JCU ePrints

This file is part of the following reference:

Raffiudin, Rika (2002) Honey bee behavioural evolution and itpr gene structure studies. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/1249

HONEY BEE BEHAVIOURAL EVOLUTION AND *ITPR* GENE STRUCTURE STUDIES

Thesis submitted by

Rika Raffiudin MSc (Honours) In March 2002

for the degree of Doctor of Philosophy in Zoology and Tropical Ecology within the School of Tropical Biology James Cook University

STATEMENT OF ACCESS

I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and, by microfilm or other means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement:

In consulting this thesis I agree not to copy or closely paraphrase It in whole or in part without the written consent of the author; and to make proper public written acknowledgment for any assistance which I have obtained from it.

Beyond this, I do not wish to place any restriction on access to this thesis.

Rika Raffiudin

March 27, 2002

ABSTRACT

Honey bees (genus *Apis*) display a rich variety of fascinating traits, which can reveal considerable information about their evolution by means of analysis and investigation. Therefore, my main objective is to investigate some of these traits in order to determine food recruitment and nesting behaviour ancestral traits in *Apis*.

In my first experiment, I focused on foraging behaviour performed by the forager honey bee. Its ability to conduct food recruitment through elegant dance behaviour is facilitated by memory formation in the brain. In the first experimental study described in Chapter 2, I conducted an *itpr* gene characterisation, a highly expressed gene present in honey bee brain (Kamikouchi et al. 1998). A partial sequence of the *A. mellifera itpr* gene was obtained which comprised of 2, 091 bp and showed 62%, 60%, 33%, 56%, and 56% similarities respectively to those in *Panulurius argus* (lobster), *Drosophila melanogaster*, *Caenorhabditis elegans, Xenopus laevis*, and *Mus musculus itpr*-1. A phylogenetic analysis using *itpr* demonstrated that *D. melanogaster itpr* is closest to that of *A. mellifera itpr* introns (Sinha and Hasan 1999) and there are four *Apis itpr* introns which appear absent in *D. melanogaster*. In my research, I investigated several conserved putative sites in *A. mellifera* IP₃R protein namely protein kinase A (PKA) and protein kinase C (PKC) phosphorylation sites. These particular phosphorylation sites are considered to be important in honey bee memory formation (Menzel 2001).

Certain parts of *itpr* characterised in Chapter 2 were used as molecular markers for honey bee molecular phylogenetic reconstruction, concatenated with *COII* and *lsRNA* genes.

In further analysis based on the more complex model of DNA evolution, another hypothesis of *Apis* evolution was revealed. According to this model, the monophyletic *Apis* genus is split into two lines; those are the *A. mellifera* group line and the *A. dorsata* and *A.*

florea groups line. Another outcome based on *COII* molecular phylogenetics combined with previous data, indicated the ambiguity detected in *A. koschevnikovi* by Willis et al. (1992) resulted from a possible error.

A. florea and *A. andreniformis* were confirmed as basal species in *Apis* phylogeny followed by the more derived species: *A. dorsata*, *A. laboriosa*, *A. d. binghamii*, *A. mellifera*, *A. koschevnikovi*, *A. cerana*, *A. nuluensis*, and *A. nigrocincta*. My findings suggest that *A. nuluensis* and *A. nigrocincta* are the most derived species and that they have recently speciated from *A. cerana*.

By mapping dance behaviour characteristics onto the weighted Maximum Likelihood (ML) consensus tree, an interesting result was produced. It was found that unordered trait analysis did not answer the question whether horizontal dancing or vertical dancing was the ancestral trait because species with vertical dance behaviour are monophyletic and so are those with horizontal dance behaviour. However, given that horizontal dancing behaviour is less complex, an ordered dance character state seems justified. Based on these considerations, horizontal dance behaviour seems most likely to be ancestral. Another possibility of dance behaviour evolution hypothesis revealed by applying another DNA evolution model in ML analysis, mentioned that the vertical dancer honey bees (*A. mellifera* and *A. dorsata* group) are not monophyletic; they are clustered in different clade. The latter are in the same clade with the other horizontal dancers, *A. florea* group. Hence, it turns another possibility that vertical dance could be the ancestral to that of horizontal dance.

Inferring honey bee nest behaviour by mapping onto the molecular phylogenetics tree led me to the conclusion that there were two alternative evolutionary histories accounting well for this behaviour. One scenario has the ancestral state for *Apis* being open nesting with cavity nesting being a derived state. In the other, equally parsimonious scenario, cavity nesting in *Apis* is ancestral and apparent derived directly from cavity nesting in the Bombini and Meliponini, and open-nesting has been evolved twice (or once) in the *A*. *florea* and *A. dorsata* groups.

Only open nesters that construct platform at the top of their nests perform horizontal dancing. Other open nesters such as the *A. dorsata* group do not construct such platform and so it is possible that their dance behaviour has evolved into a vertical dance. Similar features namely no platform and vertical dance behaviour exists in the *A. mellifera* group. Hence, there is an adaptation of dance behaviour to the nest structure, which shows a correlation between these two behavioural character traits.

ACKNOWLEDGEMENTS

I wish to acknowledge my indebtedness to my supervisor, Prof. Ross Crozier a highly dedicated scientist with never-ending outstanding scientific ideas. One of these ideas was the *itpr* gene and he suggested to me (3 years ago) to explore this gene for my PhD project. This area of research has proved to be a very interesting one for me in adding to the existing body of knowledge concerning this gene's evolution and its link to honey bee behaviour. I thank him for his supervision of my work and also for funding part of my PhD project from his ARC honey bee and conference funded (Chiangmai, Thailand, in 2000), as well as for providing other study facilities for me.

Prof. Crozier's lab members are also an amazing group of friend and I would like to thank them all especially Ching Crozier, Michelle Guzik, Lynn Atkinson, Rebecca Johnson, Melissa Carew, Maria Chiotis, Mike Goodisman, and Graham Thompson for their huge technical assistance and in checking my thesis. Further thanks go to Simon Robson and Simon Cook both of whom gave me excellent ideas during my PhD. exit seminar preparation.

I also wish to thank AusAID who sponsored my PhD scholarship as well as Doctoral Merit Research Scheme (DMRS) which funded most of the literature. The Zoology Department and the School of Tropical Biology and Ecology at JAMES COOK UNIVERSITY Townsville also deserve my grateful thanks for providing me with such an excellent place to conduct my molecular research into social insect evolution.

Without the kindness of bee researchers such as Ben Oldroyd, Soesilowati Hadisoesilo, Regula Schimd-Hempel, Jurgen Paar, Siti Salmah, and Gard W. Otis, my study could not have been completed. These people have generously provided the honey bees and the bumbles bees for my study. I am also grateful to Salim Tingek, and Mike Burgess who have given me kind assistance in honey bee and stingless bee collections. I owe further thanks to Robert Lawn for the *A. mellifera* specimens that I used in my *itpr* cDNA experiments.

For phylogenetic assistance, I thank to Lars Jermiin who gave me assistance in running the TREECONS program.

Several pieces of information in my thesis were obtained from personal communication. Therefore, first I would like to thank Ben Oldroyd for the *A. mellifera* open nest information and the concept of multicombs and singlecomb in *Apis*, which proved to be a fascinating area to pursue. Secondly, I am grateful to Andrew Beckenbach for his unpublished ATP-8 primer, which I have used to amplify 3'-end of *Trigona fimbriata COII* gene. Finally, I thank Tom Seeley for giving me his kind permission to include his *A. cerana* cavity-nesting picture in my thesis.

Soesilowati Hadisoesilo, Siti Salmah and Idris Abas deserve my thanks for their assistance during *A. andreniformis* dance behaviour observations in Padang, Sumatra, Indonesia.

I am grateful to my institution in Indonesia, the BOGOR AGRICULTURAL UNIVERSITY, for giving me an opportunity to study overseas at JAMES COOK UNIVERSITY. My special thanks go to the members of the Zoology Laboratory (Biology Department, Faculty of Mathematics and Natural Sciences).

My lovely husband, Drajat Nugraha, and my lovely daughter, Rahmia Nugraha, please allow me to thank you for your unforgettable patience and never-ending encouragement. You have made it possible for me to spend countless hours, day and night, working on my PhD completion.

Last, but not least, I wish to say thank you, to my mama and papa, and to my mother-in-law and father-in-law, for their patient prayers for my study success.

TABLE OF CONTENTS

STATEMENT OF	ACCESS
ABSTRACT	
ACKNOWLEDG	EMENTS
TABLE OF CONT	TENTS
LIST OF TABLES	3
LIST OF FIGURE	S
LIST OF APPENE	DICES
STATEMENT ON	SOURCES
CHAPTER 1:	General Introduction: Honey bee biology and neural system
INTRODU	JCTION
	ney bee biology
	ney bee taxonomy
	ney bee distribution
Bee	fossil records
	ney bee behaviour: nest structure and dance behaviour
CHAPTER 2:	<i>A. mellifera</i> Inositol 1,4,5-Trisphosphate Receptor (<i>Itpr</i>) Gene Structure
ABSTRAC	CT
INTRODU	JCTION
	acellular second messengers and their genes target in
	A .mellifera brain
Inos	sitol 1,4,5-trisphosphate (IP ₃): a second messenger
	pathway
Itpr	gene and the splicing sites
	sitol 1,4,5-trisphosphate receptor structure
	n-intron organisation
OBJECTI	VES

MATERIALS AND METHODS	27
DNA: extraction, sequencing and genomic walking	27
RNA: extraction, single and double stranded cDNA	
amplification and cDNA walking	28
Nucleotide, amino acids and motif protein analysis	29
<i>Itpr</i> phylogenetic analysis	30
RESULTS	31
<i>Itpr</i> gene structure: exon-intron organisation	31
<i>Itpr</i> gene phylogenetic analysis	36
IP ₃ R: motifs structure and function	37
DISCUSSION	38
<i>Itpr</i> gene structure	38
Putative A. mellifera partial IP ₃ Receptor	40
Does the <i>itpr</i> gene mediate honey bee memory formation?	42
FUTURE STUDY	43
APPENDIX 1	45
APPENDIX 2	48
CHAPTER 3:	
ABSTRACT	50
INTRODUCTION	52
Nest construction	52
Dance behaviour	54
Previous studies of morphology and molecular phylogenetics	
in Apis	55
Nuclear and mitochondrial gene combined data	56

OBJECTIVE	56
MATERIALS AND METHODS	56
DNA: extraction, sequencing and genomic walking	56
Taxon analysis	57
Molecular markers	57
Phylogenetic analysis	59
<i>COII</i> comparisons	62
Behaviour characters mapping	62

RESU	LTS	64
	Characteristics of the sequence data	64
	Homogeneity test of base composition between sequence	69
	Trees construction	69
	Tree topology comparisons	75
	COII tree topology comparisons	80
	Dance behaviour characteristics map	82
	Nest behaviour characteristics map	85
DISCU	JSSION	90
	Honey bee tree topology	90
	Is horizontal dance an ancestral characteristic state?	92
	Is open nesting an ancestral characteristic state?	93
POTE	NTIAL AREAS FOR FURTHER RESEARCH	94
APPE	NDIX 1	95
	NDIX 2	101
	NDIX 3	105
CHAPTER 4	General Discussion	108
Putativ	e PKA and PKC phosphorylation sites in <i>itpr</i>	108
	rative analysis of intron position	109
Honey	bee molecular phylogenetics	110
	d honey bee behavioural traits	111
REFERENCI	ES	115

LIST OF TABLES

CHAPTER 2:

	Table 1: Oligonucletide primers used in A. mellifera itpr gene characterisation.	28
	Table 2: Partial A. mellifera itpr gene intron length, conserved and non- conserved introns splice-sequences	34
]	Table 3: A. mellifera itpr gene nucleotide variants	35
	Table 4: Likelihood value of each <i>itpr</i> tree using different amino acid models	36
СНАРТ	Γ ER 3.	
]	Table 1. Nest structure comparisons in Bombini, Meliponi, and Apini	53
]	Table 2. Bee sample locations and collectors	57
]	Table 3. PCR and sequencing primers of honeybee COII and IsRNA genes	59
]	Table 4. Honey bee COII sequence used in data comparison	62
]	Table 5. Itpr exon - intron length and intron deletion parts	65
	Table 6. Nucleotide sequence data for each codon position and or each gene	65
	Table 7. The homogeneity of base composition between sequences was tested using TREEPUZZLE 5.0 program.	66
	Table 8. Numbers of constant, variable and informative sites of unweighted Maximum Parsimony analysis of <i>itpr</i> , COII and <i>lsRNA</i> genes	66
ŗ	Table 9. List of model of substitutions determined by MODELTEST program (Posada and Crandall 1998) for each gene and the concatenated datasets.	69
	Table 10. Tree topology comparisons using the concatenated datasets and the HKY+G+I model.	75
	Table 11. Tree topology comparisons between honey bee HKY+G+Iand GTR+G+I tree topology under GTR model of substitution	78

Table 12. Tree topology comparisons between honey bee HKY+G+I and GTR+G+I tree topology under HKY+G+I model of substitution	78
Table 13. Tree topology comparisons between honey bee GTR+G+I and GTR+G+I outgroup shifted to dwarf honey bees tree topology under GTR+G+I model of substitution	79

LIST OF FIGURES

CHAP	TER 1:	
	Figure 1. The cavity nesting of <i>A. cerana</i>	14
	Figure 2. <i>A. dorsata</i> open nesting Figure 3. <i>A. florea</i> open nesting	14 15
	Figure 4. <i>A. andreniformis</i> open nesting	15
	- Sare and endor an ober recently	10
CHAP	TER 2:	
	Figure 1: Nucleotide and predicted amino acid sequence of partial	24
	A. mellifera itpr based on genomic and cDNA.	34
	Figure 2: <i>A. mellifera</i> and <i>D. melanogaster itpr</i> gene (Sinha and Hasan,	
	1999) and the intron positions comparisons	35
	Figure 3: The quartet puzzling tree with its support values constructed	
	from amino acids <i>itpr</i> gene of <i>A.mellifera</i> , <i>D. melanogaster</i> , <i>P. argus</i> ,	
	C. elegans, X. laevis, M. musculus	36
СНАР	TER 3:	
CIIII	ILK 5.	
	Figure 1. <i>Itpr</i> exons (boxed) and introns (lined) regions amplified	58
	Figure 2. Honey bee COII (upper) and <i>lsRNA</i> (lower) primers that are	
	used in this study	59
	Figure 3a <i>Itpr</i> exons substitution numbers and distances for each codon positions.	67
		07
	Figure 3b. <i>Itpr</i> transition and transversion relative rates	67
		(0
	Figure 4. <i>COII</i> relative rate	68
	Figure 5. <i>lsRNA</i> substitution numbers of each pair of species and	
	Tamura Nei corrected distances.	68
	Figure 6. Honey bee most likely tree based on <i>itpr</i> , COII and <i>lsRNA</i>	
	genes by using $GTR+G+I$ model of substitution (ln = -9649.26840)	70
	Figure 7. Honory has iter MI tree has a day UKY (C) I substitution	
	Figure 7a. Honey bee <i>itpr</i> ML tree based on HKY+G+ I substitution model.	71
		, 1
	Figure 7b. Honey bee <i>itpr</i> unweighted MP tree	71

Figure 8a. Honey bee <i>COII</i> ML tree based on HKY+G +I substitution model	72
Figure 8b. Honey bee COII unweighted MP tree	72
Figure 8c. Honey bee COII ML tree based on GTR+G substitution model	73
Figure 9a Honey bee <i>lsRNA</i> ML tree based on HKY+G+I substitution model	74
Figure 9b. Honey bee <i>lsRNA</i> unweighted MP tree	74
Figure 10a. ML-rule consensus of honey bee phylogenetic tree by using HKY+G+I substitution model	76
Figure 10b. The most parsimony honey bee phylogenetic tree	77
Figure 11. Honey bee <i>COII</i> phylogenetic ML tree based on HKY substitution model, compiled from previous studies	81
Figure 12. Mapping of honey bee dance behaviour onto ML (HKY+G+I model of substitution) & unweighted MP tree, by using (a) unordered and (b) ordered assumptions	83
Figure 13. Mapping of honey bee dance behaviour onto ML tree (GTR+G+I model of substitution), by using (a) unordered and (b) ordered assumptions.	84
Figure 14. Mapping of honey bee nesting behaviour onto ML (HKY+G+I model of substitution) & unweighted MP tree, by using (a) unordered and (b) ordered assumptions, and applying non-homologous assumption of nesting trait	86
Figure 15. Mapping of honey bee nesting behaviour onto ML tree under GTR+G+I model of substitution, by using (a) unordered and (b) ordered assumptions, applying non-homologous assumption of nesting trait.	87
Figure 16a. Mapping of honey bee nesting behaviour onto ML (HKY+G+I model of substitution) & unweighted MP tree, by using unordered and ordered assumptions, and applying Bombini, Meliponini and Apini homologous cavity nesting behavioural trait	88
Figure 16b. Mapping of honey bee nesting behaviour onto ML tree	

under GTR+G+I model of substitution by using unordered

and ordered assumptions, and applying Bombini, Meliponini	
and Apini homologous cavity nesting behavioural trait	89

LIST OF APPENDICES

CHAPTER 2:	
APPENDIX 1. Partial <i>itpr</i> gene alignment	45
APPENDIX 2. A. mellifera partial itpr gene: intron and exon sequences	48
CHAPTER 3:	
APPENDIX 1. Itpr DNA sequence alignment	95
APPENDIX 2. COII DNA sequence alignment	101
APPENDIX 3. <i>lsRNA</i> DNA sequence alignment	105

STATEMENT ON SOURCES

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

March 27, 2002

Rika Raffiudin

Chapter 1. General Introduction: Honey bee biology and neural system

INTRODUCTION

E.O. Wilson wrote in his review paper for Karl von Frisch book 'The Dance Language and Orientation of Bees' that "The life of bees is like a magic well, the more you draw from it, the more there is to draw" (Wilson 1968).

This chapter provides some essential background to honey bee biology. In particular, it will cover honey bee current taxonomy, biogeography and the fossil record. This general information is important to introduce specific areas of interest in my project, which are nesting and dance behaviour in honey bees, and how this behaviour relates to gene expressed in the brain, specifically the inositol-1,4,5 trisphosphate receptor (*itpr*) gene.

It is the aim of my study to explore the behavioural evolution of this social insect, in terms of dance and nesting behaviour. Descriptions of these two behavioural traits will follow the second section of this introductory chapter. Behavioural evolutionary traits will be discussed by using molecular phylogenetic approach in Chapter 3.

Honey bee dance communication can be described as special interesting behaviour, due to the elaborate way of advertising a food source to the nestmates in the colony. Honey bee brain facilitates their ability to perform such advanced communication. Neurophysiological studies have referred certain parts of the brain, which shape learning and memory ability in this social insect. In an attempt to trace the molecular basis of dance behaviour, this topic will be discussed towards the end of this chapter which will conclude with a reference to particular gene members expressed in the honey bee brain.

Honey bee biology

Honey bees live in a colony containing thousands of individuals. As an eusocial insect the drone (male) and the queen are the reproductive members in the colony, and there are overlapping generations of parent and offspring. Brood provisioning is occurring with live overlap times between parent and offspring generations (Wilson 1971). Only a single queen can exist in the colony (monogyny) (Winston 1987), but she can mate with more than ten drones (polyandry) (Palmer and Oldroyd 2001). In contrast, worker honey bees are non-reproductive caste members, although they also have limited reproductive capabilities (Ratnieks 1995; Oldroyd and Ratnieks 2000; Halling et al. 2001). Honey bees have male haploid mechanism of sex determination where fertilised eggs produce a female (queen or worker) while unfertilized eggs produce a male (drone) (Wilson 1971; Winston 1987).

Honey bee colonies also exhibit highly developed division of labour. Different tasks within the colony are carried out by different worker castes. The tasks performed are primarily age-related. In the first three weeks after pupation, workers spend their time inside the nest where tasks involve cleaning, brood rearing, constructing the nest, and guarding (Lindauer 1961). Following this, in the final stages of her life time (3-6 weeks), a worker perform outside foraging tasks (Seeley 1991).

Honey bee taxonomy

Honey bees (genus *Apis*) belong to the order Hymenoptera, suborder Apocrita, infraorder Acuelata, superfamily Apoidea, family Apidae, subfamily Apinae, tribe Apini. The Apidae are characterised by long tongues and recent classifications describe this family as comprising the three subfamilies Xylocopinae, Nomadinae and Apinae (which contain the honey bee). Within Apinae are nineteen tribes, which are classified as either corbiculate (including the honey bees) or non-corbiculate bees (Michener 2000). Corbiculate group bees has a "corbicula" or pollen basket (Michener et al. 1978) in the worker's hind leg. Corbiculate bees include the tribes Euglossini, Bombini, Meliponini and Apini (which include *Apis*) (Michener 2000).

Genus Apis

The genus *Apis* is a small group of bees, having an apiform (apine-like) body type. Worker body size ranges from small to large (7-19 mm) with hairy-erected eyes. The hind tibia lack spurs and the hind wing has both jugal and vannal lobes, with a shallow incision. The male genitalia are reduced in *Apis*, but the endophallus is highly developed (Michener 2000).

Traditionally, the *Apis* genus was known consisted of four species, those are *A. mellifera*, *A. cerana*, *A. dorsata* and *A. florea* (Koeniger 1976). Current studies mentioned that there are five more *Apis* species, namely, *A. andreniformis* (Wu and Kuang 1987), *A. koschevnikovi* (Tingek et al. 1988), *A. laboriosa* (Sakagami and Matsumura 1980; Underwood 1990b), *A. nigrocincta* (Hadisoesilo et al. 1995) and *A. nuluensis* (Tingek et al. 1996).

Honey bee species are clustered into three species groups based on body and wing size. *A. florea* species group consists of dwarf honey bees with worker forewing length of 5-7 mm. The drone has an inner lobe process at the hind tibia (Maa 1953). Medium sized honey bees are clustered in the *A. mellifera* group, with a forewing length of 7-10 mm. The giant honey bees are classified in the *A. dorsata* group with a forewing length of 12-15 mm. The two latter drone honey bee groups lack of inner lobe in the hind leg (Ruttner 1975). The following is a description of each species.

A. florea Fabricius

This species is a dwarf honey bee, 7-10 mm for workers body length. The queen is almost twice as long as the workers (13-15 mm) and drone is 11-13 mm long (Wu and Kuang 1987). Two distinctive worker characteristics are white basitarsal hairs and bright red-brown colours on the first and second abdominal tergites. The cubital index (that is length ratio of two cubital veins) is 2.78 (Wongsiri et al. 1990) - 2.864 (Rinderer et al. 1995). Worker head width is 2.60 ± 0.03 mm and wing length is 6.26 ± 0.10 mm (Seeley 1982). Drones have distinct characteristics of a long inner lobe on the hind tibia (Maa 1953; Wu and Kuang 1987) and an endophallus which is thin and curved at the terminal end and a double coiled of the bursal cornua (Wongsiri et al. 1990). *A. florea* drone mating flight is from 14.00 h - 16.45 h (Rinderer et al. 1993).

A. andreniformis Smith

A. andreniformis is another dwarf honey bee (Wu and Kuang 1987). Worker body length is 8-9 mm. Cubital index of the front wing is 6.282-6.378 which is much longer than that of *A. florea* (Rinderer et al. 1995; de Guzman et al. 1992). Drones have an inner lobe on the hind tibia, which is half the size of *A. florea*. Workers have black hairs on the hindleg and the chestnut-brown color of the first and second abdominal tergites. Drone endophallus has a thick and straight terminal end (Wongsiri et al. 1990). Drone mating flight takes place from 12.15 h - 13.45 h (Rinderer et al. 1993).

A. mellifera Linneaus

A. mellifera is a medium size honey bee, with a forewing length of 7.64-9.70 mm and a forewing cubital index of 2.30. Mean value of hind wing hook (hamuli) is 21.30. Workers head width is 3.77 ± 0.04 mm (Seeley 1982). Drones have an endophallus with one pair of cornua bulbs and chitinuous plates are present. The upper cornua of the drone endophallus are rudimentary and *A. mellifera* drone cells cap lack of pores (Ruttner 1988).

A. cerana Fabricius

A. cerana, another medium size honey bee, has specific brownish yellow mouthparts, scutellum, coxae II and trochanter II-III. The wing is almost clear hyaline (Maa 1953) while the femur II and tibia II are black. Workers head width is 3.38 ± 0.06 mm and wing length is 7.54 ± 0.14 mm (Tingek et al. 1996). Cubital index measurement of the forewing is 4.40 (Seeley 1982). *A. cerana* endophallus lacks of the chitinuous plate, which occurs in the *A. mellifera* endophallus. It has three pairs of upper cornua and perforated drone cap cells (Ruttner 1988).

A. nigrocincta Smith

A. nigrocincta was described by Smith (1861), based on the A.R. Wallace collection. Workers are characterised by a pale or rusty color of the antennae scape, clypeus, labrum, mandibles, scutellum, legs and abdomen (Smith 1861; Hadisoesilo et al. 1995) with reddish-tan hair over most of the body. Forewings are slightly darker hyaline (Maa, 1953). Morphometric results show significant differences between sympatric *A*. *cerana* in hind femur, tibia, metatarsus length, tergite III and IV and forewing cubital index which is 3.84 ± 0.228 (Hadisoesilo et al. 1995). Reproductive isolation between sympatric *A. cerana* and *A. nigrocincta* has been confirmed based on drone mating flight (12.30 h – 14.30 h in *A. nigrocincta* and 15.20 h – 17.30 h in *A. cerana*) and on differences in male genitalia (Hadisoesilo and Otis 1996). *A. nigrocincta* drone cell cap composed of thin wax without pore, unlike that of *A. cerana* drone cap cell which is hard and porous (Hadisoesilo and Otis 1998).

A. nuluensis Tingek, Koeniger, Koeniger

A. nuluensis is a montane medium sized honey bee characterised by light-brown femur II and femur III. There are four whitish tomenta on the tergite and long abdominal hairs on workers $(0.23 \pm 0.016 \text{ mm})$. Drone pigmentation is entirely black on the thorax and abdomens (Tingek et al. 1996). Morphometric analysis reveals that *A. nuluensis* is similar in body size measurements to *A. nigrocincta* but wing venation measurements are closer to those of *A. cerana* (Fuchs et al. 1996). Drone mating flight is at 10.44 h-13.12 h (Koeniger et al. 1996), which clearly distinguishes from *A. cerana* (16.15 h-17.15 h) (Koeniger and Wijayagunasekera 1976).

A. koschevnikovi Enderlein

A. koschevnikovi workers have their distinctive yellow-orange colour in most body parts while the drone is mostly brown (Woyke 1997). Workers are medium sized (body length approximately 10-11 mm), forewing length of 8.46 ± 0.11 mm, with cubital index 7.64 ± 1.40 (Tingek et al. 1996). Overall, it is larger than *A. cerana* (Ruttner et al. 1989). *A. koschevnikovi* drone mating flight is at 16.15 h - 18.15 h, which clearly separate it from sympatric *A. cerana* at 13.45 h - 15.30 h (Koeniger et al. 1988).

A. dorsata Fabricius

A. dorsata has a rusty brown pubescence and dark tinge on the workers wings (Ruttner 1988). Workers have a bicolor integument - yellow and black on the abdomen tergites, and a raised ocular (Sakagami and Matsumura 1980). Workers head width is 4.71 ± 0.09 mm, wing length is 12.34 ± 0.34 mm (Seeley 1982). Drone endophallus is unique in form having three long, thin bursal cornua that are bent ventrally (Ruttner 1988).

Drone flight mating time is 18.00 h - 18.45 h (Koeniger and Wijayagunasekera 1976; Rinderer et al. 1993).

A. laboriosa Smith

This giant honey bee is restricted to high elevations (Maa 1953). However, several studies have classified *A. laboriosa* as a subspecies of *A. dorsata* (Koeniger 1976; Engel 1999). Several morphometric characteristics significantly distinguish it from sympatric *A. dorsata*. Different drone mating flights distinguish *A. laboriosa* from *A. dorsata* being 12.20 h - 14.20 h (Underwood, 1990b) and 18.00 h - 18.45 h (Koeniger and Wijayagunasekera 1976), respectively. Overall body size is larger in *A. laboriosa* than *A. dorsata*, in forewing (length and width), head width and malar ratio. Abdomen coloration integument is uniformly black in *A. laboriosa* in contrast to the yellow and black bicolor of *A. dorsata*. The other striking characteristic is the ocellar area, which is flat in *A. laboriosa* and distinctly raised in *A. dorsata* (Maa 1953; Sakagami and Matsumura 1980). However, there are no apparent endophallus characteristics distinctions between *A. laboriosa* and *A. dorsata* (McEvoy and Underwood 1988).

Honey bee distribution

The genus *Apis* is native to the Old World: Asia, Europe and all of Africa. *A. cerana* and *A. mellifera* are the most widely distributed of all honeybees. *A. cerana* mostly occupies the eastern world while *A. mellifera* spread throughout Europe and Africa, before being introduced as an agricultural commodity to the New World (Ruttner 1988). General descriptions of *Apis* distribution are provided in the following paragraphs.

A. florea is restricted to the South East (SE) Asian mainland from Thailand, Vietnam and India, but it has recently reported dispersed further west to Iraq and Oman (Otis 1996). While *A. florea* is usually found in lowland areas below 500 m (Wu and Kuang 1987), it has also been found in high elevations such as 1600 m in Thailand (Wongsiri et al. 1997) and up to 1900 m in Iran (Ruttner et al. 1995).

A. andreniformis is distributed throughout Indochina and Sundaland. On the mainland it is distributed throughout Thailand and the Malay Peninsula (Otis 1996). *A.*

andreniformis is also found in the SE Asian archipelago: Sumatra (Salmah et al. 1990), Borneo (Raffiudin, R personal observation; Koeniger et al. 2000) and Palawan Island (de Guzman et al. 1992; Otis 1996). *A. andreniformis* occurs in both lowland areas 0 -500 m elevation (Salmah et al. 1990) and in highland areas up to 1600 m in Thailand (Wongsiri et al. 1997).

A. mellifera is the most widely distributed honey bee species, and is found in desert and cold temperate regions. However, this species is not native to most Asian regions. Based on morphometric analysis, A. mellifera subspecies is classified into three lineages, those are the A, M, and C lineage (Ruttner et al. 1978). Further, the C lineage is differentiated into two lineage, C and O lineage (Ruttner 1988); Arias and Sheppard 1996; Franck et al. 2000). South and Central African subspecies covered by the A lineage A. mellifera subspecies: A. m. lamarckii, A. m. litorea, A. m. scutellata, A. m. yemenitica, A. m. monticola, A. m. adansonii, A. m. unicolor, and A. m. capansis (Ruttner 1988). The M lineage covers the North European subspecies (A. m. mellifera), Spain and Portugal (A. m. iberica) and the North African (A. m. saharensis, A. m. *intermissa*). The C lineage includes subspecies from Italy (A. m. ligustica), Austria and Yugoslavia (A. m. carnica), Northern Greece and Bulgaria (A. m. macedonica), Southern Greece (A. m. cecropia) and Sicily (A. m. sicula). The O lineage includes subspecies from the Caucasus Mountain (A. m. caucasica), Armenia (A. m. armenica), Turkey (A. m. anatoliaca), Syria (A. m. syriaca), Cyprus (A. m. cypria) and Crete (A. m. adami) and A. m. meda (Ruttner 1988).

Molecular studies on *A. mellifera* subspecies variations have been done in the last ten years. Overall, morphometric and molecular approaches concur in supporting the subspecies lineages of *A. mellifera* (Smith 1991; Garnery et al. 1992), except for several subspecies, such as the North African subspecies (Franck et al. 2001). This subspecies is grouped in the O lineage based on mitochondrial data (Franck et al. 2001), but in the M lineage on the basis of morphometrics (Ruttner 1988). Moreover, in Ruttner's O morphometric lineage, only *A. m. syriaca* has the O mitochondrial haplotype (Franck et al. 2000). Another difference between the two kinds of data is in the classification of *A. m. anatolica*, the Turkish subspecies. It is grouped in the O morphometric lineage

(Ruttner 1988), whereas it has the C mitochondrial haplotype (Smith et al. 1997). Further, the A mitochondrial haplotype is also detected in the M morphometric lineage *A. m. iberica*, and in the C morphometric lineage *A. m. sicula*.

A. cerana is another honey bee species, which occupies a vast area, ranging from West Afghanistan to the Philippines. This species also has several subspecies. Western and Northeast Asian countries (Afghanistan, Pakistan, Kashmir, China, and Korea) are occupied by *A. c. cerana* (Ruttner 1988). *A. cerana* also exists in the Himalayan region (*A. cerana himalayana*). In the South and SE Asia, *A. c. indica* (Maa 1953) is the main subspecies which covers mainland India, Srilanka, Myanmar, Thailand, Malaysia, Sumatra, Java, Borneo, Lombok, Bali, Flores and most of Sulawesi, Timor, and Sabah (Damus and Otis 1997). The Philippine archipelago exhibits another subspecies namely *A. c. philippina* (Maa 1953) and Japan has *A. c. japonica*, except for Hokkaido Island (Hepburn et al. 2001).

A. nuluensis is a montane species found at elevations 1 524 - 3 400 m in two mountainous regions of Sabah, namely Mount Kinibalu and the Crocker Range (Gunung Emas) (Tingek et al. 1996).

A. koschevnikovi that is sympatric with *A. cerana*, is distributed in several regions Sumatra, the Malay Peninsula, Borneo and Java. Sadly, recent observations suggest that *A. koschevnikovi* is now rarely seen, except in Borneo, due to the destruction of forest habitat (Otis 1991). This species is usually found mostly at sea level, but has also been discovered at elevations up to 1000 m (Otis 1996).

A. nigrocincta is endemic to Sulawesi and adjacent islands (Selayar, Buton) and Sangihe (Damus and Otis 1997). In Sulawesi, this species exists sympatrically with *A. cerana*. *A. nigrocincta* tend to nest in forest areas, whereas *A. cerana* is predominant in urban area (Otis 1996).

A. dorsata has a large distribution area in Asia and is found as far west as India. It is distributed throughout Vietnam and the entire Asian mainland (Thailand, the Malay

Peninsula), and the South East Asian islands (Sumatra, Borneo, Java, Timor, Sulawesi, and the Philipinnes). Two subspecies of *A. dorsata* occur in Sulawesi namely *A. d. binghamii* and in the Philipinnes namely *A. d. breviligula* (Maa 1953). *A. dorsata* is also found in lowland areas and up to 1 300 m elevation (Himalayan region) (Sakagami and Matsumura 1980).

A. laboriosa is another montane honey bee which is restricted to elevations of 1200 – 4000 m, in the Himalayan region and distributed throughout India, Nepal, Bhutan, China including Tibet and Yunnan (Sakagami and Matsumura 1980; Roubik et al. 1985; Underwood 1990a) and Vietnam (Trung et al. 1996).

Bee fossil records

The corbiculate tribe Apinae originated in the late Cretaceous period. The oldest bee fossil is *Trigona* (Tribe Meliponini) in New Jersey amber 96-74 million years ago (Michener and Grimaldi 1988). Another Meliponini fossil was found in Miocene Dominican amber (Michener 1982), and two Meliponini fossils (*Kelneriapis eocenica* [Kelner-Pillault] and *Liotrigonopsis rozeni* Engel) from Baltic amber (Engel 2001a). The true Bombini fossil has not been found in amber as yet, although many fossils from Tribe Bombini (bumble bee) exist (Engel 2001a). Two species of Euglosini fossil have been found in Miocene amber from the Dominican Republic (Engel 1999). The fossil Electrapini (genus *Electrapis*) from Eocene Baltic amber is of special interest due to its close to resemblance to Bombini and Apini. It resembles Bombini by having the hind tibial spur and is related to Apini because of its jugal lobe in the hind wing (Cockerell 1908).

Honey bee fossils have been found in Baltic Amber (Zeuner and Manning 1976) and in China (Zhang 1990) all of which are from Tertiary strata. Recent compilation of *Apis* fossil data has cited seven accepted species of *Apis* fossils (Engel 1999), four of which are from the upper Miocene period namely *A. ambrusteri* (Germany) (Zeuner and Manning 1976), *A. longtibia* (China), *A. miocenica* (China) and *A. petrefacta* (Bohemia) (Engel 1998). Three of the fossils are from the Oligocene period namely *A. vetustus* (Germany), *A. henshawi* (Europe), and *A. cuenoti* (France) (Cockerell 1907; Engel 2001a).

Examination of wing venation in the three fossils in the genus *Electrapis*, fossil of *A. armbursteri*, fossil of *A. henshawi* and the extant *A. mellifera* have revealed no significant differences among them (Ruttner 1988; Engel 1998). Honey bee fossil wings have the same venations that exist in *A. mellifera*. The only differences are due to the venation wing lengths that affect wing cell size. The *A. armbursteri* fossil resembles the current *A. mellifera* in size and in the wax mirror on the abdomen (Zeuner and Manning 1976).

It is widely accepted that eusocial insects dominate terrestrial ecosystems, and this success has been attributes to their eusociality (Wilson, 1990). Engel (2001b), however, notes that numerous probably eusocial bee genera seen in fossil assemblages have died out leaving a depauperate bee fauna today, and questions the importance of eusociality in achieving ecological dominance. However, as acknowledged by Engel (2001b), the loss of diversity has probably resulted from competitive pressure by the most successful lineages, which in the case of bees is the genus *Apis*.

Honey bee behaviour: nest structure and dance behaviour

Eusociality developed in three tribes of corbiculate bees; Bombini, Meliponini and Apini (Michener 1974). Among them, Apini appears to exhibit the most advanced behaviour shown by their ability to communicate (Lindauer 1961). The colony members work as a unit with highly integrated and decentralised decision-making (Seeley 1998).

Honey bees use a variety of signals to communicate. These signals can be classified as modulators and specific signals. Hölldobler (1984, p. 366) mentions that in a modulatory communication system "...in it, signals do not release specific behaviour patterns but rather modulate the probability of reactions to other stimuli by influencing the motivational state of the receiver". Modulatory signals are transmitted by honey bees by means of tremble dances, and shaking signals (Schneider et al. 1986; Seeley 1992; Anderson and Ratnieks 1999). The most sophisticated and complex signals are conveyed by specialised ritualised signals such as the waggle dance (Lindauer and Kerr 1960; Hölldobler 1984).

Honey bee dance communication

Karl von Frisch and his group pioneered the research into honey bee dance communication (von Frisch 1967). When a forager returns from a food source, she unloads the nectar to the young receiver honey bees (Hart and Ratnieks 2001). Subsequently, she communicates the food source position (Seeley 1994).

Three types of dance communication for food source distance recruitment are displayed according to the food distance (von Frisch 1967). The round dance conveys an adjacent food source by a series of round runs (or round dances). Intermediate food distance information is conveyed by sickle dance. For long distances, a waggle dance is performed where the forager performs a series of wagging runs (Tautz and Rohrseitz 1996) followed by loop walking and repeating the waggle run. The waggle run appears to be the most important component in advertising the distance of the food source (Michelsen et al. 1992). Dance attenders extract considerable information from this behaviour, include the distance and the direction of the food source from the nest, together with the richness of the food (Lindauer 1961; Judd 1995). The distance of the food source direction is shown by the angle of the waggle dance based on the position of the sun as the compass (Gould 1980). The richer the food sources the more lively the dance (Lindauer, 1961; Seeley et al. 2000).

Among honey bee species, dance behaviour is performed in two distinct orientations according to nest construction. The first type is the vertical dance which is performed by *A. mellifera*, *A. cerana*, *A. dorsata* (Koeniger and Koeniger 1980; Dyer 1985b; Punchihewa et al. 1985), *A. laboriosa* (Kirchner et al. 1996) and *A. nigrocincta* (Otis personal communication). The second type is the horizontal dance which is performed by *A. florea* (Koeniger et al. 1982; Dyer 1985a) and *A. andreniformis* (Rinderer et al. 1992).

In the vertical dance, the direction of the food source is indicated with respect to the gravity direction on the comb (Edrich 1977). The vertical dancer waggles upward if the food source is towards the sun and downwards if the food source is in the opposite

direction to the sun (von Frisch 1967). In contrast, the horizontal dance is performed by the forager on the flat platform at the top of the comb (Dyer 1985a). Here the waggle run points directly to the food source. Both vertical and horizontal dances use the sun as a compass (Lindauer 1956; Gould 1980). The horizontal dancers cannot compensate for gravity; they are only able dance on a horizontal and slope nest (Dyer 1991).

The evolution of these sophisticated behaviour traits has been studied for some time. According to Lindauer (1961), the horizontal dance is the ancestral trait. Others suggest that the vertical dance is the ancestral characteristic (Koeniger 1976). In Chapter 3, I will focus on the polarity of this such behaviour, by mapping and reconstructing dance characteristics on the phylogenetic tree.

