosis within this region.
TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iii

ABSTRACT ... vi

ABBREVIATIONS .. xvii

CHAPTER 1 - AN INTRODUCTION ... 1
 1.1 Introduction ... 2
 1.2 The Purpose and Hypothesis .. 3
 1.3 Rationale for the Study .. 3
 1.4 The Study ... 4

CHAPTER 2 - A REVIEW OF THE LITERATURE 6
 2.1 The Microorganism .. 7
 2.1.1 Discovery .. 7
 2.1.2 Nomenclature and taxonomy 7
 2.1.3 Description .. 8
 2.2 Melioidosis ... 9
 2.2.1 The name .. 9
 2.2.2 Host range ... 9
 2.2.3 Clinical presentation ... 10
 2.2.3.1 Acute melioidosis .. 11
 2.2.3.2 Subacute melioidosis .. 12
 2.2.3.3 Chronic melioidosis .. 14
 2.2.3.4 Latent melioidosis ... 14
 2.2.2 Treatment .. 16
 2.2.2.1 Directed therapy based on prospective trials 16
 2.2.2.2 Cytokine therapy and vaccination 18
 2.3 Epidemiology ... 19
 2.3.1 Geographic distribution ... 19
 2.3.1.1 Known regions of endemity are the tip of the iceberg 19
 2.3.1.2 Melioidosis is hyperendemic in some Asian countries 20
 2.3.1.3 Africa and the Americas 21
 2.3.1.4 Melioidosis in temperate regions 22
 2.3.1.5 Melioidosis in Australia 22
 2.3.2 Reservoir of infection, habitat and ecology 24
 2.3.2.1 Early observations .. 24
 2.3.2.2 Soil and water .. 24
 2.3.2.3 Interactions with the environment 25
 2.3.2.4 Environmental isolation techniques 26
 2.3.3 Transmission ... 28
 2.3.3.1 Environmental exposure 28
 2.3.3.2 Arabinose utilisation .. 28
2.3.3.3 Rainfall association 29
2.3.3.4 Human to human transmission 31
2.3.3.5 Nosocomial and iatrogenic transmission 31
2.3.4 Molecular epidemiology 32
2.3.4.1 Ribotyping ... 32
2.3.4.2 Random amplified polymorphic DNA 32
2.3.4.3 DNA macro restriction analysis and pulse field gel
 electrophoresis ... 33
2.3.4.4 Multi locus sequencing typing 34
2.3.5 Prospective studies reveal risk factors and epidemiology . 34

2.4 The Laboratory Diagnosis of Melioidosis: Phenotypic Characteristics

2.4.1 Selective culture colonial and cellular morphology 38
2.4.2 Substrate utilisation tests 39
2.4.2.1 Commercial phenotypic identification systems ... 40
2.4.2.2 Simple identification criteria can be used in developing
countries .. 41
2.4.3 Serology .. 42
2.4.3.1 The clinical use of serology 42
2.4.3.2 Antibodies and antibody assays 42
2.4.3.3 Validation and clinical utility of a sero-diagnostic assay
 .. 44
2.4.3.4 Serology as an epidemiological tool 45
2.4.4 Molecular Diagnostics 46

2.5 Pathogenesis .. 47
2.5.1 Adherence .. 47
2.5.2 Extracellular factors 48
2.5.3 Virulence genes ... 48
2.5.4 Surviving as an intracellular pathogen 48

2.6 Melioidosis in Papua New Guinea 50

CHAPTER 3 - BALIMO PYREXIA OF UNKNOWN ORIGIN SYNDROME:
MAYBE MELOIDOSIS ... 54
3.1 Introduction .. 55
3.2 Materials and Methods ... 57
3.2.1 Study centre ... 57
3.2.1.1 Balimo, Western province PNG 57
3.2.1.2 Balimo Health Centre 59
3.2.2 Laboratory diagnosis of melioidosis: culture, isolation and
 identification ... 60
3.2.2.1 Basic bacteriology 60
3.2.2.2 Burkholderia pseudomallei selective media 60
3.2.2.3 Isolate identification 60
3.2.3 Laboratory diagnosis of melioidosis: indirect haemagglutination
 serology .. 61
3.2.3.1 Antigen preparation 61
3.2.3.2 IHA test method 61
3.2.4 Clinical screening for melioidosis and suspected melioidosis cases