Nest sites

Nest structure is an example of another sophisticated architectural behaviour performed by honey bees. The nests comprise of compact hexagonal cells attached to a thin sheet of wax as a living area, which are use to rear the brood and for food storage (Michener 1974). Unlike other corbiculate bees, honey bee brood and food storage cells are mostly uniform in shape and size, except in *A. dorsata*, differ in their cell depth (Thakar, 1961). Male's cells are slightly larger because of their greater body size. The queen or the gyne cell formed a tube, large cell (Winston 1987). Brood cells are located in the middle part of the comb while pollen and nectar surround at the outer layers of the brood area (Camazine 1991). Reproductive cells (drone and queen cells) are located at the lower part of the comb.

Several differences in honey bee nest: size and comb numbers are apparent in each nest. The open-air nests consist of single comb but there is great size variation (Sakagami and Matsumura 1980). The giant bees nest can extend up to one metre in length whereas the dwarf honey bee nest covers only 20-30 cm (Rinderer et al. 1996).

Honey bee nests are found in two niches namely open air and cavity nests (Seeley 1983). The cavity nesters, *A. mellifera*, *A. cerana*, *A. nigrocincta*, *A. koschevnikovi* and *A. nuluensis*, construct several vertical parallel combs in hollow tree trunks. While these

are the habitual nesting sites of honey bee species, the fact that *A. mellifera* can occasionally nest in the open, as when combs are constructed hanging from a branch, indicates that there is a degree of flexibility in this behavior.

Open air nests can occupy a big branch of a tall tree (*A. dorsata*) (Wongsiri et al. 1996), hang on cliffs (*A. laboriosa*) (Underwood 1990a) and attached to small twigs (*A. andreniformis* and *A. florea*). Figure 1-4 illustrated the variety of honey bee nest morphologies: the cavity nesting *A. cerana*, and the open nesting *A. florea*, *A. andreniformis* and *A. dorsata*.



Figure 1. The cavity nesting of *A. cerana* (photograph taken from Seeley (1983))

Figure 2. A. dorsata open nesting

Figure 3. A. florea open nesting

Figure 4. A. andreniformis open nesting.

The *A. andreniformis* nest has two midribs, one below and one above the supporting branch. The upper midrib functions as the "nest crown", providing for honey storage. The nest crown does not exist in *A. florea* nest, hence it has only the lower midrib. It is located under the supporting branch, close to the brood area (Rinderer et al. 1996). Overall, the depth and width of worker and drone cells are smaller in *A. andreniformis* compared to those of *A. florea* (Rinderer et al. 1996). In both dwarf honey bees, pollen is stored at the top of the brood nest location (Wongsiri et al. 1997).

The single combed *A. florea* group and the *A. dorsata* group reveals architectural differences. *A. dorsata* nests (Figure 2) are attached to the substrate (branch, wall, building and cliff), and so there is no free space above the nest (Starr et al. 1987; Underwood 1990a). On the other hand, *A. florea* and *A. andreniformis* nests (Figure 3 and 4) are attached around the twig, thus allowing free space at the top of the nest (Lindauer 1961; Raffiudin, R. personal observation). The freely attached nest has a flat platform of nectar cells. This flat platform at the top of *A. andreniformis* and *A. florea* nests serves as horizontal dance platform.

Evolution of the honey bee nest type is a behavioural trait that will be studied in detail in my study. Along with dance behaviour, nesting behaviour will be mapped in the molecular phylogenetic tree in Chapter 3.

Honey bee: behaviour and brain

Foraging bees obtain a variety of signals from celestial and terrestrial cues which guide them back to the nest and are subsequently transcribed when advertising their findings (Gould et al. 1970; Dyer and Gould 1983). The signals are received through honey bee chemosensory receptors, antennae and eyes (Collet 2000). Signals received by the antennae are relayed to antennal lobes while signals from the eyes are relayed to optical lobes. Finally, signals from the two lobes are relayed to specific parts of the honey bee brain namely corpora pedunculata or mushroom bodies (Mobbs 1982). These signals can be linked together to achieve associated learning (Srinivasan 1998). Hence, the ability of the honey bee to integrate many informational cues into the waggle dance is facilitated by advanced memory ability in the brain (Menzel 2001; Menzel and Giurfa 2001).

General anatomy of A. mellifera central nervous system

The insect brain comprises three paired sections namely the protocerebrum (forebrain), deutocerebrum (midbrain) and tritocerebrum (hindbrain). The protocerebrum consists of the corpus pedunculata or mushroom bodies and two optical lobes. The antennal lobes comprise the deuterocerebrum region and the tritocerebrum region corresponds with the labrum and visceral nervous systems (Burrows 1996).

The mushroom bodies are paired organs in the insects forebrain which serve as a higher centre for signal integration (Menzel et al. 1994). They consist of calyx and neuron (Kenyon) cells, and a pedunculus. The calyx consists of dendrite arborisation derived from Kenyon cells and is divided into three parts (the lip, collar and the basal ring) according to the input signal source. The lip at the tip of the calyx receives signals from antennal lobes, the collar region receives signals from optical lobes and the basal ring region receives signals from both areas as well as the esophageal (Mobbs 1984; Gronenberg 1986). Axons of Kenyon cells extend to the peduncles and are further structured as α and β lobes in the output region (Grunewald 1999).

Kenyon cells are located in the centre of the calyx, contain of small and large types (Kenyon 1896). The large type cells are located on the inner side, whereas the small types are layered on the outer side (Farris et al. 1999). The *A. mellifera* brain contains 340 000 cells of this type (Witthorft 1967), whereas *Drosophila* have 2 500 cells in each body. Such great variations in cell numbers lead to the hypothesis that this organ is associated with complex behaviour in social insects (Ehmer and Hoy 2000; Gronenberg 2001). The great difference in cell numbers are reflected from the number of calyx in each mushroom body; a pair of calyx in *A. mellifera* (Mobbs 1982), and one calyx in *Drosophila*.

Mushroom body neuropils show an increasing growth size from nurse to forager bee stage and even in different forager ages. Differences apparent in the extended mushroom body neuropil region (Withers et al. 1993) and in calyx subcompartments (lip and collar region) (Durst et al. 1994). The increase in mushroom body size is mainly due to dendritic growth (Durst et al. 1994), and not to cell proliferation since there is no neurogenisis in the adult honey bee (Fahrbach et al. 1995).

Honey bee task age-related variations have been reported in molecular neurobiological studies (Wagener-Hulme et al. 1999). Multiple genes have been identified as expressed in the brain of *A. mellifera*. Those are eight biogenic amine receptor genes (Ebert et al. 1998; Blenau et al. 2000), a neurotransmitter glutamate transporter (Kucharski et al. 2000), and a group of second messenger genes (Kamikouchi et al. 1998; Kamikouchi et al. 2000; Eisenhardt et al. 2001).

Biogenic amines such as dopamine, serotinin and octopamine are the neuromodulators in the nervous system (Erber et al. 1993). It has been demonstrated that octopamine receptor genes expression is significantly increased in the forager honey bees compared to nursing honey bees, which maybe means the gene is age-related in the division of labour (Wagener-Hulme et al. 1999).

The second messenger genes group is of particularly interest to intracellular communication due to their role in first messenger transmission that received to antenna or eyes. Chapter 2 will deal with this topic and present the findings of *A. mellifera itpr* characterization study, which is one of the gene expressed in the Kenyon cells.

Chapter 2. A. mellifera Inositol 1,4,5-Trisphosphate Receptor (*Itpr*) Gene Structure

Abstract

The inositol 1,4,5 - trisphosphate receptor (*itpr*) gene codes for the IP₃ Receptor (IP₃R) protein, a calcium release channel protein in the endoplasmic reticulum membrane. This gene is highly expressed in *A. mellifera* mushroom bodies, which are the essential parts of the honey bee brain for memory formation. In this study I attempt to characterise the *itpr* gene based on putative A1 clone gene sequences (Kamikouchi et al. 1998) through *A. mellifera itpr* genomic and cDNA inverse PCR (IPCR) and DNA sequencing.

The sequence obtained was found to comprise 2, 091 bp of a partial sequence of the *A*. *mellifera itpr* gene encoding 697 inferred amino acids. *A. mellifera* IP₃R amino acids show 62%, 60%, 33%, 56%, and 56% similarities to those of *Panulurius argus* (lobster), *Drosophila melanogaster*, *Caenorhabditis elegans*, *Xenopus laevis*, and *Mus musculus itpr*-1, respectively. A phylogenetic analysis using *itpr* sequence demonstrated that *D. melanogaster itpr* has the closest sequence to that of *A. mellifera* of those known. Seven exons and six introns interrupt this partial *itpr* gene sequence. The *A. mellifera itpr* exons of this study aligned to the *D. melanogaster itpr* embryonic variant (Genbank: AJ238949) at nucleotide 3616–5784. Exon-intron organisation comparison of *A. mellifera itpr* gene with that of *D. melanogaster* showed that two introns were at conservative positions and that *A. mellifera itpr* has several additional introns.

The inferred *A. mellifera* IP₃R amino acid sequence aligned with the modulatory domain of *D. melanogaster*. Several conserved motifs were observed in *A. mellifera* putative IP₃R namely an IP₃R signature and four protein kinase phosphorylation sites, comprising cAMP dependent protein kinase (PKA), protein kinase C (PKC), tyrosine kinase and casein kinase II. PKA and PKC are two known protein kinases needed for *A. mellifera* signal transduction in short and long term memory formation, respectively. Further study is needed to confirm PKA and PKC phosphorylation sites in *A. mellifera* IP₃R in order to determine the role of *itpr* among other kinases signalling in honey bee mushroom bodies.

INTRODUCTION

Intracellular second messengers and their genes target in A. mellifera brain

Coordination of biochemical reactions enables living cells to react to stimuli, integrate the signal information, and then respond to the environment. Such signal mechanisms are present in all cells, but the highest complexity is found in nervous system cells (Levitan and Kaczmarek 1997).

Extracellular signals are recognised by neurons cells through specific membrane receptors that are coupled to different kinds of transduction mechanisms via intracellular second messengers (Hall 1992). Nervous cells contain several major types of intracellular second messengers, namely cyclic adenosine monophosphate (cAMP), cyclic guanyl monophosphate (cGMP), and membrane phospholipid turnover phosphatidylinositol (Nicholls 1994). Each second messenger has its specific target to be activated. cAMP target molecule is cAMP-dependent protein kinase A (PKA), cGMP is the substrate of cyclic guanyl monophosphate dependent protein kinase (cGMP). Phosphatidylinositol turnovers produce inositol 1,4,5-trisphosphate (IP₃) and diacylglycerol (DAG). The IP₃ target protein is inositol 1,4,5-trisphosphate receptor (IP₃R), while DAG and Ca²⁺ are the substrates of Ca²⁺/phospholipid-dependent protein kinase C (PKC) (Levitan and Kaczmarek 1997).

Over the past few years, extensive researches in *A. mellifera* molecular neurobiology have resulted in the discovery of several neurotransmitter receptors (Ebert et al. 1998; Blenau et al. 2000) as well as glutamate transporters (Kucharski et al. 2000) and complete PKA cDNA (complementary DNA) in honey bee brain (Eisenhardt et al. 2001). The remaining second messenger receptors have been partially characterised as PKC, Ca^{2+} /calmoduline-dependent protein kinase II (CaMkinaseII) (Kamikouchi et al. 2000), and putative clone A1, predicted to be the IP₃R homologue (Kamikouchi et al. 1998).

IP₃R is encoded by the inositol 1,4,5-trisphosphate receptor gene (*itpr*), which has been completely characterised in several arthropods, nematode, and mammals. This gene is of special interested because complete cDNA sequences are available from those

organisms; hence, it is useful for comparisons and phylogenetic analysis involving the gene from *A. mellifera* from this study. All the intron positions are known for the embryonic *D. melanogaster itpr* gene (Sinha and Hasan 1999) and this information is useful for comparing its exon-intron organisation with that of *A. mellifera*. In *Drosophila* the protein in the adult is shorter than that seen in embryos, and is a splice variant of the latter. I therefore refer to the embryonic form in comparisons below.

Inositol 1,4,5-trisphosphate (IP₃): a second messenger pathway

Inositol is a six-carbon alcohol molecule, a glucose derivative called myo-inositol in its active state. Within the cells inositol exists in several phosphorylation stages namely phosphatydylinositol 1,4-biphosphate (PIP₂), IP₃, inositol 1,3,4,5-tetrakisphosphate (IP₄) and inositol 1,3,4,5,6-pentakisphosphate (IP₅) (Berridge and Irvine 1989).

Phosphatydylinositol 1,4-biphosphate (PlP₂), abundant in the plasma membrane, is hydrolysed by a neurotransmitter received by receptors in cell membrane. Many receptors are coupled to the membrane enzyme phospholipase C (PLC) through the G protein. PLC acts as a phosphodiesterase to split PlP₂ into two products, the water soluble IP₃ and diacylglycerol (DAG) that remains in the membrane. IP₃ diffuses in the cytoplasm and binds to a specific Ca^{2+} receptor (IP₃R) channel on the endoplasmic reticulum. The binding triggers calcium release from intracellular storage (Berridge 1993).

The Ca^{2+} release from IP₃R channel is the intermediate of many cellular pathways (Berridge 1993). Several studies have shown that Ca^{2+} and IP₃R are important in the *D*. *melanogaster* olfactory system (Deshpande et al. 2000). An experiment using IP₃R mutant *D. melanogaster* shows that this protein is important to maintain the *D. melanogaster* olfactory system (Deshpande et al. 2000). Studies on rat IP₃R suggest a role in circadian rhythms (Hamada et al. 1999).

Itpr gene and the splicing sites

The complete *itpr* cDNA has been reported for *Mus musculus* (mouse) (Furuichi et al. 1989), *Rattus norvegicus* (rat) (Mignery et al. 1990), *D. melanogaster* (fruit fly)

(Yoshikawa et al. 1992), *Xenopus laevis* (frog) (Kume et al. 1993), human (Yamada et al. 1994), *Caenarhabditis elegans* (nematode) (Baylis et al. 1999), *Panulurius argus* (lobster) (Munger et al. 2000), *Bos taurus* (bovine) (unpublished data: Genbank AF157625) and *Gallus gallus* (chicken) (partial gene: unpublished data: Genbank AF312710). These studies have established that the gene has approximately 8 600 base pairs (bp) and that IP₃R consists of approximately 2700 amino acids.

Two splicing sites are apparent in mouse (Danoff et al. 1991) and rat (Mignery et al. 1990) *itpr*, namely the SI and SII sites. The mouse SI splicing site occurs between *itpr* gene nucleotides 952-996, correspond to IP₃R residues 317-331 (fifteen amino acids) which are located at IP₃ binding site in N-terminal region (Mignery and Sudhof 1990). The existence of the SI splicing region is presumably due to the exons splicing, since there is a donor site (GTNNN) in the SI domain (Breitbart et al. 1987). The SII splicing site is found between mouse *itpr* nucleotide 5074-5193 or IP₃R residues number 1692-1731 (fourty amino acids), falling between two PKA phosphorylation sites (Nakagawa et al. 1991).

Those two splicing sites yielded three protein transcriptions (Nakagawa et al. 1991) which are IP₃R-1, IP₃R-2 and IP₃R-3. Mammals have those three types of IP₃R (Danoff et al. 1991). IP₃R-1 is mostly expressed in mouse cerebellum (Wojcikiewicz 1995), whereas IP₃R-2 and IP₃R-3 are mostly expressed in the non neural regions (Ross et al. 1992; Blondel et al. 1994). Three types of IP₃R were found in rat brain, IP₃R-1 is highly expressed in Purkinje cells, IP₃R-2 in glial cells and IP₃R-3 in neuronal cells (Sharp et al. 1999). Only IP₃R-1 was expressed in *D. melanogaster* (Yoshikawa et al. 1992) and *C. elegans* (Baylis et al. 1999) and it is encoded by the *itpr*-1 gene (Venkatesh and Hasan 1997). In *D. melanogaster*, IP₃R is highly expressed in the antenna (Yoshikawa et al. 1992) while in *A. mellifera*, partial IP₃R is strongly expressed in the mushroom bodies of the brain (Kamikouchi et al. 1998).

Inositol 1,4,5-trisphosphate receptor structure

The IP₃R protein has three domains, namely N-terminal, modulatory and C-terminal domains. The N-terminal domain has a 750 residue ligand binding site that binds the IP₃ molecule. The modulatory domain comprises most of IP₃R region lying between the

ligand binding and the transmembrane calcium channel sites [approximately at IP₃R residue number 700-2250 (Maeda et al. 1991)]. This domain regulates activation of Ca^{2+} channel and it has several functional phosphorylation sites such as PKA (Danoff et al. 1991), casein kinase (Sinha and Hasan 1999) and ATP phosphorylation (Maeda et al. 1991a). The third domain is the C terminal domain, which occupies only a small region of IP₃R (Furuichi et al. 1989). A calcium channel is located in this domain performed six to eight transmembrane spanning regions (Michikawa et al. 1994).

Conserved and variable regions within IP₃R

IP₃R has 72 % similarity between human and mouse IP₃R-1 (Yamada et al. 1994) and 62 % similarity between rat IP₃R-1 and IP₃R-3 (Mignery et al. 1990). Conserved regions are mostly found in the N-terminal domain particularly in ligand binding sites and in the amino acids region within the multiple transmembrane spanning region (Baylis et al. 1999).

Despite of IP₃R conserved region, it has three variable regions (area I, II, and III) (Yamada et al. 1994) based on human, mouse, rat, *X. laevis*, *D. melanogaster* amino acids alignment. Area I consists of approximately twenty residues at *D. melanogaster* residue number 1245-1265, whereas area II is at residue number 1799-1845. Both are in the modulatory domain. Area III is at residues 2577-2602, inserted between the last two transmembrane spanning regions of the calcium channel. Of the thirty two amino acid replacements between human and mouse IP₃R-1, seventeen replacements were concentrated in area I, six replacements are in area II and seven in area III (Yamada et al. 1994).

IP₃R displays functional differences among several organisms as well. Mouse (Furuichi et al. 1989), rat (Mignery et al. 1990), human (Yamada et al. 1994) and lobster IP₃R-1 has two PKA phosphorylation sites, however these two PKA sites are not found in the *D. melanogaster* (Yoshikawa et al. 1992) and *X. laevis* IP₃R-1 (Kume et al. 1997). On the other hand, adult and embryonic IP₃R *D. melanogaster* has several casein kinase binding sites in the modulatory domain (Sinha and Hasan 1999).

The other difference in IP₃R structure functions is that there are two ATP binding sites both of which are present in mouse, rat and human IP₃R at residue numbers 1720-1725 and 2094-2099, respectively (Mignery et. al 1990; Yamada et. al. 1994). However, *D. melanogaster* IP₃R contains only the second ATP binding site (Hasan and Rosbash 1992).

Inositol 1,4,5-trisphosphate receptor: homo- and heterotetramer protein

Homotetrameric IP₃R is found in cells containing only one IP₃R type, such as IP₃R in mouse cerebellum Purkinje cells (Maeda et al. 1991a). The protein is composed of four non-covalently bound identical subunits (Miyawaki et al, 1991) and electron microscopy revealed that it is a homotetramer protein with four fold symmetry and four radial arms (Chadwick et al. 1990). However, heterotetrameric IP₃R formation was found in cells that contain all IP₃R types such as in liver cells (Monkawa et al. 1995) and in human neuroblastoma cell (Wojcikiewicz 1995).

Exon-intron organisation

Types of introns

Protein coding genes are transcribed into mRNA and are subsequently translated into protein. Genes comprise of coding (exon) regions but they are often interrupted by non-coding (intron) regions. Exons are represented in mRNA whereas introns are cleavaged from mRNA prior to the protein translation (Lewin 1993).

Based on cleavage mechanisms, there are three known types of introns, namely nuclear spliceosomal intron, intron type I and intron type II. The former intron is spliced from RNA by a protein complex called spliceosome that occurs in most eukaryotes (Padgett et al. 1986). The other two intron types are self-splicing and most abundant in fungal, plant mitochondrial and chloroplast ribosomal genes (Lambowitz and Belfort 1993). Nuclear intron splice site is recognised by spliceosome at conserved dinucleotides, namely GT at the 5' intron and AG at the 3' intron, hence known as GT/AG rule. This splice site occurred in 99 % of intron splice region in many organisms (Deutsch and Long 1999).

Intron evolution theory

The origin of nuclear introns has become source of debate since they were discovered. Two theories of nuclear intron evolution have emerged, namely "introns early" and "introns late". The "introns early" theory has introns arising at the origin of life (Gilbert 1978). According to this view, the first minigene composed of exons while spacers of the minigenes are thought of as the intron origin. This theory developed into the exon shuffling theory since the author postulates that intron insertion plays a role in gene assembly (Gilbert 1985). Hence, exon shuffling promoted the earliest gene formation (Blake 1978).

However, other authors have suggested that the exon shuffling theory is not identical to the intron early theory, due to a lack of any evidence suggesting that introns are derived from the spacer (Li 1997). Palmer and Logsdon (1991) suggest that although exon shuffling has played an important role in vertebrate gene evolution, there is little or no basis for ascribing a role to it in the assembly of primordial proteins.

Mapping nuclear intron distribution on a tree of life reconstructed based on rRNA data shows that introns are inserted in the eukaryotic lineages while they are lost in the bacterial and ancient eukaryote lineages (Palmer and Logsdon 1991). "Introns early" explained the intron loss in bacterial genome and ancient eukaryotes due to selection of streamlined genomes (Doolittle 1978).

The "introns late" theory views this region is inserted at the late stages of eukaryotic evolution (Rogers 1989; Cavalier-Smith 1991; Palmer and Logsdon 1991). Mounting evidence of intron late theory include for example, intron insertion in dasyurid marsupials intronless *SRY* gene (O'Neill et al. 1998), in human odor protein (Lacazette et al. 2000), and the *A. mellifera* elongation factor 1α (EF- 1α) gene has more introns than that of *D. melanogaster* (Waldorf and Hovemann 1990). On the other hand, insect triosephosphate isomerase (TPI) gene is consistent with both views (Tyshenko and Walker 1997).

Intron distribution in itpr gene

Of all *itpr* genes that have been published, only those of *D. melanogaster* and *C. elegans* are known with respect the intron position. Intron distributions in the *D. melanogaster itpr* (Sinha and Hasan 1999) are different to those in *C. elegans itpr* gene (Baylis et al. 1999). *D. melanogaster itpr* has a total of eleven introns, with six of them clustered in the modulatory domain. However, *C. elegans* has 32 introns, which are more dispersed: eleven, twelve and nine at C-terminal, modulatory and N-terminal domain, respectively (Baylis et al. 1999).

OBJECTIVES

The aims of my study were to characterise the *A. mellifera itpr* gene and to elucidate putative IP₃R protein structure. *Itpr* gene structure is determined by exon-intron organisation. Comparisons of *itpr* gene intron positions between *A. mellifera* and that of *D. melanogaster* are evaluated in order to investigate intron present and absent in this gene. The similarity of the *A. mellifera itpr* gene with respect to those in other organisms is ascertained and subsequently used to infer phylogenetic relationships with other organisms. IP₃R structural function is examined by searching the amino acid motifs within the Prosite protein database and used to infer the role of IP₃R in *A. mellifera* neuron signalling.

MATERIALS AND METHOD

DNA: extraction, sequencing and genomic walking

Genomic DNA was extracted from bee thoraces (mesosomes) using the standard CTAB method. The first genomic region was amplified based on cDNA clone A1 of putative IP₃R gene (Kamikouchi et al. 1998) using oligonucleotide primers 1 and 2 (Table 1) designed by the author. In order to extend the region, several genomic walk steps were subsequently conducted by performing inverse PCR (IPCR) using primers designed to face the unknown regions (Triglia et al. 1988).

For IPCR, genomic DNA was first cut with HincII and then the resulting fragments were circularized using T4 ligase. The walk began using primers 3 and 4 (Table 1). Amplifications were performed in 50 µl volumes containing 5x Buffer B (Gibco), 200 µM dNTP, 1 µM of each primer, and DNA template. Prior to IPCR, the PCR mixture was heated at 94[°]C for three minutes, then 1 unit of Elongase polymerase (Gibco) was added. IPCR was performed in 2 min at 94°C for initial denaturing, 35 cycles of 30 s at 94°C, 30 s at 50-58°C and 2-6 min at 68°C for DNA elongation, followed by 10 minutes at 72°C for the final extension. PCR products were purified with Qiagen kit prior to cloning them into pGEM-T vector (Promega). The cloned products were amplified either by using the previous primers or primers number 8 and 9 (Table 1, which are pUC/M13 universal primers also present in pGEM-T vector). DNA sequencing was carried out by ABI Prism BigDye automated sequencing using the manufacturer's protocol. Bfa1 digest was used at the next genomic walking using primers number 2 and 5. Eight other restriction enzymes and several other primers (not shown in Table 1) were applied in genomic walking but were yielded no further results because of the unspecific PCR products. Therefore, I used complementary DNA (cDNA) walking for the second technique.

No	Primers	5' – 3' Sequence
1	IP3For	5' GAATATCCTCTGGTGATGGATACA 3'
2	IP3Rev	5' CCATGTTCTTCTGATGCTTTAGA 3'
3	IP3W3F	5' GGTTTCCGATAGTGATGTTGAAT 3'
4	IP3W4R	5' CCCTCCGCTTGTGTACCTATT 3'
5	IP3F1658	5' GACGGGAAAGAAGATGTTAGA 3'
6	<i>ITPR</i> -F2280	5' TTAGCTTGTCGTACAATGGGC 3'
7	IP3W2R	5' AATTTTGTATCCATCACCAGAGG 3'
8	F23	5' CCCAGTCACGACGTTGTAAAACG 3'
9	R24	5' AGCGGATAACAATTTCACACAGGA 3'
10	5'RACE= SMART II	5'AAGCAGTGGTAACAACGCAGAGTACGCGGG 3'
11	3'RACE= CDS PRIMER	5' AAGCAGTGGTAACAACGCAGAGTAC(T)30VN 3'
12	DSCUP="PCR PRIMER"	5' AAGCAGTGGTAACAACGCAGAGT 3'
13	ItprRev1781	5' AGGATTAAGAAATAAATCTAA 3'
14	ItprFor1658	5' GACGGGAAAGAAGATGTTAGA 3'
15	ItprRev2284	5' TGCCCATTGTACGACAAGC 3'

Table 1. Oligonucleotide primers used in *A. mellifera itpr* gene characterisation; sense primers are coded by "F" or "For", and antisense primers are coded by "R" or "Rev"

RNA: extraction, single and double stranded cDNA amplification, and cDNA walking

Total RNA was extracted from three heads of *A. mellifera* foragers. Three heads (20 mg) were excised and preserved in 500 μ l of RNA*later* RNA stabilisation Reagent from RNeasy protect Kits (Qiagen). RNA was extracted using the RNAeasy mini Kit (Qiagen). Extraction procedure was followed the instructions in the kit manual.

For first strand cDNA synthesis, I used SMART PCR cDNA Synthesis Kit (Clontech). A total volume of 3 μ l of RNA template, 10 μ M 3' RACE primer and 10 μ M 5'RACE primer (Table 1) was incubated in 72^oC (2 min). To the mixture was added 5x First Strand Buffer, 20 mM DTT, 50x dNTP mix and 1 μ l of Superscript II enzyme (200 U/ μ l) (Clontech). First Strand cDNA synthesis was carried out by incubating the mixture in 42^o C (1 hr). Forty μ l of TE buffer (10mM Tris, 1mM EDTA) was added for dilution.

For second strand cDNA synthesis, the same kit was used. The PCR mix contained 10x Advantage 2 PCR Buffer, 50x dNTP mix, DSCUP primer (Table 1), 50x Advantage 2 Polymerase Mix, 2 μ l single strand (ss) cDNA template and ddH₂O adjusted to 25 μ l. PCR was performed in a Perkin Elmer 9700 for 95^oC (5 sec), 65^oC (5 sec), and 68^oC (6 min) in 18 cycles.

cDNA polishing was carried out in order to blunt ds cDNA ends by adding T4 DNA polymerase (Huang et al. 1990). The 25 μ l amplified double strand (ds) cDNA was combined with 2 μ l of proteinase K after which it was heated at 90°C in order to inactivate proteinase K. The tube was chilled in ice for 2 min in order to stop the reaction and 15 units of T4 DNA polymerase were subsequently added and incubated at 16°C (30 min) and heated at 72°C (10 min). To extract the cDNA, 27.5 μ l of 4 M ammonium acetate were added and ethanol precipitation was conducted by adding ~210 μ l of 95% ethanol. The mixture was spun at 13 000 rpm (20 min) and pellets were washed with 80% ethanol and subsequently spun at 13 000 rpm (10 min). Then, 100 μ l dH₂O were added to the air-dried pellet.

The blunt end ds cDNA was circulated with the T4 DNA ligase (Huang et al. 1993). The 100 μ l ds blunt end cDNA were combined with 25 μ l of 10x Ligation Buffer, 2 μ l of T4 DNA ligase (3U/ μ l) (Promega). The mixture was incubated at 18^oC for 16 h and purified with GeneClean Kit.

cDNA IPCR is performed using the same method as in genomic walking IPCR, based on the last genomic walking result. IPCR used primer combination primer number 2, 4, 5, 6 and 7 (Table 1). Intron splice sites were confirmed based on the cDNA region that were amplified using primers combination number 1+2, 3+13 and 14+15 (Table 1).

Nucleotide, amino acids and motif protein analyses

For each genomic walking step, DNA was translated into three reading frames using MacVectorTM and ANGIS (BioNavigator by Entigen Corporation) amino acid translation programs. Each translated amino acid strand between two stop codons was investigated for its homology within the protein database. The strand that returned as an

IP₃R homolog was chosen and established as *A. mellifera itpr* exon. Introns were recognised by the presence of stop codon and denotion from the sequence required the yield known IP₃R sequences, further introns were delineated using the known intron splicing site. Prosite (Hofmann et al. 1999), PRINTS (Attwood and Beck 1994) and pfam (Bateman et al. 1999) databases were used to determine protein domain, motifs, protein fingerprint and protein family, respectively, in *A. mellifera* putative IP₃R.

Itpr phylogenetic analysis

Genbank sequences for IP₃R from various organisms (D. melanogaster adult type: D90403, D. melanogaster embryo type: AJ238949, C. elegans: AJ243179, X. laevis: D14400, P. argus: AF055079, M. musculus IP₃R type-1: X15373) and A. mellifera IP₃R (this study) were aligned using the CLUSTALX program (Thompson et al. 1997). Tree construction was performed using the Maximum Likelihood (ML) method implemented in the TREEPUZZLE 5.0 program using quartet puzzling as the algorithm with 1000 replicates (Strimmer and von Haeseler 1996). ML rather than Maximum Parsimony (MP) was used because basic MP counts every replacement as a unitary change, whereas some replacements imply a larger change in protein chemistry than others and should therefore be counted more. Ad hoc methods exist for changing these weights, but then mean that MP converges on ML, while the latter also correctly takes account of amino acid frequencies in a natural determination of weights. The amino acids substitution models tested were the Dayhoff (Dayhoff et al. 1978), VT (Müller and Vingron. 2000) and WAG (Whelan and Goldman 2001) models and the model giving the highest likelihood score was used. These models use sets of proteins in known phylogenies to determine empirically the probability of one amino acid being replaced by another.

RESULTS

Itpr gene structure: exon intron organisation

A. mellifera itpr gene characterisation in this study began by using the published putative A1 clone *itpr* gene sequences (Kamikouchi et al. 1998). The honey bee *itpr* gene sequence of this study was extended through genomic and cDNA walking to cover a total of 2,091 bp exons and 810 bp introns of partial gene. Amino acids deduced from *itpr* gene DNA sequence showed the similarity of 62%, 60%, 33%, 56%, and 56% to those of *P. argus* (lobster) (Munger et al. 2000), *D. melanogaster* (Yoshikawa et al. 1992; Sinha and Hasan 1999), *C. elegans* (Baylis et al. 1999), *X. laevis* (Kume et al. 1993), *M. musculus itpr*-1 (Furuichi et al. 1989), respectively. However, searching *A. mellifera* intron gene sequences on an Intron Searching Intron Database (ISIS-http://isis.bit.uq.edu.au) did not yield any homologous regions.

Exon regions (2,091 bp) of *A. mellifera* partial *itpr* gene were aligned with the nucleotide *D. melanogaster* embryonic *itpr* gene (Genbank: AJ238949) at nucleotide numbers 3616 - 5784. There are seven exons and six introns in this partial gene. Hence, in this study, I stated exon 1 as starting at nucleotide number 3616 based on the *D. melanogaster* embryonic *itpr* gene. The first intron inserted in this partial gene was regarded as the first intron as well.

Exon-intron organisation in *itpr* was examined through both genomic and cDNA sequences. Six introns were distributed at nucleotide position numbers 312 – 1775 based on *A. mellifera itpr* cDNA positions. However, this study has not explored intron existence in two regions, namely nucleotide between numbers 1-310 and 1776-2091 (Figure 1). Moreover, the first intron inserted in this gene has not been fully sequenced as well. The *A. mellifera itpr* nucleotide and predicted amino acid sequence are shown in Figure 1.

ATGAGTATTAATGATTATGATGCAAAACAGGATGCGGGATCAAAATAAAGAAGCTGTACGTGCTAAATTTA M S I N D Y D A N R M R D Q N K E A V R A K F	70 23
GCGCAACTATAATGTTTGTAGAAGATTATTTGTGTAATGTTGTAGCAAAAATGTGGTCCTTTGCTGATCA	140
S A T I M F V E D Y L C N V V A K M W S F A D O	47
AGAACAAAATAAACTTACATTTGAAGTCGTTAAATTGGCACGTGATTTAATTTATTT	210
E Q N K L T F E V V K L A R D L I Y F G F Y S	70
TTCAGTGATCTTTTGAGATTAACGAAAACATTACTCAGTATTTTGGATTGTATTTCAGAAAATGATGTAG	280
FSDLLRLTKTLLSILDCISENDV	93
\checkmark 1 st intron	
۲ CCGATGGAAAAATTCCAACTGGTGAAATTGATGCGGAAGGTGGAGTATTAAGATGTATTGGAGACATGGG	350
A D G K I P T G E I D A E G G V L R C I G D M G	117
	11,
TGCAGTAATGACGAGCTTAACACTGGGACCAGCAGGACAAGTATTAGCAGGAAGTTCTTCTCCAAGACCA	420
A V M T S L T L G P A G O V L A G S S S P R P	140
**************************************	140
AAACCACTTTTAAAGAAAGAATATCCTCTGGTGATGGATACAAAATTGAAAATAATCGAAATTTTACAAT	490
K P L L K K E Y P L V M D T K L K I I E I L Q	163
TTATACTTGATGTTCGATTGGATTATAGAATTTCTTGTTTATTGAGTATTTTCAAACAAGAATTTGATGA	560
FILDVRLDYRISCLLSIFKOEFDE	187
	107
AACTGAAAGAGCTTCTGGTGATTTGAGTCTCGGCCAGAAAACTATTGATTTAGAATTAATAGGTACACAA	630
T E R A S G D L S L G O K T I D L E L I G T O	210
- 2nd intron	210
¥	700
GCGGAGGGTATATTTGGTAG <u>CA</u> GCGAGGAATGTGTGGCGTTAGATTTAGATGGACAAGGTGGTAGAACAT	700
A E G I F G S S E E C V A L D L D G Q G G R T	233
TTCTGCGTGTTTTACTCCATTTGGCAATGCATGACTATCCTCCACTAGTTTCCGGAGCATTACATTTGCT	
F L R V L L H L A M H D Y P P L V S G A L H L L	257
▼ 3rd intron	
TTTTAGGCATTTTAGTCAAAGACAAGAAGTCTTACAAGCATTTAA <u>AC</u> AAGTTCAACTTTTGGTTTCCGAT	840
FRHFSQRQEVLQAFKQVQLLVSD	280
	010
AGTGATGTTGAATCTTACAAACAAATAAAGTCAGATTTGGACGTTTTAAGACAATCGGTTGAAAAAATCGG	
SDVESYKQIKSDLDVLRQSVEKS ******	303

AACTTTGGGTTTATAAATCTAAAGCATCAGAAGAACATGGCAATAAAAGAAGAAGAAAAATAAAGAAGAAGACGA E L W V Y K S K A S E E H G N K K K K N K E D E \checkmark 4 th intron	980 327
AGATGATGGAGCTACTCCTCGTAAAGCACCACCACCACAACTATCTACGACGGATAAGAA <u>AG</u> GATCTGCAATA D D G A T P R K A P P Q L S T T D K K G S A I *******	1050 350
GATTTAGATATTGGTCCACCGTTACATGCAGATCAAGCGGAGGAATATAAAAAAATACAACAAATTCTAA D L D I G P P L H A D Q A E E Y <u>K K I Q Q I L</u>	1120 373
TTCGAATGAACAAATTATGTATCCAAACGATAGGTGGTCAAATAAAACCACGAAAACATGAACAAAGACT I R M N K L C I Q T I G G Q I K P R K H E Q R L	
TTTACGTAATGTTGGAGTACATACCGTTGTTTTAGATTTATTACAAGTTCCATTTGACGCGAAAGAAGAT L R N V G V H T V V L D L L Q V P F D A K E D	1260 420
GTTAGAATGAATGAGTTAATGCGATTAGCACATGATTTCTTGCAAAAATTTTTGTTTAGGAAATCAACAAA V R M N E L M R L A H D F L Q N F C L G N Q Q	1330 423
ATCAAGTTCTGTTGCATAAACAATTAGATTTATTTCTGAATCCTGGTATACGTGAAGCTCAAACGATATG NQVLLHKQLDLFLNPGIREAQTIC	1400 467
TAGTATTTTTCAAGATAATTCGACTTTGTGCAATGAAGTAAGT	1470 490
TGCATAGAAACTCATGGGAAACATGTGCAATATTTAAAATTTCTTCAAACAATAGTAAAAGCCGAAAATC <u>C I E T H G K H V Q Y L K F L Q T I V K A E N</u>	1540 513
$\bigvee 5^{\text{th}}$ intron AATTTATCAGAAAATGTCAGGAAATGGTGATGCAAGA <u>AT</u> TGGTTCAAGCAGGTGAAGACGTTTTAGTTTT <u>Q F I R K C Q E M V M Q E L V Q A G E D V L V F</u>	1610 537
TTATAACGATCGAGCTTCTTTTAATCATTTTGTGGAAATGATGCGATCTGAACGACATCGGATGGAT	1680 560
∇ 0 muon AGTAGTCCACTTAAGTA <u>TC</u> ATGTAGAATTAGTTAAATTATTAGCTTGTCGTACAATGGGCAAAAATGTTA S S P L K Y H V E L V K L L A C R T M G K N V	1750 533
ACACTGAAATTAAATGTCACAGTCTTTTACCACTAGATGATATTGTTGCTATGGTATCTCATCCGGATTG N T E I K C H S L L P L D D I V A M V S H P D C	
TATACCAGAAGTAAAAGAAGCATATATAAATTTTCTTAATCATTGTTATATTGATACAGAAGTAGAAATG I P E V K E A Y I N F L N H C Y I D T E V E M	
AAAGAAATCTACACATCAAATCATATGTGGTCATTATTTGAAAAATCATTCAT	1960 653

TAGCAACAGCTACACATGATCGCGAACATGCTGATATATCTCTGGAAAATTATGTGACAGGTTGCCTAAT 2030																							
I A	A T	A	Т	Η	D	R	E	Η	A	D	I	S	L	E	Ν	Y	V	Т	G	С	L	Μ	677
GAAI	TATC	ATT	ACA.	ACG	TTC	TTT.	AGC	AGT	CCA	rtt'	TCA	GAT	CAA	AGT.	ACC	ACA	GTA	CAGI	AAA				2091
Ν	I	Ι	Т	Т	F	F	S	S	Ρ	F	S	D	Q	S	Т	Т	V	Q	K				697

Figure 1. Nucleotide and predicted amino acid sequence of partial *A. mellifera itpr* based on genomic and cDNA. *First line*, nucleotide sequence; *second line*, deduced amino acid sequence. Plain and bold numbers at the right indicated nucleotide and amino acids, respectively. IP₃R signature was boxed, arrow between the underlined nucleotide showed intron insertion position, cAMP phosphorylation residues were double underlined, PKC phosphorylation site residues shown by * and ryanodine-*itpr* homolog (RIH) residues indicated by single underline (residues 368-547).

Intron lengths in *A. mellifera itpr* range from 70-410 bp, five being less than 100 bp (Table 2). Intron insertions are in all possible phases (Patthy 1987). All introns inserted at the conserved intron insertion (GT/AG) (Table 2).

Although there are high levels of similarity between IP_3R sequences among different organisms, the *A. mellifera* partial *itpr* gene cloned from a single bee contained two alleles that showed five nucleotide differences between them (Table 3). One nucleotide substitution was at the first codon position, resulting in an amino acid change whereas four other occurred at the third codon position and were synonymous.