3.2.4.1 Patient selection protocols .. 63
3.2.4.2 Clinical screening protocols for melioidosis .. 63
3.2.4.3 Case definition ... 64
3.2.5 Rainfall association ... 64
3.2.6 Treatment protocols .. 65
3.2.6.1 Acute presentation (patient presenting with sepsis) 65
3.2.6.2 Subacute presentation (patient presenting with PUO or localised disease) ... 65
3.2.7 Serology survey .. 65
3.2.7.1 Blood collection for sero-prevalence ... 65
3.2.7.2 Statistical analysis ... 66
3.3 Results ... 67
3.3.1 Clinical screening for melioidosis and suspected cases 67
3.3.2 Descriptions of culture confirmed cases .. 68
3.3.2.1 Case AW .. 68
3.3.2.2 Case KW .. 69
3.3.2.3 Case ID ... 70
3.3.2.4 Case GD ... 71
3.3.2.5 Case DS ... 72
3.3.2.6 Case KawS .. 73
3.3.2.7 Case NG ... 73
3.3.2.8 Case TG ... 74
3.3.2.9 Case RI ... 74
3.3.3 Association of melioidosis cases with mean monthly rainfall 74
3.3.4 Serological survey .. 75
3.3.4.1 Sero-prevalence .. 75
3.3.4.2 Statistical analysis .. 76
3.4 Discussion ... 78
3.4.1 Treatment-refractory febrile disease may not be resistant malaria or TB 79
3.4.2 Traditional co-morbidity is not a feature .. 80
3.4.3 Childhood predilection ... 81
3.4.4 Regional and familial clustering ... 81

CHAPTER 4 - THE RESERVOIR OF INFECTION AND BIOGEOGRAPHY OF MELIOIDOSIS IN PAPUA NEW GUINEA .. 87
4.1 Introduction ... 88
4.2 Materials and Methods .. 89
4.2.1 Selective broth .. 89
4.2.2 Optimisation of soil sample preparation ... 89
4.2.2.1 Preparation of B. pseudomallei control suspension 89
4.2.2.2 Soil sample preparation .. 90
4.2.2.3 Sensitivity experiments: soil mass and supernatant inoculum volume 90
List of Tables