Table 2. Partial *A. mellifera itpr* gene intron length, conserved and non-conserved introns splice-sequences; unexplored 5' splice site shown with *; the underlined nucleotides are the conserved splicing sites

Intron	Intron	5' Splice Site (exon/intron)	3'splice site (intron/exon)	Intron
number	length			phase
1	410 ?	*	gtttataatatttaata/GCG	?
2	84	AGC,AG/ <u>gt</u> aatacattattcat	tattttatttatttag/C,GAG	2
3	75	CAA/ <u>gt</u> atgttacattatttata	taaattattgtaaat <u>ag</u> /GTT	0
4	94	AAA,G/ <u>gt</u> tttgttaataatttt	attatttataattat <u>ag</u> /GA,TCT	1
5	70	GAA/ <u>gt</u> aagtgataactatttga	taattgcttttttt <u>ag</u> /TTG	0
6	76	CTT,AA/ <u>gt</u> atgcatttaagata	atatatatttt <u>ag</u> /G,TAT,CAT	2

No	A. mellifera		1 st allele			2 nd allele	
	partial <i>itpr</i> cDNA nucleotide position	Nucleo - tide	Codon- amino acid	Found in	Nucleo - tide	Amino acid	Found in
1	574	Т	<u>T</u> CT- S	clone 1,3,4	<u>C</u> CT	<u>C</u> CT- P	clone 2
2	669	G	GC <u>G</u> - A	clone 1,3,4	GC <u>A</u>	GC <u>A</u> - A	clone 3
3	696	А	AG <u>A</u> - R	clone 1,2,4	AG <u>G</u>	AG <u>G</u> - R	clone 3
4	717	С	CT <u>C</u> - L	clone 1,3,4	CT <u>T</u>	CT <u>T</u> - L	clone 2
5	895	G	TC <u>G</u> - S	clone 1,3,4	TCA	TC <u>A</u> - S	clone 2

Table 3. A. mellifera itpr gene nucleotide variants

Intron position comparison between A. mellifera and D. melanogaster embryonic itpr gene

The *D. melanogaster* embryonic *itpr* gene comprises eleven introns, six of which inserted in the IP₃R modulatory domain (Sinha and Hasan 1999). Of the six introns, three found in the region aligning with the partial *A. mellifera itpr* gene. In this study, two introns are at identical position ie. between *A. mellifera* 1st intron and *D. melanogaster* embryonic type 8th intron at position 3926 (Figure 2). Second similarity is the *A. mellifera* 3rd intron and *D. melanogaster* embryonic type 8th intron at *D. melanogaster* embryonic type 8th intron and *D. melanogaster* embryonic type 8th intron and *D. melanogaster* embryonic type 8th intron at *D. melanogaster* embryonic type 8th intron at *D. melanogaster* embryonic type 8th intron at *D. melanogaster* nucleotide number 4569. Besides those conserved introns, *A. mellifera itpr* gene exhibits three more introns and one intron loss at the aligning region with that of *D. melanogaster*.

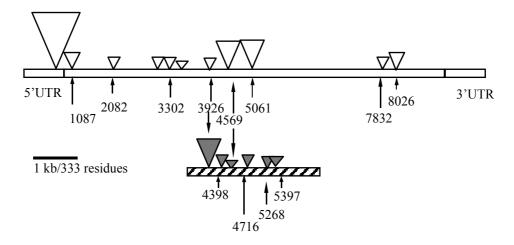


Figure 2. A. mellifera and D. melanogaster itpr gene (Sinha and Hasan, 1999) and the intron positions comparisons; A. mellifera itpr gene (\square) and its introns (∇); D. melanogaster itpr gene (\square), and its introns (∇)

Itpr gene phylogenetic analysis

Arthropod, nematode and mammals *itpr* phylogentic tree is shown in Figure 3 based on approximately 697 amino acids deduced from the *itpr* gene. Alignments was employed with CLUSTAL X and *C. elegans itpr* was used as the outgroup. Tree topology was revealed the same by using three kinds of amino acid substitution model (WAG, VT and Dayhoff) implemented in TREEPUZZLE 5.0 program. The WAG model giving the highest likelihood score was chosen as the best model (Table 4).

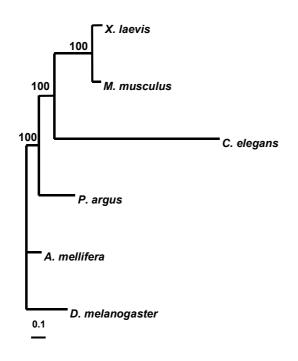


Figure 3. The quartet puzzling tree with its support values constructed from amino acids *itpr* gene of *A. mellifera*, *D. melanogaster* (Genbank: D90403), *P. argus* (AF055079), *C. elegans* (AJ243179), *X. laevis* (D14400), *M. musculus* (X15373). Tree reconstruction uses TREEPUZZLE 5.0. with WAG model. Numbers above the node are the quartet puzzling support values with 1000 replicates.

Table 4. Likelihood value of each itpr tree using different amino acid models

Model	Ln likelihood
WAG	-7254.70
VT	-7334.73
Dayhoff	-7300.30

IP₃R: motifs structure and function

Characterisation of 2,091 bp exons of *A. mellifera* partial *itpr* gene inferred 697 residues for IP₃R with a mass of 79.31 kDa (BioNavigator by Entigen Corporation). The *A. mellifera* partial IP₃R was aligned at *D. melanogaster* IP₃R from amino acid positions 877-1583 which are situated in the modulatory domain of this protein (Yoshikawa et al. 1992).

An *A. mellifera* IP₃R motif search using Prosite revealed one of the IP₃R signatures (PR00779) (Hofmann et al. 1999) (APPENDIX 1). Putative *A. mellifera* IP₃R signature consisted of twenty-six conserved amino acids (Figure 1). Other motifs included the conserved regions of phosphorylation sites, namely one cAMP- or cGMP-dependent protein kinase site, seven PKC phosphorylation sites, fourteen casein kinase II phosphorylation sites and one tyrosine kinase phosphorylation site. Determined by PRINTS, a protein motif finger-print database (Attwood and Beck 1994), *A. mellifera* partial IP₃R protein is a homologue of a Ryanodine receptor (PF01365) and they belongs to RYR-IP₃R Homologue (RIH) protein family. The homologous region is shown in residues number 368-574 of *A. mellifera* partial *itpr* gene (Figure 1).

DISCUSSION

The molecular and structural properties of *A. mellifera itpr* gene are described in this section. The exon-intron organisation and variations of intron positions in this gene are compared with other organisms. Overall, it was found that, although amino acid similarity is highly conserved among nematode and *Drosophila*, several variations were observed to have occurred in gene structure such as intron splice variant and intron position.

Itpr gene structure

Exon-intron organisation in A. mellifera partial itpr gene: common and unique features

Exon-intron organisation of partial *itpr* gene exhibited certain features in common with other genes such as the number of introns for every kilobase (kb) of exon. There were six introns in 2,091 bp exons of partial *itpr* gene that represented an average of three introns per one kb of exon. These results coincided with results from a compilation of intron-exon structures in an overall database whereby 3.7 introns exist in 1 kb exons, while 2.7 introns per kb exist in *D. melanogaster* genome (Deutsch and Long 1999).

Other features commons to all itpr gene introns were located at the phase 2, 0, 1. Introns were classified according to their relative positions in gene reading frame. The phase 0 intron is the intron which lies between two codons, while those falling between first and second nucleotides are known as Phase 1 introns, and those interrupting codons between second and third nucleotides are known as Phase 2 introns (Sharp 1981). In the "intron early" theory Gilbert (1985) claimed that most introns are inserted in Phase 0 (Tomita et al. 1996), which was used as the basis for exon shuffling theory, an extended view of intron early theory.

However, *A. mellifera itpr* gene introns displayed common features, such as the characteristics at their splicing sites. All introns started with GT and ended with AG. Pre-mRNA splicing sites take place in a large spliceosomes. In the conserved GT/AG splice site, spliceosomes contain four small nuclear ribonucleoproteins (snRNPs) namely the U1, U2, U4/U6 and U5 snRNPs (Newman and Norman 1992) and a

complex non-snRNPs protein. The latter protein belongs to an SR family (U2AF) with RNA recognition motifs (RRM), which are needed to enhance U1 and U2 recruitment to the binding region (Valcarcel et al. 1996). U1 snRNP binds to the 5'GA splice site, U2 snRNP binds to the branchpoint of 3' AG splice sites, and U4/U6.U5 assembly required for intron lariat connection (Lopez 1998).

Conservation and divergence of intron insertion sites in itpr gene

Two introns are at conserved positions between *A. mellifera* and *D. melanogaster* which are *A. mellifera* 2^{nd} intron and *D. melanogaster* embryonic type 8^{th} intron at *D. melanogaster itpr* gene (Figure 2).

In addition to conserved intron positions relative to Drosophila, the A. mellifera itpr sequence shows that there are three introns not seen in Drosophila and one that occurs in Drosophila but absent in Apis. The addition of introns at different positions in the A. mellifera and D. melanogaster itpr genes may be the result of a more recent insertion event as shown in intron gain of intron late view (Cavalier-Smith 1991). Insertional theory accounts for introns as being the result of a dynamic process of occasional insertion and deletion (Palmer and Logsdon 1991). Recent studies have produced evidence that intron insertions in the different organismal gene families are more likely to take place than intron loss. Evidence for intron gain also has been observed in intronbearing dasyurid marsupials in the usually intronless SRY gene (O'Neill et. al 1998) and in Chironomus thummi which has a single intron in the usually intronless globin genes (Gruhl et al. 1997). Supporters of the intron gain theory have postulated that the sources of nuclear intron insertions were derived from mobile group II introns from yeast and mitochondria because these intron types have their own reverse transcriptase for making double stranded DNA from a single RNA strand (Eickbush 2000). Other authors have postulated that there P element insertion (Nouaud et al. 1999) or intron duplication (Tarrio et al. 1998) became the intron insertional source.

Variable itpr region

Despite high level conservation of *itpr* gene, several variants occur in this gene. Five nucleotide differences between two alleles of the *A. mellifera itpr* gene are due to both

purin and pyrimidine changes. Nucleotide variations are also evident in clones of rat *itpr-1* gene, all of which had purine changes only (Mignery et al. 1990). Another variable region shown in *P. argus* IP₃R deduced from the *itpr* gene. It has twenty highly hydrophobic amino acids which are absent in IP₃R from other organisms. However, some of these hydrophobic regions exist in the *A. mellifera* putative IP₃R (APPENDIX 1, dotted line). This hydrophobic region is presumably due to the existence of *P. argus* IP₃R in plasma membrane, which is a different location for this receptor (Munger et al. 2000).

Putative A. mellifera partial IP3 Receptor

My study has revealed a total of 697 residues of putative IP_3R protein. Complete IP_3R from several organisms exhibit nine conserved amino acids or protein signatures, one of which was identified in putative *A. melifera* IP_3R , that represents a significantly reliable amino acid in this partial *itpr* gene (APPENDIX 1).

IP₃R: similarity, phylogeny and protein family

A. mellifera IP₃R showed high similarity (more than fifty percent) to this protein from other organisms, except for those of *C. elegans*. High gene conservation is also evident in other genes expressed in *A. mellifera* brain such as gene encoded for partial PKC reveals high degree of similarity, namely 86% and 83% to that of *D. melanogaster* and rat- α PKC (Kamikouchi et al. 2000). *A. mellifera* brain biogenic amine receptors (ie. serotinin, tyramine/octopamine, and dopamine) reveal high degrees of similarity, namely 84%, 72% and 65%, respectively to those of *D. melanogaster* homologue (Ebert et al. 1998).

Based on partial IP₃R amino acid similarities, *P. argus* shows the highest degree of similarity to *A. mellifera*, exceeding that of *D. melanogaster*. However, a phylogenetic analysis based on ML was carried out and revealed that *D. melanogaster* IP₃R is the sister to *A. mellifera*. This phylogenetic tree reflects *itpr* evolution in agreement with current views on animal phylogeny. Current metazoan phylogeny based on 18srRNA revealed two monophyletic groups across bilateria metazoans, deuterostomes (including chordates) and protostomes (including nematodes and arthropods) (Adoutte et al. 1999).

A. mellifera partial IP₃R has been shown to be homologous with Ryanodine (*ryr*), a calcium transport receptor found in muscle (Tunwell et al. 1996). Three subtypes of *ryr* are expressed preferentially in muscular tissue (Tunwell et al. 1996), cardiac tissue (Gorza et al. 1997) and in Purkinje cells (McPherson and Campbell 1993) of sarcoplasmic reticulum. *D. melanogaster* thorax tubular muscle also expresses this gene (Hasan and Rosbash 1992). There has been no study of *ryr* expression in the honey bee, while *A. mellifera* muscle regions (thorax and legs) show slightly IP₃R expression (Kamikouchi et al. 1998b). *Ryr* and *itpr* phylogenetic analyses show that both are paralogous genes. Gene duplication resulted in *ryr* and *itpr* occurring in invertebrate lineage while the three subtype receptors in vertebrates resulted from gene duplication (Saier et al. 1999).

Motifs in <u>A. mellifera</u> IP₃R

In this study, seven putative protein kinase phosphorylation sites were detected in the putative *A. mellifera* IP₃R which are also found in IP₃R of other organisms. Phosphorylation is a post-translational modification process involving a reaction in which phosphate groups are added to hydroxyl groups on protein (Stryer 1995). This process is usually catalysed by a kinase (an enzyme that catalyses phosphate transfer from ATP to a second substrate) using ATP as the phosphate donor (Hunter 1995). Activation of phosphorylation sites by kinase enzymes in the IP₃R modulatory domain regulates the opening of calcium channels (Furuichi et al. 1989).

Of all the phosphorylation sites detected in *A. mellifera* partial IP₃R, PKA is the most interesting one due to the absence of this site in *D. melanogaster* IP₃R (Yoshikawa et al. 1992). PKA catalyses phosphorylation of a number of different enzyme and nonenzyme proteins and hence it plays an important role in metabolic regulation (Taylor et al. 1990). PKA phosphorylation conserved amino acids are R/K-R/K-X-S where R, K, X and S represent arginine, lysin, any amino acid and serin; and the last residue is the phosphorylation site (Feremisco et al. 1980). *A. mellifera* has one putative PKA phosphorylation sites (KKD<u>S</u>), two PKA phosphorylation sites in *P. argus* (KKE<u>S</u> and RKP<u>S</u>) (Munger et al. 2000), and one site in rat (RRE<u>S</u>) (Danoff et al. 1991). *A.* *mellifera* putative PKA phosphorylation site position is at S_{348} that is located at the variable area 1 region (APPENDIX 1).

The occurrence of putative PKA phosphorylation sites in *A. mellifera* but not in *D. melanogaster* suggests that there is a different mechanism and more complex second messenger signal transductions in *A. mellifera* compared to those of *D. melanogaster*. In *D. melanogaster*, signalling is only activated by a single second messenger (IP₃), whereas in *A. mellifera* two second messenger are possibly needed in signal transduction.

Protein kinase C (PKC) phosphorylation sites also exist in the putative *A. mellifera* IP₃R. PKC is the major kinase occurring in neuronal tissue (Huang 1989). Conserved substrate specificity for PKC phosphorylation amino acids are (S/T) or (R/K) with S (serine) as the phosphorylation site (Kishimoto et al. 1985). PKC phosphorylation sites also exist in most IP₃R in other organisms (Munger et al. 2000).

Does the *itpr* gene mediate honey bee memory formation?

Two regions in the honey bee brain act as memory formation areas, namely the olfactory glomerulus which acts as the first memory storage area and mushroom bodies which act as the highest integration modulation signal (Hammer and Menzel 1995). Memory formation in the honey bee has been confirmed as developing in five stages, namely early short term memory (eSTM), late short term memory (ISTM), middle term memory (MTM), early long term memory (eLTM) and late long term memory (ILTM) (Menzel and Giurfa 2001). STM enables honey bee to retain information from several seconds to minutes. MTM can last for several hours while LTM can even last for days (Menzel 2001). In STM, the honey bee uses PKA as protein kinase to phosphorylated signals (Menzel 1999). PKC appears to be the basic protein kinase in later memory or in the ILTM stage (Grunbaum and Muller 1998) which is associated with NO (Muller 1996).

Immunohistochemistry studies of honey bee brains have revealed that PKA and PKC expression occurs in different distributions, i.e. PKA occurs in most neuronal brains

whereas PKC is highly expressed in mushroom bodies (Muller 1997; Muller 1999). My study highlights the occurrence of putative PKA and PKC phosphorylation sites in IP₃R. It is possible then that *A. mellifera* IP₃R can play role in mediating signal pathways at certain stages of memory formation by means of the PKA and PKC phosphorylation sites in the protein modulatory domain. Moreover, Muller's Figure 1 diagram (1999) shows the scheme of second messenger-regulated phosphorylating cascades including PKA and PKC and also the occurrence of intracellular organelle contributes to the production of Ca^{2+} .

Complete honey bee PKA cDNA (Eisenhardt et al. 2001), partial PKC and $Ca^{2+}/CaMKII$ cDNAs (Kamikouchi et al. 2000) have been characterised. Research studies which assess the contribution of IP₃R to brain signalling pathways can be conducted by means of experiments using *A. mellifera* PKA and (or) PKC mutant. *D. melanogaster dunce* mutant for cAMP phosphodiesterase (Dudai et al. 1976; Chen et al. 1986) and rutubaga mutant for Ca²⁺/Calmoduline-responsive adenylyl cyclase (Levin et al. 1992) show that these are defective in learning. Another study of the role of the *itpr* gene in relation to PKA has already been demonstrated in *D. melanogaster* molting development (Venkatesh and Hasan 1997; Venkatesh et al. 2001), it is therefore possible to study the role of this gene in *A. mellifera* signalling neurons, either directly using generated mutants or, perhaps more feasibly, using antisense RNA under RNAi as already attempted in honey bees (Beye et al., 2002).

FUTURE STUDY

Further studies are necessary in order to complete the entire *A. mellifera itpr* sequence. As a result of this current study, all introns are known to be inserted at conserved splicing sites. Complete *A. mellifera itpr* sequence can be done by using cDNA walking combined with the use of conserved primers to amplify *A. mellifera* cDNA and DNA. *A. mellifera itpr* introns can be explored at the genomic level using the sequence difference between cDNA and DNA sequences.

The *A. mellifera itpr* promoter region needs to be characterised and as well as the IP_3R transmembrane spanning and IP_3 ligand binding sites. *A. mellifera* putative

phosphorylation sites (PKA, cGMP, PKC, tyrosine, glucosamine and casein kinase) should be confirmed and the results expanded to the entire *A. mellifera* IP₃R. In the context of honey bee brain calcium signalling, it should also be possible to characterise *A. mellifera RYR*. This receptor is expressed in *the D. melanogaster* tubular muscle and has a low expression in neuronal tissue (Hasan and Rosbash 1992).

APPENDIX 1. Partial *itpr* gene alignment; the IP₃R signature is boxed; arrows indicate the conserved intron position between *A. mellifera* and *D. melanogaster itpr* gene embryonic type; bold amino acids are the *D. melanogaster* IP₃R adult type insertional region; the thick line is the IP₃R variable area I (Yamada et. al 1994); the *A. mellifera* PKA phosphorylation site (S₃₄₈) is underlined; dotted spots covered the similar hydrophobic regions in *P. argus* (Munger et. al 2000) and *A. mellifera*; stars denote the identical amino acids of all taxa.

A.mellife D.mel_embryo D.mel_adult P.argus C.elegans X.laevis M.musculu	MSINDYDANRMR DETMPYELRASFCRLMLHLHVDR-DPQEPVTPVKYARLWSEIPSKMSIQDYDGKNQQP DETMPYELRASFCRLMLHLHVDR-DPQEPVTPVKYARLWSEIPSKMSIQDYDGKNQQP EETLAYDLRAAFCRLMLHMHVDC-EPQEMVTPVKYARLWSEIQPHMSIADYDKHAAM DNRLPYDLRGSFTRLMLHLHVVRGSPMSAIRHARLWWSIPENVNVSTYESVSVEAYS DENLPFDLRASFCRLMLHMHVDR-DPQEQVTPVKYARLWSEIPSEIAIDDYDSS DENLPYDLRASFCRLMLHMHVDR-DPQEQVTPVKYARLWSEIPSEIAIDDYDSSGTS *	889 889 824 883 807
A.mellife D.mel_embryo D.mel_adult P.argus C.elegans X.laevis M.musculu	DQNKEAVRAKFSA-TIMFVEDYLCNVVAKMWSFAD-QEQNKLTFEVVKLARDLIYFGFYS DQNKQACRAKFNT-TIAFVENYLCNVATKVWLFTD-QEQNKLTFEVVKLARDLIYFGFYS DQNKQACRAKFNT-TIAFVENYLCNVATKVWLFTD-QEQNKLTFEVVKLARDLIYFGFYS -HSTEAAETTFKD-VIVFVEEYLCNVVDKMWSFSD-CEQNKLTFEVVKLARYLIYFGFYS DGSRMRIGEGIAHKVLATVETYLMGLRNQSMEERQSVNSSKLTYEIVNLAKALAQFNFYS GTSRDDIKERFAQ-TMEFVEEYLRDVVGQRFPFAD-KEKNKLTFEVVNLARNLIYFGFYN KDEIKERFAQ-TMEFVEEYLRDVVCQRFPFSD-KEKNKLTFEVVNLARNLIYFGFYN ** ** ** ** *** ***	70 947 947 881 943 865 880
A.mellife D.mel_embryo D.mel_adult P.argus C.elegans X.laevis M.musculu	FSDLLRLTKTLLSILDCISENDVADGKIPTGEIDAEGGVLRCIGDMGAVMT FSDLLRLTKTLLSILDCVSDTSSGEFASTDIDSEGGVLRSIGDINTVMT FSDLLRLTKTLLSILDCVSDTSSGEFASTDID SVEEETNAE AEGGVLRSIGDINTVMT FNDLLRLTKTLLSILDYSFDTDSKYFSNSIPQGTASAKGGVIKSLGDMGAVVT FNDLLQLTQNLLAIINEGPATEQVPS	996 1005 934 981 918
A.mellife D.mel_embryo D.mel_adult P.argus C.elegans X.laevis M.musculu	SLTLGPAGQVLAGSSSPRPKPLLKKEYPLVMDTKLKIIEILQFILDVRLDYRIS SLALGSVGQAIAAPTISLQQRKSVSQLMKEYPLVMDTKLKIIEILQFILDVRLDYRIS SLALGSVGQAIAAPTISLQQRKSVSQLMKEYPLVMDTKLKIIEILQFILDVRLDYRIS NLALGTTRMGPRLGGGSSPKKKVGATEKEDTLVMDTKLKIIEILEFILNVRLDYRIS KSMMRGGNKENSKDLAKTPSVTAEEAGRTKEGRALNVKTKLIVAEILQFVMDVRDYRIT QVVLRGGGFLPMTPMAAPEGTIKAQREPEKED-ILVMDTKLKIIEILQFILNVRLDYRIS QVVLRGGGFLPMTPMAAPEGN-VKQAEPEKEDIMVMDTKLKIIEILQFILNVRLDYRIS *** *** * ** **	1054 1063 991 1041 977
A.mellife D.mel_embryo D.mel_adult P.argus C.elegans X.laevis M.musculu	CLLSIFKQEFDETERASGD CLLSIFKREFDESEVPLRPLAMRQVSSSRNNRNRRRLAAPMRLIPSTVPSLWPPRCAAAA CLLSIFKREFDESEVPLRPLAMRQVSSSRNNRNRRRLAAPMRLIPSTVPSLWPPRCAAAA CLLSIFKKESDENPSSLTGEGISQGLKNKNVENIWAQAQ MALSWFKNVFPCDEDGS CLLCIFKSEFDESNAQSSETSSGNSVEGSTE CLLCIFKREFDESNSQSSETSSGNSSQE * **	1114 1123 1030 1058 1000
A.mellife D.mel_embryo D.mel_adult P.argus C.elegans X.laevis M.musculu	LSLGQKT-IDLELIGTQAEGIFGSSEECVALDLDGQGGRTFLRVLLHLAMHDYPPLVS TTARQKN-IDLESIGVQAEGIFDCERS-DAANLDLDGQGGRTFLRVLLHLIMHDYAPLVS TTARQKN-IDLESIGVQAEGIFDCERTPANLDLDGQGGRTFLRVLLHLIMHDYAPLVS SIFDETSGLGLVWSSSQRKPSLQTSSCEENSSLDLDGEGGKKFLRVLLHLTMHEYPPLVS -LMHSASINERMASELYDAIYRSSGHELHLDGRDGQLLLAILLQMTMSDYPPLTS AITVVPGTLDFEHIEEQAEGIFGGSEENTPLDLDDDGGRTFLRVLLHLTMHDYPLVS GPSNVPGALDFEHIEEQAEGIFGGSEENTPLDLDDDGGRTFLRVLLHLTMHDYPLVS * ** * * * * * * * * * * * * * *	1172 1180 1090 1112 1058
A.mellife D.mel_embryo D.mel_adult P.argus C.elegans X.laevis M.musculu	GALHLLFRHFSQRQEVLQAFKQVQLLVSDSDVESYKQIKSDLDVLRQSVEKSELWVYK GALHLLFRHFSQRQEVLQAFRQVQLLVSDSDVESYKQIKSDLDILRQSVEKSELWVYK GALHLLFRHFSQRQEVLQAFRQVQLLVSDSDVESYKQIKSDLDILRQSVEKSELWVYK RSLQLLFRHFSQRQEVLQNFKQVQLLVQDGDVESYKQIKEDSDDLRNLVEKSELWVYK IALKVFFRHFTQYQELLEDLKQVQLLVSNNDVENYRQIDRDLFILKNLTEKSELWVHGDR GALHLLFRHFSQRQEVLQAFKQVQLLVTSQDVDNYKQIKQDLDQLRSIVEKSELWVYK GALQLLFRHFSQRQEVLQAFKQVQLLVTSQDVDNYKQIKQDLDQLRSIVEKSELWVYK * **** * ** * ****	1230 1238 1148 1172 1115

A.mellife	DGATPRKAPPQLS	341
D.mel_embryo	AKATDELG	1238
D.mel_adult	AKATDELG	
P.argus	DDALSKPKKPPAPKLT	
C.elegans	HHSIDTKEVDEKERTTEHDLLDHDLKSPRAFDSGDSMEALMAVLNEHYPSIRNECLQLLN	
X.laevis	KGSGPEEVTAAQAGGADKGETPGGGG	
M.musculu	GQGPDEPMDGA	1146
	Area I	
A.mellife	TTDKKGSAIDLDIGPPLHADQAEEYKKIQQILIRMNKLCIQTIGGQIKPRKHEQR	396
D.mel embryo	ATDAGGDAVSLEYNAALSQEQRNEYRKVKEILIRMNKFCVTASGP-GSVVKPRKHEQR	
D.mel adult	ATDAGGDAVSLEYNAALSQEQRNEYRKVKEILIRMNKFCVTASGP-GSVVKPRKHEQR	1303
P.argus	AQDKQESAIDLGLGPPLEPEQADNYKRIQQILVRMNKLCVTQSSHGNLSPKRNEQR	
C.elegans	RLLIKDDRNDAAVALQELSDKAPLIAYPLIRQMLVRLTGMCYRKGDPKPDTMNQQ	1287
X.laevis	KAKKSESTSSYNYRVVKEILLRLSKLCVQENTTGR-RNRKQQQR	
M.musculu	SGENEHKKTEEGTSKPLKHESTSSYNYRVVKEILIRLSKLCVQESASVRKSRKQQQR	1203
	* * * *	
A.mellife	LLRNVGVHTVVLDLLQVPFDAKEDVRMNELMRLAHDFLQNFCLGNQQNQVLLHKQLD	453
D.mel embryo	LLRNVGVHTVVLDLLQNPYDEKDDELMKELMCLAHEFLQNFCLGNQQNQVLLHNHLD	
D.mel adult	LLRNVGVHTVVLDLLQNPYDEKDDELMKELMCLAHEFLQNFCLGNQQNQVLLHNHLD	
P.argus	LLRNMGIHSVVLELLQIPYDRKEDKRMNELIELAHQFLQNFCLGDRANQALLYKSID	
C.elegans	LLKNMRVYEVVLEFISVPHDKKHDHDMMKLITLSHEFLRSFCKTNKENQSRLYKFISYEK	
X.laevis	LLRNMGAHSVVLELLQIPYEKTEDTRMQEIMKIAHEFLQNFCAGNQQNQALLHKHIN	
M.musculu	LLRNMGAHAVVLELLQIPYEKAEDTKMQEIMRLAHEFLQNFCAGNQQNQALLHKHIN	1260
	** * *** * * * * ** ** *	
A.mellife	LFLNPGIREAQTICSIFQDNSTLCNEVSAKVIQHFVHCIETHGKHVQYLKFLQ	506
D.mel embryo	LFLNPGILEAKTVCAIFKDNLALCNEVTDKVGVGHSVVHCIEIHGRHVAYLQFLQ	
D.mel adult	LFLNPGILEAKTVCAIFKDNLALCNEVTDKVVHFVHCIEIHGRHVAYLQFLQ	
P.argus	LFLNPGLLEAKTVCAVFKDNSHLCSEVSERVIQHFIHCIETHGRHVQYLKFLQ	
C.elegans	DAKEGMLRVETIEEVGTLVAIFRNNRELASNVPEELIAHIVGLIEHNSRNPIFLELLQ	1405
X.laevis	LFLTPGILEAVTMQHIFMNNFQLCSEINERVVQHFAHCIETHGRNVQYIKFLQ	
M.musculu	LFLKPGILEAVTMQHIFMNNFQLCSEINERVVQHFVHCIETHGRNVQYIKFLQ	1313
	* * * * * ** **	
A.mellife	TIVKAENQFIRKCQEMVMQELVQAGEDVLVFYNDRASFNHFVEMMRSERH-RMDESS	562
D.mel embryo	TVVAAENQFIRRCQDMVMQELINSGEDVLVFYNDKGSFNHFVQMMQQQML-GMEKLSDDS	
D.mel adult	TVVAAENQFIRRCQDMVMQELINSGEDVLVFYNDKGSFNHFVQMMQQQML-GMEKLSDDS	
P.argus	TIVKAEGQFLRRSQDIVMQELVNAGEDVLVFYNERASFNMFIEMMKADRN-RMDFDDS-S	1411
C.elegans	ALVCVYDKEIESGQEKVANEICAASDEVRQLYVDNASFEELEAMMKDEKESKGRSSDSRR	1465
X.laevis	TIVKAEGRYIKKCQDIVMAELVNSGEDVLVFYNDRASFQTLVQMMRSERER-MDENS	
M.musculu	TIVKAEGKFIKKCQDMVMAELVNSGEDVLVFYNDRASFQTLIQMMRSERD-RMDENS	1369
	* * * * * * * **	
A.mellife	PLKYHVELVKLLACRTMGKNVNTEIKCHSLLPLDDIVAMVSHPDCIPEVKEAYINFLNHC	622
D.mel embryo	PLKYHVELVKLLACCTMGKNVYTEIKCNNLLSLDDIVTIICHPLCMPEVKEAYVDFLNHC	
D.mel adult	PLKYHVELVKLLACCTMGKNVYTEIKCNNLLSLDDIVTIICHPLCMPEVKEAYVDFLNHC	
P.argus	PLRYHIELVKLLACCTEGKNASTEIKCHSLLPLDDIVAMVEHKDCIPEVKEAYINFLNHC	1471
C.elegans	KLKYHIELVRLLAMCTRGKNGNTELKCASQIPMDHIVRVVTAKQCLVEVKTVYLQLLLHC	1525
X.laevis	PLMYHIHLVELLAVCTEGKNVYTEIKCNSLLPLDDIVRVVTHEDCVPEVKIAYINFLNHC	
M.musculu	PLMYHIHLVELLAVCTEGKNVYTEIKCNSLLPLDDIVRVVTHEDCIPEVKIAYINFLNHC	1429
	* ** ** * * ** ** ** * * * * * * * * * *	

A.mellife D.mel_embryo D.mel_adult P.argus C.elegans X.laevis M.musculu	YIDTEVEMKEIYTSNHMWSLFEKSFIVDMGIIATATHDREHADISLENYVTGCLMNIITT 682 YIDTEVEMKEIYASGHMWSLFEKSFLVDINQLITNPAAASNKTLQAYVLNGVTNLLGS 158 YIDTEVEMKEIYASGHMWSLFEKSFLVDINQLITNPAAASNKTLQAYVLNGVTNLLGS 158 YIDTEVEMKEIYNSHHIWSLFEKSFLVDMGRVATAPPDRRHADKALENYVINSLMTIITT 153 YIDTDAEMKDAYKTEYVDHILNN-LLEDI-RSLRVEKLTGAETATLEHYICHTVTEVLIK 158 YVDTEVEMKEIYTSNHMWKLFEN-FLVDICRVCNSTSDRKHADIVLERYVTEIVMSIVNT 146 YVDTEVEMKEIYTSNHMWKLFEN-FLVDICRACNNTSDRKHADSILEKYVTEIVMSIVTT 148 * ** *** * * * * * * * * * *	4 9 1 3 6
A.mellife D.mel_embryo D.mel_adult P.argus C.elegans X.laevis M.musculu	FFSSPFSD-QSTTVQK 697 FFASPFSD-QSAIVQS 1599 FFASPFSD-QSAIVQS 1604 FFNSPFSD-QSQTIQT 1546 FFEAPYSALQQAKVDV 1599 FFSSPFSD-QSTTLQA 1481 FFSSPFSD-QSTTLQT 1503 ** * * *	

APPENDIX 2. *A. mellifera* partial *itpr* gene: intron (lowercase) and exon (uppercase) sequences

aaacttctaaagctgattctgtggattctcaggacataggtaatattattgagaat taattaqqtaqcatqttactttqtaatatttcttqcacttctatttqtttcacqtaac atcttcctttgatactttccttcttaattttattttaagtcagttttgtgttaaaaaa atataaatattttattaaaaacaqcaatqtcaaataatqtaactatattcaatcttaa ttcaatttttaaagcctgaagttatttttttttaaatttataataaaaaatatttaa acataaaatcattctatttaataaattaagaacgcatttaaaaatgtttataatattt aataGCGGAAGGTGGAGTATTAAGATGTATTGGAGACATGGGTGCAGTAATGACGAGC TTAACACTGGGACCAGCAGGACAAGTATTAGCAGGAAGTTCTTCTCCAAGACCAAAAC CACTTTTAAAGAAAGAATATCCTCTGGTGATGGATACAAAATTGAAAATAATCGAAAT TTTACAATTTATACTTGATGTTCGATTGGATTATAGAATTTCTTGTTTATTGAGTATT TTCAAACAAGAATTTGATGAAACTGAAAGAGCTTCTGGTGATTTGAGTCTCGGCCAGA AAACTATTGATTTAGAATTAATAGGTACAAGCGGAGGGTATATTTGGTAGCAGqta ataaattatttatttatttaqCGAGGAATGTGTGGCGTTAGATTTAGATGGACAAG GTGGTAGAACATTTCTGCGTGTTTTACTCCATTTGGCAATGCATGACTATCCTCCACT AGTTTCCGGAGCATTACATTTGCTTTTTAGGCATTTTAGTCAAAGACAAGAAGTCTTA CAAGCATTTAAACAAgtatgttacattatttataatattatcgtgtaatataaatgaa aaaatataaatttattaaattattqtaaataqGTTCAACTTTTGGTTTCCGATAGTGA TGTTGAATCTTACAAACAAATAAAGTCAGATTTGGACGTTTTAAGACAATCAGTTGAA AAATCGGAACTTTGGGTTTATAAATCTAAAGCATCAGAAGAACATGGCAATAAAAAGA AGAAAAATAAAGAAGACGAAGATGATGGAGCTACTCCTCGTAAAGCACCACCACCACCA ATCTACGACGGATAAGAAAGgttttgttaataattttttttaaataaaatattgaaat aaattgaaaaatcaaaggcaaaattttcctaatacaaatattattataattatagGA TCTGCAATAGATTTAGATATTGGTCCACCGTTACATGCAGATCAAGCGGAGGAATATA AAAAAATACAACAAATTCTAATTCGAATGAACAAATTATGTATCCAAACGATAGGTGG TCAAATAAAACCACGAAAACATGAACAAAGACTTTTACGTAATGTTGGAGTACATACC AGTTAATGCGATTAGCACATGATTTCTTGCAAAATTTTTGTTTAGGAAATCAACAAAA TCAAGTTCTGTTGCATAAACAATTAGATTTATTTCTGAATCCTGGTATACGTGAAGCT

Chapter 3. Honey bee behavioural evolution: insights from molecular phylogenetic analysis

Abstract

My study deals with honey bee behavioural evolution in terms of ancestral states for food recruitment and nesting behaviour. It also seeks to resolve questions about honey bee phylogeny mainly the relationship of two newly recognised species.

Phylogenetic reconstruction was performed under a Maximum Likelihood (ML) framework using data from two mitochondrial genes (*COII* and *lsRNA*) and a nuclear gene, *itpr*. ML analysis under GTR+G+I model of substitution revealed that *A. dorsata* and *A. florea* groups are clustered in the same clade, separate to that of *A. mellifera* group. Another possible honey bee evolutionary scenario from a weighted consensus ML tree revealed the following topology: ((((*Apis mellifera*, (((*A. nuluensis, A. nigrocincta*), *A. cerana*), *A. koschevnikovi*)), ((*A. laboriosa, A. d. binghamii*), *A. dorsata*)), (*A. florea, A. andreniformis*)), *Trigona fimbriata, Bombus terrestris*). This topology is in agreement with previous morphological and molecular results. In addition, my study discovered a discrepancy in the *COII* sequence of *A. koschevnikovi COII* (Willis et al. 1992) and thereby explains some puzzling results.

Dance behaviour was mapped onto the consensus phylogenetic tree. Species with vertical dance behaviour are monophyletic, as are those with horizontal dance behaviour. An unordered trait analysis does not resolve which type of dance behaviour (horizontal or vertical) is the ancestral. However, given that horizontal dance behaviour is less sophisticated with respect to translating foraging information for potential recruits, an ordered dance character state seems justified, and yields simple results. From these considerations, horizontal dance seems most likely to be the ancestral condition.

Whether cavity- or open nesting was ancestral cannot be determined because the two possibilities are equally parsimonious (i.e. both require two changes). Either ancestral *Apis* evolved open nesting from a common ancestor with the (cavity nesting) Bombini or Meliponini, or cavity nesting was ancestral with two or one origin(s) of open nesting.

The flexibility has shown by the cavity nesters. *A. mellifera* (which can nest in the open for extended periods) suggests that it may stem from open nesting ancestor, thereby indicating that open-nesting was ancestral.

INTRODUCTION

Eusociality in Apidae occurs in the corbiculate bees, namely the group of bees which have a corbicula (pollen basket) on the hindleg (Michener et al. 1978). The corbiculate group consists of four tribes: the Euglossini, Bombini, Meliponini, and Apini (Michener 2000). The tribe Euglossini is non-eusocial bees (most species are solitary, but some are communal or quasisocial), whereas the other groups (Bombini, Meliponini and Apini) live in eusocial colonies (Michener 1944; Prentice 1991).

The Apini consists of one genus, *Apis* that contains nine species. In this study, I seek to elucidate the behavioural history of *Apis*, with respect to nesting and dance behaviour. In inferring honey bee phylogeny, I used Bombini and Meliponini as the outgroups. The following sections describe behavioural characteristics reported in Bombini and Meliponini. Details of *Apis* nesting and dance behaviour were given in Chapter 1.

Nest construction

The nests made by bees placed in the Bombini, Meliponini and Apini, in which young are cared for communally and two generations of adult females live in the nest, reflect their eusociality (Michener 1974). Here I follow the original meaning of 'eusocial' (Crozier and Pamilo, 1996 page 4) as denoting species with continued and cooperative care of the young, a reproductive division of labour, and colonies with two adult generations, with 'advanced eusociality' pertaining to cases in which the egg-layers are morphologically differentiated from other individuals. Crespi and Yanega (1995) restrict 'eusociality' to species usually defined as 'advanced eusocial' and Sherman et al. (1995) suggest describing no species as 'eusocial' but rather giving them a score on a eusociality index. Neither of these suggestions is as useful as the original definition, at least for the work reported here.

Bombini or bumble bees, live mostly in the soil and often in an abandoned rodent nest burrow covered with dry grass and leaves (Michener 1974). Several species build their nests above the soil surface, mostly beneath vegetation. The bumble bee nest consists of brood cells and food storage pots which are made from mixed pollen and wax. Sometimes they make food storage pots from old cocoons (Michener 1964). The Meliponini or stingless bees, usually build their nests in cavities inside hollow trees, although some species nest in soil, and others live in the open air (Roubik 1983). The fossorial species sometimes form an association with termite or ant nests such as *T. moorei* in *Crematogaster* (Salmah et al. 1990). Meliponini nests are made of wax, and some parts are made of cerumen (a mixture of resin and wax). In several cavity stingless bee species, the nest is encircled by batumen (thick cerumen plates), which seals most of the nest. The stingless bee nests in partially-exposed areas are providing with thick batumen which provides protection from heavy winds blows and temperature fluctuations (Wille and Michener 1973). Most stingless bees have an entrance tunnel to the nest. Their nests consist of brood cells and food storage pot, both made of wax and resin. Some brood cells are arranged horizontally, and others are in spirals with vertical openings. There is one species which builds vertical cells which are double-sided, back-to-back cells as seen in the honey bee (Michener 1974).