Table 3.01 Confirmed and suspected melioidosis cases documented in Balimo during 1981-84; 1994-96; 1998; 2000 ... 68
Table 3.02 Sero-prevalence of Balimo District Community School population using IHA titre of > / = 40 as indicative of significant sero-reactive 75
Table 3.03 Sero-prevalence of Balimo District Community School population positive reactors by age and sex 76
Table 3.04 Statistical analysis of observed sero-clustering between community schools ... 76
Table 4.01 Soil preparation methods .. 90
Table 4.02 Initial optimisation of soil isolation technique 95
Table 4.03 Method D after incubation condition optimisation. Results after five days incubation before subculture. p = pure culture 96
Table 4.04 Soil sampling sites and sample types 97
Table 4.05 Numbers and percentages of ARA - isolates from each village . 97
Table 4.06 Numbers and percentages of ARA + isolates from each village . 98
Table 4.07 ARA - status of isolates relative to sample site in the Balimo region . 99
Table 4.08 ARA + status of isolates relative to sample site in the Balimo region . 99
Table 4.09 Biogeographical characteristics in RMU of the Balimo and Tapila regions of PNG .. 101
Table 5.01 Clinical isolates and identification based on simple on-field tests 121
Table 5.02 Environmental isolates and identification based on simple on-field tests ... 122
Table 5.03 Clinical isolates API20NE and arabinose assimilation 124
Table 5.04 Environmental isolates API20NE and arabinose assimilation 125
Table 5.05 Results of PCR systems specificity study 127
Table 5.06 Clinical isolates PCR and AMC30 in vitro susceptibility results 128
Table 6.01 Isolates of B. pseudomallei implicated in the study 139
Table 6.02 PNG B. thailandensis isolates included for molecular typing 139
Table 7.01 Study centres, samples sizes, locations and melioidosis status 159
Table 7.02 Derivation of population profile groups 161
Table 7.03 ELISA validation .. 162
Table 7.04 Sero-prevalence of all regions. Regions highlighted in red are regions chosen to represent known varying degrees of clinical prevalence 163
Table 7.05 Locality risk profile criteria ... 168
Table 7.06 Locality risk group analysis of unknown melioidosis prevalence regions ... 169
Table 8.01 Number and type of samples selectively cultured for B. pseudomallei at the POMGH Pathology 6.10.00 - 1.6.01 180
Table 8.02 Number of sputum samples and patients selectively cultured for B. pseudomallei, including data on TB in Port Moresby (Anon, 2000a) .. 181
Table 8.03 Case details from POM ... 182
Figure 3.01	National Map of Papua New Guinea (Microsoft Encarta Atlas)	55
Figure 3.02	Map of the Lower Fly region of the Western province, Boxed section the approximate boarders of the Gogodala language group (Microsoft Encarta Atlas)	58
Figure 3.03	Balimo urban township	58
Figure 3.04	Melioidosis cases by month vs. mean annual rainfall at Daru 1981 - 2002	75
Figure 3.05	Sanebase point, Adiba village	82
Figure 4.01	Map of RMU of Balimo and Tapila village regions. The “melioidosis implicated environment” coloured pink and Tapila village region (melioidosis non-implicated) green	102
Figure 4.02	National map of PNG showing attributes of altitude, inundation and extent of inundation and predominant Balimo soil type (hydaquents)	103
Figure 4.03	Melioidosis implicated environmental region of the ESP	104
Figure 4.04	Digi point Kimama village, soil on this incline harbours B. pseudomallei	108
Figure 5.01	TBps	120
Figure 5.02	SBps	120
Figure 5.03	Location of sites within the study centre	121
Figure 5.04	Arabinose and assimilation tests C1-C4, neg and E1-E4, pos	124
Figure 5.05	16S PCR representative gel	130
Figure 5.06	TTS PCR representative gel	130
Figure 6.01	SpeI digest PFGE patterns of three epidemiologically associated B. pseudomallei isolate groups (red Adiba, blue Teleme Kimama village, green Digi pt Kimama village)	142
Figure 6.02	SpeI digest PFGE patterns demonstrating all clinical derived B. pseudomallei (C prefix) with the same genotype as epidemiologically unrelated clinical and environmental isolates shown in Figure 6.01. Included in rows 11 - 15 are PNG B. thailandensis genotype 1. Isolate A37 (row 1) uncharacterised (see chapter 5)	143
Figure 6.03	SpeI digest patterns of PNG B. thailandensis genotypes II - X	144
Figure 6.04	House building at Sanebase pt Adiba village	145
Figure 6.05	Children washing at Sanebase pt Adiba village	146
Figure 6.06	Children at Digi pt Kimama village	147
Figure 7.01	Regions demonstrating true prevalence of <10%	164
Figure 7.02	Regions demonstrating true prevalence >10%	165
Figure 7.03	Comparison of the sero-prevalence between regions of varying degrees of melioidosis prevalence	166
Figure 7.04	Shift of sero-reactivity from low prevalence regions through to higher absorbance readings	169
Figure 7.05	Histograms representing locality risk-group 1	170
Figure 7.06	Histograms representing locality risk-group 2	171
Figure 7.07 Histograms representing locality risk-group 3 172
Figure 7.08 Histograms representing locality risk-group 4 172
Figure 7.09 National Sero-epidemiology. Locality risk groups. (See detail of boxed region in Figure 7.10) 173
Figure 7.10 Aramia river region. Population profile risk groups (Boxed region of Figure 8.08). Pink represents environmental attributes of Balimo. Green represents environmental attributes of Tapila . . 173
Figure 8.01 Monthly rainfall Port Moresby, yearly average (1994 - 2002) and 2001. Scale below X axis indicates POMGHP study time frame and arrows indicate presentation of case 183
Figure 8.02 Monthly rainfall Port Moresby, yearly average (1994 - 2002) and 2002. Scale below X axis indicates CPHL study time frame and arrows indicate presentation of case 183
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><</td>
<td>less than</td>
</tr>
<tr>
<td>></td>
<td>greater than</td>
</tr>
<tr>
<td>ACD</td>
<td>acid citrate dextrose</td>
</tr>
<tr>
<td>AFB</td>
<td>acid fast bacilli</td>
</tr>
<tr>
<td>ALP</td>
<td>alkaline phosphatase</td>
</tr>
<tr>
<td>ALT</td>
<td>analine transaminase</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>ARA</td>
<td>arabinose</td>
</tr>
<tr>
<td>ASH</td>
<td>Ashdown agar</td>
</tr>
<tr>
<td>ASHEB</td>
<td>Ashdown environmental selective broth</td>
</tr>
<tr>
<td>AST</td>
<td>aspartate transaminase</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>B. thailandensis</td>
<td>Burkholderia thailandensis</td>
</tr>
<tr>
<td>B. cepacia</td>
<td>Burkholderia cepacia</td>
</tr>
<tr>
<td>B. mallei</td>
<td>Burkholderia mallei</td>
</tr>
<tr>
<td>B. pseudomallei</td>
<td>Burkholderia pseudomallei</td>
</tr>
<tr>
<td>BD</td>
<td>Becton Dickinson</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>CF</td>
<td>cystic fibrosis</td>
</tr>
<tr>
<td>cfu</td>
<td>colony forming unit</td>
</tr>
<tr>
<td>CHEF</td>
<td>contour-clamped homogenous electric field</td>
</tr>
<tr>
<td>CI</td>
<td>confidence limit</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>CMI</td>
<td>cell mediate immunity</td>
</tr>
<tr>
<td>CPHL</td>
<td>Central Public Health Laboratory</td>
</tr>
<tr>
<td>CTAB</td>
<td>hexadecyltrimethy ammonium bromide</td>
</tr>
<tr>
<td>df</td>
<td>degrees of freedom</td>
</tr>
<tr>
<td>dl</td>
<td>decilitre</td>
</tr>
<tr>
<td>DM</td>
<td>diabetes mellitus</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethyl diamine tetra acetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme linked immunosorbant assay</td>
</tr>
<tr>
<td>ESP</td>
<td>East Sepik province</td>
</tr>
<tr>
<td>fl</td>
<td>femtolitres</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>g</td>
<td>gravity</td>
</tr>
<tr>
<td>G-CSF</td>
<td>granulocytic colony stimulating factor</td>
</tr>
<tr>
<td>GASP</td>
<td>growth advantage in stationary phase</td>
</tr>
<tr>
<td>GIS</td>
<td>geographic information system</td>
</tr>
<tr>
<td>GP</td>
<td>soil from garden place</td>
</tr>
<tr>
<td>GPS</td>
<td>global positioning system</td>
</tr>
<tr>
<td>Hb</td>
<td>haemoglobin</td>
</tr>
<tr>
<td>HLA</td>
<td>human leukocyte antigen</td>
</tr>
<tr>
<td>hr</td>
<td>hour(s)</td>
</tr>
<tr>
<td>ICT</td>
<td>immuno chromatography test</td>
</tr>
<tr>
<td>IFA</td>
<td>immuno fluorescent assay</td>
</tr>
</tbody>
</table>
IgG immunoglobulin G
IgM immunoglobulin M
IHA immunohaemoagglutination
IMI intra muscular injection
IV intra venous
kb kilobase
kg kilogram
km kilometer
l litre
Lat latitude
Long longitude
LPS lipopolysaccharide
m meter
Mb megabase
MCV mean cell volume
mg milligram
min minute
ml millilitre
MLA Medical Laboratory Assistant
MLT Medical Laboratory Technology
MLST multi locus sequencing typing
mm millimeter
mM millimolar
mmol millimoles
MPN most probably number
N. fowleri Naegleria fowleri
NA nucleic acid(s)
NCCLS National Committee of Clinical Laboratory Standards
NCTC National Collection of Type Cultures
N–PtC soil from the body of village (not points of land) frequented by children
NPV negative predictive value
NT not tested
p probability
P. fluorescens Pseudomonas fluorescens
PaLMS Pacific Laboratory Medical Services
PCR polymerase chain reaction
PFGE pulse field gel electrophoresis
PNG Papua New Guinea
PNGRIS Papua New Guinea Resource Information System
POM Port Moresby
POMGH Port Moresby General Hospital
POMGHP Port Moresby General Hospital Pathology
PPV positive predictive value
pt point
PtC soil from points of land frequented by children
PUO pyrexia of unknown origin
QID quarter in die (four times a day)
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAPD</td>
<td>random amplified polymorphic DNA</td>
</tr>
<tr>
<td>RMU</td>
<td>Resource Mapping Unit</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>S. aureus</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>SBps</td>
<td>suspected B. pseudomallei</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>SNH</td>
<td>soil from near or under houses</td>
</tr>
<tr>
<td>spp</td>
<td>species</td>
</tr>
<tr>
<td>TB</td>
<td>tuberculosis</td>
</tr>
<tr>
<td>TBE</td>
<td>tris boric acid EDTA</td>
</tr>
<tr>
<td>TBps</td>
<td>typical B. pseudomallei</td>
</tr>
<tr>
<td>TE</td>
<td>tris-EDTA</td>
</tr>
<tr>
<td>TP</td>
<td>true prevalence</td>
</tr>
<tr>
<td>TSA</td>
<td>tryptone soya agar</td>
</tr>
<tr>
<td>TTS</td>
<td>type III secretion</td>
</tr>
<tr>
<td>UFM</td>
<td>Unevangelised Fields Mission</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>URT</td>
<td>upper respiratory tract infection</td>
</tr>
<tr>
<td>UV</td>
<td>ultra violet</td>
</tr>
<tr>
<td>vs.</td>
<td>versus</td>
</tr>
<tr>
<td>WBC</td>
<td>white blood count</td>
</tr>
<tr>
<td>WCC</td>
<td>white cell count</td>
</tr>
<tr>
<td>WELLS</td>
<td>soil adjacent to wells</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>µl</td>
<td>micro litre</td>
</tr>
<tr>
<td>µm</td>
<td>micro metre</td>
</tr>
</tbody>
</table>