Outgroup data are essential for identifying character state homologies and determining polarity of evolutionary events. Table 1 (below) describes the nest structure features in Bombini, Meliponini, and Apini, which will be used here for comparative analyses.

)			
NEST DESCRIPTION	BOMBINI	MELIPONINI	APINI
Location			
Underground	yes	yes	no
Cavity (i.e. tree trunk)	no	yes	yes
Open area	yes	yes	yes
Nest material	Mostly wax and resin	Mostly wax and resin	Wax
Nest component			
Brood cells	Vertical opening cells	Vertical opening cells only one species with horizontal opening cells	Two-sided horizontal opening cells
Brood and food cells	Differ	Differ	the same form

pot

cells

Table 1

Food storage

pot

Nest structure comparisons in Bombini, Meliponi, and Apini (Michener 1974; Roubik 1983)

Dance behaviour

Dance behaviour in honey bee is a repetitive behaviour that gives information about the distance and the direction of a certain place (von Frisch 1967). Dance behaviour is performed by forager, scout and drone honey bees. The forager honey bee gives food source information whereas the scout bee communicates the location of the new nest (Lindauer 1961), while at least in *A. andreniformis* the drone dances to coordinate departure by the colony's males (Rinderer et al. 1992). The focus of my study will be dance behaviour as performed by the forager honey bee.

Dance behaviour basically is food recruitment behaviour; it is a form of communication that brings nestmates to point in space where work is required. In the foraging context of food recruitment, dance behaviour is a communication that brings nestmates to the food source (Wilson 1971).

One example of food recruitment in Bombini is that of *B. terrestris* (Dornhaus and Chittka 2001), where the returning forager stimulates nestmates to search for food by a repetitive irregular running while fanning the wings. However, no information about distance or direction of the food location is provided (Dornhaus and Chittka 2001). While performing the runs, the bumble bee unloads the nectar into the nectar pot, then continues the excited running for several minutes before flying back to the food source. Recruitment mechanisms involve distributing the pheromone from the dancer to the recruits. A considerably higher amount of honey is produced after the dancer has recruited nestmates (Dornhaus and Chittka 2001).

Among the Meliponini, wide ranges of food communication mechanisms have evolved. The first of these is the alerting signal, which indicates that food is available by means using of a scent trail (Esch et al. 1965). In *Scaptotrigona postica* route to the food source from the nest is marked with a scent trail (Lindauer and Kerr 1960). "Jostling running" is performed by *Melipona scutellaris and M. quadrifasciata* foragers (Hrncir et al. 2000; Jarau et al. 2000). *M. panamica* shows a recruitment behaviour by performing clock and anticlockwise dance as the honey bee round dance (Nieh 1998). The polarity of dance behaviour will be discussed as well.

Previous studies of morphology and molecular phylogenetics in Apis

In order to understand the evolution of nesting and dancing behaviours we require a comprehensive phylogeny of this genus. Previous phylogenetic analyses were based on morphology (Alexander 1991) and mitochondrial DNA sequences using cytochrome oxidase II (*COII*) (Garnery et al. 1991; Willis et al. 1992) and large unit of ribosomal (*lsRNA*) (Cameron et al. 1992) regions for five species of honey bee. Most phylogenetic results have found that *A. florea* is the most basal species in the tree, with *A. dorsata* and *A. mellifera* as more derived groups (Alexander 1991; Garnery et al. 1991; Engel and Schultz 1997).

Controversy surrounds the position of *A. koschevnikovi*. One study found a close relationship of *A. koschevnikovi* to *A. florea* and *A. andreniformis* (Willis et al. 1992). Using the *COII* data of Willis et al. (1992), Engel, and Schultz (1997) confirmed that they show a close relationship of *A. koschevnikovi* to *A. florea* and *A. andreniformis*, whereas morphology and the other gene support the traditional place of *A. koschevnikovi* close to *A. cerana*. Tanaka et al. (2001) confirmed these findings from *COII* and concurred with Engel and Schultz (1997) that *COII* cannot be used for *Apis* phylogenetic studies. I have reexamined this condition by obtaining new or independent *COII* sequence for all the *Apis* species.

In addition to using the phylogenetic tree for tracing the evolution of honey bee behaviour, I will address the relationships of new honey bee species, *A. nuluensis* and *A. nigrocincta*, to the established species.

The previous honey bee phylogenetics used *Bombus* and *Xylocopa* as outgroups (Garnery et al. 1991). The latter was also used by Cameron et al. (1992) while Tanaka et al. (2001) used wasp as the outgroup. Apid molecular phylogenetics based on cytochrome b (Koulianos et al. 1999) showed that the Apini form a sister tribe of the Euglossini; and the Bombini are the sister tribe to the Meliponini. Data from several genes (*opsin*, 28srDNA, *lsRNA* and *cytochrome b* genes) also yielded the same results (Cameron and Mardulyn 2001; Lockhart and Cameron 2001). On the other hand, Ascher et al. (2001) found that *opsin* sequences failed to resolve the higher qualification

of the corbiculate tribes; but that adding morphological and behavioral data yielded the same, traditional result as do the behavioural and morphological data alone. Schultz et al. (2001) note that some molecular data sets are equivocal and argue that therefore, all molecular results should be set aside in favour of the morphological, paleontological and behavioral data sets. For the purpose of this study, I have selected Bombini and Meliponini as the outgroups because they perform the type of social behaviour which is the focus of interest here.

Nuclear and mitochondrial gene combined data

Previous molecular phylogenetic analyses have used mitochondrial DNA for analysing honey bee evolution. In this study I will contribute further to the inference of *Apis* phylogeny by including a nuclear gene, the inositol 1,4,5-trisphosphate receptor (*itpr*) from the study described in Chapter 2. The molecular phylogeny combines the *itpr* gene with the two mitocondrial DNA genes: cytochrome oxidase II (*COII*) and the large unit of ribosomal (*lsRNA*).

OBJECTIVE

The main objectives here are to elucidate behavioural evolution of honey bee in the areas of nesting and dance behaviour and to determine ancestral characteristic states of such behaviour traits. I have used molecular phylogenetics as my approach in tracing behavioural evolution. In addition to map the behavioural characteristics into the inferred molecular tree, I would resolve honey bee molecular phylogenies and include the newly recognised honey bee species, in my new phylogeny.

MATERIALS AND METHOD

DNA: extraction, sequencing and genomic walking

Genomic DNA was extracted from the thoraces of single bees using phenol-chloroform extraction and ethanol precipitation. DNA target regions were amplified using the Polymerase Chain Reactions (PCRs). PCRs were carried out in 50 μ l reactions. Cycle sequencing conditions varied depending on the DNA target length. The basic amplification protocol was 2 min at 94^oC for initial denaturing, 35 cycles of 30 s at 94^oC, 30 s at 40-58^oC and 1 min at 72^oC for DNA elongation, followed by 10 minutes

for the final extension. DNA Sequencing was carried out according to the ABI BigDye protocol automated sequencing instruction of the supplier.

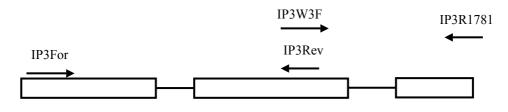
Taxon analysis

The ingroup honey bees comprise nine species of *Apis* and one subspecies, *A. d. binghamii. T. fimbriata* (Meliponini) and *B. terrestris* (Bombini) comprise the outgroups in the phylogenetic analysis (Table 2).

Bees species	Location	Collector
A. mellifera	Sydney, Australia	BPO
A. dorsata	Sabah, Malaysia	RR
A. d. binghamii	Sulawesi, Indonesia	GWO
A. laboriosa	Nepal	JP
A. florea	Chiangmai, Thailand	RR
A. andreniformis	Sumatra, Indonesia	RR
A. cerana	Sabah, Malaysia	RR
A. koschevnikovi	Sabah, Malaysia	RR
A. nigrocincta	Sulawesi, Indonesia	SH
A. nuluensis	Sabah, Malaysia	RR
T. fimbriata	Chiangmai, Thailand	RR
B. terrestris	Switzerland	RS

Table 2.Bee sample locations and collectors

Collector abbreviations: BPO: Ben P. Oldroyd; RR: Rika Raffiudin; GWO: Gard W. Otis; JP: Jurgen Paar; SH: Soesilowati Hadisoesilo; RS: Regula Schimdt-Hempel


Molecular markers

Apis itpr and *COII* were analysed for all honey bees and outgroup bees. Sequence data from several *lsRNA* honey bees (Cameron et al. 1992) were used and combined with the new mitochondrial sequence data from this study.

Itpr gene

Three exons (starting 2nd exon) and two introns of *itpr*, derived from the *itpr* characterisation study (Chapter 2), were used for reconstructing honey bee phylogeny. The total region comprised of approximately 1.2 kb. In order to amplify these regions, two oligonucleotide primer sets were designed. The first set was the set of IP3For 5'-

GAATATCCTCTGGTGATGGATACA-3' and IP3Rev 5'-CCATGTTCTTCTGATG CTTTAGA 3'. The second set was the IP3W3F 5' GGTTTCCGATAGTGATGTTGA AT 3' and IP3R1781 5' AGGATTAAGAAATAAATCTAA 3'.

100 bp

Figure 1. *Itpr* exons (boxed) and intron (lined) regions amplified. The arrows indicate primer positions in this study

Itpr gene sequences resulted in double peaks with the same intensity, is considered to denote heterozygots; therefore, PCR products were cloned. Four clones were sequenced, and the commonest nucleotide was used in the data analysis.

COII gene

Honey bee *COII* whole regions were amplified by using two sets of primers (Figure 2, Table 3). The first region (A) was amplified using E2 (Garnery et al. 1991) and H1 (Estoup et al. 1996) while the second region was amplified by using A298 (Simon et al. 1994) and tRNA aspartic acid (Willis et al. 1992). As *T. fimbriata COII* failed to be amplified using these primers pairs, I substituted with E3 and H1(Estoup et al. 1996) and reamplified using E2 and H1 as the internal primers. The B region was amplified using A298 (Simon et al. 1994) and ATP-8 (Andrew Beckenbach, personal communication) (Table 3).

Large Subunit Ribosomal RNA Gene (lsRNA)

Half of the 5'end of *lsRNA* region was amplified using primers 875-16SmF and 874-16SIR (Cameron et al. 1992).

Table 3.

PCR and sequencing primers of honey bee *COII* and *lsRNA* genes. Primer positions are based on the *A. mellifera* complete mitochondrial genome (Crozier and Crozier 1993)

Primers	Sequence 5'-3	Position in A. mellifera	References
	Cytochrome oxidase II gene		
E2	GGCAGAATAAGTGCATTG	3363-3380	(Garnery et al. 1991)
A298	ATTGGACACCAATGGTATTGA	3915-3935	(Simon et al. 1994)
tRNA aspartic acid	GGCCGTCTGACAAACTAATGTTAT	4312–4335	(Willis et al. 1992)
E3	ATACCACGACGT TAT TCAGA	3093-3112	(Estoup et al. 1996)
H1	GTTCATGAATGAATTACATCT G	4082-4103	(Estoup et al. 1996)
ATP8	ATTGGTGCTATTTGTGGAAT	4444-4463	Andrew Beckenbach
			(pers.communication)
	lsRNA gene		
875-16SmF	TTATTCACCTGTTTATCAAAACAT	13924-13948	Cameron et al. (1992)
874-16SIR	TATAGATAGAAACCAATCTG	13367-13386	Cameron et al. (1992)

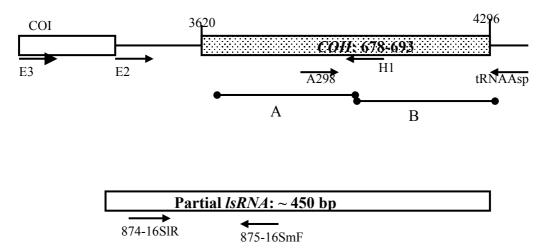


Figure 2. Honey bee *COII* (upper) and *lsRNA* (lower) primers that are used in this study. References of the primers above are referred to the Table 3.

Phylogenetic analysis

Multiple alignments of honey bee *COII* (693 bp), *lsRNA* (450 bp) and *itpr* (1.2 kb) were carried out using ClustalX (Thompson et al. 1997) and improved by eye using Se-Al (http://evolve.zoo.ox .ac.uk/Se-Al/Se-Al.html). The *MEGA* version 2.0 program (Kumar et al. 2001) was used to analyse genetic distance of each codon position of the protein coding gene (*COII* and *itpr* exons) and the transition and transversion value in *lsRNA*.

Homogeneity of the sequence data

The homogeneity of base composition between sequences was tested using the TREEPUZZLE 5.0 program (Strimmer and von Haeseler 1996).

Tree construction

Maximum Likelihood (ML) approach. ML trees (Felsenstein, 1981) for each gene and the concatenated datasets were constructed firstly by using PAUP* 4.0b10 program (Swofford 2002), applying model of DNA substitutions determined from MODELTEST 5.0. program (Posada and Crandall 1998). Bootstrap analysis (Felsenstein 1985) used 1000 replicates with random-addition sequence searches and TBR branch swapping for the each gene and the concatenation.

To take account of suboptimal trees which are not significantly different from the best, I use MOLPHY vers. 2.3. (Adachi and Hasegawa 1996), and TREEPUZZLE 5.0 (Strimmer and von Haeseler 1996) as the second analysis. The most complex model available in those programs was HKY+G+I and was used in both analysis.

By using MOLPHY program, trees were constructed firstly on the basis of each gene. Secondly, protein coding genes (*itpr* and *COII*) were partitioned for each codon position using MOLCODON as implemented in MOLPHY program. Seven partitions resulted, that are three for each protein coding gene and one for *lsRNA*. Trees were inferred for each partition and for all three genes concatenated. One substitution model was used for the concatenated data set in some major papers recently (Murphy et al 2001, Madsen et al 2001), although all their sequences were nuclear. A recent paper shows that ML (Suzuki et al., 2002) is robust in treating concatenating data in that it will correctly indicate no significance when there are different models in the partitions with different topologies. Hence, it is robust to using a simpler model that can be justified by the data. Paralleling the finding that ML treats concatenations robustly (Suzuki et al., 2002), Cunningham (1997) found that their concatenation usually yielded an improved analysis even when partitions presented different evolutionary histories. Transition and transversion ratio (α/β) of each partition and each gene were optimized using the NUCML command in MOLPHY program. Support for the nodes were obtained from local branch probability (LBP) values using local rearrangement generated through RELL (Hasegawa and Kishino 1994).

Next, using the concatenated sequence data, the topologies derived from the trees referred to in previous paragraph were tested using the Kishino Hasegawa (KH) test (Kishino and Hasegawa 1989) implemented in MOLPHY program. The KH test has received some criticism (Goldman et al., 2000; Shimodaira and Hasegawa 1999), but further analysis has shown that it is in fact satisfactory and the best of the tests available (Strimmer and Rambaut 2002).

The test compared the likelihood of each topology to the best tree topology. For each tree topology, the KH test produces a likelihood score, and the difference in likelihood for each tree is then compared to the best (ML) tree (Δ ln), and standard error (S.E.). In addition, the KH test determines which tree topologies are significantly different from the best tree. The various trees found not to be significantly different when run against the concatenated datasets were used to infer a ML consensus tree using the program TREECONS (Jermiin et al. 1997). TREECONS weights the likelihood values against the highest (ML) result, in my case using the recommended option of exponential weighting. The data set of trees was then, as recommended by Jermiin et al. (1997), fed into the PHYLIP program CONSENSE (Felsenstein 1993), yielding a consensus tree with the support for each branch reflecting the likelihoods of those trees in which it appeared.

The tree topologies derived under the GTR+G+I and HKY+G+I substitution models were compared using the KH test implemented in PAUP* 4.0b10 (Swofford 2002). The KH test compares the ln likelihood between those two topologies with 1000 replicates under RELL bootstrapping. The comparative analyses were done under HKY+G+I and GTR+G+I model of substitution.

Maximum Parsimony approach. Maximum Parsimony (MP) unweighted based tree constructions were analysed using PAUP* 4.0b10 (Swofford 2002) for each gene and the concatenated datasets. The heuristic search and TBR branch rearrangement options

were used. Bootstrap analysis (Felsenstein 1985) used 1000 replicates with randomaddition sequence searches and TBR branch swapping for each gene and the concatenation. The numbers of sites determined to be constant, variable uninformative and informative parsimony were recorded for both the single gene and partitions of each codon position.

COII comparisons

Previous studies produced anomalies results using honey bee *COII* sequences. Therefore, I reamplified the gene from all species. I combined all the sequences in order to investigate the discrepancy among *COII* honey bee sequences. *COII* sequence lists used for comparison with this present study are shown in Table 4.

Table 4.

Honey bee COII sequence used in data comparison

Species	Willis et al. (1992)	Tanaka et al. (2001)
A. andreniformis	M77208	-
A. dorsata	M77209	AF153126
A. cerana	M77210	AF153116
A. florea	M77211	
A. koschevnikovi	M77212	AF153124
A. mellifera	(Crozier and Crozier	AF214670
-	1993)	
A. nuluensis	-	AF153115

Behaviour characters mapping

Given the phylogeny inferred from the above analyses, I used the parsimony approach to reconstruct the character evolution. Nesting and dance behaviour traits were mapped using MacClade version 3.07 (Maddison and Maddison 1992).

Nest behaviour data was mapped by using two hypotheses; firstly the cavity nesting in Bombini is non-homologous with that of Apini and secondly that those characters are homologous. In the first hypothesis, data were assumed to be both unordered and ordered (in different analyses) and were entered as 0, 1, 2 respectively for food pot storages and brood cells and cavity nesting, food and brood cells and open nesting and food and brood cells and cavity nesting nest. In the ordered analysis I took the order to be 0 - 1 - 2. Secondly, I explored nesting behavioural evolution by using the hypothesis of nesting behaviour that the Bombini, Meliponini and Apini cavities are homologous. Data were assumed to be unordered and were entered as 0 and 1, respectively for cavity nesting and open.

Dance behaviour was coded as 0, 1, 2, 3 for food alert, scent trail and non-directional dance, directional horizontal dance and directional vertical dance and were assumed to be both unordered and ordered. I ordered the food recruitment behaviour started from food alert, non-directional dance behaviour, then the horizontal directional dance moving towards to the directional vertical dance.

RESULTS

Characteristics of the sequence data

Itpr sequence

Honey bee molecular phylogenetic reconstruction used a total of 1 216 bp of exon numbers 2, 3 and 4 (*A. mellifera itpr* cDNA nucleotide 322-1 287) and intron numbers 2, 3, 4 interrupted in those above exons, based on *A. mellifera itpr* characterisation in Chapter 2. The exons revealed a deletion of one amino acid in *A. cerana* and *A. nuluensis*. Consequently, both species had only 963 bp of *itpr* exons, whereas other species had 966 bp.

Intron length ranged from 70–163 bp (Table 5) reflecting insertions and deletions. The *A. koschevnikovi* 3^{rd} intron contains 68 bp of TA repeat insertion and *B. terrestris* 4^{th} intron has 70 bp of insertion (Table 5). These two large insertions were excluded prior to phylogenetic analysis. All honey bee and outgroup introns were inserted in the same intron phase, namely 2, 0, 1, respectively and all was commenced and ended according to the standard "GT/AG" rule.

Itpr exons and introns were AT biased, and the two highest numbers were found at the 3rd codon position and in intron region at 78.6 % and 87.4 %, respectively (Table 6). However, there were no significant variations in base composition across honey bee exon and intron data based on analysis from the TREEPUZZLE 5.0 program (Strimmer and von Haeseler 1996) (Table 7).

Itpr exons 1^{st} and 2^{nd} codon positions contribute five and two parsimony informative sites, respectively as compared to 70 at the 3^{rd} codon position (Table 8). Figure 3 also shows 3^{rd} codon substitution (ts and tv) contribution across all species. However, most 3^{rd} codon position substitutions do not result in amino acids substitutions, leading to *itpr* amino acid conservation through all honey bee species.

Introns produced 56 informative sites (Table 8). Along with the introns, only the 3^{rd} codon position can contribute significantly to honey bee *itpr* molecular phylogenetic reconstruction (Figure 6).

Table 5.*Itpr* exon - intron length and intron deletion parts

<i>Itpr</i> partitions	Sequence length (basic/aligned)	Deletion
Exons	963-966 bp	-
2 nd intron	70-84/84	-
3 rd intron	72-163/70	A. koschevnikovi: 68 bp
4 th intron	93-163/96	B. terrestris: 70 bp

Table 6.

Nucleotide sequence data for each codon position and or each gene

Gene	Base frequency average				% AT
	Т	С	Α	G	
<i>Itpr</i> exons					
1 st position	20.4	19.7	27.4	32.5	47.8
2 nd position	31.6	17.5	34.9	16.0	66.5
3 rd position	33.2	7.4	45.3	14.0	78.6
1+2+3	28.3	14.9	35.9	20.9	64.2
<i>Itpr</i> introns	46.0	4.6	41.4	8.1	87.4
COII					
1 st position	33.2	12.3	39.4	15.1	72.5
2^{nd} position	43.1	17.6	29.2	10.1	73.3
3 rd position	49.0	3.6	46.8	0.6	95.8
1+2+3	41.8	11.2	38.5	8.6	80.3
LsRNA	38.7	7.6	39.4	14.3	77.1
<i>Itpr + COII</i> +16s	34.4	14.1	36.3	15.2	70.7

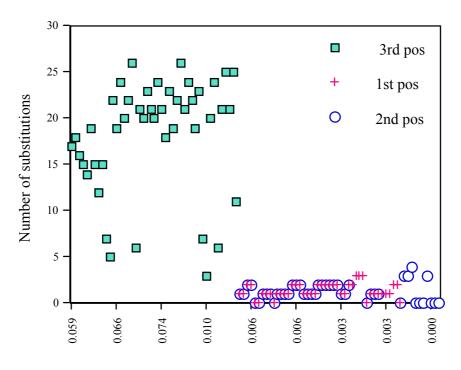
COII

COII lengths ranged from 678 bp and 681 bp, whereas *B. terrestris* has 693 bp (APPENDIX 2). The 3^{rd} codon position shows the highest AT biases (Table 6), however there is no significant difference in base composition between species (Table 7). While there is little difference in 1^{st} and 2^{nd} *COII* codon position rate, the 3^{rd} *COII* codon position shows slight saturation (Figure 4).

Table 7.

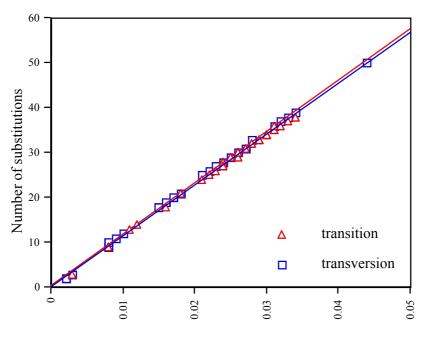
The homogeneity of base composition between sequences was tested using TREEPUZZLE 5.0 program (Strimmer and von Haeseler 1996); ns = non-significant in 5 % significant level

Species	itpr	COII	<i>lsRNA</i>	Itpr+ COII+ lsRNA
A.mellifera	ns	ns	ns	ns
A.nuluensis	ns	ns	ns	ns
A.cerana	ns	ns	ns	ns
A.nigrocincta	ns	ns	ns	ns
A.koschevnikovi	ns	ns	ns	ns
A.laboriosa	ns	ns	ns	ns
A.d.binghamii	ns	ns	ns	ns
A.dorsata	ns	ns	ns	ns
A.florea	ns	ns	ns	ns
A.andreniformis	ns	ns	ns	ns
T.fimbriata	< 0.05	ns	ns	< 0.05
B.terrestris	< 0.05	ns	< 0.05	< 0.05


Table 8.

Numbers of constant, variable and informative sites of unweighted Maximum Parsimony analyses of *itpr*, *COII*, and *lsRNA* genes

Genes and partitions	Total characters	Constant characters	Variable uninformative Characters	Parsimony informative characters
COII	693	426	112	155
(all codon positions)				
1 st codon position		151	39	41
2 nd codon postion		194	19	18
3 rd codon position		81	54	96
<i>Itpr</i> (exons and introns)	1216	898	185	133
<i>Itpr</i> exons only	966	786	103	77
1 st codon position		305	12	5
2 nd codon postion		318	2	2
3 rd codon position		163	89	70
<i>Itpr</i> introns only	250	112	83	56
LsRNA	503	137	231	135
COII + 16s	1194	562	342	290
Itpr + COII + 16s	2410	1460	423	527


lsRNA

In *lsRNA*, transversions predominate over transitions (Figure 5) and thus high transition/transversion ratio is obtained, which is 4.

Tamura Nei corrected p-distance

Figure 3a. *Itpr* exons substitution numbers and distances for each codon positions. Each point denotes a comparison between two sequences

Tamura Nei corrected p-distance

Figure 3b. *Itpr* transition and transversion relative rates. Tamura-Nei corrected distance versus substitution number of each pair of taxa

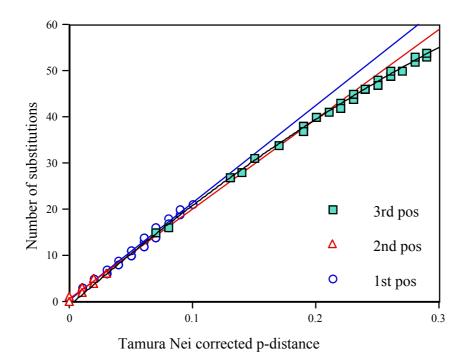
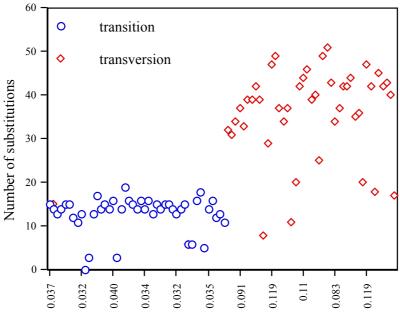



Figure 4. *COII* relative rate. Substitution numbers of each pair of species and Tamura Nei corrected distances for each codon position

Tamura Nei corrected p-distance

Figure 5. *lsRNA* substitution numbers of each pair of species and Tamura Nei corrected distances. Transition are replaced by transversion on higher levels of divergence

Homogeneity test of base composition between sequences

The homogeneity of base composition between sequences was tested using the TREEPUZZLE 5.0 program (Strimmer and von Haeseler 1996). The analysis was done firstly for each gene, and for three concatenated genes examined. The χ^2 test results, shown in Table 7, revealed no significant differences in all ingroup honey bee sequence data both for each gene and for the three concatenated genes but importantly show significant deviation for all data sets except that for *COII*.

Trees construction

I have used MODELTEST program to obtain model of substitution appropriate for each gene and the concatenated datasets (Table 9). ML tree for concatenated datasets applying those determined model of evolution was constructed through PAUP* 4.0b10 program as shown in Figure 6.

) for each gene and the concatenated
Gene(s)	Model of substitution
Itpr	F81+G
COII	GTR+G
lsRNA	F81+G
Concatenated datasets	GTR+G+I

 Table 9. List of model of substitutions determined by MODELTEST program (Posada and Crandall 1998) for each gene and the concatenated datasets.

MOLPHY version 2.3. (Adachi and Hasegawa 1996), and TREEPUZZLE 5.0 (Strimmer and von Haeseler 1996) programs were used to construct ML trees of the different genes and applying HKY+G+I model of substitution are shown in Figure 7a, 8a, and 9a. Unweighted MP trees for each genes are presented in Figures 7b, 8b, and 9b.

The results are generally very similar, although for *COII* both MP and HKY (Figure 8a, 8b) lead to a clearly incorrect rooting of the *Apis* tree, while GTR does not (Figure 8c). *Itpr* tree reconstructed both in ML based on HKY+G+I substitution model and unweighted MP framework produced the same topologies which favoured *A. mellifera* as basal in honey bee phylogeny (Figure 7a, 7b). On the other hand, the *lsRNA* ML revealed similar topology to that of Cameron (1992), but the unweighted MP did not (Figure 9a, 9b).

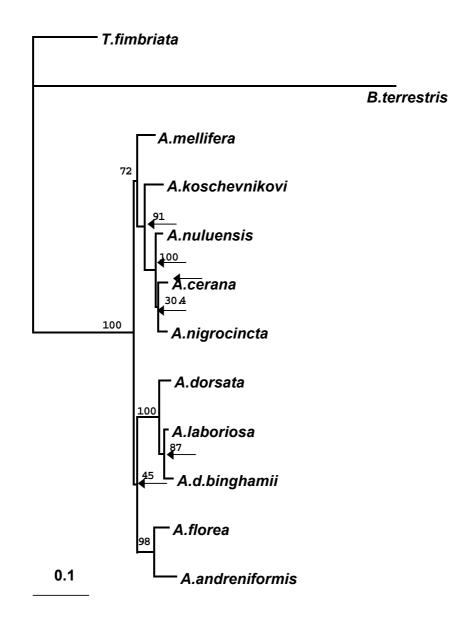
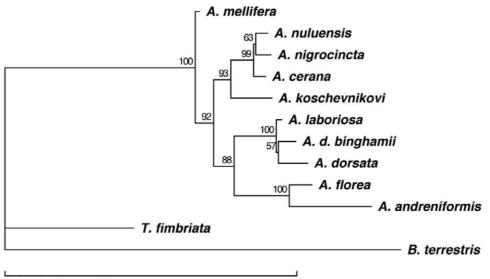



Figure 6. Honey bee most likely tree based on *itpr*, *COII* and *lsRNA* genes by using GTR+G+I model of substitution (ln = -9649.26840); numbers above the nodes are support for internal branches generated from 1000 bootstrap replicates.

0.1 substitutions/site

Figure 7a. Honey bee *itpr* ML tree based on HKY+G+ I substitution model; numbers above the nodes are support for internal branches generated from RELL.

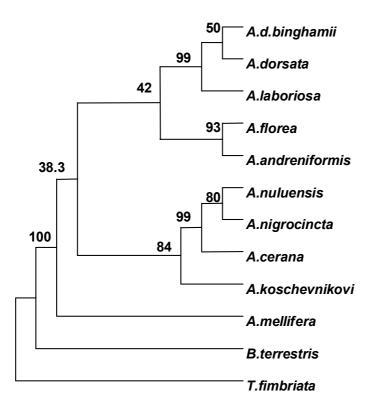
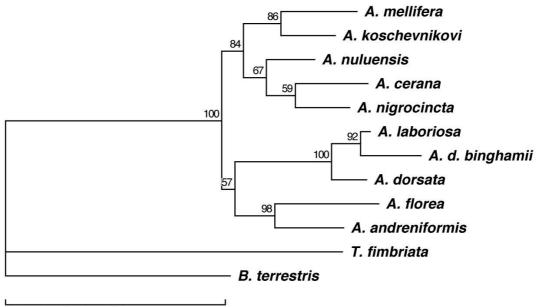



Figure 7b. Honey bee *itpr* unweighted MP tree; numbers above the nodes are support from 1000 bootstrap replicates.

^{0.1} substitutions/site

Figure 8a. Honey bee *COII* ML tree based on HKY+G +I substitution model; numbers above the nodes are support for internal branches generated from RELL.

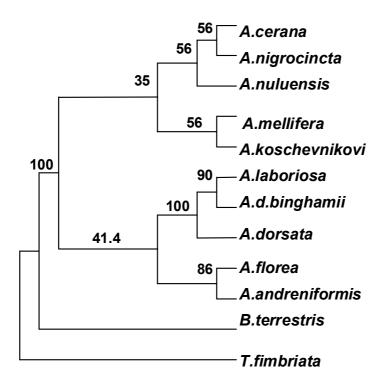


Figure 8b. Honey bee *COII* unweighted MP tree; numbers above the nodes are support from 1000 bootstrap replicates.

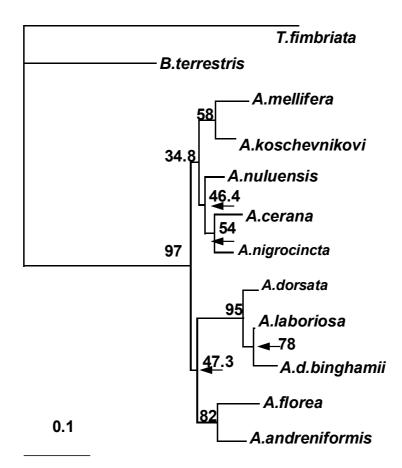
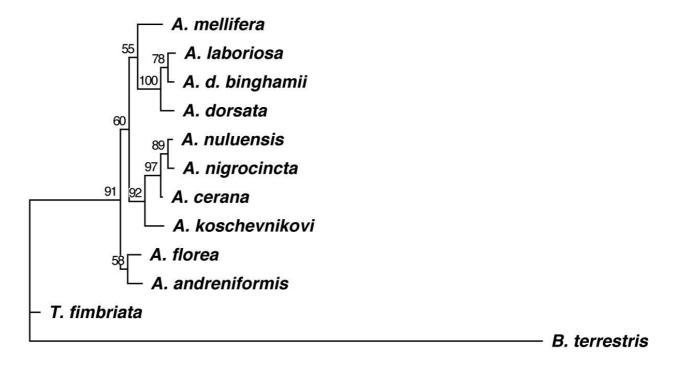



Figure 8c. Honey bee *COII* ML tree based on GTR+G substitution model; numbers above the nodes are support from 1000 bootstrap replicates.

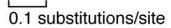


Figure 9a. Honey bee *lsRNA* ML tree based on HKY+G+I substitution model; numbers above the nodes are support for internal branches generated from RELL.

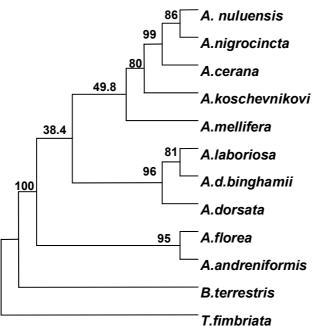


Figure 9b. Honey bee *lsRNA* unweighted MP tree; numbers above the nodes are support from 1000 bootstrap replicates.

Tree topology comparisons

By using NUCML as implemented in the MOLPHY program, tree topologies were derived from each gene as well as each codon position of the gene and the concatenated datasets. All topologies were obtained from the MOLPHY program using the HKY+G+I substitution model (Table 10).

Table 10.

Tree topology comparisons using the concatenated datasets and the HKY+G+I model. The datasets and models that produced the topologies are shown. Significance values pertain to the Kishino-Hasegawa test: M = A. *mellifera*, N = A. *nuluensis*, Ni = A. *nigrocincta*, C = A. *cerana*, K = A. *koschevnikovi*, L = A. *laboriosa*, B = A. *dorsata binghamii*, D = A. *dorsata*, F = A. *florea*, A = A. *andreniformis*, T = *Trigona fimbriata*, B = *Bombus terrestris*; $\Delta Ln L =$ the difference of likelihood of a particular tree to the ML

No	Topology	Gene(s) or gene	$\Delta Ln L + S.E.$	Р
		partititons tree-		value
		HKY+G+I model.		
1	((((M,(((N,Ni),C),K)),((L,B),D)),(F,A)),T,Bo)	3 genes-	-10088.3	-
		Concatenation		
2	(((((M,((L,B),D)),(((N,Ni),C),K)),(F,A)),T,Bo)	16s gene	- 10.6 <u>+</u> 11.9	NS
3	(((((M,K),(N,(C,Ni))),(((L,B),D),(F,A))),T,Bo)	COII gene	- 24.5 <u>+</u> 23.0	NS
4	((M,((((N,Ni),C),K),((L,(B,D)),(F,A)))),T,Bo)	Itpr exon and intron	- 20.5 <u>+</u> 16.4	NS
5	((((((M,((N,(C,Ni)),K)),((L,B),D)),A),F),T,Bo)	COII 1 st codon	- 30.4 <u>+</u> 19.4	NS
		position		
6	(((((M,(((N,C),Ni),K)),(F,A)),((L,D),B)),T,Bo)	COII 2 nd codon	- 13.6 <u>+</u> 19.2	NS
		position		
7	((M,((((N,C),Ni),(((L,B),D),(F,A))),K)),T,Bo)	COII 3 rd codon	- 31.4 <u>+</u> 24.0	NS
		position		
8	(((((M,((N,C),(B,D))),(((Ni,F),A),T)),L),K,Bo)	<i>Itpr</i> 1 st codon	- 908.4 <u>+</u> 70.0	< 0.05
		position		
9	((M,T),(((N,C),(Ni,((L,D),(B,(F,A))))),K),Bo)	<i>Itpr</i> 2 nd codon	-457.9 <u>+</u> 47.5	< 0.05
		position		
10	((M,((((((N,Ni),C),K),(L,(B,D))),(F,A))),T,Bo)	<i>Itpr</i> 3 rd codon	-41.9 <u>+</u> 17.1	NS
		position		

The tree topology resulting from three concatenated genes yielded the highest likelihood score. Topologies from each gene (*lsRNA*, *COII*, and *itpr*) were not significantly worse and also the tree revealed from each codon position of *COII*. KH test only rejected the tree topologies resulted from 1^{st} and 2^{nd} *itpr* codon position.

The next procedure was to combine all trees that did not differ significantly from the ML tree. A consensus tree was generated using weighting scheme V in the Treecons program (Jermiin et al. 1997) at a 5% significance level. Branch confidence values were obtained from the CONSENSUS command in the PHYLIP package and the result is shown in Figure 9a. Branch length was obtained from the TREEPUZZLE 5.0 program, by using HKY+G+I substitution model and by applying tree topology results from the CONSENSUS command as the user-defined topology.

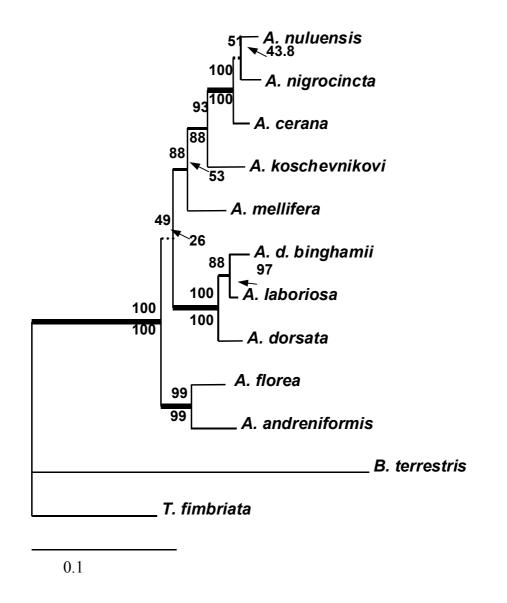


Figure 10a. ML-rule consensus of honey bee phylogenetic tree by using HKY+G+I substitution model (ln likelihood = -10088.3); numbers above the nodes are support for internal branches generated from RELL; numbers below the nodes are support from 1000 bootstrap replicates of unweighted MP tree.

Besides ML weighted consensus tree as described above (Figure 10a), trees for the concatenated datasets were constructed based the unweighted MP tree (Figure 10b).

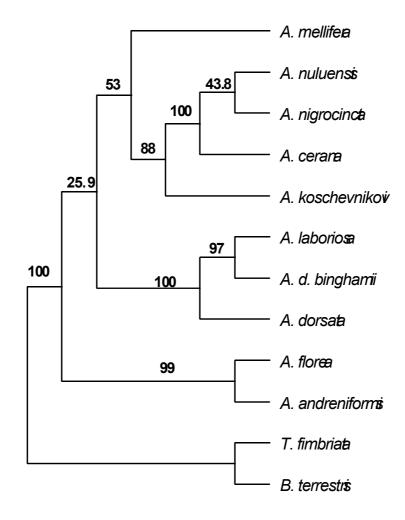


Figure 10b. The most parsimony honey bee phylogenetic tree (unweighted MP); numbers above the nodes are support for internal branches generated from 1000 bootstrap replicates. Tree length = 1482; CI = 0.748; HI = 0.252, RI = 0.586

By applying GTR+G+I model of substitution revealed that the genus *Apis* was split into two lines, the *A. mellifera* group line and the other line consists of *A. dorsata* and *A. florea* group (Figure 6). Hence, the dwarf bees group adds to the giant honey bees.

A more traditional tree was obtained from ML analysis by using HKY+G+I model of substitution and unweighted MP (Figure 10a, 10b); that is, the first split is the dwarf honeybees group (*A. florea* and *A. andreniformis*). The next split occurred in the giant honey bee *A. dorsata* group and the medium *A. mellifera* group occupied the apical tree. Hence, the dwarf honey bees are the sister group to all other honey bees.

The next step is to test whether HKY+G+I tree topology is significantly worse than that of GTR+G+I topology, and topology comparisons showed that the HKY+G+I tree topology is not significantly worse than that of the GTR topology, both under GTR and HKY models of substitution analysis (Table 11 and 12).

Table 11.

Tree topology comparisons between honey bee GTR+G+I and HKY+G+I topology under GTR+G+I model of substitution; Significance values pertain to the Kishino-Hasegawa test; $\Delta Ln L=$ the difference of likelihood of a particular tree to the ML (best).

No	Tree	-ln L	ΔLn L	Р
1	GTR+G+I	9649.26840	(best)	
2	HKY+G+I	9652.98495	3.71655	0.623

Table 12.

Tree topology comparisons between honey bee HKY+G+I and GTR+G+I tree topology under HKY+G+I model of substitution; Significance values pertain to the Kishino-Hasegawa test; $\Delta Ln L=$ the difference of likelihood of a particular tree to the ML (best).

No	Tree	-ln L	ΔLn L	Р
1	HKY+G+I	10086.49102	(best)	
2	GTR+G+I	10088.57827	2.08725	0.893

Further examination shows that the topologies differ in where the outgroup (*Trigona* and *Bombus*) joins the *Apis* tree. In HKY+G+I tree topology the outgroup joins the dwarf honey bees and in the GTR+G+I tree it joins the mellifera group. This result

indicates that rooting the *Apis* tree is not certain yet. To test this finding, using the GTR+G+I tree, I shifted the outgroup branch to that of the dwarf honey bees. Then, tree topology comparisons was done between the GTR+G+I and the GTR+G+I outgroup shifted to dwarf honey bee tree. The result is shown in Table 13; the GTR+G+I tree with the outgroup shifted is not significantly worse than that of the original GTR+G+I topology.

Table 13.

Tree topology comparisons between honey bee GTR+G+I and GTR+G+I outgroup shifted to dwarf honey bees tree topology under GTR+G+I model of substitution; Significance values pertain to the Kishino-Hasegawa test; $\Delta Ln L=$ the difference of likelihood of a particular tree to the ML (best).

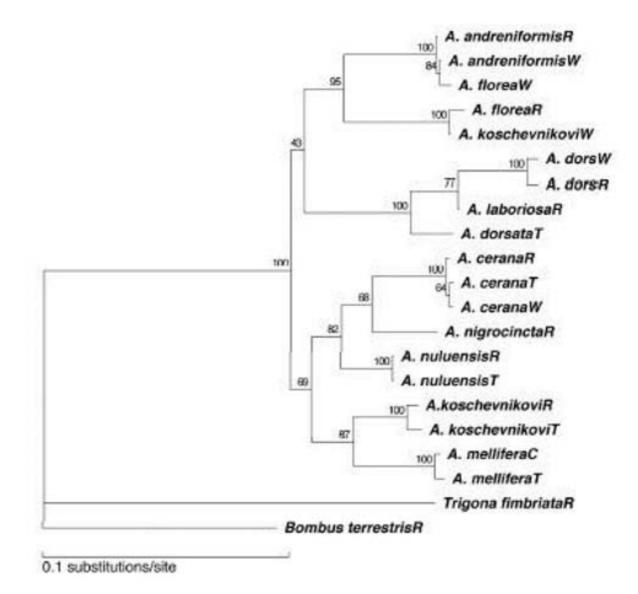
No	Tree	-ln L	ΔLn L	Р
1	GTR+G+I	9649.26841	(best)	
2	GTR+G+I outgroup	9650.65625	1.38785	0.532
	shifted to dwarf honey			
	bees			

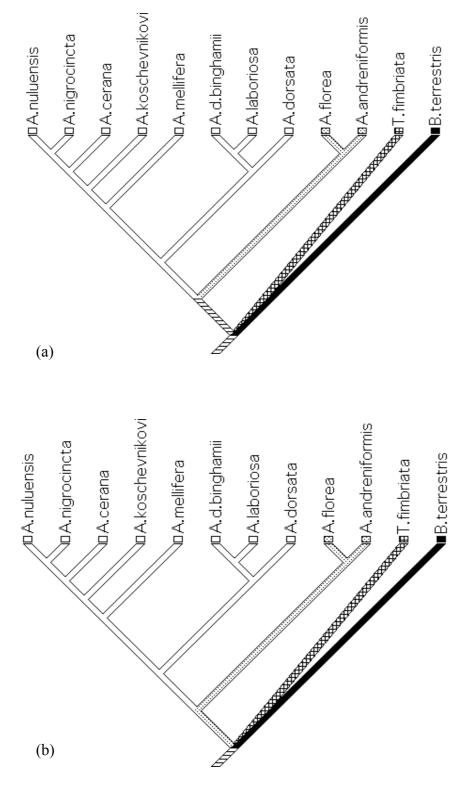
The newly-recognised *A. nuluensis* shows the closest relationship to the new *A. nigrocincta* (Figure 9a - under HKY+G+I model of evolution) as it supported with 51 % bootstrap value. Another topology for those species revealed from GTR+G+I model of substitution (Figure 6). It shows an ambiguity relationship of *A. nuluensis* to the *A. nigrocincta*. The topology shows that the most derived species are *A. cerana* and *A. nigrocincta*, but is supported by a lower confidence value (30.4%)

COII tree topology comparisons

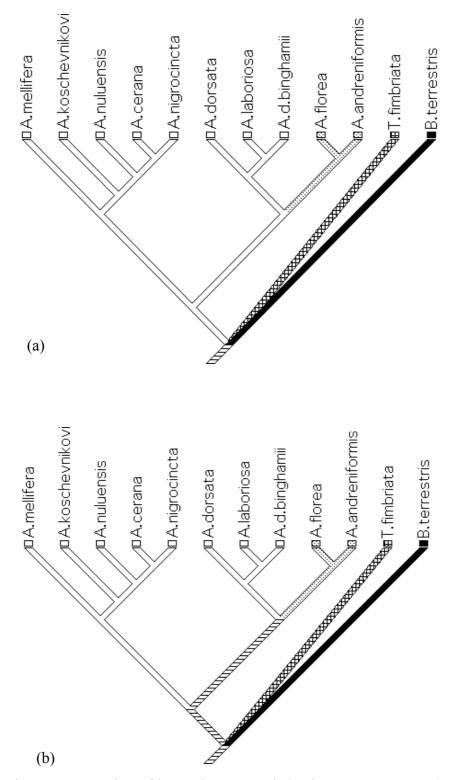
Honey bee *COII* sequences have been analysed by several authors who have described different topologies, particularly concerning the sequence of *A. koschevnikovi*. Firstly, Willis et al. (1992) found that *A. koschevnikovi* position is closely related to *A. florea*. The same *COII* tree topology was obtained by Engel and Schultz (1997) using the Willis et al. (1992) data. More recent studies, Tanaka et al. (2001) yielded the same results, using the *A. koschevnikovi* sequence from Willis et al. (1992). Engel & Schultz (1997) and Tanaka et al. (2001) concluded that the *COII* sequence is unsuitable for inferring molecular phylogenetics in *Apis*.

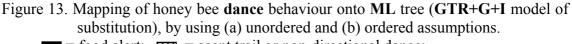
This present study reports *COII* sequences derived by me from all honey bee species. A phylogenetic tree derived from *COII* sequence according to Willis et al. (1992), Tanaka et al. (2001) and my present study is shown in Figure 10. The analysis was carried out using the ML approach implemented in the MOLPHY program with the HKY substitution model for estimating ts/tv ratios. The *COII* tree in Figure 11 demonstrate that the current study and those Tanaka et al. (2001), and Willis et al. (1992) are in agreement, except for placing the *A. koschevnikovi* sequence from the Willis et al. (1992) data. This finding shows that the *A. koschevnikovi* sequence reported by Willis et al. (1992) is anomalous and probably in error. Furthermore, it removes one of the three examples of Lockhart et al (1994) indicating the importance of accounting for non-stationary in phylogenetic inference.




Figure 11. Honey bee *COII* phylogenetic ML tree based on HKY substitution model, compiled from previous studies. A capitol letter at the end of bee species referred to the author name, C: Crozier and Crozier (1993), W: Willis et al. (1992), T: Tanaka et al. (2001) and **R**: present study.

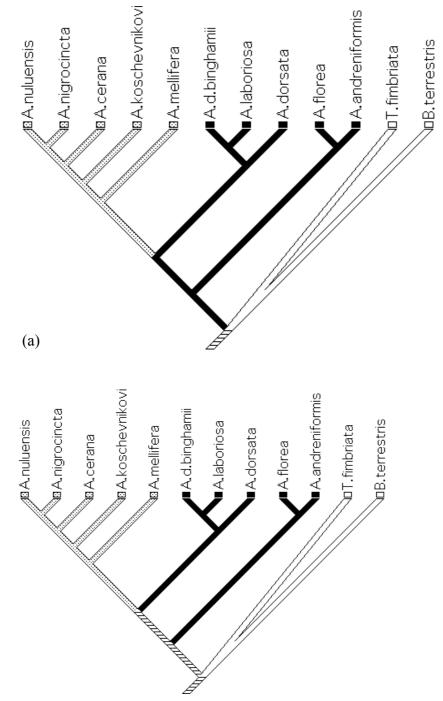
Dance behaviour characteristics map


Using honey bee ML consensus molecular phylogenetic tree and unweighted MP as my basis, I inferred the evolutionary ontogeny of dance and nesting behaviour. In order to determine the polarity of such behaviour trait evolution, I conducted a comparative analyses of those behaviour traits between the ingroup (Apini) and the outgroup (Bombini and Meliponini) bees to determine their homology.

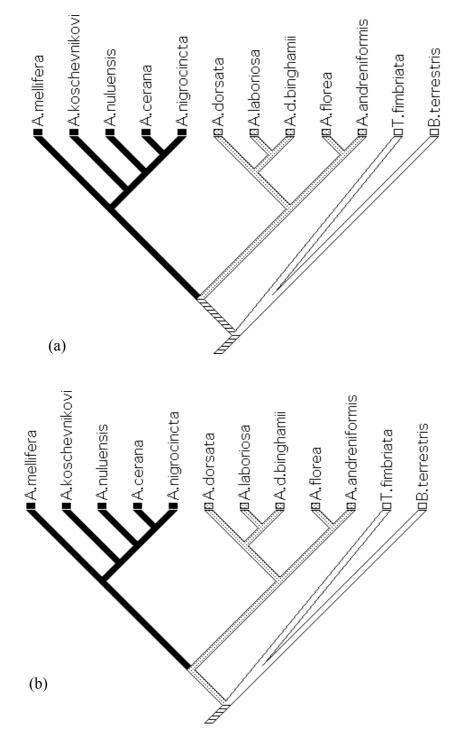

The returning *B. terrestris* forager performs alert food running behaviour to convey information and recruit the nestmate to the food source (Dornhaus and Chittka 2001). In Meliponini, most foragers recruit nestmates to the food source by marking the pathway with a scent trail (Lindauer and Kerr 1960), although one species, *M. panamica* performs a non-directional dance (Nieh 1998). Excited food-alert running in Bombini and Meliponini produces irregular movements instead of repetitive or patterned movements as described for honey bee dance behaviour (Dornhaus and Chittka 2001). Based on that comparative analyses, food recruitment behaviour in Bombini and Meliponini bees do not indicate a common ancestor with that in Apini. Therefore, food recruitment behaviour among the bee tribes is non-homologous.

Food recruitment behaviour was mapped onto the ML (HKY+G+I model of nucleotide substitution) and unweighted MP trees, applying unordered (Figure 12a) and ordered assumption (Figure 12b). The same behaviour trait was mapped based on ML analysis under GTR+G+I evolutionary model as shown in Figure 13a (unordered) and Figure 13b (ordered assumption). I ordered the food recruitment behaviour started from food alert; scent trail or non-directional dance behaviour, horizontal directional dance and move towards to the directional vertical dance behaviour.

- Figure 12. Mapping of honey bee **dance** behaviour onto **ML** (**HKY+G+I** model of substitution) & unweighted **MP** tree, by using (a) unordered and (b) ordered assumptions.
 - \blacksquare = food alert; \blacksquare = scent trail or non-directional dance;
 - \blacksquare = horizontal directional dance; \square = vertical directional dance;
 - \blacksquare = equivocal



- \blacksquare = food alert; \blacksquare = scent trail or non-directional dance;
- \blacksquare = horizontal directional dance; \square = vertical directional dance;
- \blacksquare = equivocal


Nest behaviour characteristics map

I conducted a comparative analyses of Bombini, Meliponini and Apini nest construction behaviour. While both Bombini and Meliponini mostly nest in cavities, they build distinct types of cells for holding food and brood. Food is stored in a pot whereas broods are reared in a cell (Michener 1974). These traits do not occur in honey bee where identical cells provide both storage for food and brood. Another trait was observed, that is cavity and open-nesting. I mapped the nesting behaviour by applying homologous and non-homologous hypotheses for this trait.

Based on those comparative behaviour data, two kinds of character traits are observed: firstly pot versus non-pot cells trait, secondly cavity versus open nest trait. I explored bees nest behaviour evolution by using both traits; pot (vs non-pot cells) and cavity (vs open nest). I traced the evolution reconstruction of nesting behaviour onto the ML tree (under HKY+G+I model of DNA substitution) and the unweighted MP, by using non-homologous of nesting trait approach, and applying unordered (Figure 14a) and ordered (Figure 14b) assumption. The same behaviour was mapped onto ML tree by using GTR+G+I evolutionary model as shown in Figure 15a (unordered assumption) and Figure 15b (ordered assumption), applying non-homologous of nesting trait approach as well.

- Figure 14. Mapping of honey bee nesting behaviour onto ML (HKY+G+I model of substitution) & unweighted MP tree, by using (a) unordered and (b) ordered assumptions, applying non-homologous assumption of nesting trait □ = food pot storage and brood cells cavity nesting;
 - = food and brood cells open nesting;
 - = food and brood cells cavity nesting;
 - \blacksquare = equivocal

- Figure 15. Mapping of honey bee **nesting** behaviour onto **ML** tree under **GTR+G+I** model of substitution, by using (a) unordered and (b) ordered assumptions, applying **non-homologous** assumption of nesting trait.
 - \Box = food pot storage and brood cells cavity nesting,
 - = food and brood cells open nesting;
 - = food and brood cells cavity nesting;
 - \blacksquare = equivocal

Secondly, I explored nesting behavioural evolution by using hypothesis of cavity nesting behaviour of Bombini, Meliponini and Apini are homologous. That is, this hypothesis assumes honey bee (Apini) cavity nesting come from the same common of Bombini and Meliponini nests (Figure 16a and 16b).

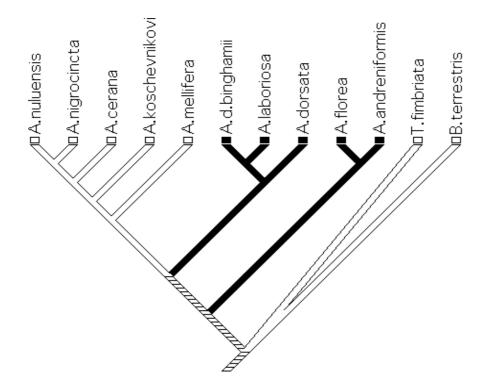


Figure 16a. Mapping of honey bee nesting behaviour onto ML (HKY+G+I model of substitution) & unweighted MP tree, by using unordered and ordered assumptions, and applying Bombini, Meliponini and Apini homologous cavity nesting behavioural trait

 \Box = cavity nesting; \blacksquare = open nesting; \blacksquare = equivocal

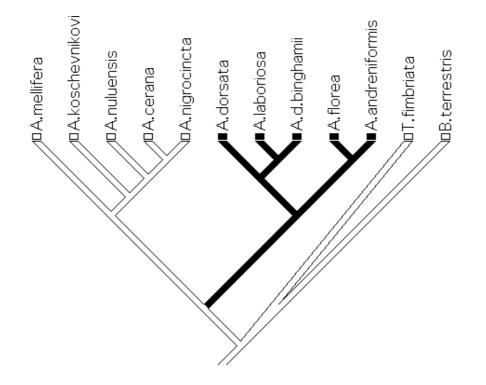


Figure 16b. Mapping of honey bee nesting behaviour onto ML tree under GTR+G+I model of substitution by using unordered and ordered assumptions, and applying Bombini, Meliponini and Apini homologous cavity nesting behavioural trait

 \Box = cavity nesting; \blacksquare = open nesting; \blacksquare = equivocal

DISCUSSION

Honey bee tree topology

This study represents the first honey bee molecular phylogenetic study of all presently known species. ML analysis by using GTR+G+I model of evolution shows that *A*. *dorsata* and *A. florea* groups formed a single clade separate to that of *A. mellifera* group.

Consensus tree topologies derived from ML and unweighted MP based on three concatenated genes (*itpr*, *COII*, and *lsRNA*) produce traditional tree topology that is a monophyletic honey bee tree. My ML analysis applying HKY+G+I model of substitution and unweighted MP topology agree with that obtained by Alexander (1991) based on morphology for the species that are in common. In addition, previous unresolved relationships in morphological data for the *A. dorsata* groups have been resolved in the current study.

Considering the root of *Apis*, it may be that this has been affected by violation of stationarity involving *Trigona* and *Bombus* DNA sequences. Significant deviation from sequence homogeneity was found for the three genes concatenated dataset including *Trigona* and *Bombus* (Table 7, p. 66). Hence, at least from the molecular data of this study, the root for *Apis* is uncertain as yet.

A. nuluensis and *A. nigrocincta* are two recently described species of honey bee discussed in this study, with a very short branch connecting them with *A. cerana* based on HKY+G+I model of substitution and MP approaches. This finding is very interesting because both species are restricted in their distribution. Therefore, I have assumed that both species are the result of recent speciation from *A. cerana*.

Current distribution status for *A. nuluensis* is in the Kinibalu and Crocker mountainous regions of Sabah, Borneo, where *A. cerana* and *A. nuluensis* lives sympatrically (Tingek et al. 1996). However, *A. nuluensis* occupies a higher elevation level (up to 2000 m), whereas *A. cerana* is commonly found up to 1500 m above sea level. It is possible that the mountainous region of Sabah acts as a barrier to isolate *A. nuluensis* and *A. cerana*.

Both species differ in their mating times yielding a pre-mating barrier (Koeniger et al. 1996), justifying their species status under the Biological Species Concept.

A.nigrocincta distribution is restricted to the Sulawesi where *A. nigrocincta* and *A. cerana* live sympatrically as well (Hadisoesilo et al. 1995). They also differ in their mating times which serve as pre-mating behaviour barriers between the two species (Hadisoesilo and Otis 1996).

An alternative scenario regarding to *A. nuluensis* and *A. nigrocincta* evolution was shown in the ML tree under GTR+G+I model of substitution. This topology mentioned that *A. cerana* is the sister spesies to *A. nigrocincta*, however it is supported by low bootstrap value (30.4 %). Hence based on this topology both *A. cerana* and *A. nigrocincta* are derived from *A. nuluensis*. Further studies are needed to confirm the relationship of those three honey bee species.

Separate analyses of *itpr* and mtDNA sequence data also revealed different results concerning of *A. d. binghamii* relationship among other giant honey bees. Based on *itpr* gene, *A. d. binghamii* is apparently derived from *A. laboriosa* and not from *A. dorsata*. This finding might suggest that *A. d. binghamii* is a new species, or else that all three taxa are in fact conspecific. It would be interesting to investigate drone mating times occurring between *A. dorsata* and *A. d. binghamii*.

Is horizontal dance an ancestral characteristic state?

In studies of character evolution, the basic questions to be inferred from the molecular tree involve to reconstructing the character's history, in order to ascertain character changes might have occurred and in what lineages such changes took place (Ridley 1983).

Dance behaviour refers to behaviour performed by the forager honey bee in order to indicate a certain flower patch location. This type of behaviour does not exist in Bombini and Meliponini bees. Therefore, different food recruitment behaviour has evolved in each tribal lineage. If this assumption is correct, it can be reasonably claimed that dance behaviour has evolved only in the *Apis* species. From the molecular phylogeny based on ML under HKY+G+I model of evolution and unweighted MP, the earliest split is between the dwarf honey bee and the rest. The dwarf honey bees perform a horizontal dance whereas others in that clade are vertical dancers. It is more parsimonious for the ancestral honey bee to have used the dance then for the horizontal and vertical dances to have evolved independently. Hence, either horizontal or vertical dance was ancestral for the other. Which scenario is correct cannot be determined from the phylogeny.

Horizontal dance behaviour in *A. florea* has been well-documented in several studies. (Dyer 1985a; Koeniger et al. 1982). It has been established that *A. florea* can dance in the slope area of the nest platform under natural conditions as well as *A. andreniformis*. The ability of the dwarf honey bees to dance in this way represents a transition towards vertical dance behaviour. Because the horizontal dance is less versatile than the vertical one (being disarranged by darkness as in a cavity), it is mere reasonable to regard horizontal as evolving into vertical dancing than the converse; Lindauer (1961) also suggested that the horizontal dance was ancestral.

Another hypothesis of dance behaviour evolution arised by using ML analysis applying the GTR+G+I model of nucleotide evolution. Based on this model, the genus *Apis* was split into two lines, the first line consists of *A. mellifera* group and the second line consists of *A. dorsata* and *A. florea* group. Both *A. mellifera* and *A. dorsata* groups

performs vertical dance, hence there is an indication that vertical dance is the ancestral to that of horizontal.

Is open nesting an ancestral characteristic state?

My comparative nest behaviour analyses of outgroup bees and honey bees comprise two approaches, the first approach uses two different traits (pot versus non-pot and cavity versus open nest) and the second approach uses cavity nest versus open nest. Homology means when the same state is derived from a common ancestor without an intervening different state. The use of the integrated life pattern and hence compound characters precluded determining homology.

In my attempt to investigate nesting behaviour evolution, I inferred nest behaviour to be according to the second approach, namely cavity versus open nest. By making ordered and unordered assumptions, from both ML analyses (HKY and GTR model of evolution), it became evident that open nesting behaviour is an intervening state. The other possibility was that *Apis* open nest behaviour was an independently - derived behavioural character state. Consequently, I suggest that cavity nesting in Bombini and Meliponini bees is homologous with that in Apini. Therefore, honey bee cavity nest behaviour seems likely to have occurred as a reversal evolutionary trait, which originated in Bombini and Meliponini bees.

Although *A. mellifera* is well-known for cavity living, there is considerable evidence that it can also nest in the open (Ben Oldroyd, personal communication; Butler 1958). This open-nesting behaviour in *A. mellifera* could indicate a swarming nest. It is for swarming cavity nesting honey bees to choose a temporary place such as on a tree branch before determining the final cavity nesting site. Scouts honey bee performs dance behaviour which advertise the future nest place. If the colony cannot decide on a destination, it will continue to nest in the open. In this particular situation, *A. mellifera* displays ancestral characteristics of open area nest behaviour. However, no other honey bee species information data concerning their ability to live in open nests appears to be available.

Given the above data, I have formed the opinion that the ancestral condition of honey bee was either open or cavity nesting. Therefore, nest behaviour ancestral states could not be completely identified as a result of my present study. Bee nesting characteristics require further investigation in order to improve our understanding of this evolutionary behavioural trait.

Finally, further sequence information is still required in order to test some of the nodes with low support, hopefully increasing these supports.

Potential areas for further research

Honey bees are rich in interesting traits, which can be analysed in order to discover how they evolved. Examples of such traits include those of multi comb cavity behaviour versus the single comb open nesting (Ben Oldroyd, personal communication); silent waggle dance behaviour versus buzzing waggle dance behaviour (Kirchner et al. 1996), and porous versus non-porous honey bee drone cap cell construction (Ruttner 1988; Hadisoesilo and Otis 1998). These examples provide potential areas of study for future behavioural research.

Besides honey bee behavioural evolution, evolutionary studies of corbiculate bees have proved to be interesting areas for discussion. The areas of disagreement which exists between corbiculate molecular (Cameron and Mardulyn 2001) and morphologicalpaleontological (Schultz et al. 2001) phylogenetic trees can be analysed by using tree topology comparisons as provided in the ML analysis described in this present study. Furthermore, it is then possible to examine and map the behaviour of corbiculate bees.

APPENDIX 1. Itpr DNA sequence alignment

Species abbreviation: A.mellifer: Apis mellifera, A.nuluensi: A. nuluensis, A.cerana: A. cerana, A.nigrocin: A. nigrocincta, A.koschevn: A. koschevnikovi, A.laborios: A. laboriosa, A.d.bingha: A. d. binghamii, A.dorsata : A. dorsata, A.florea: A.florea, A.andrenif : A. andreniformis, T.fimbriat: Trigona fimbriata, B.terrestr: Bombus terrestris.

A.mellifer GGA GTA TTA AGA TGT ATT GGA GAC ATG GGT GCA GTA ATG ACG AGC TTA [481 481 A cerana Г 481 481 481 ſ 481 ſ ſ 481 481 ſ A.florea 481 481 ſ [481 B.terrestr \dots \dots \dots \dots \dots \dots T \dots C \dots \dots \dots \dots [481 A.mellifer ACA CTG GGA CCA GCA GGA CAA GTA TTA GCA GGA AGT TCT TCT CCA AGA [961 961 F A.cerana ſ 961 961 ſ 961 ſ 961 ſ 961 A.dorsata 961 96] A.florea 961 ſ 961 $\texttt{B.terrestr} \ \ldots \ \ldots \ \textbf{.T} \ \ldots \ \textbf{.T} \ \ldots \ \textbf{.G} \ \ldots \ \textbf{.C} \ \ldots \ \textbf{.A} \ \ldots \ \textbf{.T} \ \ldots$ 961 ſ A.mellifer CCA AAA CCA CTT TTA AAG AAA GAA TAT CCT CTG GTG ATG GAT ACA AAA [144] [144] A.cerana [144] [144] 1441 ſ [144] 1441 [144] A.florea [144] [144] T.fimbriat ..GG ..AA ..AC [144] [144] A.mellifer TTG AAA ATA ATC GAA ATT TTA CAA TTT ATA CTT GAT GTT CGA TTG GAT [1921 A.cerana [192] [192] 1921 [192] 1921 ſ [192] A.florea [192] [1921 [192] [192]

A.mellifer TAT	AGA	ATT	TCT	TGT	TTA	TTG	AGT	ATT	TTC	AAA	CAA	GAA	TTT	GAT	GAA	[240]
A.nuluensi																[240]
																[240]
A.nigrocin																[240]
A.koschevn																[240]
A.laborios																[240]
A.d.bingha																[240]
A.dorsata									Т							[240]
																[240]
A.andrenif																[240]
T.fimbriat																[240]
B.terrestrC	G		• • •		G	с	C	C	• • •	G	• • •	G			• • •	[240]
A.mellifer ACT	GAA	AGA	GCT	TCT	GGT	GAT	TTG	AGT	CTC	GGC	CAG	AAA	ACT	ATT	GAT	[288]
A.nuluensi																[288]
A.cerana																[288]
A.nigrocin																[288]
A.koschevn																[288]
A.laborios			G						Т							[288]
A.d.bingha			G						Т							[288]
A.dorsata			G						Т							[288]
A.florea																[288]
A.andrenif																
																[288]
T.fimbriatG																[288]
B.terrestr				C		C			Т	Т				C		[288]
A.mellifer TTA	GAA	TTA	ATA	GGT	ACA	CAA	GCG	GAG	GGT	ATA	TTT	GGT	AGC	AGG	TAA	[336]
A.nuluensi								Δ								[336]
A.cerana																[336]
A.nigrocin																[336]
A.koschevn							A					C				[336]
A.laborios																[336]
				• • •	• • •		• • •	•••	• • •	• • •	• • •	• • •	• • •	• • •		[220]
A.d.bingha																
A.d.bingha					• • •		• • •			• • •	• • •			• • •		[336]
A.dorsata		 	 	 	· · · · · · ·	 	 	 	 	· · · · · · ·	· · · · · · ·	 	 	 	 	[336] [336]
A.dorsata A.florea	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	[336] [336] [336]
A.dorsata A.florea A.andrenif	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	[336] [336] [336] [336]
A.dorsata A.florea A.andrenif T.fimbriat	 	· · · · · · · · · · · ·	· · · · · · · · · · · ·	 C	 C	· · · · · · · · · · · ·	 A	· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·	 	· · · · · · · · · · · ·	· · · · · · · · · · · ·	[336] [336] [336] [336] [336] [336]
A.dorsata A.florea A.andrenif	 	· · · · · · · · · · · ·	· · · · · · · · · · · ·	 C	 C	· · · · · · · · · · · ·	 A	· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·	 	· · · · · · · · · · · ·	· · · · · · · · · · · ·	[336] [336] [336] [336]
A.dorsata A.florea A.andrenif T.fimbriat	 	· · · · · · · · · · · ·	· · · · · · · · · · · ·	 C	 C	· · · · · · · · · · · ·	 A	· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·	 	· · · · · · · · · · · ·	· · · · · · · · · · · ·	[336] [336] [336] [336] [336] [336]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr	 	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	 C	 	· · · · · · · · · · · · · · ·	 A A	· · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	[336] [336] [336] [336] [336] [336] [336]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC	 ATT	 ATT	 CAT	 C C TTT	 C TTG	 TAA	 A A	 TTT	 TTT	 TAT	 TTA	 TT-	· · · · · · · · · · · ·	 -та	 TAT	[336] [336] [336] [336] [336] [336] [336] [384]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi	 ATT	 ATT	 CAT	 C C TTT	 C TTG A	 TAA	 A A TCT T.	 TTT 	 TTT 	 TAT	 TTA	 TT- 	· · · · · · · · · · · · ·	 -ТА 	 TAT	[336] [336] [336] [336] [336] [336] [384] [384]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana	 ATT	 ATT 	 CAT	 TTT 	 C TTG A	 TAA	 A A TCT .T. .T.	 TTT 	 TTT 	 TAT 	 TTA 	 TT- 	· · · · · · · · · · · · ·		 TAT 	[336] [336] [336] [336] [336] [336] [384] [384] [384]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.nigrocin	 ATT 	 ATT 	 CAT 	 C C TTT 	 C C TTG A A	 TAA 	 A A TCT T. 	 TTT 	 TTT 	 TAT 	 TTA 	 TT- 	 A-T		 TAT 	[336] [336] [336] [336] [336] [336] [384] [384] [384] [384]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.nigrocin A.koschevn	 ATT 	 ATT 	 CAT 	 TTT 	 TTG A A	 TAA 	 A A TCT .T. .T. .T. .T.	· · · · · · · · · · · · · · · TTT - · · · · ·	 TTT 	 TAT 	 TTA 	· · · · · · · · · · · · · · · TT- · · - · · - · . T · . T	 A-T A-T		 TAT 	[336] [336] [336] [336] [336] [336] [384] [384] [384]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.nigrocin	 ATT 	 ATT 	 CAT 	 TTT 	 TTG A A	 TAA 	 A A TCT .T. .T. .T. .T.	· · · · · · · · · · · · · · · TTT - · · · · ·	 TTT 	 TAT 	 TTA 	· · · · · · · · · · · · · · · TT- · · - · · - · . T · . T	 A-T A-T		 TAT 	[336] [336] [336] [336] [336] [336] [384] [384] [384] [384]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.nigrocin A.koschevn	 ATT 	 ATT 	 CAT 	 TTT 	 TTG A A A	 TAA 	 TCT .T. .T. .T. .T. .T.	· · · · · · · · · · · · · · TTT - · · · · · · · ·	 TTT 	 TAT 	 TTA 	· · · · · · · · · · · · · · · ·	 A-T A-T TA-	- TA - TA T T	 TAT 	[336] [336] [336] [336] [336] [336] [384] [384] [384] [384] [384] [384]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.nigrocin A.koschevn A.laboriosT	 ATT 	 ATT 	CAT 	 C C TTT 	 C C A A A A	 TAA 	 TCT .T. .T. .T. .T. .T.	 TTT 	 TTT 	 TAT 	 TTA 	· ·	 A-T A-T TA- TA-		 TAT 	[336] [336] [336] [336] [336] [336] [384] [384] [384] [384] [384] [384] [384] [384]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.nigrocin A.koschevn A.laboriosT A.dobinghaT A.dorsataT	 ATT 	 ATT 	CAT 	 TTT 	C C C TTG A A A A	 TAA 	 	 TTT 	 TTT 	 TAT 	 TTA 	· · · · · · · ·	 A-T A-T TA- TA- TA- TA-	 T T A.T	 TAT A.A	[336] [336] [336] [336] [336] [336] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.nigrocin A.koschevn A.laboriosT A.dorsata A.florea	 ATT 	ATT 	CAT 	 TTT 	C C C TTG A A A A	 TAA 	 	 TTT AA.	 TTT C	 TAT 	 TTA 	 TT- T A.T A.T A.T A.T T	 A-T A-T TA- TA- TAT ACT	- TA - TA - TA T T T T T T T	 TAT A.A A	[336] [336] [336] [336] [336] [336] [384] [384]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.cerana A.higrocin A.koschevn A.laboriosT A.d.binghaT A.florea A.andrenif	 ATT 	ATT 	CAT 	 C C TTT 	 C TTG A A A A A A	TAA 	 	 TTT AA. AA.	 TTT C	 TAT 	···· ···· ···· ···· ···· ···· ···· ···· ····	 TT- T T A.T A.T A.T A.T A.T A.T	 A-T A-T TA- TA- TAT ACT TAT		 TAT A.A A	[336] [336] [336] [336] [336] [336] [384] [384]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.nigrocin A.koschevn A.laboriosT A.dbinghaT A.dorsata A.florea A.andrenif T.fimbriat .T.	 ATT 	ATT 	CAT CAT 	 TTT 	 TTG A A A A A 	TAA 	· ·	 TTT AA. 	TTT 	TAT 	 	 TT- T T A.T A.T A.T A.T A.T .CT ACT .CA	 A-T TA- TA- TAT TAT TAT TAT		TAT TAT A.A A AGA	[336] [336] [336] [336] [336] [336] [384] [384]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.cerana A.higrocin A.koschevn A.laboriosT A.d.binghaT A.florea A.andrenif	 ATT 	ATT 	CAT CAT 	 TTT 	 TTG A A A A A 	TAA 	· ·	 TTT AA. 	TTT 	TAT 	 	 TT- T T A.T A.T A.T A.T A.T .CT ACT .CA	 A-T TA- TA- TAT TAT TAT TAT		TAT TAT A.A A AGA	[336] [336] [336] [336] [336] [336] [384] [384]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.nigrocin A.koschevn A.laboriosT A.dbinghaT A.dorsataT A.florea A.andrenif T.fimbriat .T.	 ATT 	ATT 	CAT CAT 	 TTT 	 TTG A A A A A 	TAA 	· ·	 TTT AA. 	TTT 	TAT 	 	 TT- T T A.T A.T A.T A.T A.T .CT ACT .CA	 A-T TA- TA- TAT TAT TAT TAT		TAT TAT A.A A AGA	[336] [336] [336] [336] [336] [336] [384] [384]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.nigrocin A.koschevn A.laboriosT A.dbinghaT A.dorsataT A.florea A.andrenif T.fimbriat .T.	ATT 	ATT 	CAT TT T		TTTG C A A A A A A 	TAA 		TTT AA. AA. 	TTTT C C 	TAT .TA .TA .TA .TA .TA .TA	TTA 	TT- T A.T A.T A.T A.T A.T A.T A.T A.T A.T	 A-T TA- TA- TA- TAT TA- TAT TAT	-TA -TA T T A.T T A.T T A.T	TAT TAT A.A A.A A.A ACA	[336] [336] [336] [336] [336] [336] [384] [384]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.cerana A.nigrocin A.koschevn A.laboriosT A.d.binghaT A.dorsataT A.florea A.andrenif T.fimbriat T. B.terrestr .TT A.mellifer TAA	ATT 	ATT 	CAT 	 TTTT G TCA	 TTGA A A A A A A 	 TAA 	 	TTTT AA. AA. TTA	 TTTT C C TTTT	 TAT .TA .TA .TA .TA .TA .TA .T	 TTA 	 TT- T A.T A.T A.T A.T A.T A.T A.T A.T CT .CA .CT GAA	 	-TA -TA T T A.T T A.T T A.T GTG	 TAT TAT A.A A.A ACA GCG	[336] [336] [336] [336] [336] [384] [384]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.cerana A.nigrocin A.koschevn A.laboriosT A.dorsataT A.dorsataT A.florea T.fimbriat .T. B.terrestr .TT A.mellifer TAA A.nuluensi	ATT 	ATT 	CAT TT. TT.	 G TCA 	TTG 	TAA 		 	 TTT C C	TAT TAT .TA .TA .TA .TA .TA .TA .TA	TTA TTA 	TT- 	 	-TA -TA T T A.T A.T A.T A.T GTG	 TAT A.A A.A ACA GCG 	[336] [336] [336] [336] [336] [336] [384] [384]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios .T A.dorsata .T A.dorsata .T A.florea T.fimbriat .T. B.terrestr .TT A.mellifer TAA A.nuluensi A.cerana	ATT 	ATT 	CAT TT. ATT 	 TTT G TCA .T.	 C A A A A A A	 TAA 		 	 TTT C C	TAT TAT .TA .TA .TA .TA .TA .TA .TA	TTA TTA TTA T T T T.	TT- 	 	-TA -TA T T T A.T A.T A.T A.T GTG .C.	 TAT TAT A.A A.A ACA GCG 	336] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 432] 432] 432]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios .T A.dorsataT A.dorsataT A.florea T.fimbriat T. B.terrestr .TT A.mellifer TAA A.nuluensi A.cerana A.nigrocin	ATT 	ATT 	CAT 	 TTTT G TCA 	 TTG 	 TAA 		 TTTT AA. AA. TTTA 	 TTTT C C TTTT TTTT	 	 TTA GAG	TT- TT- TT- T A.T A.T A.T A.T A.T A.T CT CA .CT GAA 	 A-T TA- TA- TA- TA- TA- TA- TA- TA- TA-	-TA -TA T T A.T T A.T A.T GTG GTG 	 TAT A.A A.A ACA GCG 	336] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 432] 432] 432] 432]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.nigrocin A.koschevn A.dorsataT A.dorsataT A.florea T.fimbriat T. B.terrestr .TT A.mellifer TAA A.nuluensi A.cerana A.nigrocin A.koschevn	ATT 	ATT 	CAT 		 TTG 	 TAA C.G ATT		TTT AA. AA. TTTA	 TTTT C C TTTT TTTT 	 TAT .TA .TA .TA .TA .TA .TA .T	 TTA GAG 	TT- 	 	-TA -TA T T A.T A.T A.T GTG GTG 	 TAT A.A ACA GCG A	336] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 432] 432] 432] 432] 432] 432]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios .T A.dorsataT A.dorsataT A.florea T.fimbriat T. B.terrestr .TT A.mellifer TAA A.nuluensi A.cerana A.nigrocin	ATT 	ATT 	CAT 		 TTG 	 TAA C.G ATT		TTT AA. AA. TTTA	 TTTT C C TTTT TTTT 	 TAT .TA .TA .TA .TA .TA .TA .T	 TTA GAG 	TT- 	 	-TA -TA T T A.T A.T A.T GTG GTG 	 TAT A.A ACA GCG A	336] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 432] 432] 432] 432]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.nigrocin A.koschevn A.dorsataT A.dorsataT A.florea T.fimbriat T. B.terrestr .TT A.mellifer TAA A.nuluensi A.cerana A.nigrocin A.koschevn	ATT 	ATT AAT AAT	CAT 		 C A A A A A A	TAA C.G ATT	A A TCT .T. .T. .T. .T. .T. .A. .A. .A. .A. .A	TTTT AA. TTTA 	 TTTT C C TTTT 	 TAT .TA .TA .TA .TA .TA .TA .T	 TTA T T T GAG 	TT- 	 	-TA -TA T T T A.T T A.T A.T GTG 	 TAT A.A A AGA ACA GCG A.A	336] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 432] 432] 432] 432] 432] 432]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.koschevn A.laboriosT A.doisataT A.dorsata A.florea A.andrenif T.fimbriat T. B.terrestr .TT A.mellifer TAA A.nuluensi A.cerana A.higrocin A.koschevn A.koschevn A.laborios A.laborios A.laborios A.d.bingha	ATT 	ATT 	CAT 	C C TTT G TCA 	 TTG A A A A A	TAA 	A A TCT .T. .T. .T. .T. .T. .A. .A. .A. .A. .A	TTT 	 TTT TTT TTT 	 TAT .TA .TA .TA .TA .TA .TA .T	 TTA GAG 	TT- 	 	-TA -TA T T T T A.TT T A.TT A.CT GTG 	 TAT TAT A.A A.A ACA GCG A	336] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 432] 432] 432] 432] 432] 432] 432] 432] 432] 432]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.cerana A.laboriosT A.dorsataT A.dorsataT A.florea A.andrenif T.fimbriat T. B.terrestr .TT A.mellifer TAA A.nuluensi A.cerana A.nigrocin A.koschevn A.koschevn A.laborios A.d.bingha A.dorsata	ATT 	ATT 	CAT 	C C TTTT G TCA G	TTG A 	TAA TAA C.G ATT G		TTT 	 TTT TTT TTT 	 TAT .TA .TA .TA .TA .TA .TA .T	TTA TTA TTA TTA TTA TTA TTA TT TTT TTT	TT- 	 A-T TA- TA- TAT TAT TAT T	-TA -TA T T T A.TT 	 TAT TAT A.A A.A ACA GCG AGA	336] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 432] 432] 432] 432] 432] 432] 432] 432] 432] 432] 432]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.cerana A.koschevn A.laborios .T A.d.binghaT A.dorsataT A.florea A.andrenif B.terrestr .TT B.terrestr .TT A.mellifer TAA A.nuluensi A.cerana A.cerana A.cerana A.cerana A.koschevn A.koschevn A.koschevn A.koschevn A.laborios A.dorsata A.dorsata A.florea	ATT ATT 	ATT 	CAT 	C C TTT G TCA C 	 TTG TTG 	TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA		 TTT 	 TTT 	 TAT .TA .TA .TA .TA .TA .TA .T	 TTA TTA GAG 	TT- TT- TT- A.T A.T A.T A.T .CT GAA 	 A-T TA- TA- TAT TAT TAT T	-TA -TA T T A.T T A.T T A.T GTG GTG 	 TAT TAT A.A A.A ACA GCG A	336] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 432] 432] 432] 432] 432] 432] 432] 432] 432] 432] 432] 432]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.laboriosT A.dorsataT A.dorsataT A.florea A.andrenif B.terrestr .TT A.mellifer TAA A.nuluensi A.cerana A.cerana A.cerana A.laborios A.d.bingha A.d.bingha A.d.bingha A.d.bingha A.d.bingha A.d.bingha A.dorsata A.florea A.andrenif	ATT ATT 	ATT 	CAT 	 TTT G TCA G C C C C C.	 TTG TTG 	TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA		 TTT 	 TTT 	 TAT .TA .TA .TA .TA .TA .TA .T	 TTA TTA GAG 	TT- TT- A.T A.T A.T A.T A.T .CT GAA 	 A-TT A-T TA- TAT TAT TAT TAT	-TA -TA T T A.T T A.T T A.T GTG 	 TAT TAT A.A A.A ACA GCG A A	336] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 432] 432] 432] 432] 432] 432] 432] 432] 432] 432] 432] 432]
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.nigrocin A.koschevn A.laboriosT A.d.binghaT A.dorsataT A.florea A.andrenif A.cerana A.cerana A.cerana A.nigrocin A.koschevn A.higrocin A.cerana A.laborios A.laborios A.laborios A.laborios A.laborios A.laborios A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriatT	ATT 	ATT 	CAT 	 	TTG C.	TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA		TTT TTT AA. AA.	 TTT 	TAT TAT .TA .TA .TA .TA .TA .TA .TA	TTA TTA TTA T.T T T GAG GAG 	TT- TT- A.T A.T A.T A.T A.T .CT GAA 	 A-T TA- TA- TAT TAT TAT TAT T	-TA -TA T T A.T T A.T T A.T GTG 	 TAT TAT A.A A.A ACA GCG A A 	336] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 432] 432] 432] 432] 432] 432] 432] 432] 432] 432] 432] 432] 432] 432] 432] 432] <t< td=""></t<>
A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer TAC A.nuluensi A.cerana A.laboriosT A.dorsataT A.dorsataT A.florea A.andrenif B.terrestr .TT A.mellifer TAA A.nuluensi A.cerana A.cerana A.cerana A.laborios A.d.bingha A.d.bingha A.d.bingha A.d.bingha A.d.bingha A.d.bingha A.dorsata A.florea A.andrenif	ATT 	ATT 	CAT 	 	TTG C.	TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA		TTT TTT AA. AA.	 TTT 	TAT TAT .TA .TA .TA .TA .TA .TA .TA	TTA TTA TTA T.T T T GAG GAG 	TT- TT- A.T A.T A.T A.T A.T .CT GAA 	 A-T TA- TA- TAT TAT TAT TAT T	-TA -TA T T A.T T A.T T A.T GTG 	 TAT TAT A.A A.A ACA GCG A A 	336] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 384] 432] 432] 432] 432] 432] 432] 432] 432] 432] 432] 432] 432]

A.mellifer	TTA	GAT	TTA	GAT	GGA	CAA	GGT	GGT	AGA	ACA	TTT	CTG	CGT	GTT	TTA	CTC	[480]
A.nuluensi	• • •	• • •		• • •	• • •	• • •	• • •		• • •	• • •	• • •	• • •	• • •	• • •	• • •		[480]
A.cerana	• • •	• • •		• • •	• • •	• • •	• • •		• • •	• • •	• • •	• • •	• • •	• • •	• • •		[480]
A.nigrocin																	[480]
A.koschevn					G												[480]
A.laborios																	[480]
A.d.bingha																	[480]
A.dorsata	с																[480]
A.florea									.A.								[480]
A.andrenif		C		C					.A.								[480]
T.fimbriat	G			C	C			C				т				Т	ſ	4801
B.terrestr																	ſ	4801
A.mellifer	CAT	ТТG	GCA	ATG	CAT	GAC	ТАТ	CCT	CCA	СТА	GTT	TCC	GGA	GCA	ͲͲΑ	CAT	ſ	5281
A.nuluensi																		528]
A.cerana																	-	528]
A.nigrocin																	-	528]
A.koschevn																	-	528]
																	-	-
A.laborios																		528]
A.d.bingha																		528]
A.dorsata																		528]
A.florea						• • •												528]
A.andrenif																	[528]
T.fimbriat	C	• • •	Т	• • •	C	Т	•••	G	G	G		•••	• • •	G	• • •		[528]
B.terrestr			Т		C	Т		A	G	т				G			[528]
A.mellifer	TTG	CTT	TTT	AGG	CAT	TTT	AGT	CAA	AGA	CAA	GAA	GTC	TTA	CAA	GCA	TTT	[576]
A.nuluensi								G				т					[576]
A.cerana								G				т					Γ	576]
A.nigrocin								G				Т					-	5761
A.koschevn																		576]
A.laborios																	-	5761
A.d.bingha																		576]
A.dorsata																	-	5761
A.florea																		-
																	-	576]
A.andrenif																		576]
T.fimbriat																•••	-	576]
B.terrestr	•••	• • •	•••C	A	•••C	• • •	C	• • •	• • •	• • •	• • •	• • T	• • •	• • •	• • •	•••	L	576]
A.mellifer																	-	624]
A.nuluensi																	-	624]
A.cerana						• • •											[-
A.nigrocin		• • •	• • •	• • •				• • •	.G.	.A.	Α	• • •	• • •	• • •	• • •	• • •	[624]
A.koschevn								A			Α			A			[624]
A.laborios		• • •	• • •	• • •	.т.	.AT	•••	.G.		.A.	Α	•••	• • •	• • •	• • •		[624]
A.d.bingha					.т.	.AT		.G.		.A.	Α						[624]
A.dorsata					.т.	.AT		.G.		.A.	Α						[624]
A.florea					.т.	.GT	A.T	AT.			Α						[624]
A.andrenif					.т.	.GT	A.T	AT.	ATC	GTG	TA.	TA.	Α				Γ	624]
T.fimbriat				с												GGG		624]
B.terrestr																	-	624]
A.mellifer	TAT	AAA	ጥጥጥ	ΑͲͲ	AAA	тта	ТТG	ТАА	АТА	GGT	TCA	ACT	ጥጥጥ	GGT	TTC	CGA	ſ	672]
A.nuluensi																	-	672]
A.cerana																	-	
																		672] 6721
A.nigrocin																		672]
A.koschevn																	[
A.laborios																		672]
A.d.bingha																	[
A.dorsata						• • •												672]
A.florea						• • •											[672]
A.andrenif	C	• • •	с	• • •	• • •	• • •		• • •	• • •	• • •	G				• • •		[672]
T.fimbriat	G.A	.G.	• • •	• • •	• • •	• • •	• • •	.G.	.C.	• • •	G	• • •	• • •	• • •	• • •		[672]
B.terrestr	G.A	.G.						CG.	т		G						[672]

A.mellifer	TAG	TGA	TGT	TGA	ATC	TTA	CAA	ACA	AAT	AAA	GTC	AGA	TTT	GGA	CGT	TTT	[720]
A.nuluensi															Τ		[720]
A.cerana																	[720]
A.nigrocin																	[720]
A.koschevn																	[720]
A.laborios																	[720]
A.d.bingha																	[720]
	•••																[720]
A.florea							т		• • •		Α					• • •	[720]
A.andrenif							т				Α						[720]
T.fimbriat			С	Α				G									[720]
B.terrestr		с	с			с	т				Α	с	с	Α	т		[720]
A.mellifer	AAG	ACA	ATC	AGT	TGA	ΔΔΔ	ATC	GGA	ACT	TTG	GGT	ͲͲΑ	ТАА	ATC	таа	AGC	[768]
A.nuluensi																	[768]
A.cerana																	[768]
A.nigrocin																	[768]
A.koschevn																	[768]
A.laborios																	[768]
A.d.bingha																	[768]
A.dorsata			• • •				G					•••	• • •		• • •		[768]
A.florea																	[768]
A.andrenif																	[768]
T.fimbriat				G													[768]
B.terrestr																	[768]
2.00110001	•••		0			0							•••		•••		[,00]
A.mellifer	ΔTC	AGA	AGA		TGG		ጥልል		GDD	GAA		ΨΔΔ	AGA	AGA	CGA	AGA	[816]
A.nuluensi																	. ,
																	[816]
A.cerana																	[816]
A.nigrocin																	[816]
A.koschevn																	[816]
A.laborios							C										F 0161
	• • •	• • •	• • •	• • •	• • •	• • •	C	• • •	Α	• • •	• • •	• • •	• • •	• • •	• • •	• • •	[816]
A.d.bingha																	[816]
							С		Α								
A.d.bingha	 		 	 	 	· · · · · · ·	с с	 	A A	 	 	 	 	 	 	 	[816] [816]
A.d.bingha A.dorsata A.florea	 	 	 	 	 	 	с с	 	A A	 	 	 	 	 	 A	 	[816] [816] [816]
A.d.bingha A.dorsata A.florea A.andrenif	 	 	 	 	 	 	с с 	 	A A 	 	 R	 	 	 	 A G	 	[816] [816] [816] [816]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat	 	 	· · · · · · · · · · · ·	 	 	· · · · · · · · · · · ·	C C 	 	A A 	 	 R	 	 	 	 A G	· · · · · · · · · · · ·	[816] [816] [816] [816] [816]
A.d.bingha A.dorsata A.florea A.andrenif	 	 	· · · · · · · · · · · ·	 	 	· · · · · · · · · · · ·	C C 	 	A A 	 	 R	 	 	 	 A G	· · · · · · · · · · · ·	[816] [816] [816] [816]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr	· · · · · · · · · · · · · · ·	 G	 G	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	 T	C C 	· · · · · · · · · · · · · · ·	A A 	· · · · · · · · · · · ·	 R G.G	· · · · · · · · · · · ·	· · · · · · · · · · · ·	 G	 A G A	· · · · · · · · · · · · ·	[816] [816] [816] [816] [816] [816] [816]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer	 TGA	 G TGG	 G AGC	 TAC	 TCC	 T TCG	C C TAA	 AGC	A A ACC	 ACC	 R G.G ACA	 ACT	 ATC	 G TAC	 A G A GAC	 GGA	[816] [816] [816] [816] [816] [816] [816] [864]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi	 TGA	 G TGG ?	 G AGC	 TAC	 TCC	 T TCG	C C TAA	 AGC G	A A ACC	 ACC	 R G.G ACA	 ACT	 ATC	 G TAC	 A G A GAC A	 GGA A	[816] [816] [816] [816] [816] [816] [816] [864] [864]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana	 TGA 	 G TGG ?	 G AGC 	 TAC	 TCC 	 T TCG	C C TAA	 AGC G G	A A ACC	 ACC	 R G.G ACA	 ACT	 ATC 	 G TAC	A G A A GAC A	 GGA A A	[816] [816] [816] [816] [816] [816] [816] [864] [864] [864]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin	 TGA 	 G TGG ? 	 G AGC 	 TAC 	 TCC 	 T TCG 	C C TAA	 AGC G G	A A ACC 	 ACC 	 R G.G ACA 	 ACT 	 ATC 	 G TAC	 A G A GAC A	 GGA A A A	[816] [816] [816] [816] [816] [816] [816] [864] [864] [864]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn	 TGA 	 G TGG ? 	 G AGC 	 TAC 	 TCC 	 T TCG 	C C TAA 	 AGC G G G	A A A A A A	 ACC 	 R G.G ACA 	 ACT 	 ATC 	 G TAC 	A G A GAC A 	 GGA A A A	[816] [816] [816] [816] [816] [816] [816] [864] [864] [864] [864]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios	 TGA 	 G TGG ? 	 G AGC 	 TAC 	 TCC 	 T TCG 	C C TAA 	 AGC G G G G	A A ACC 	ACC	 R G.G ACA 	ACT	ATC	 G TAC 	A G A GAC A 	 GGA A A A	[816] [816] [816] [816] [816] [816] [816] [864] [864] [864] [864] [864] [864]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn	 TGA 	 G TGG ? 	 G AGC 	 TAC 	 TCC 	 T TCG 	C C TAA 	 AGC G G G G	A A ACC 	ACC	 R G.G ACA 	ACT	ATC	 G TAC 	A G A GAC A 	 GGA A A A	[816] [816] [816] [816] [816] [816] [816] [864] [864] [864] [864]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios	 TGA 	 G TGG ? 	 G AGC 	 TAC 	 TCC 	 T TCG 	C C TAA 	 AGC G G G G	A A ACC 	ACC	 R G.G ACA 	ACT	ATC	 G TAC 	 A G A GAC A 	 GGA A A A 	[816] [816] [816] [816] [816] [816] [816] [864] [864] [864] [864] [864] [864]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha	 TGA 	 G TGG ? 	AGC 	 TAC 	 TCC 	 T TCG 	C C TAA 	 AGC G G G G 	A A ACC 	ACC	 R G.G ACA 	ACT	ATC	 G TAC 	A G A GAC A 	GGA A A A A A	[816] [816] [816] [816] [816] [816] [864] [864] [864] [864] [864] [864] [864]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata	 TGA 	 G TGG ? 	AGC 	 TAC 	 TCC 	 T TCG 	C C TAA 	 AGC G G G G 	A A ACC 	ACC	 R G.G ACA 	ACT	ATC	 G TAC 	A G A GAC A 	GGA A A A A A	[816] [816] [816] [816] [816] [816] [864] [864] [864] [864] [864] [864] [864] [864] [864]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif	 TGA 	 G TGG ? 	 G AGC 	 TAC 	 TCC 	 T TCG 	C C TAA 	 AGC G G G G 	A A ACC 	ACC 	R G.G ACA 	ACT 	ATC ATC 	 G TAC 	A G A GAC A C C	GGA A A A 	[816] [816] [816] [816] [816] [816] [864] [864]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat	 TGA 	 G TGG ? 	AGC 	TAC	TCC 	 T T T 	C C TAA 	AGC G G G G 	A A ACC 	ACC	R R G.G ACA 	ACT	ATC	 G TAC 	A G A GAC A C C	GGA A A A 	[816] [816] [816] [816] [816] [816] [864] [864]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif	 TGA 	 G TGG ? 	AGC 	TAC	TCC 	 T T T 	C C TAA 	AGC G G G G 	A A ACC 	ACC	R R G.G ACA 	ACT	ATC	 G TAC 	A G A GAC A C C	GGA A A A 	[816] [816] [816] [816] [816] [816] [864] [864]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr	 TGA 	 G TGG ? 	G	TAC	TCC	 T TCG	C C TAA A	AGC G G G 	A A ACC T	ACC	 R G.G ACA T	ACT	ATC	G TAC	 A G A GAC A C C AT.	GGA A A A 	[816] [816] [816] [816] [816] [816] [864] [864]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer	 TGA 	 G TGG ? GAA	 G AGC AGC	TAC 	TCC 	 T.CG TAA	C C TAA TAA A	AGC G	A A ACC T T	ACC G	 R G.G ACA T AAT	ACT 	ATC G	 G TAC TTG	 A G A GAC A C C C	 GGA A A A 	[816] [816] [816] [816] [816] [816] [864] [864]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi	 TGA 	G G TGG ? GAA	G	TAC 	TCC TGT	 T.CG TAA	C C TAA A TAA	AGC G	A A A ACC T T T	ACC G TTA	 R G.G ACA T AAT	ACT 	ATC 	 G TAC TTG	 A GAC A GAC C C AT. AAA	 GGA A A A 	[816] [816] [816] [816] [816] [816] [864] [912] [912]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana	 TGA 	G G TGG ? GAA	G	TAC 	TCCC TGT	T TCG TCA	C C TAA TAA A TAA	AGC G	A A A ACC T T T	ACC 	 R G.G ACA T AAT 	ACT 	ATC 	G TAC TTG TTG	 A GAC A C C AT. AAA	GGA A A A TAA 	[816] [816] [816] [816] [816] [816] [816] [864] [912] [912] [912]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin	 TGA 	G G TGG ? G G	G AGC AGC AGG	TAC 	TCC 	 T T T T T T T	C C TAA A TAA A A	AGC G G G G TTT TTT	A A A.CC T.T TTT 	ACC G TTA	 R G.G ACA T T AAT 	ACT 	ATC	 G TAC TTG	 A GAC A C C C AT. AAA AAA 	GGA A A A A C C C C	[816] [816] [816] [816] [816] [816] [864] [912] [912]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana	 TGA 	G G TGG ? G G	G AGC AGC AGG	TAC 	TCC 	 T T T T T T T	C C TAA A TAA A A	AGC G G G G TTT TTT	A A A.CC T.T TTT 	ACC G TTA	 R G.G ACA T T AAT 	ACT 	ATC	 G TAC TTG	 A GAC A C C C AT. AAA AAA 	GGA A A A A C C C C	[816] [816] [816] [816] [816] [816] [816] [864] [912] [912] [912]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin	 TGA 	G G TGG ? G G	G	TAC 	TCC 	 T T.CG T T.CG T T	C C TAA A TAA	AGC G G G TTT TTT	A A A ACC T T TTTT 	ACC G TTA	 R G.G ACA T AAT 	ACT 	ATC G ATA G G G G	 G TAC TTG 	 A GAC A C C C AAAA AAAA AAAA	GGA A A A A C C C C	[816] [816] [816] [816] [816] [816] [864] [912] [912] [912] [912]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn	 TGA 	G G TGG ? GAA A	G	TAC 	TCC TGT	 T.CG TAA 	C C TAA A TAA 	AGC G G G G TTT TTT	A A A ACC T T TTTT 	ACC G TTA	 R G.G ACA T T AAT 	ACT 	ATC 	G TAC TTG 	A G GAC A C C C AAA AAA AAAA GAC	GGA A A A A C C C C	[816] [816] [816] [816] [816] [816] [816] [864] [912] [912] [912] [912] [912]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha	 TGA 	 G TGG ? GAA A A	G	TAC 	TCC 	T T T T T T T T	C C TAA TAA A TAA TAA	AGC G G G G TTT TTT 	A A A ACC T TTTT 	ACC G TTA	 R G.G ACA T T AAT 	ACT 	ATC ATC G ATA ATA 	G TAC TTG 	A G GAC A C C C AAA AAA AAAA AAAA	GGA A A A A C C C C	[816] [816] [816] [816] [816] [816] [816] [864] [912] [912] [912] [912] [912] [912] [912] [912] [912]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata	TGA 	G G TGG ? G GAA GAA A A	G AGC AGC AGG 	TAC 	TCC 	 T T T T T T T	C C TAA TAA A TAA	AGC G G G G TTT TTT 	A A A ACC T T T T.	ACC G TTA 	 R G.G ACA T T AAT C	ACT 	ATC ATC G ATA G G G G G	 G TAC TTG 	A G GAC A C C AT. AAA A AAA A AAA	GGA A A A A A TAA TAA	[816] [816] [816] [816] [816] [816] [816] [864] [912] [912]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.mellifer A.mellifer A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea	TGA 	G G TGG ? G GAA GAA A A	G AGC AGC AGG 	TAC 	TCC 	 T T T T T T T	C C TAA TAA A TAA A	AGC G G G G TTT TTT AA.	A A A ACC T T T T.	ACC G TTA 	 R G.G ACA T T AAT C	ACT 	ATC ATC ATC 	 G TAC TTG 	 A GAC A C A C AT. AAA AAA AAA AAA	GGA A A A A A A TAA TAA	[816] [816] [816] [816] [816] [816] [864] [912] [912]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif	 TGA 	G G TGG ? GAA A A A A	G AGC AGC AGG 	TAC 	TCC 	 T.CG TAA 	C C TAA TAA A TAA A TAA	AGC G	A A A A A T T T	ACC 	 R G.G ACA T T AAT C C	ACT 	ATC ATC G ATA G G G G G G	 G TAC TTG TTG 	A GAC GAC A C C AT. AAA A C AT. AAA C AT. AAA C C	GGA A A A A A A A A A	[816] [816] [816] [816] [816] [816] [816] [864] [912] [912]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat	TGA 	G G TGG ? GAA A A A A.	G AGC AGC AGG 	TAC 	TCC 	T T T T T T T T	C C TAA TAA A TAA A TAA A	AGC G.	A A A A A T T T	ACC G TTA 	 R G.G ACA T T AAT C A	ACT 	ATC ATC 	 G TAC TTG 	A GAC GAC A C C C AT. AAA G G G	GGA A A A A A A A A A	[816] [816] [816] [816] [816] [816] [816] [864] [912] [912]
A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif	TGA 	G G TGG ? GAA A A A A.	G AGC AGC AGG 	TAC 	TCC 	T T T T T T T T	C C TAA TAA A TAA A TAA A	AGC G.	A A A A A T T T	ACC G TTA 	 R G.G ACA T T AAT C A	ACT 	ATC ATC 	 G TAC TTG 	A GAC GAC A C C C AT. AAA G G G	GGA A A A A A A A A A	[816] [816] [816] [816] [816] [816] [816] [864] [912] [912]

		~				0.01				0.00		101					r 0.001
A.mellifer A.nuluensi																	[960] [960]
A.cerana																	[960]
A.nigrocin																	[960]
A.koschevn																	[960]
A.laborios																	[960]
A.d.bingha	G																[960]
A.dorsata	G									т							[960]
A.florea	G					Α		AA.		т		.т.					[960]
A.andrenif																	[960]
T.fimbriat																	[960]
B.terrestr	GAA	T.T	.GG	AAT	A	AT.	т	-T.	с	Τ	G.C	GT.	G.A	• • •	•••	•••	[960]
A.mellifer	חרר		100	300	пса	7 7 M	7 ~ 7		7 0 7		mcc	паа	100	~~~~	7 0 7	mca	[1000]
A.nuluensi																	[1008] [1008]
A.cerana																	[1008]
A.nigrocin																	[1008]
A.koschevn																	[1008]
A.laborios																	[1008]
A.d.bingha														Α			[1008]
A.dorsata														Α			[1008]
A.florea														Α			[1008]
A.andrenif														С			[1008]
T.fimbriat																	[1008]
B.terrestr	• • •	.G.	• • •	G	• • •	G	•••	• • •	• • •	с	• • •	•••	G	Α	G	с	[1008]
				~~~	~~~												110501
A.mellifer																	[1056]
A.nuluensi A.cerana																	[1056] [1056]
A.nigrocin																	[1056]
A.koschevn																	[1056]
A.laborios																	[1056]
A.d.bingha																	[1056]
A.dorsata																	[1056]
A.florea											G						[1056]
A.andrenif		Т									G						[1056]
T.fimbriat																	[1056]
B.terrestr	• • •	с	• • •	• • •	• • •	• • •	• • •	• • •	G	• • •	G	G	• • •	• • •	• • •	• • •	[1056]
7	~ 7 7	~ ~ ~		3.000	<b>— — —</b>	001	770	сл. П	1 C C	mcc	man	7 7 M	7 7 7	100	100	777	[1104]
A.mellifer A.nuluensi																	[1104] [1104]
A.cerana																	[1104]
A.nigrocin																	[1104]
A.koschevn																	[1104]
A.laborios																	[1104]
A.d.bingha																	[1104]
A.dorsata																	[1104]
A.florea																	[1104]
A.andrenif																	[1104]
T.fimbriat																	[1104]
B.terrestr	• • •	• • •	G	• • •	с	т	• • •	• • •	•••	• • •	• • •	• • •	• • •	• • •	• • •	• • •	[1104]
	101		101		100		100			<b></b>	3.00		<b>m a a</b>	0.00			[1150]
A.mellifer																	[1152]
A.nuluensi A.cerana				· · · · · ·													[1152] [1152]
A.nigrocin																	[1152]
A.koschevn																	[1152]
A.laborios																	[1152]
A.d.bingha																	[1152]
A.dorsata																	[1152]
A.florea																	[1152]
A.andrenif																	[1152]
T.fimbriat																	[1152]
B.terrestr		с	G						С	с				G	с	с	[1152]

A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat	· · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · ·	?  T T T T T	· · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · ·	<pre>[1200] [1200] [1200] [1200] [1200] [1200] [1200] [1200] [1200] [1200] [1200] [1200]</pre>
B.terrestr																	[1200]
A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr	C     	A A A A A A A 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	G [ ] G [ ] G [ ] · [ ] · [ ] · [ ] · [ ] · [ ]	1216 1216 1216 1216 1216 1216 1216 1216	) ] ] ] ] ] ]									

# APPENDIX 2. COII sequence alignment

A.mellifera	ATT	TCC	ACA	TGA	TTT	ATA	TTT	ATA	TTT	CAA	GAA	TCA	AAT	TCA	TAT	TAT	[ 48]
A.nuluensis														G			[ 48]
A.cerana		T						G									[ 48]
A.nigrocincta		•••															
~																• • •	[ 48]
A.koschevnikovi								• • •						• • •		• • •	[ 48]
A.laboriosa		A	G		A.A		C.A								.TC		[ 48]
A.d.binghamii		A	G		A.A		C.A								.TC		[ 48]
A.dorsata		A			A.A		A								.т.		[ 48]
A.florea		Т			A.A								. C		. т.		[ 48]
A.andreniformis		T													.TA		[ 48]
T.fimbriata																	
	G			• • •		• • •				• • •			• • •			• • •	[ 48]
B.terrestris	• • •	T		• • •	AAC		• • •	Τ	• • •		Α.Τ	• • •	• • •	Т	.TC	• • •	[ 48]
A.mellifera	GCT	GAT	AAT	TTA	ATT	TCA	TTT	CAT	AAT	ATA	GTT	ATA	ATA	ATT	ATT	ATT	[ 96]
A.nuluensis					C						A						[ 96]
A.cerana					C						A						[ 96]
A.nigrocincta																	[ 96]
A.koschevnikovi	•••			•••													
		• • •				• • •		• • •						• • •			[ 96]
A.laboriosa	A					T								A			[ 96]
A.d.binghamii	A					Т					A		.C.	A			[ 96]
A.dorsata	A										A		.C.	A		G.A	[ 96]
A.florea					G.G			C		т	A						[ 96]
A.andreniformis					GA				C		Δ		G		GA		[ 96]
T.fimbriata	т.с																[ 96]
B.terrestris														A			
B.LEFTESUIIS	1	•••	•••	C.1	•••	•••	• • •	• • •	•••	1	ACA	• • •	•••	• • A	• • A	• • A	[ 96]
7	7		m < 3	707		7 O TT	C III N	<b>m x m</b>				C 3 m			7	220	F 1 4 4 1
A.mellifera								TAT									[144]
A.nuluensis				т		A	т	C			.C.		C.T	• • •	т	AAC	[144]
						A	т				.C.		C.T	• • •			
A.nuluensis	 		 Т	т	· · · · · ·	A	•••T	C	 		.C. A	 	C.T	· · · ·	т		[144]
A.nuluensis A.cerana	 	• • • • • •	т т	T T	 	A A A	T  T	C 	 	· · · · · ·	.C. A	 	C.T  C	 	т т	T T	[144] [144]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi	  	  	Т Т Т	T T T	  	A A A	T  T T	C 	  	  	.C. A  A	  	C.T  C	  	T T T T	T T T	[144] [144] [144] [144]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa	  	 	T T 	T T T 	· · · · · · · · · · · ·	A A A A	T T T A.T	C  	· · · · · · · · · · · ·	· · · · · · · · · · · ·	.C. A A A A	  C	C.T  C 	· · · · · · · · · · · ·	T T T T T	T T T	[144] [144] [144] [144] [144]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii	  	  	T T 	T T T 	· · · · · · · · · · · ·	A A A A A	T T T A.T A.T	C  	· · · · · · · · · · · ·	· · · · · · · · · · · ·	.C. A A A A A	  C C	C.T C  G	· · · · · · · · · · · ·	T T T T T.G	T T T T T	[144] [144] [144] [144] [144] [144] [144]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata	  	  	T T  	T T  	· · · · · · · · · · · · · · ·	A A A A A A	T T T AT AT AT	C   	· · · · · · · · · · · · · · · C	· · · · · · · · · · · · · · ·	.C. A A A A A	  C C	C.T C  G C	· · · · · · · · · · · · ·	T T T T T.G	T T T T T T	[144] [144] [144] [144] [144] [144] [144] [144]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea	· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · ·	T T   	T T   	   C.T	A A A A A A A	T T A.T A.T A.T A.T A.T	C	    	· · · · · · · · · · · · · · · ·	.C. A A A A A A	  C C 	C.T C   C  C	   C	T T T T T.G 	T T T T T T	[144] [144] [144] [144] [144] [144] [144] [144]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis	· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	T T   	T T T  	   C.T	A A A A A A A	T T T A.T A.T A.T A.T T	c	· · · · · · · · · · · · · · · · · · · C	· · · · · · · · · · · · · · · · · · · ·	.C. A A A A A A T.T	  C C	C.T C   C  C	· · · · · · · · · · · · ·	T T T T T.G 	T T T T T T	[144] [144] [144] [144] [144] [144] [144] [144]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea	· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	T T   	T T T  	   C.T	A A A A A A A	T T T A.T A.T A.T A.T T	C	· · · · · · · · · · · · · · · · · · · C	· · · · · · · · · · · · · · · · · · · ·	.C. A A A A A A T.T	···· ··· ··C ··C	C.T C   C 	   C	T T T T.G  T	T T T T T T	[144] [144] [144] [144] [144] [144] [144] [144]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis	· · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	T T    A.T	T T T  	   c.T	A A A A A A A 	T T A.T A.T A.T A.T A.T T T	c	· · · · · · · · · · ·	· · · · · · ·	.C. A A A A A .T .T A.T	  c c	C.T C  G C  C	· · · · · · · · · · · · · · · C · · · C · · · · A	T T T T.G  T.G	T T T T T T T T	[144] [144] [144] [144] [144] [144] [144] [144] [144] [144]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata	· · · · · · · · · · · · · · · · · · · ·	· · · · · · ·	T T    A.T	T T    T	   c.T	A A A A A A A 	T T A.T A.T A.T A.T A.T T T	C     	· · · · · · · · · · ·	· · · · · · ·	.C. A A A A A .T .T A.T	  c c	C.T C  G C  C	· · · · · · · · · · · · · · · C · · · C · · · · A	T T T T.G  T.G	T T T T T T T T	[144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [144]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata	· · · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	T T   A.T ATT	T T    T T	   c.T 	A A A A A A A 	T T A.T A.T A.T A.T A.T T A	C       	    T T	· · · · · · · ·	.C. A A A A A A A A.T A	· · · · · · · · · · C · · · C · · · · · · ·	C.T  C G C T	  c  A	T T T T.G  T T	T T T T T T T T	[144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [144]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera	     	      TTC	T T   AT A.TT TCA	T T    T T AAT	   C.T  TTA	A A A A A A A 	T T A.T A.T A.T A.T T A.T T T.A	C       	    T T T	     AAT	.C. A A A A A .T A.T A.T A.T	     AAT	C.T  C  C  C  C  ATT	    A GAA	T T T T.G T.G T.G T T T T	T T T T T T T T T	[144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [144]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis	· · · · · · · · · · ·	     TTC T	T T   AT A.TT TCA	T T   T AAT 	   C.T  TTA	A A A A A A A 	T T AT AT AT AT T A TTA	C       	     T T AAA	     AAT	.C. A A A A A A A A CAT	     AAT	C.T  C  C  C  C  C  C  C  C  C  C  C  C  C  C  C  C  C  C  C  C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C	    A GAA	T T T T.G  T.G  T.G  T T	T T T T T T T T T ATT 	[144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [142] [192]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis A.cerana	     	· · · · · · · · · · · · · · · · · · · · · · · ·	T T   AT A.TT TCA 	T T   T T AAT 	   C.T  TTA C	A A A A A A A 	T T AT AT AT AT T A TTA  TTA	C       TTA 	    T T T AAA	    AAT 	.C. A A A A A A A A CAT 	    AAT	C.T  C  C  C  C  C  C  C  C  C  C  C  C  C  C  C  C  C  C  C  C  C  C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C.	    A GAA	T T T T.G  T.G  T.G  T T	T T T T T T T T T	[144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [142] [192] [192] [192]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocinsta	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	T T   AT A.TT TCA 	T T    T AAT 	  c.t  TTA c	A A A A A A C TTT C	T T A.T A.T A.T A.T T A TTA 	C       	    T T AAA	    AAT 	.C. A A A A A T A.T A CAT  CAT	     AAT	C.T  C G C  ATT  	    A GAA	T T T T T T ATT  	T T T T T T T T T ATT 	[144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [192] [192] [192] [192]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis A.cerana	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · · · · · ·	T T   AT A.TT TCA 	T T   T T AAT 	  c.t  TTA c	A A A A A A A 	T T A.T A.T A.T A.T T A TTA 	C       	    T T T AAA	    AAT 	.C. A A A A A T A.T A CAT  CAT	    AAT	C.T  C G C  ATT  	    A GAA	T T T T T T ATT  ATT	T T T T T T T T T ATT 	[144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [142] [192] [192] [192]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocinsta	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	T T   A.T ATT TCA   	T T    T T AAT  	  c.t  TTA c	A A A A A A C TTT C	T T A.T A.T A.T A.T T A TTA  TTA	C       	    T T AAA	    AAT 	.C. A A A A A T A.T A.T A CAT  CAT	     AAT	C.T C C C C C C C C C	    A .CA GAA 	T T T T T T ATT  ATT	T T T T T T T T T ATT 	[144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [192] [192] [192] [192]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocinsta A.koschevnikovi	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	T T   A.T TCA  T	T T   T T AAT  	  c.t  TTA  c	A A A A A A C TTT C C	T T AT AT AT AT T A TTA  TTA 	C       	    T T T T	    AAT 	.C. A A A A A A A CAT  CAT	    AAT 	C.T  C  C  C  C  C  C  C  C  C  C  C  C  C  C  C  C  C  C  C  C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C.	    A .CA GAA 	T T T T T T T T	T T T T T T T ATT  	[144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [192] [192] [192] [192]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocinsta A.koschevnikovi A.laboriosa A.d.binghamii	        	   TTCC T T T T	T T  A.T A.TT TCA  T	T T T   T T  AAT 	 C.T TTA C	A A A A A A A 	T T T A.T A.T A.T A.T T T A TTA  	C       	    T T T T	  AAT 	.C. A A A A A A CAT  A A	 C C C C C C 	C.T    C  C  C   T T  	   A  GAA 	T T T T T T T T	T T T T T T T ATT  	[144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [192] [192] [192] [192] [192] [192] [192] [192]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocinsta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata	       	        	T T  A.TT TCA  T	T T T    AAT  	  C.T TTA C	A A A A A A A 	T T A.T A.T A.T A.T T A.T TTA  TTA	C	    T T AAAA  	  AAT 	.C. A A A A A A CAT  A A	 C C C  AAT 	C.T      ATT  	   A GAA 	T T T T T T ATT ATT  	T T T T T T T T T T	[144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [192] [192] [192] [192] [192] [192] [192] [192] [192]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocinsta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea	      	        	T T  A.TT TCA  T	T T T  T AAT 	 C.T TTA C	A A A A A A A 	T T A.TT A.TT A.T T A.T TTA  TTA  	C	   T T T AAAA  	AAT	.C. A A A A A A CAT  A A	 C C C  AAT 	C.T  C  C  C  ATT   		T T T T T T ATT  C  	T T T T T T T ATT  	[144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [192] [192] [192] [192] [192] [192] [192] [192] [192] [192] [192]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocinsta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis	       	        	T T  A.TT TCA  T	T T T  T T T AAT 	 C.T  C.T  C.T	A A A A A A A 	T T A.T A.T A.T A.T T. A.T T. A TTA  	C	   T T AAAA 	AAT	.C. A A A A T. A CAT  A A	C C C  AAT 	C.T C C C C C C C	   A .CA GAA 	T T T T T T ATT  	T T T T T T T T T C	[144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [192] [192] [192] [192] [192] [192] [192] [192] [192] [192] [192] [192]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocinsta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata	        	   TTCC T T T T	T T  A.TT TCA  T  ATT	T T T T T T AAT   	C.T  C.T  C.T	A A A A A A A 	T T A.T A.T A.T A.T A.T T A.T T A T T A T T A T T A T	C	   T AAA  	AAT	.C. A A A A A A CAT  A A		C.T  C  C  C  C  T T T T	  A  GAA	T T T T T ATT   	T T T T T T T T T T	[144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [192] [192] [192] [192] [192] [192] [192] [192] [192] [192] [192] [192] [192]
A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocinsta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis	        	   TTCC T T T T	T T  A.TT TCA  T  ATT	T T T T T T AAT   	C.T  C.T  C.T	A A A A A A A 	T T A.T A.T A.T A.T A.T T A.T T AT T A T T A T T A T  A T  A T  A T  A T  A T  A T  A T  A T  A T  A T  A T  A T  A T  A T  A T  A T  A T  A T  A T  A T  A T  A T  A T  A T  A T  A T  A T  A T  A T  A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	C	   T AAA  	AAT	.C. A A A A A A CAT  A A		C.T  C  C  C  C  T T T T	   A .CA GAA 	T T T T T ATT   	T T T T T T T T T C	[144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [144] [192] [192] [192] [192] [192] [192] [192] [192] [192] [192] [192] [192]

A.mellifera	TGA	ACA	ATT	ATT	CCA	ATT	ATT	ATT	CTA	TTA	ATT	ATT	TGT	TTT	CCA	TCA	[240]
A.nuluensis			G	C					т								[240]
A.cerana																	[240]
A.nigrocincta																	[240]
A.koschevnikovi																	[240]
A.laboriosa																	[240]
A.d.binghamii											•••						[240]
A.dorsata											A						[240]
A.florea		• • •									• • •						[240]
A.andreniformis											• • •						[240]
T.fimbriata											G.A						[240]
B.terrestris		т	T.A	.c.	т	A			Τ.G	Α	• • •			C		Т	[240]
A.mellifera	TTA	AAA	ATT	TTA	TAT	TTA	ATT	GAT	GAA	ATT	GTA	AAT	CCT	TTT	TTT	TCA	[288]
A.nuluensis													A			Т	[288]
A.cerana													A	C		т	[288]
A.nigrocincta													G	C		Т	[288]
A.koschevnikovi													A			Т	[288]
A.laboriosa																	[288]
A.d.binghamii																	[288]
A.dorsata																	[288]
A.florea											 А.Т						[288]
A.andreniformis																	[288]
T.fimbriata	С.Т										••• T						[288]
B.terrestris		• • •	• • •	• • •	• • •	.AT	•••	• • •		• • •	Α	• • •	•••	.A.	• • •	• • •	[288]
A.mellifera											TCA						[336]
A.nuluensis			• • •	• • •	• • •	• • •	• • •	• • •		• • •	Т		• • •	• • •	• • •		[336]
A.cerana	G.A										C				T		[336]
A.nigrocincta	G.A		T								т				T		[336]
A.koschevnikovi							G				C						[336]
A.laboriosa																	[336]
A.d.binghamii																	[336]
A.dorsata																	[336]
A.florea																	[336]
A.andreniformis																	
													• • G				
																	[336]
T.fimbriata		G	G		• • •	C	G							C	T		[336]
B.terrestris		G	G		• • •	C	G				T			C	T		
B.terrestris	 	G 	G T	 	 	C	G 	•••		•••	••T			C C	T 	 	[336] [336]
B.terrestris A.mellifera	  TTT	G  AAT	G T AAT	  ATT	  gaa	^C  TTT	G  GAT	 TCA	 TAT	 Ata	т ста	 AAT	 Tat	C C AAT	т  ААТ	  TTA	[336] [336] [384]
B.terrestris A.mellifera A.nuluensis	  TTT	G  AAT 	G T AAT 	 ATT	 GAA 	C  TTT 	G  GAT 	 TCA T	 TAT 	 ата 	T CTA T	 AAT 	 TAT 	C C AAT .GA	T  AAT 	 TTA	[336] [336] [384] [384]
B.terrestris A.mellifera A.nuluensis A.cerana	 TTT 	G  AAT 	G T AAT 	 ATT 	 GAA 	C  TTTT 	G  GAT 	 TCA T T	 TAT 	 ATA 	T CTA T T	 AAT 	 TAT 	C C AAT .GA .GA	T  AAT 	 TTA 	[336] [336] [384] [384] [384]
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta	 TTT 	G  AAT  	G T AAT  	 ATT 	 GAA 	C  TTT 	G GAT 	TCA T T	 TAT 	 ATA 	T CTA T T T	 AAT 	 TAT 	C C AAT .GA .GA .GA	T  AAT  C	 TTA 	[336] [336] [384] [384] [384] [384]
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi	 TTT  	G AAT 	G T AAT  	ATT 	GAA 	C  TTTT  	G GAT 	TCA T T 	 TAT  	 АТА  	T CTA T T T	 AAT  	 TAT  	C AAT .GA .GA .GA	T  AAT  C C	 TTA  	[336] [336] [384] [384] [384] [384] [384]
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa	 TTT   Y	G AAT 	G T AAT  	ATT 	GAA 	C  TTTT   	G GAT 	 TCA T T 	 TAT  	 ATA  	T CTA T T T T	 AAT  	 TAT  	C C AAT .GA .GA .GA .CA	T  AAT  C C	 TTA  	[336] [336] [384] [384] [384] [384]
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi	 TTT   Y	G AAT 	G T AAT  	ATT 	GAA 	C  TTTT   	G GAT 	 TCA T T 	 TAT  	 ATA  	T CTA T T T T	 AAT  	 TAT  	C C AAT .GA .GA .GA .CA	T  AAT  C C	 TTA  	[336] [336] [384] [384] [384] [384] [384]
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa	 TTT   Y	G AAT  	G T AAT  	ATT 	GAA 	C  TTT   Y	G GAT  	TCA T T 	 TAT  	АТА  	T CTA T T T T T	AAT  	 TAT  	C AAT .GA .GA .GA .CA .TA	T AAT  C C	 TTA  	[336] [336] [384] [384] [384] [384] [384] [384] [384]
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii	 TTT   Y C	G AAT   	G AAT   	ATT   	GAA   	C TTT   Y	G GAT   	TCA T T 	TAT   	ATA   	T CTA T T T T T	AAT   	TAT   	C AAT .GA .GA .GA .CA .TA .CA	T AAT  C C 	TTA    	[336] [336] [384] [384] [384] [384] [384] [384] [384] [384]
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea	TTT TTT      	G AAT   	G AAT    	ATT   	GAA    	C TTTT   Y 	G GAT    C	TCA T T  	TAT    	АТА    	T CTA T T T T T T T	AAT    	TAT    	C AAT .GA .GA .GA .CA .CA .CA .GA	T AAT    	TTA   	[336] [336] [384] [384] [384] [384] [384] [384] [384] [384] [384]
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis	TTT TTT      	G AAT    	G AAT    	ATT    	GAA    	C TTTT   Y 	G GAT    	TCA T T 	TAT  	ATA  	T CTA T T T T T T T T	AAT   	TAT 	C AAT .GA .GA .GA .CA .CA .CA .GA	T AAT  C C  G	TTA    	[336] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384]
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata	TTT TTT      	G AAT    	G AAT    	ATT    	GAA    	C TTT   Y  A.C	G GAT   C A.C	TCA T T    	TAT    	ATA    	T CTA T T T T T T T	AAT    G.G	TAT 	C AAT .GA .GA .GA .CA .CA .CA .GA .GA .TA	T AAT  C C C C C G GTA	TTA     G.T	[336] [336] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384]
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis	TTT TTT      	G AAT    	G AAT    	ATT    	GAA    	C TTT   Y  A.C	G GAT   C A.C	TCA T T    	TAT    	ATA    	T CTA T T T T T T T T	AAT    G.G	TAT 	C AAT .GA .GA .GA .CA .CA .CA .GA .GA .TA	T AAT  C C C C C G GTA	TTA     G.T	[336] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384]
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris	TTT      	G AAT    	G T AAT     	ATT       TA.	GAA     	C TTT     A.C	G GAT      A.C	TCA T T     	TAT     	ATA     	T CTA T T T T T T AA T	AAT     G.G	TAT     	C AAT .GA .GA .GA .CA .CA .GA .GA .TA G.A	T AAT    G GTA TCA	TTA     G.T A	[336] [336] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384]
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera	 TTT       AAC	G AAT      CAA	G T AAT      TTT	ATT      TA.	GAA GAA        	C TTT     A.C  CTA	G GAT     A.C GAA	TCA T T        	TAT       GAT	ATA       AAT	T CTA T T T T T T T	AAT     G.G  ATA	TAT      GTA	C AAT .GA .GA .GA .CA .CA .GA .GA .TA G.A ATT	T AAT    G G G G	TTA     G.T A	[336] [336] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384]
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis	 TTT       	G AAT     CAA	G .T AAT      TTT	ATT     TA. CGT A	GAA       TTA	C  TTT    A.C  CTA T	G GAT    A.C GAA 	TCA T T       	TAT       GAT	ATA       AAT	T CTA T T T T T T T	AAT     G.G  ATA	TAT      GTA A.T	C AAT .GA .GA .GA .CA .CA .CA .GA .GA .TA G.A ATT C	T  AAT    G GTA TCA CCA T	TTA     G.T A	[336] [336] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384]
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis A.cerana	TTT TTT        	G AAT     CAA	GT AAT       	ATT    TA. CGT A	GAA    TTA	C  TTT    A.C  CTA T T	G GAT   C  GAA 	TCA T T        	TAT      GAT	ATA     AAT 	T CTA T T T T T T T	AAT    G.G  ATA	TAT         	C AAT .GA .GA .GA .GA .GA .CA .GA .TA .GA .TA .CA .CA .CA	T  AAT  C C C C	TTA     G.T A ATA 	[336] [336] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384][
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta	TTT TTT       AAC T T	G AAT    CAA	GT AAT    TTT TTT 	ATT    TA. CGT A A	GAA       	C TTT    A.C CTA T T	G GAT    A.C  GAA  	TCA T T T      	 TAT    GAT	ATA    AAT	T CTA T T T T T T CGA  T	AAT   G.G ATA 	 TAT      GTA A.T A.T	C AAT .GA .GA .GA .GA .CA .CA .GA .GA .GA .CA .TA .CA .TA .CA .TA C	T  AAT  C C C  G G G.TA TCA CCA T T	TTA    G.T A ATA 	[336] [336] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [432] [432] [432]
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi	TTT TTT      AAC  T T T	G AAT    CAA	GT AAT    TTT TTT	ATT    TA. CGT A A A	GAA       	C TTT    AC CTA T T	G GAT    A.C GAA 	TCA T T       	 TAT    GAT	ATA    AAT	T CTA T T T T T T CGA  T	AAT   G.G ATA 	 TAT     GTA A.T A.T 	C C AAT GA GA GA GA GA GA GA	T AAT  C C C GG GG GG GG CCA T T T	TTA    G.T A ATA 	[336] [336] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [432] [432] [432] [432]
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa	TTT TTT      AACC  T T  T T  T	G AAT   CAA 	GT AAT    TTT TTT 	ATT    TA. CGT A A A	GAA      	C TTT  Y Y Y Y Y	G GAT  C C GAA  GAA	TCA T T       	TAT     GAT 	ATA    AAT	T CTA T T T T T T CGA  CGA	AAT  G.G ATA 	 TAT       	C AAT .GA .GA .GA .GA .CA .CA .GA .CA .GA .TA G.A ATT C C	T  AAT  C C C G G G G	TTA    G.T A ATA  	[336] [336] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [432] [432] [432] [432] [432]
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii	TTT TTT     AACC  	G AAT    CAA 	GT T AAT    TTT TTT  	ATT    TA. CGT A A A	GAA       	C TTT  Y Y Y Y Y	G GAT  C C  GAA  GAA	TCA T T        	TAT     GAT 	ATA    AAT 	T CTA T T T T T T T	AAT   G.G ATA 	TAT         	C C C C C C C 	T  AAT    G G G	TTA    G.T A ATA  	[336] [336] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [432] [432] [432] [432] [432] [432]
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata	TTTT      AACC        	G AAT   CAA	GT AAT    TTT  	ATT    TA.  CGT A A A A A	GAA      	C  TTT     	G GAT  C C C GAA  GAA	TCA T T        	TAT    GAT 	ATA    AAT 	T CTA T T T T T T T	AAT  G.G ATA 	TAT     GTA A.T A.T  	C C AAT .GA .GA .GA .GA .CA .GA .GA .GA ATT C C A	T  AAT  C C  G G G.TA G.TA CCA T T C T	TTA TTA    G.T A ATA   	[336] [336] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [432] [432] [432] [432] [432] [432]
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii	TTTT      AACC        	G AAT   CAA	GT AAT       	ATT    TA.  CGT  A A A A A A A	GAA      	C  TTTT     A.C  T T	G GAT  C C GAA  GAA	TCA T T        	TAT TAT    GAT 	ATA    AAT 	T CTA T T T T T T T	AAT  G.G ATA 	TAT       GTA A.T A.T  A.T	C C AAT .GA .GA .GA .CA .CA .CA .CA .CA .TA GA ATT C C C	T  AAT  C C C C	TTA TTA    G.T A ATA   	[336] [336] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [432] [432] [432] [432] [432] [432]
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata	TTT TTT        	G AAT    CAA  	GT AAT       	ATT        	GAA     	C  TTT     A.C  T T T T T T T T T T	G GAT  C C GAA  GAA 	TCA T T      ACT  A A	TAT    GAT    	ATA    AAT 	T CTA T T T T T T T	AAT  G.G ATA 	TAT       GTA A.T A.T  A.T A.T A.T	C C AATT GA GA GA CA CA CA C ATT C C C	T  AAT  C C C C	TTA TTA    G.T A ATA   	[336] [336] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [432] [432] [432] [432] [432] [432]
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea	TTT TTT        	G AAT    CAA  	GT AAT       	ATT        	GAA	C  TTT     A.C  T T T T T T T T T T	G GAT  C C GAA  GAA 	TCA T T      ACT  A A	TAT    GAT    	ATA    AAT 	T CTA T T T T T T T	AAT  G.G ATA 	TAT       GTA A.T A.T  A.T A.T A.T	C C AATT GA GA GA CA CA CA C ATT C C C	T  AAT  C C C C	TTA TTA    G.T A ATA   	[336] [336] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [432] [432] [432] [432] [432] [432] [432]
B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis T.fimbriata B.terrestris A.mellifera A.nuluensis A.cerana A.nigrocincta A.koschevnikovi A.laboriosa A.d.binghamii A.dorsata A.florea A.andreniformis	TTT TTT        	G AAT    CAA	GT AAT      	ATT    TA. CGT A A A A A	GAA       	C  TTT    A.C  T T T T T T T T T T T	G GAT  C C GAA  GAA  	TCA T T       ACT  ACT  A A	TAT     GAT   	ATA    AAT 	T CTA T T T T T T T	AAT  G.G ATA 	TAT       	C C AATT GA GA GA GA CA C ATT C C C C C	T  AAT  C C C C	TTA TTA    G.T A ATA     T.T	[336] [336] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [384] [432] [432] [432] [432] [432] [432] [432] [432]

A.nuluensis        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T        T																		
A.cerana        T. T. T. T. A	A.mellifera																	[480]
Anigrocincta         T. T. T. T. A. A.         T T																		
A.koschevnikovi       T. T T. T T. T																		
A. Laboriosa         G. A. A. T. A. T. T	-																	
A. d. Dinghamii       T. T. A. A. T. T T. T T T																		
A.dorsata       G. A. A. T. T. T. A. A. T. T. T. T. T. M. (480)         A.aflorea       T. T. T. A. A. GT. T. T. T. T. T. (480)         B.terrestris       T. T. A. A. GT. T. T. T. T. T. T. (480)         B.terrestris       T. T. A. A. GT. T. T. T. T. T. T. (480)         A.muluensis       T. T. A. A. GT. T. T. T. T. T. T. T. (480)         A.muluensis       T. T. A. A. GT. T. T. T. T. T. T. T. T. T. (528)         A.noluchai       T. T. A. C. T. A. T. A. T. T. T. T. (528)         A.orana       T. T. T. T. T. T. T. (528)         A.orana       T. C. T. A. T. T. A. T. (528)         A.dorsata       T. T. T. T. T. T. (528)         A.dorsata       T. C. T. A. A. A. T. (528)         A.dorsata       T. C. T. A. T. A. A. T. (528)         A.dorsata       T. C. T. A. T. A. A. T. (528)         A.dorsata       T. C. T. A. T. A. A. T. (528)         A.dorsata       T. C. T. A. T. A. T. A. T. (528)         A.dorsata       T. C. T. A. T. A. T. (528)         A.dorsata       T. C. T. A. T. A. T. T. (528)         A.dorsata       T. C. T. A. T. A. T. A. T. T. T. (528)         A.dorsata       T. C. T. A. T. A. T. A. T. T. (528)         A.dorsata       T. C. T. A. T. A. T. A. T. T. T. T. T. T. (528)         A.dorsata       T. C. T. A. T. A. T. A. T. T. C. (757)         A.nuluensis																		
A.florea      T       T. T. T.       A. andreniformis      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T	2																	
A. andreniformis      T      T      T																		
T. finbriata																		
B. terrestris        T. T. A       A       GT. T.T. T. T. T. T. T																		
A.mellifera       TGA ACA GTT CCA TCC TTA GGT ATT AAA GTT GAT GCA GTT CCA GGA CGA       [528         A.nounenis      T      A      A      T      T         A.corana      T      A      A      T      T      T         A.corana      T      T      A      T      T      T      T      T      T      T      T      T      T      A      T      T      S      T      T      S      T      T      S      T      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>[480]</td></t<>																		[480]
A.nuluensis      T      A      A      T       [528         A.cerana      T      A       C.T      A      T       [528         A.koschevnikovi      T      T      A      T       [528         A.koschevnikovi      T      A      T       [528         A.laboriosa      T      A      T       [528         A.dorsata      T      A      A       T       [528         A.dorsata      T      A      A      C      G       [576         A.nuluensis      T      A      A      A      C       [576         A.cerana      A      A      A      C       [576         A.dorsata      A      A      A      C       [576         A.dorsata      A      A      A      C       [576         A.cerana	B.terrestris	• • •	••T	Τ	Α	• • •	Α	•••	GT.	T.T	••T	Τ	•••	•••	• • •	C	•••	[480]
A.nuluensis      T      A      A      T       [528         A.cerana      T      A       C.T      A      T       [528         A.koschevnikovi      T      T      A      T       [528         A.koschevnikovi      T      A      T       [528         A.laboriosa      T      A      T       [528         A.dorsata      T      A      A       T       [528         A.dorsata      T      A      A      C      G       [576         A.nuluensis      T      A      A      A      C       [576         A.cerana      A      A      A      C       [576         A.dorsata      A      A      A      C       [576         A.dorsata      A      A      A      C       [576         A.cerana	A mellifera	ΨСΔ		GTT	CCA	TCC	ጥጥል	CCT	<u>አ</u> ጥጥ		GTT	CDT	GCA	GTT	CCA	GGA	CGA	[528]
A. cerana       T       A. C.T. A       IS28         A. nigrocincta       T       T       IS28         A. laboriosa       T       T       A. C.T. A       IS28         A. laboriosa       T       T       A. C.T. A       IS28         A. doinghanii       T       T       A. C. A       T       IS28         A. doinghanii       T       T       A. C. A       T       IS28         A. dorsata       T       C. T. A       A       A       T       IS28         A. andreniformis       T       C. T. A       A       A       T       IS28         A. andreniformis       A. C. A. T       A       A       A       C. G. G. T       IS28         A. cerana       A. C. A. T       A       A       A       C. C. G. IS76       A. Aceana       A. T       IS28         A. cerana       A. A. T       A       A       A       C       IS76       A. Aceana       A. C. C. IS76         A. dobriosa       A       A. C. C. IS76       A. Adberinsa       A       C. C. IS76       A. Adberinsa																		
A. nigrocincta      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T      T<																		
A. košchevnikovi																		
A. laboriosa      T      T      A      A      T      S       [528         A. dorsata      T      T      A      A      T      S       [528         A. florea      T      T      A      A      T      S       [528         A. andreniformis      T      A      A      T      S       [528         R. finbriata      A.C      A      A      A      T       [528         B. terrestris      A      T      A      A      T       [528         A. nuluensis      A      A      T      A      T      T      C      G       [576         A. cerana	2																	
A. d.binghamii      T      T      A.      C      A.      T																		
A. dorsata         T																		
A. florea	-																	[528]
A. andreniformis      T      A       [528         T. fimbriata      A      A      A      A      A         S. terrestris      A      A      A      A      A      A         A. mellifera       ATT AAT CAA TTA AAT TA ATT AGA AAA CGT CCA GGA ATT TTT TTT GGT       [576         A. nuluensis      A      A      A      C       [576         A. nuluensis      A      A      A      C       [576         A. nuluensis      A      A      A      C       [576         A. negrocincta      A      A      C       [576         A. koschevnikovi      A      A      C       [576         A. dorsata      A      A      C       [576         A. dorsata      A      A      C       [576         A. derana      A      C      A       [576         A. florea      A      A      C       [576         A. andreniformis      A      C      A       [576         B. terrestris      T      T      A      C       [	A.dorsata																	[528]
T.fimbriata       A.C.A.T.T.A.A.A.A.A.A.A.A.A.A.A.T.T.E.G.G.T.T.       [528         S.terrestris       AT.A.A.A.A.A.A.A.A.A.A.A.A.T.T.       [528         A.muluensis       AT.A.A.A.A.A.A.A.A.A.A.A.A.A.A.T.T.       [576         A.nuluensis       A.T.T.A.A.A.A.A.A.A.A.A.A.A.A.A.T.T.       [576         A.cerana       A.C.A.T.A.A.T.A.A.A.A.A.A.A.A.A.A.T.T.C.A.G.G.A.T.T.TTTGGT       [576         A.corana       A.C.C.A.A.T.C.A.G.G.A.A.T.C.       [576         A.koschevnikovi       A.A.T.C.C	A.florea																	[528]
B. terrestris       AT       AT       AT       Image: Second	A.andreniformis		т			Т		A										[528]
B.terrestris       AT       AA       AT       Image: Second Sec	T.fimbriata			A.C	.A.	Т		A			A			C	G	Т		[528]
A.nuluensis	B.terrestris			Α	T	A		A						Α	T		• • •	[528]
A.nuluensis				a							a c =	a	a				ac-	
A.cerana																		[576]
A.nigrocincta																		[576]
A.kośchevnikovi	A.cerana			• • •			• • •	• • •			A	Т	• • •	C				[576]
A. laboriosa	A.nigrocincta								G		A			C				[576]
A.d.binghamii	A.koschevnikovi										C			C				[576]
A.d.binghamii         A        A        C        1576         A.dorsata          A        C       1576         A.andreniformis         A        A        C       1576         A.andreniformis         A       A. T. T. C.C.       A       1576         B.terrestris        T       T.T. T.T. T.T.       A       A. C.A. AC       A       A       1576         A.muluensis        T       T.T. T.T. T.T.       A       A       1624         A.cerana            1624         A.corana            1624         A.corana            1624         A.laboriosa           1624         A.dorsata           1624         A.andreniformis	A.laboriosa										A				C	C		[576]
A.dorsata	A.d.binghamii										A				C			[576]
A.florea	2										A					C		[576]
A. andreniformis <td></td>																		
T.fimbriata																		
B.terrestris       CAA TGT TCA GAA ATT TGT GGT ATA AAT CAT AGA TTT ATA CCA ATT ATA       [624         A.nuluensis																		
A.mellifera       CAA TGT TCA GAA ATT TGT GGT ATA AAT CAT AGA TTT ATA CCA ATT ATA       [624         A.nuluensis																		
A.nuluensis	D. LEITESLIIS	• • •	•••	• • •	•••	• • •	• • •	1	1.1	• 1 1	• • •	• • •	• • •	• • •	·A.	• • •	•••	[3/0]
A.cerana	A.mellifera	CAA	TGT	TCA	GAA	ATT	TGT	GGT	ATA	AAT	CAT	AGA	TTT	ATA	CCA	ATT	ATA	[624]
A.nigrocincta	A.nuluensis																	[624]
A.koschevnikovi	A.cerana												C					[624]
A.laboriosa        T        C        A <td< td=""><td>A.nigrocincta</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>[624]</td></td<>	A.nigrocincta																	[624]
A.laboriosa        T        C        A <td< td=""><td>A.koschevnikovi</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>[624]</td></td<>	A.koschevnikovi																	[624]
A.d.binghamii	A.laboriosa			Т		C		A										[624]
A.dorsata         T        C        A                                                                                                         .																		[624]
A.florea         A       A        C       T       T       624         A.andreniformis          A       A        C       T       624         F.fimbriata          G        T       624         B.terrestris          G        T       1624         A.mellifera       ATT GAA TCA ACT TCA TTT CAA TAT TTT TTA AAT TGA GTA AAT AAA CAA       [672         A.nuluensis          A        T       [672         A.cerana       G.A         A       C.T        [672         A.nigrocincta       G.A        A       A       C.T        [672         A.koschevnikovi         A       A       C.T        [672         A.laboriosa         A       A       C       A.T       [672         A.dorsata         A.T         [672      A	2																	
A.andreniformis         T. T        A                                                                                                         <																		
I.fimbriata          G.        T       [624]         B.terrestris         T         A        T        [624]         A.mellifera       ATT GAA TCA ACT TCA TTT CAA TAT TTT TTA AAT TGA GTA AAT AAA CAA       [672]         A.nuluensis          A         [672]         A.cerana       G.A         A         [672]         A.nigrocincta       G.A        T.A       A       A       C.T        [672]         A.koschevnikovi         A       A       C.T        [672]         A.laboriosa         A.T       A       A.T       [672]         A.dorsata         A.T        [672]         A.andreniformis       G        A.T        [672]         A.andreniformis       G        A.T        [672]         A.florea       G        A.T																		
B.terrestris																		
A.mellifera       ATT GAA TCA ACT TCA TTT CAA TAT TTT TTA AAT TGA GTA AAT AAA CAA       [672         A.nuluensis         A.        C.        T       [672         A.cerana       G.A        T       .A       A.        C.T        [672         A.cerana       G.A        T       .A       A.        C.T         [672         A.cerana       G.A        T       .A       A.        C.T         [672         A.cerana       G.A        T       .A        C.T         [672         A.cerana       G.A        A        C.T         [672         A.cerana       G        A       A.       A.        [672         A.koschevnikovi         A.       A.         [672         A.dobiosa         A.T          [672         A.dorsata         A																		
A.nuluensis         A.       A.          [672         A.cerana       G.A        T        A.        C.T        [672         A.nigrocincta       G.        T        A.        C.T        [672         A.hoschevnikovi         A        C.T        [672         A.laboriosa          A.T         [672         A.d.binghamii          A.T         [672         A.dorsata          A.T         [672         A.andreniformis       G.        A.T         [672         A.andreniformis       G.        A.T         [672         A.dorsata         A.T          [672         A.andreniformis       G.         A.        A.        .	D. CETTESLITS	• • •	• • •	•••		• • •	•••	• • A	• • •	•••	• • •	••1	•••	• • •		• • •	•••	[024]
A.nuluensis         A.       A.          [672         A.cerana       G.A        T        A.        C.T        [672         A.nigrocincta       G.        T        A.        C.T        [672         A.hoschevnikovi         A        C.T        [672         A.laboriosa          A.T         [672         A.d.binghamii          A.T         [672         A.dorsata          A.T         [672         A.andreniformis       G.        A.T         [672         A.andreniformis       G.        A.T         [672         A.dorsata         A.T          [672         A.andreniformis       G.         A.        A.        .	A.mellifera	ATT	GAA	TCA	ACT	TCA	TTT	CAA	TAT	TTT	TTA	AAT	TGA	GTA	AAT	AAA	CAA	[672]
A.cerana       G.A        T        A       C.T        [672         A.nigrocincta       G.        T       .A       A       C.T        [672         A.koschevnikovi         A.       A       C.T        [672         A.koschevnikovi         A.       A       C.T        [672         A.laboriosa         A.T         [672         A.laboriosa         A.T         [672         A.doinghamii         G.T         [672         A.dorsata         A.T         [672         A.florea       G        A.T         [672         A.andreniformis       G        A       A       A       A.T          I.fimbriata       T.A        A       A       A       A       A       A       A																		[672]
A.nigrocincta       G.        T        A       C         [672         A.koschevnikovi         A.       A       C         [672         A.laboriosa         A.T         [672         A.laboriosa         A.T         [672         A.d.binghamii         G.T         [672         A.dorsata         A.T         [672         A.florea       G.        A.       A.       T.        [672         A.andreniformis       G.        A.       A.       T.        [672         A.andreniformis       G.        A.       A.       A.       A.        A.       [672         A.andreniformis       G.        A.       A.       A.       A.        A.       [672         I.fimbriata       T.A        A.       A.       A.       A.        A.																		[672]
A.koschevnikovi         A       A          [672         A.laboriosa         A.T         [672         A.laboriosa         A.T         [672         A.doinghamii         G.T          [672         A.dorsata         A.T          [672         A.dorsata         A.T          [672         A.florea       G        A.T          [672         A.andreniformis       G        A       A       A       A       A       A          I.fimbriata       T.A        AGT        A       A       A       A       G           A.andreniformis       G        A       A       A       A       G        T           I.fimbriata																		
A.laboriosa        A.T        T	-																	
A.d.binghamii         G.T        T        [672         A.dorsata         A.T          [672         A.dorsata         A.T         T        [672         A.florea       G        A.T         A.T        T         A.andreniformis       G        A.       A.       A.       A.       A.       A.       A.         I.fimbriata       T.A        AGT        A.       A.       A.       A.       G.        T <td></td>																		
A.dorsata         A.T          [672         A.florea       G.         A.       T.         [672         A.florea       G.         A.       T.        A.T        [672         A.andreniformis       G.         A.        A.        A.       T.        AT       [672         I.fimbriata       T.A        AG       .A.       A.       A.       G.        T.        [672																		
A.florea       G       G.A.       A.       T.       C.       A.T.       AT.       [672]         A.andreniformis       G.       G.       A.       A.       A.       A.       A.       A.       A.       A.       T.       A.T.       AT.       [672]         A.andreniformis       G.       G.       G.       A.       A.       A.       A.       A.       T.       AT.       [672]         I.fimbriata       T.A       AGT       AG.       A.       A.       A.       G.       T.       C       A.       [672]	-																	[672]
A.andreniformis GA A A A A A	A.dorsata																	[672]
I.fimbriata T.A AGTA AGA. A A A GTC A [672	A.florea	G	• • •	• • •	A	• • •	• • •	Α	.т.	C	• • •	• • •	• • •	A.T	• • •	• • •	AT.	[672]
	A.andreniformis	G			A			Α			Α			A.T	т		AT.	[672]
	T.fimbriata	T.A		AGT	A	AG.	.A.	Α	Α		Α	G		Т	C		Α	[672]
	3.terrestris	T.A	• • •	AG.	C	•••T	.A.	G	ATA	• • •	• • •	• • •		A.T	A		Α	[672]

A.mellifera	ATC						TAA	[693]
A.nuluensis	.AT	AAC						[693]
A.cerana	.AT	AAT						[693]
A.nigrocincta	.AT	AAC						[693]
A.koschevnikovi	.AT							[693]
A.laboriosa	TCT							[693]
A.d.binghamii	TCT							[693]
A.dorsata	TCT							[693]
A.florea	.A.							[693]
A.andreniformis	.AT							[693]
T.fimbriata	T	GAA						[693]
B.terrestris	A	AT?	TGA	AAA	ATT	AGT		[693]

#### APPENDIX 3. IsRNA sequence alignment

Species abbreviation: A.mellifer: Apis mellifera, A.nuluensi: A. nuluensis, A.cerana: A. cerana, A.nigrocin: A. nigrocincta, A.koschevn: A. koschevnikovi, A.laborios: A. laboriosa, A.d.bingha: A. d. binghamii, A.dorsata : A. dorsata, A.florea: A.florea, A.andrenif : A. andreniformis, T.fimbriat: Trigona fimbriata, B.terrestr: Bombus terrestris.

A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat	-A TA 		AA A.A .G.AAAA. AT. ATTT.  .TAAAATTT. .T.AAC A		A A A A A A A A A A A A	[ 50] [ 50]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			AAAAAAAA	[100] [100] [100] [100] [100] [100] [100] [100] [100] [100]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat	ATGAAAGAAT T C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 	.G .G .G .G .G	.C .C .C .C  	T. TT TT G G 	T G TT T T T T TT	[150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat	 		.AG. .AG. G. G. 	GT.A. GT.A. T.A. T.A. T.A. T.A. T.A. T.A. TTTGGGAC	T T T T T T T T T GAA	[200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200]

	TAAGAC					[250]
						[250]
						[250]
						[250]
						[250]
						[250]
						[250]
						[250]
A.florea			T	AT	TAA.TA.	[250]
						[250]
T.fimbriat			TAC	.AA.TT	TAACTTAA	[250]
B.terrestr	ACCT.TCCT.	A.C.A	A.T.A.ATTC	AA.A.T.AAA	T.AATTAA	[250]
A.mellifer	TTAAT-AA	ATATATTT-A	AGATTAAA	TTTGATTGGG	AGGATTGGTA	[300]
A.nuluensi	TG.G	TATATAAT	.AT			[300]
A.cerana	TTGG	AATT	.AT			[300]
	CT.G					[300]
2	TGT					[300]
	AT.ATTT					[300]
	ATTATTT					[300]
-	TT.ATT					[300]
	.ATT.A					[300]
	.TTATT.TT.					[300]
	.ATAATTT					[300]
	AATATTAAT.					[300]
D.CCIICDCI	///////////····	111.11	1110001011.	.0010001111	• 1 1 1 1 1 1 1 1 • 1	[300]
A.mellifer	ΑΑͲͲͲΑΑͲΑΑ	ΑСΤΤΤΑΤΤΤΑ	-ΑGΑΤΤΤΑΑΤ	ТТТСАТАТАА	AGATTAATTT	[350]
	ΑΑΤΤΤΑΑΤΑΑ		-	-	-	[350]
A.nuluensi	AAAT.	C	A.A	GA	TT	[350]
A.nuluensi A.cerana	AAAT. AAAT.	C	A.A	GA	TT	[350] [350]
A.nuluensi A.cerana A.nigrocin	AAAT. AAAT. AAGT.	C 	A.A A.A A.A	GA GA	TT 	[350] [350] [350]
A.nuluensi A.cerana A.nigrocin A.koschevn	AAAT. AAAT. AAGT. AAT.	C C C C.T	A.A A.A A.A T.AA	GA GA GA ATAG.	TT AT .AATT	[350] [350] [350] [350]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios	AAAT. AAAT. AAGT. AAT.	C C C. C.T	A.A A.A T.AA ATATT.A	GA GA GA GA ATAG. TGAT.T.	TT AT .AATT .AGAGA.A	[350] [350] [350] [350] [350]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha	AAAT. AAGT. AAT. AAT. A.T T.	C C C.T A-	A.A A.A T.AA ATATT.A ATAT.A	GA GA GA ATAG. TGAT.T. TGATAT.	TT AT .AATT .AGAGA.A .AGAA.A	[350] [350] [350] [350] [350] [350]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata	AA . AT . AA . AT . AA . GT . A AT . A AT . A 	C C C.T A- A-	A.A A.A T.AA ATATT.A ATAT.A TAT	GA GA GA GA GA TGAT.T. TGATAT. TTG	TT AT .AATT .AGAGA.A .AGAA.A .AGATA.A	[350] [350] [350] [350] [350] [350] [350]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea	AA AT. AA AT. AA GT. A AT. A. T T A A	C C C.T A- A- T	A.A A.A T.AA ATATT.A ATAT.A TAT T.A	GA GA GA GA TAG TGAT.T. TGATAT. TTG TAG.	TT AT .AATT .AGAGA.A .AGAA.A .AGATA.A	[350] [350] [350] [350] [350] [350] [350] [350]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif	AAAT. AAGT. AAT. A.T A.T T AA. AA. T.AT.	C C C. C.T A- A- T	A.A A.A T.AA ATATT.A ATA.T.A TAT T.A T.AA	GA GA GA GA TGAT.T. TGATAT. TTG TAG. TA.	TT AT .AATT .AGAGA.A .AGAA.A .AGATA.A ATGAA T.A.A	[350] [350] [350] [350] [350] [350] [350] [350] [350] [350]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat	AA . AT . AA . AT . AA . GT . A AT . A AT . A AT . A A . T A A .	CC. C C.T C.T C.T C.T C.T C.T C.T C.T C.T C.T	A.A A.A T.AA ATATT.A ATAT.A TAT T.A T.AA -TTGA	GA GA GA GA TGAT.T. TGATAT. TTG TAG. TAG. TA CT.AT.T.	TT AT .AATT .AGAGA.A .AGAA.A .AGATA.A ATGAA T.A.A AATTA.A	[350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat	AAAT. AAGT. AAT. A.T A.T T AA. AA. T.AT.	CC. C C.T C.T C.T C.T C.T C.T C.T C.T C.T C.T	A.A A.A T.AA ATATT.A ATAT.A TAT T.A T.AA -TTGA	GA GA GA GA TGAT.T. TGATAT. TTG TAG. TAG. TA CT.AT.T.	TT AT .AATT .AGAGA.A .AGAA.A .AGATA.A ATGAA T.A.A AATTA.A	[350] [350] [350] [350] [350] [350] [350] [350] [350] [350]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr	AAAT. AAAT. AAGT. AAT. A.T T. AA. T.AT. TA. TA.	CC. C C.T C.T C.T C.T C.T C.T C.T C.T C.T C.T	A.A A.A T.AA ATATT.A ATAT.A TAT T.A T.AA -TTGA	GA GA GA GA GA TGAT.T. TGATAT. TTG TAG. TAG. TA CT.AT.T. C.AA.ATT	TT AT .A.ATT .AGAGA.A .AGAA.A .AGATA.A AT.GAA T.A.A AATTA.A .A.	[350] [350] [350] [350] [350] [350] [350] [350] [350] [350]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer	AA. AT. AA. AT. AA. GT. A. AT. A. T A. T A. A. T. AT. TA. TA. GCA	C C C.T A- A- T T AATTGTAATT	A.A A.A T.AA ATATT.A ATAT.A TAT T.A T.AA -TTGA  AAAAGAATAA	GA GA GA GA TGAT.T. TGATAT. TTG TAG. TAG. TA CT.AT.T. C.AA.ATT ATTACCTTAG	TT AT .A.ATT .AGAGA.A .AGAA.A .AGATA.A AT.GAA T.A.A AATTA.A .A.ATTA.A .A G-ATAACA	[350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi	AAAT. AAAT. AAGT. AAT. A. T A. T A. T A. A. T. AT. TA. TA. TA. TA. C	C C C.T A- A- T T AATTGTAATT .T.A.G	A.A A.A T.AA ATATT.A ATAT.A TAT T.A T.AA -TTGA  AAAAGAATAA	GA GA GA GA 	TT AT .A.ATT .AGAGA.A .AGAA.A .AGATA.A AT.GAA T.A.A AATTA.A .A G-ATAACA .G	[350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [400] [400]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana	AAAT. AAAT. AAGT. AAT. A. T A. T A. T A. A. TA. TA. TA. TA. C	C C C.T A- T T AATTGTAATT .T.A.G .T.A.G	A.A A.A T.AA ATATT.A ATAT.A TAT T.A T.AA -TTGA A AAAAGAATAA	GA GA GA GA 	TT AT .A.ATT .AGAGA.A .AGAA.A .AGATA.A AT.GAA T.A.A AATTA.A .A G-ATAACA .G	[350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [400] [400] [400]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin	AA AT. AA AT. AA GT. A AT. A. T A. T A. T TA. TA. TA. C C	C C C.T A- A- T T AATTGTAATT .TA.G .TA.G A.G	A.A A.A T.AA ATATT.A ATAT.A ATAT.A TAT T.A T.AA -TTGA A AAAAGAATAA	GA GA GA GA 	TT AT .A.ATT .AGAGA.A .AGAA.A .AGATA.A AT.GAA T.A.A AATTA.A .A G-ATAACA .G .G	[350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [400] [400] [400] [400]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin	AAAT. AAAT. AAGT. AAT. A. T A. T A. T A. A. TA. TA. TA. TA. C	C C C.T A- A- T T AATTGTAATT .TA.G .TA.G A.G	A.A A.A T.AA ATATT.A ATAT.A ATAT.A TAT T.A T.AA -TTGA A AAAAGAATAA	GA GA GA GA 	TT AT .A.ATT .AGAGA.A .AGAA.A .AGATA.A AT.GAA T.A.A AATTA.A .A G-ATAACA .G .G	[350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [400] [400] [400]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios	AA AT. AA AT. AA GT. A AT. A. T A. T A. T TA. TA. TA. C C TC	C C C.T A- T T AATTGTAATT .T.A.G .T.A.G A.G A.G A.G A.G A.G A.G A.G	A.A A.A T.AA ATATT.A ATAT.A TAT T.A T.AA -TTGA A AAAAGAATAA  	GA GA GA GA 	TT AT .A.ATT .AGAGA.A .AGAA.A .AGATA.A AT.GAA T.A.A AATTA.A .A.ATTA.A .G .G .G .G .G	[350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [400] [400] [400] [400]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios	AA AT. AA AT. AA GT. A AT. A. T A. T A. T A. A. TA. TA. TA. C C 	C C C.T A- A- T T AATTGTAATT .TA.G .TA.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G 	A.A A.A T.AA ATATT.A ATAT.A TAT T.A T.AA -TTGA A AAAAGAATAA A A AAAAGAATAA A	GA GA GA GA 	TT AT .A.ATT .AGAGA.A .AGAA.A .AGATA.A AT.GAA T.A.A AATTA.A .A.ATTA.A .G .G .G .G .G .G	[350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [400] [400] [400] [400] [400] [400]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios	AA AT. AA AT. AA GT. A AT. A. T A. T A. T A. A. TA. TA. TA. C C 	C C C.T A- A- T T AATTGTAATT .TA.G .TA.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G A.G 	A.A A.A T.AA ATATT.A ATAT.A TAT T.A T.AA -TTGA A AAAAGAATAA  	GA GA GA GA 	TT AT .A.ATT .AGAGA.A .AGAA.A .AGATA.A AT.GAA T.A.A AATTA.A .A.ATTA.A .G .G .G .G .G .G	[350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [400] [400] [400] [400] [400] [400] [400]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea	AA AT. AA AT. AA GT. A AT. A. T A. T A. T TA. TA. C C C TC A T	C C C.T C.T A- T AATTGTAATT .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.A .TA.A	A.A A.A T.AA ATATT.A ATAT.A ATAT.A TAT T.A T.AA -TTGA A AAAAGAATAA A A AAAAGAATAA A A A AAAAGAATAA A A A AAAAGAATAA	GA GA GA GA 	TT AT .A.ATT .AGAGA.A .AGAA.A .AGATA.A AT.GAA T.A.A AATTA.A AATTA.A G G .G .G .G .G .G .G .G	[350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [400] [400] [400] [400] [400] [400] [400] [400]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif	AA AT. AA AT. AA GT. A AT. A. T A. T A. T TA. TA. TA. C C C TC	C C C.T C.T A- T T AATTGTAATT .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G .TA.G	A.A A.A T.AA ATATT.A ATAT.A ATAT.A TAT T.A T.AA -TTGA A AAAAGAATAA A A AAAAGAATAA A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 	GA GA GA GA 	TT AT .AATT .AGAGA.A .AGAA.A .AGATA.A ATGAA T.A.A AATTA.A AATTA.A G .G .G .G	[350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [400] [400] [400] [400] [400] [400] [400] [400] [400]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat	AA AT. AA AT. AA GT. A AT. A. T A. T A. T TA. TA. TA. C C C TC A T A TC. T.	C C C.T C.T A- T T AATTGTAATT .TA.G .T.A.G .T.A.G .T.A.G .T.A.G .T.A.G .T.A.G .T.A.G .T.A.AA	A.A A.A T.AA ATATT.A ATAT.A ATAT.A TAT T.A T.AA -TTGA A AAAAGAATAA       	GA GA GA GA 	TT AT .AATT .AGAGA.A .AGAA.A .AGATA.A ATGAA T.A.A AATTA.A AATTA.A G .G .G .G	[350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat B.terrestr A.mellifer A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea A.andrenif T.fimbriat	AA AT. AA AT. AA GT. A AT. A. T A. T A. T TA. TA. TA. C C C TC	C C C.T C.T A- T T AATTGTAATT .TA.G .T.A.G .T.A.G .T.A.G .T.A.G .T.A.G .T.A.G .T.A.G .T.A.AA	A.A A.A T.AA ATATT.A ATAT.A ATAT.A TAT T.A T.AA -TTGA A AAAAGAATAA       	GA GA GA GA 	TT AT .AATT .AGAGA.A .AGAA.A .AGATA.A ATGAA T.A.A AATTA.A AATTA.A G .G .G .G	[350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400]

A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea	· · · · · · · · · · · · · · · · · · ·		CCATATAGAT C.T C.T C.T C.T C TT TT CA		· · · · · · · · · · · · · · · · · · ·	[450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450]
B.terrestr	C.AGTT.T.A	AAA.A.AC	AAT.GATT-A	TGCT.CCT	GTAC.GTCAA	[450]
A.nuluensi A.cerana A.nigrocin A.koschevn A.laborios A.d.bingha A.dorsata A.florea		GAG GAG GAG T T TG A ATT	TTAGGCGCAG AA AA AA AA AAT AAT AAT AAT AAT AAT AAT AAT AAT AAT AAT	GAA GAA GAA AAA AA- AA- AA- GT. GTA	AG AG AG A A A A A	[500] [500] [500] [500] [500] [500] [500] [500] [500] [500]

A.mellifer	G	[501]
A.nuluensi	•	[501]
A.cerana	•	[501]
A.nigrocin	•	[501]
A.koschevn	•	[501]
A.laborios		[501]
A.d.bingha	•	[501]
A.dorsata	•	[501]
A.florea	•	[501]
A.andrenif		[501]
T.fimbriat	•	[501]
B.terrestr	Т	[501]

My research has focussed on honey bee molecular research. In Chapter 2, I added to the characterization of *itpr* gene expressed in the *Apis mellifera* brain. Then, using *itpr* and two other mitochondrial genes, I extended the resolution of honey bee molecular phylogenetics, as described in Chapter 3. In this chapter, I discussed aspects of honey bee behavioural evolution in the light of the molecular phylogeny, and some implications of this work for current questions in molecular evolution.

#### Putative PKA and PKC phosphorylation sites in *itpr*

My study extended the *itpr* sequence derived by Kamikouchi et al. (1998) by exploring both genomic and cDNA sequences. I investigated several functional motif sites in the IP₃ Receptor (IP₃R) protein, which is encoded by the gene *itpr*. Putative PKA and PKC phosphorylation sites were included in these investigations as well.

Protein phosphorylation plays an important role in regulating many cellular processes particularly those of signal transduction. One major phosphorylation requirement is the protein kinase (Hunter 1995). PKA or cAMP-dependent protein kinase is the major mediator cAMP reaction (Taylor et al. 1990). cAMP signalling pathways contribute to learning and memory processes as reported in *Drosophila* (Davis 1993), honey bee (Hammer 1997), *Aplysia* (Kandel and Schwartz 1982) and mammals (Abel et al. 1997). While PKA is important in honey bee short term memory, PKC is important for its role in the long-term memory of this insect (Menzel and Giurfa 2001).

Of the two PKA isoforms in existence, only isoform II is the type that has been characterised in the honey bee (Muller 1997). However, because PKA and PKC phosphorylation sites observed in honey bee *itpr* were based on motif searches from protein family databases further biochemical analyses are needed in order to determine the isoform type. In addition, the position of PKA and PKC phosphorylation sites observed in modulatory domains implicated their function as regulating calcium channel opening. I propose that research in this area would clarify the role of these two *itpr* kinases in calcium release from endoplasmic reticulum storage.

*Itpr* amino acid sequences showed high conservation between honey bee and other vertebrates and invertebrates. Exon evolution is constrained because exons encode amino acid sequences, hence there is little potential for change (Lewin 1993). Changes mostly involve substitution in the third base position, and thus many changes do not affect codon meanings (Nei and Kumar 2000). This phenomenon is well supported by the current study.

On the other hand, intron divergence patterns involve both size difference (due to deletion and insertion) and base substitution. This situation exists because introns evolve much more rapidly than exons (Li 1997) due to the lack of the functional constraints of the latter. In the honey bee *itpr* shows large changes in the case of introns divergence in *A. koschevnikovi* 3rd and *B. terrestris* 4th introns, where both introns are approximately 60–78 bp longer than other homologous introns from other species.

High intron divergence is due to the absence of constraints imposed of coding functions and therefore intron is able to accumulate point substitution and other changes quite freely. Such changes imply that introns have few in any sequence–specific functions (Lewin 1993). A review of nuclear gene evolution found that the highest average rate substitution is for pseudogenes, with introns second in substitution rates (Li 1997).

## Comparative analysis of intron position

In my study of *A. mellifera itpr* intron evolution, I conducted a comparative study with that of *Drosophila* introns (Sinha and Hasan 1999). It was found that of the two introns shared the same position along aligned sequences. *A. mellifera* revealed four unique introns that were absent in *D. melanogaster*. However, intron positions in *Drosophila* were not obtained from genomic walking sequence data. Rather, introns positions were obtained by using a series of oligonucleotide primers (Sinha and Hasan 1999). Intron size was determined according to the difference between genomic and cDNA PCR product size. Three of the predicted introns (those at position 2082, 3302 and 3783 were completely sequenced while the other three were not (Sinha and Hasan 1999).

Hence, comparative data of *Apis* and *Drosophila* introns could not be very precise because the imperfect knowledge of the latter. Information on *C. elegans* (nematode)

intron positions is available as well, but without size information (Baylis et al. 1999). *C. elegans* has two introns at the *itpr* alignments among *A. mellifera*, *D. melanogaster* and *C. elegans*. However, none of those two *C. elegans* introns are shared at the same position any of either *A. mellifera* or *Drosophila*.

Ideally, to understand *itpr* intron insertion or intron gain we need intron data from other organisms such as *P. argus* (lobster), rat, and humans. As these are obtained, we can infer intron ancestral positions. According to the "intron late" theory, intron insertion takes place during eukaryote evolution (Palmer and Logsdon 1991), thus implying that intron insertion is a derived trait. On the other hand according to the "introns early" theory, most introns are lost from ancestral genes (Gilbert 1997). If this is the case, intron absence is a secondary, but in the "introns late" theory, intron absence is an inferred primitive trait.

## Honey bee molecular phylogenetics

A molecular phylogenetic tree of *Apis* was constructed using a nuclear (*itpr*) and two mitochondrial DNA (*COII* and *lsRNA*) genes. Several features differentiate mtDNA and nuclear genes, for example mtDNA evolves at a rate tenfold faster than nuclear DNA (Page and Holmes 1998). Because differences such as mtDNA are maternally inherited, there is a lack of recombinant in this gene, compared to nuclear genes such as biparentally inherited. *COII* is a region in mitochondria that evolve quickly (Simon et al. 1994). It has been used in many studies, and has proved itself to be appropriate for inferred evolution of closely-related species (Thompson et al. 2000). *lsRNA* in mitochondrial genes has also been widely used in several studies (Dowton et al. 1998).

If well supported molecular phylogenies have been established for specific taxa, the taxonomic distribution of behavioural aspects can elucidate evolutionary origins and directional change of such characteristics (Avise 1994). This theory also implies that mapping characteristics for the purpose of tracing evolutionary patterns of a certain trait must be conducted from independently of the data to be mapped, such as molecular data (Avise 1994). Thus, I inferred honey bee behavioural evolution onto ML and MP consensus tree based on the three concatenated genes.

The phylogenetic tree from my study extended the knowledge of the relationship among to the known of nine *Apis* species. It was concurred that that the monophyletic *Apis* genus are split further into two lines that is the cavity and the open honey bee nesters. However, another tree topology revealed from my study was in agreement with the morphology results of Alexander (1991) for the common species. Further, the *COII* phylogenetic tree analysis from this study resolved the problem with respect to the Willis et al. (1992) *A. koschevnikovi* sequence.

#### Adapted honey bee behavioural traits

"Adaptation" refers to "design" in life-those properties of living things that enable them to survive and reproduce in nature" (Ridley 1996)

In Chapter 3, I concluded that neither of the two theories of the evolution of Apis nesting behaviour could be ruled out - ancestrally, nesting could have been either in the open or cavities because these alternate scenarios are equally parsimonious. In considering the evolution of dance behaviour, it is apparent that, among the open nesters, only A. florea and A. andreniformis perform horizontal dance. The other open nesters, A. dorsata group honey bees perform a vertical dance. Open nest dwarf honey bees (A. florea and A. andreniformis) have an open space at the top of the nest, which is used for building a platform nest region, facilitates their horizontal dance. A different nest construction occurs in A. dorsata group; their open nest has no open space at the top of nest. A. dorsata group nests are directly attached to a substrate (i.e. branch, roof, and cave). Therefore, it is possible that due to being no possibility of a horizontal platform, A. dorsata evolved a vertical dance at the nest curtain. Hence, it is most likely that the vertical dance evolved because of constraint facing bees such as giant honey bee and was then shown in the ancestral to the A. mellifera group. Given those phenomena, honey bee dance behaviour shows its adaptation to nest structure and demonstrates a correlation between those two behaviour traits.

It is tempting to suggest that the common ancestor of the *A. dorsata* and *A. mellifera* groups evolved vertical dancing because of the constraint facing the giant honey bee today. The horizontal dance of *A. florea* can proceed when the sky is not visible from

the dance arena or during the cloudy days, due to the ability of *A. florea* to use landmarks as their compass (Koeniger et al. 1982; Dyer 1984). However, in Dyer (1984) in the same experiments as before, he observed that several foragers does not dance pointed to the direction of the food source. The disoriented dance of some open nesters implied that celestial cues are needed in some stage as the open nesters compass. A more detailed study of a horizontal dance behavioural data in a completely dark cavity (as in the tree trunk) is sought-after. This information is crucial, in order to test the idea that the vertical dance is necessary before honey bees (specifically the *A. mellifera* group) could become cavity nesters.

Multi-comb nesting is another trait associated with cavity nesters while single comb nesting occur in open nests (Ben Oldroyd, personal communication). Single comb nests are covered with several curtain layers whereas in multi comb nests a single layer is formed to cover each comb. In an attempt to study the advantages of cavity nests, Dyer and Seeley (1991) measured honey bee worker tempo, which includes body temperature, flight speed, wing loading and mass specific metabolic rates. These authors found that the cavity nesters have higher tempos (high body temperature, flight speed, wing loading and mass specific metabolic rates) compared to the open nesting honey bees. Although a higher tempo brings a cost (a shorter life span, resulting in fewer workers available for the nest protection), it is relatively unimportant for honey bees, because cavity walls are provided to reduce the need for protection. Hence, it appears that *Apis* evolution involved reversal of nesting behaviour because of the more efficient life style allowed cavity nesters.

Evolution of open nesting and cavity nesting is influenced by honey bee ecology and distribution (Seeley 1983). Thermoregulatory ability exists in both open and cavity nesting behaviour as the result of environmental adaptation. *A. florea* and *A. andreniformis* compensate for high nest temperatures by using water drops and fanning behaviour to cool the nest. At high temperatures, honey bees within the colony will spread instead of remaining in tight cluster (Wilson 1971). Others, such as *A. mellifera* acquired sophisticated thermoregulation techniques for survival in temperate regions.

To heat the colony, the foragers contract their muscle to produce heat while large amount of honey is stored during the winter season (Winston 1987).

A phylogenetic hypothesis underlies conclusions made about comparative evolution (Harvey and Pagel 1991). In addition, in phylogenetic mapping, the general goal is to distinguish whether shared features arose through common ancestry or through convergent evolution from unrelated ancestors (Avise 1994). Hence, for my future research project, I propose to study the behaviour of stingless bees, because these corbiculate bee type displays advanced eusociality. Stingless bees show various open-, cavity- and ground-nesting, and it would be interesting to determine using molecular phylogeny whether groups with the same behaviours evolved independently in each lineage thus producing a convergent evolution. Comprehensive stingless bee molecular phylogeny is required in order to infer such behaviour.

"Phylogeny is in large part the history of branching or speciation and extinction"

## (Maddison and Maddison 1992)

My study has added further information to the area of honey bee molecular phylogenetics. On the basis of the phylogenetics constructed in my study, it can be inferred that *A. nigrocincta* is the result of recent speciation from *A. cerana*. It is possible that sympatric speciation occurred because both species are found in regions only 12 km apart (Hadisoesilo et al. 1995). On the other hand, it is likely for allopatric speciation (Page and Holmes 1998) took place yielding *A. nuluensis*, the montane Sabah honey bee, from *A. cerana* because they are separated by altitude (Tingek et al. 1996). Further population genetic work may explore the biogeography of *A. nigrocincta* and *A. nuluensis* in relation to *A. cerana*.

*A. nigrocincta* in Sulawesi and in adjacent islands (Sangihe) revealed differences in mitochondrial DNA (mtDNA) haplotypes (Smith et al. 2000). However, there do not appear to be any studies involving distribution of *A. koschevnikovi*, the Borneo honey bee. Because Borneo was connected to Palawan during the mid or late Pleistocene (Heaney 1986), I assumed that *A. koschevnikovi* was also distributed in Palawan, as similar distribution patterns to *A. andreniformis* were evident in both regions (de

Guzman et al. 1992). Further *A. koschevnikovi* exploration needs to be undertaken in order to investigate its distribution and also the genetic population structure of this species.

#### REFERENCES

- Abel T, Nguyen PV, Barad M, Deuel TAS, Kandel ER, Bourtchuladze R (1997) Genetic demonstration of a role for PKA in the late phase of LTP and in hippocamus-based long-term memory. Cell 88:615-626
- Adachi J, Hasegawa M (1996) MOLPHY: Programs for Molecular Phylogenetics Based on Maximum Likelihood. Version 2.3. Institute of Mathematics, Tokyo.
- Adoutte A, Balavoine G, and Lartillot N, De Rosa R (1999) Animal evolution: the end of the intermediate taxa ? [Review]. Trends in Genetics 15:104-108
- Alexander BA (1991) Phylogenetic analysis of the genus *Apis* (Hymenoptera: Apidae). Annual Entomology Society of America 84:137-149
- Anderson C, Ratnieks FLW (1999) Worker allocation in insect societies: coordination of nectar foragers and nectar receivers in honey bee (*Apis mellifera*) colonies. Behavioural Ecology and Sociobiology 46:73-81
- Ascher JS, Danforth BN, Ji SQ (2001) Phylogenetic utility of the major opsin in bees (Hymenoptera: apoidea): A reassessment. Molecular Phylogenetics and Evolution 19:76-93
- Ashmead WH (1904) Remarks on honey bees. Proceedings of the Entomological Society of Washington 6:120-122
- Attwood TK, Beck ME (1994) PRINTS A protein motif finger-print database. Protein Engineering 7:841-848
- Avise JC (1994) Molecular Markers, Natural History and Evolution. Chapman and Hall, New York
- Bateman A, Birney E, Durbin R, Eddy SR, Finn RD, Sonnhammer ELL (1999) Pfam3.1: 1313 multiple alignments match the majority of proteins. Nucleic Acids Research 27:260-262
- Baylis HA, Furuichi T, Yoshikawa F, Mikoshiba K, Sattelle DB (1999) Inositol 1,4,5trisphosphate receptors are strongly expressed in the nervous system, pharynx, intestine, gonad and excretory cell of *Caenorhabditis elegans* and are encoded by a single gene (*itr*-1). Journal of Molecular Biology 294:467-476

Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315-325

- Berridge MJ, Irvine RF (1989) Inositol phosphate and cell signalling. Nature 341:197-205
- Beye M, Härtel S, Hagen A, Hasselmann M, Omholt SW (2002) Specific developmental gene silencing in the honey bee using a homeobox motif. Insect Molecular Biology 11:527–532.
- Blake CCF (1978) Do genes-in-pieces imply proteins-in-pieces? Nature 273:267-268
- Blenau W, Balfanz S, Baumann A (2000) Amtyr1: Characterization of a gene from honeybee (*Apis mellifera*) brain encoding a functional tyramine receptor. Journal of Neurochemistry 74:900-908
- Blondel O, Moody MM, Depaoli AM, Sharp AH, Ross CA, Swift H, Bell GI (1994) Localization of inositol trisphosphate receptor subtype 3 to insulin and somatostatin secretory granules and regulation of expression in islets and insulinoma cells. Proceedings of the National Academy of Sciences of the United States of America 91:7777-7781
- Breitbart RE, Andreadis A, Natal-Ginard B (1987) Alternative splicing: a ubiquitous mechanism for the generation of multiple protein isoforms from single genes. Annual Review of Biochemistry 56:467-495
- Burrows M (1996) The Neurobiology of an Insect Brain. Oxford University Press, Oxford
- Butler CG (1958) The World of the Honeybee. St. James Place, London
- Camazine S (1991) Self-organizing pattern formation on the combs of honey bee colonies. Behavioural Ecology and Sociobiology 28:61-76
- Cameron SA, Derr JN, Austin AD, Woolley JB, Wharton RA (1992) The application of nucleotide sequence data to phylogeny of the Hymenoptera: a review. Journal of Hymenoptera Research 1:63-79
- Cameron SA, Mardulyn P (2001) Multiple molecular data sets suggest independent origins of highly eusocial behavior in bees (Hymenoptera : Apinae). Systematic Biology 50:194-214
- Cavalier-Smith T (1991) Intron phylogeny: a new hypothesis. Trends in Genetics 7:145-148

- Chadwick CC, Saito A, Fleischer S (1990) Isolation and characterization of the inositol trisphosphate receptor from smooth muscle. Proceedings of the National Academy of Sciences, USA 87:2132-2136
- Chen CN, Denome S, Davis RL (1986) Molecular analysis of cDNA clones and the corresponding genomic coding sequences of the *Drosophila* dunce⁺ gene, the structural gene for cAMP phosphodiesterase. Proceedings of the National Academy of Sciences of the United States of America 83:9313-9317
- Cockerell TDA (1907) A fossil Honey bee. Entomologist 40:227-229
- Cockerell TDA (1908) Descriptions and records of bees-XX. Annals and Magazines of Natural History. ser. 8, 2:323-334
- Collet T (2000) Measuring beelines to food. Science 297:817-818
- Crespi BJ, Yanega D (1995) The definition of eusociality. Behavioral Ecology 6:108-115.
- Crozier RH, Crozier YC (1993) The mitochondrial genome of the honeybee *Apis mellifera*: Complete sequences and genome organization. Genetics 133:97-117
- Crozier RH, Pamilo, P (1996) Evolution of Social Insect Colonies: Sex allocation and kin selection. Oxford University Press, Oxford.
- Cunningham CW (1997) Can three incongruence tests predict when data should be combined? Molecular Biology and Evolution 14(7):733-740.
- Damus MS, Otis GW (1997) A morphometric analysis of *Apis cerana* F and *Apis nigrocincta* Smith populations from Southeast Asia. Apidologie 28:309-323
- Danoff SK, Ferris CD, Donath C, Fischer GA, Munemitsu S, Ullrich A, Synder SH, Ross CA (1991) Inositol 1,4,5-trisphosphate receptors:distinct neuronal and nonneuronal forms derived by alternative splicing differ in phosphorylation.
  Proceedings of the National Academy of Sciences of the United States of America 88:2951-2955
- Davis RL (1993) Mushroom bodies and Drosophila learning. Neuron 11:1-14
- Dayhoff MO, Schwartz JH, Orcutt BC (1978) A model of evolutionary change in protein. In: Dayhoff MO (ed) Atlas of Protein Sequence and Structure, vol 5 Supplement 3. National Biomedical Research Foundastion, Washington, DC., pp 345-352

- de Guzman LI, Forbes M, Cervancia CR, Rinderer TE, Somera S (1992) Apis andreniformis Smith in Palawan, Philippines. Journal Apicultural Research 31:111
- Deshpande M, Venkatesh K, Rodrigues V, Hasan G (2000) The inositol 1,4,5trisphosphate receptor is required for maintenance of olfactory adaptation in *Drosophila* antennae. Journal of Neurobiology 43:282-288
- Deutsch M, Long M (1999) Intron-exon structures of eukaryotic model organisms. Nucleid Acids Research 27:3219-3228
- Doolittle WF (1978) Genes in pieces: were they ever together? Nature 272:581-582
- Dornhaus A, Chittka L (2001) Food alert in bumblebees (*Bombus terrestris*): possible mechanisms and evolutionary implications. Behavioral Ecology & Sociobiology 50:570-576
- Dowton M, Austin AD, Antolin MF (1998) Evolutionary relationships among the Braconidae (Hymenoptera, Ichneumonoidea) inferred from partial 16s rDNA gene sequences. Insect Molecular Biology 7:129-150
- Dudai Y, Jan YN, Byers D, Quinn WG, Benzer S (1976) Dunce, a mutant of Drosophila deficient in learning. Proceedings of the National Academy of Sciences of the United States of America 73:1684-1688
- Durst C, Eichmuller S, Menzel R (1994) Development and experience lead to increased volume of subcompartments of the honeybee mushroom body. Behavioral and Neural Biology 62:259-263
- Dyer FC (1984) Comparative studies of dance language and orientation of four species of honey bees. Thesis. Princeton University
- Dyer FC (1985a) Mechanism of dance orientation in the Asian honey bee *Apis florea* L. Journal of Comparative Physiology A. 157:183-198
- Dyer FC (1985b) Nocturnal orientation by the Asian honey bee, *Apis dorsata*. Animal Behaviour 33:769-774
- Dyer FC (1991) Comparative studies of dance communication: analysis of phylogeny and function. In: Smith DR (ed) Diversity in the Genus *Apis*. Westview Press., Oxford., pp 177-198
- Dyer FC, Gould JL (1983) Honey bee navigation. American Scientist 71:587-597

- Dyer FC, Seeley TD (1991) Nesting behavior and the evolution of worker tempo in four honey bee species. Ecology 72:156-170
- Ebert PR, Rowland JE, Toma DP (1998) Isolation of seven unique biogenic amine receptor clones from the honey bee by library scanning. Insect Molecular Biology 7:151-162
- Edrich W (1977) Interaction of light and gravity in the orientation of the waggle dance of honey bees. Animal Behaviour 25:342-363
- Ehmer B, Hoy R (2000) Mushroom bodies of vespid wasps. Journal of Comparative Neurology 416:93-100
- Eickbush TH (2000) Introns gain ground. Nature 404:940-943
- Eisenhardt D, Fiala A, Braun P, Rosenboom H, Kress H, Ebert PR, Menzel R (2001) Cloning of a catalytic subunit of cAMP-dependent protein kinase from the honeybee (*Apis mellifera*) and its localization in the brain. Insect Molecular Biology 10:173-181
- Engel MS (1998) Fossil honey bees and evolution in the genus *Apis* (Hymenoptera, Apidae). Apidologie 29:265-281
- Engel MS (1999) The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae; *Apis*). Journal of Hymenoptera Research 8:165-196
- Engel MS (2001a) A monograph of the Baltic amber bees and evolution of the Apoidea (Hymenoptera) [Review]. Bulletin of the American Museum of Natural History:5-192
- Engel MS (2001b) Monophyly and extensive extinction of advanced eusocial bees: Insights from an unexpected Eocene diversity. Proceedings of the National Academy of Sciences, USA 98(4):1661-1664.
- Engel MS, Schultz TR (1997) Phylogeny and behavior in honey bees (Hymenoptera, Apidae). Annals of the Entomological Society of America 90:43-53
- Erber J, Kloppenburg P, Scheidler A (1993) Neuromodulation by serotonin and octopamine in the honeybee- behaviour, neuroanatomy and electrophysiology [Review]. Experientia 49:1073-1083
- Esch H, Esch I, Kerr WE (1965) Sound: an element common to communication of stingless bees and to dances of the honey bee. Science 149:320-321

- Estoup A, Solignac M, Cornuet JM, Goudet J, Scholl A (1996) Genetic differentiation of continental and island populations of *Bombus terrestris* (Hymenoptera, Apidae) in Europe. Molecular Ecology 5:19-31
- Fahrbach SE, Strande JL, Robinson GE (1995) Neurogenesis is absent in the brains of adult honey bees and does not explain behavioral neuroplasticity. Neuroscience Letters 197:145-148
- Farris SM, Robinson GE, Davis RL, Fahrbach SE (1999) Larval and pupal development of the mushroom bodies in the honey bee, *Apis mellifera*. Journal of Comparative Neurology 414:97-113
- Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791
- Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, Univ. of Washington, Seattle
- Feremisco JR, Glass DB, Krebs EG (1980) Optimal spatial requirement for the location of basic residues in peptide sucstrate for the cyclic AMP-ependent protein kinase. The Journal of Biological Chemistry 255:4240-4245
- Fuchs S, Koeniger N, Tingek S (1996) The morphometric position of *Apis nuluensis* Tingek, Koeniger and Koeniger, 1996 within cavity-nesting honey bee. Apidologie 27:387-405
- Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, Mikoshiba K (1989) Primary structure and functional expression of the inositol 1,4,5-trisphosphatebinding protein P 400. Nature 342:32-38
- Garnery L, Vautrin D, Cornuet JM, Solignac M (1991) Phylogenetic relationship in the genus *Apis* inferred from mitochondrial DNA sequence data. Apidologie 22:87-92
- Gerstacker CEA (1863) On the geographical distribution and varieties of the honey bees, with remarks upon the exotic honey-bees of the Old World. Annals and Magazines of Natural History, series 3, 11:270-283, 333-347
- Gilbert W (1978) Why genes in pieces? Nature 271:501
- Gilbert W (1985) Genes-in-pieces revisited. Science 228:823-824
- Gilbert W (1997) Origin of genes. Proceeding of National Academic of Science of United States of America 94:7698-7703

- Goldman N, Anderson J, Rodrigo AG (2000) Likelihood-based tests of topologies in phylogenetics. Systematics Biology 49:652–670.
- Gorza L, Vettore S, Tessaro A, Sorrentino V, Vitadello M (1997) Regional and agerelated differences in mRNA composition of intracellular Ca²⁺-release channels of rat cardiac myocites. Journal of Molecular and Cellular Cardiology 29:1023-1036
- Gould JL (1980) Sun compensation by bees. Science 207:545-547
- Gould JL, Henerey M, Macleod M, C. (1970) Communication of direction by the honey bee. Science 169:544-554
- Gronenberg W (1986) Physiological and anatomical properties of optical input fibers to the mushroom body in the bee brain. Journal of Insect Physiology 32:695-704
- Gronenberg W (2001) Subdivisions of hymenopteran mushroom body calyces by their afferent supply. Journal of Comparative Neurology 435:474-489
- Gruhl M, Kao WY, Bergtrom G (1997) Evolution of Orthologous intronless and intronbearing globin genes in two insect species. Journal of Molecular and Evolution 45:499-508
- Grunbaum L, Muller U (1998) Induction of a specific olfactory memory leads to a longlasting activation of protein kinase C in the antennal lobe of the honeybee. Journal of Neuroscience 18:4384-4392
- Grunewald B (1999) Morphology of feedback neurons in the mushroom body of the honeybee, *Apis mellifera*. Journal of Comparative Neurology 404:114-126
- Hadisoesilo S, Otis GW (1996) Drone flight times confirm the species status of Apis nigrocincta Smith, 1861 to be a species distinct from Apis cerana F, 1793, in Sulawesi, Indonesia. Apidologie 27:361-369
- Hadisoesilo S, Otis GW (1998) Differences in drone cappings of *Apis cerana* and *Apis nigrocincta*. Journal of Apicultural Research 37:11-15
- Hadisoesilo S, Otis GW, Meixner M (1995) Two distinct populations of cavity-nesting honey bees (Hymenoptera, Apidae) in South Sulawesi, Indonesia. Journal of the Kansas Entomological Society 68:399-407
- Hall ZW (1992) An Introduction to Molecular Neurobiology. Sinauer Associates, Sunderland

- Halling LA, Oldroyd BP, Wattanachaiyingcharoen W, Barron AB, Nanork P, Wongsiri S (2001) Worker policing in the bee *Apis florea*. Behavioral Ecology and Sociobiology 49:509-513
- Hamada T, Liou S, Fukoshima T, Maruyama T, Watanabe S, Mikoshiba K, Ishida N (1999) The role of inositol trisphosphate-induced Ca²⁺ release from IP₃-receptor in the rat suprachiasmatic nucleus on circadian entrainment mechanism. Neuroscience letter 263:125-128
- Hammer M (1997) The neural basis of associative reward learning in honeybees. Trends in Neuroscience 20:245-252
- Hammer M, Menzel R (1995) Learning and memory in the honeybee [Review]. Journal of Neuroscience 15:1617-1630
- Hart AG, Ratnieks FLW (2001) Why do honey-bee (*Apis mellifera*) foragers transfer nectar to several receivers? Information improvement through multiple sampling in a biological system (vol 49, pg 330, 2001). Behavioral Ecology and Sociobiology 49:330
- Harvey PH, Pagel MD (1991) The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford
- Hasan G, Rosbash M (1992) *Drosophila* homologs of two mammalian intracellular Ca2+-release channels: identification and expression patterns of the inositol 1,4,5-triphosphate and the ryanodine receptor genes. Development 116:967-975
- Hasegawa M, Kishino H (1994) Accuracies of the simple methods for estimating the bootstrap probability of a maximum-likelihood tree. Molecular Biology & Evolution 11:142-145
- Hasegawa M, Kishino H, Yano TA (1985) Dating the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22:160-174
- Heaney LR (1986) Biogeography of mammalsin SE Asia: estimates of rates of colonization, extinction and speciation. Biological Journal of the Linnean Society. 28:127-165
- Hepburn HR, Smith DR, Radloff SE, Otis GW (2001) Infraspecific categories of Apis cerana: morphometric, allozymal and mtDNA diversity [Review]. Apidologie 32:3-23

- Hofmann K, Bucher P, Falquet L, Bairoch A, Tachida H (1999) The PROSITE database, its status in 1999. Nucleic Acids Research 27:215-219
- Holldobler B (1984) Evolution of Insect Communication. In: Lewis T (ed) Insect Communication. Academic Press, London, pp 349-377
- Hrncir M, Jarau S, Zucchi R, Barth FG (2000) Recruitment behavior in stingless bees, Melipona scutellaris and M-quadrifasciata. II. Possible mechanisms of communication. Apidologie 31:93-113
- Huang K (1989) The mechanism of protein kinase C activation. Trends in Neurosciences 12:425-432
- Huang SH, Hu YY, Wu CH, Holcenberg J (1990) A simple method for direct cloning cDNA sequence thath flanks a region of known sequence from toral RNA by applying the inverse polymerase chain reaction. Nucleic Acid Research 18:1922
- Huang SH, Wu CH, Cai B, Holcenberg J (1993) cDNA cloning by inverse polymerase chain reaction. Methods Molecular Biology 15:349-356
- Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling [Review]. Cell 80:225-236
- Jarau S, Hrncir M, Zucchi R, Barth FG (2000) Recruitment behavior in stingless bees, *Melipona scutellaris* and *M-quadrifasciata*. I. Foraging at food sources differing in direction and distance. Apidologie 31:81-91
- Jermiin LS, Olsen GJ, Mengersen KL, Easteal S (1997) Majority-rule consensus of phylogenetic trees obtained by maximum-likelihood analysis. Molecular Biology and Evolution 14:1296-1302
- Judd TM (1995) The waggle dance of the honey bee: which bees following a dancer succesfully acquire the information? Journal of Insect Behaviour 8:343-354
- Kamikouchi A, Takeuchi H, Sawata M, Natori S, Kubo T (2000) Concentrated expression of Ca²⁺/calmodulin-dependent protein kinase II and protein kinase C in the mushroom bodies of the brain of the honeybee *Apis mellifera* L. Journal of Comparative Neurology 417:501-510
- Kamikouchi A, Takeuchi H, Sawata M, Ohashi K, Natori S, Kubo T (1998) Preferential expression of the gene for the putative inositol 1,4,5-trisphosphate receptor homologue in the mushroom bodies of the brain of the worker honeybee Apis mellifera. Biochemical and Biophysical Research Communication 242:181-186

- Kandel ER, Schwartz JH (1982) Molecular biology of learning: modulation of transmitter release. Science 218:433-443
- Kenyon FC (1896) The brain of the bee. A preliminary contribution to the morphology of the nervous system of the Arthropoda. Journal of Comparative Neurology 6
- Kirchner WH, Dreller C, Grasser A, Baidya D (1996) The silent dances of the Himalayan honeybee, *Apis laboriosa*. Apidologie 27:331-339
- Kishimoto A, Nishiyama K, Nakanishi H, Uratsuji Y, Nomura H, Takeyama Y, Nishizuka Y (1985) Studies on the phosphorylation of myelin basic protein by protein kinase C and adenosine 3':5' monophosphate-dependent protein kinase. The Journal of Biological Chemistry 260:12492-12499
- Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. Journal of Molecular Evolution 29:170-179
- Koeniger G, Koeniger N, Tingek S, Kelitu A (2000) Mating flights and sperm transfer in the dwarf honeybee *Apis andreniformis* (Smith, 1858). Apidologie 31:301-311
- Koeniger N (1976) Neue aspekte der phylogenie innerhalb der gattung Apis. Apidologie 7:357-366
- Koeniger N, Koeniger G (1980) Observations and experiments of migration and dance communication of *Apis dorsata* in Srilanka. Journal of Apicultural Research 19:21-34
- Koeniger N, Koeniger G, Gries M, Tingek S, Kelitu A (1996) Reproductive isolation of *Apis nuluensis* Tingek, Koeniger and Koeniger, 1996 by species-specific mating time. Apidologie 27:353-359
- Koeniger N, Koeniger G, Punchihewa RWK, Fabritius M, Fabritius M (1982)Observations and experiments on dance communication in *Apis florea* in Sri Lanka. Journal of Apicultural Research 21:45-52
- Koeniger N, Koeniger G, Tingek S, Mardan M, Rinderer T (1988) Reproductive isolation by different time of drone flight between *Apis cerana* Fabricius, 1793 and *Apis vechti* (Maa, 1953). Apidologie 19:103-106

- Koeniger N, Wijayagunasekera HNP (1976) Time of drone floght in the three Asiatic honeybee species (*Apis cerana, Apis florea, Apis dorsata*). Journal of Apicultural Research 15:67-71
- Koulianos S, Schmid-Hempel R, Roubik DW, Schmid-Hempel P (1999) Phylogenetic relationships within the corbiculate Apinae (Hymenoptera) and the evolution of eusociality. Journal of Evolutionary Biology 12:380-384
- Kucharski R, Ball EE, Hayward DC, Maleszka R (2000) Molecular cloning and expression analysis of a cDNA encoding a glutamate transporter in the honeybee brain. Gene 242:399-405
- Kumar S, Tamura K, Jakobsen IB, Nei M (2001) *MEGA2: Molecular Evolutionary Genetics Analysis* software, Bioinformatics (submitted).
- Kume S, Muto A, Aruga J, Nakagawa T, Michikawa T, Furuichi T, Nakade S, Okano H, Mikoshiba K (1993) The *Xenopus* IP₃receptor: structure, function, and localization in oocytes and eggs. Cell 73:555-570
- Kume S, Yamamoto A, Inoue T, Muto A, Okano H, Mikoshiba K (1997) Developmental expression of the inositol 1,4,5-trisphosphate receptor and structural changes in the endoplasmic reticulum during oogenesis and meiotic maturation of *Xenopus laevis*. Developmental Biology 182:228-239
- Lacazette E, Gachon AM, Pitiot G (2000) A novel human odorant-binding protein gene family resulting from genomic duplicons at 9q34: differential expression in the oral and genital spheres. Human Molecular Genetics 9:289-301
- Lambowitz AM, Belfort M (1993) Introns as mobile genetic elements. Annual Review of Biochemistry 62:587-622
- Levin LR, Han PL, Hwang PM, Feinstein PG, Davis RL, Reed RR (1992) The *Drosophila* learning and memory gene *rutabaga* encodes a Ca²⁺/calmodulinresponsive adenylyl cylase. Cell 68:479-489
- Levitan IB, Kaczmarek LK (1997) The Neuron: Cell and Moleular Biology, 2nd. ed edn. Oxford University Press, New York
- Lewin B (1993) Genes V. Oxford, Cambridge
- Li WH (1997) Molecular Evolution. Sinauer Associates, Inc. Publishers, Massachusetts
- Lindauer M (1956) Uber die verstandigung bei indischen bienen. Zeitschrift fur vergleichende physiologie 38:521-557

- Lindauer M (1961) Communication among Social Bees. Harvard University Press, Cambridge
- Lindauer M, Kerr WE (1960) Communication between the workers of the stingless bees. Bee World 41:29-64, 65-71
- Lockhart PJ, Cameron SA (2001) Trees for bees. Trends in Ecology & Evolution 16:84-88
- Lockhart PJ, Steel MA, Hendy MD, Penny D (1994) Recovering evolutionary trees under a more realistic model of sequence evolution. Molecular Biology and Evolution 11:605-612
- Lopez JA (1998) Alternative spicing of pre-mRNA: developmental consequences and mechanisms regulation [Review]. Annual Review of Genetics 32:279-305
- Maa T (1953) An inquiry into the systematics of the tribus Apidini or honeybees (Hym.). Treubia 21: 525-640
- Maddison WP, Maddison DR (1992) MacClade. Analysis of phylogeny and character evolution. Version 3. Sinauer Associates, Sunderland, MA
- Madsen O, Scally M, Douady CJ, Kao DJ, DeBry RW, Adkins R, Amrine HM, Stanhope MJ, de Jong WW, Springer MS (2001) Parallel adaptive radiations in two major clades of placental mammals. Nature 409(6820):610-614.
- Maeda N, Kawasaki T, Nakade S, Yokota N, Taguchi T, Kasai M, Mikoshiba K (1991) Structural and functional characterization of inositol 1,4,5-triphosphate receptor channel from mouse cerebellum. The Journal of Biological Chemistry 266:1109-1116
- McEvoy MV, Underwood BA (1988) The drone and species status of the Himalaya honey bee, *Apis laboriosa* (Hymenoptera, Apidae). 61:246-249
- McPherson PS, Campbell KP (1993) Characterization of the major brain form of the ryanodine receptor/Ca²⁺ release channel. The Journal of Biological Chemistry 268:19785-19790
- Menzel R (1999) Memory dynamics in the honeybee [Review]. Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology 185:323-340
- Menzel R (2001) Searching for the memory trace in a mini-brain, the honeybee [Review]. Learning and Memory 8:53-62

- Menzel R, Durst C, Erber J, Eichmuller S, Hammer M, Hildebrant H, Mauelshagen J, Muller U, Rosenboom H, Rybak J, Schafer S, Scheidler A (1994) The mushroom bodies in the honeybee: From molecules to behaviour. In: K. S, Elsner N (eds) Neural basis of behavioral adaptation. Fortschritte der Zoologie 39. Gustav Fischer Verlag, Stutgart, pp 81-102
- Menzel R, Giurfa M (2001) Cognitive architecture of a mini-brain: the honeybee [Review]. Trends in Cognitive Sciences 5:62-71
- Michelsen A, Andersen BB, Storm J, Kirchner WH, Lindauer M (1992) How honey bees perceive communication dances, studied by means of a mechanical model. Behavioural Ecology and Sociobiology 30:143-150
- Michener CD (1944) Comparative external morphology, phylogeny, and a classification of the bees (Hymenoptera). Bulletin of the American Museum of Natural History 82:151-326
- Michener CD (1964) Evolution of the nests of bees. American Zoologist 4:227-239
- Michener CD (1974) The Social Behavior of the Bees. Belknap Press of Harvard University Press, Cambridge, Massachusetts
- Michener CD (1982) A new interpretation of fossil social bes from the Dominican Republic. Sociobiology 7:37-45
- Michener CD (2000) The Bees of the World. The John Hopkins University Press, Baltimore and London
- Michener CD, Grimaldi DA (1988) The oldest fossil bee: Apoid history, evolutionary stasis, and antiquity of social behavior. Proceedings of the National Academy of Sciences of the United States of America 85:6424-6426
- Michener CD, Winston ML, Jander R (1978) Pollen manipulation and related activities and structures in bees of the Family Apidae. The University of Kansas Science Bulletin 51:575-601
- Michikawa T, Hamanaka H, Otsu H, Yamamoto A, Miyawaki A, Furuichi T, Tashiro Y, Mikoshiba K (1994) Transmembrane topology and sites of N-glycosylation of inositol 1,4,5-trisphosphate receptor. The Journal of Biological Chemistry 269:9184-9189

- Mignery GA, Newton CL, Archer BT, Sudhof TC (1990) Structure and expression of the rat inositol 1,4,5-trisphosphate receptor 1. The Journal of Biological Chemistry 265:12679-12685
- Mignery GA, Sudhof TC (1990) The ligand binding site and transduction mechanism in the inositol 1,4,5-trisphosphate receptor. The EMBO Journal 9:3893-3898
- Mobbs PG (1982) The brain of the honey bee Apis mellifera.1. The connections and spatial organization of the mushroom bodies. Philos. Trans. R. Soc. Lond. Ser. B, 298:309-354
- Mobbs PG (1984) Neural network in the mushroom bodies of of the honey bee. Journal of Insect Physiology 30:43-58
- Monkawa T, Miyawaki A, Sugiyama T, Yoneshima H, Yamamotohino M, Furuichi T, Saruta T, Hasegawa M, Mikoshiba K (1995) Heterotetrameric Complex Formation of Inositol 1,4,5-Trisphosphate Receptor Subunits. Journal of Biological Chemistry 270:14700-14704
- Müller T, Vingron. M (2000) Modeling Amino Acid Replacement. Journal of Computational Biology 7:761-776
- Muller U (1996) Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honeybee, *Apis mellifera*. Neuron 16:541-549
- Muller U (1997) Neuronal cAMP-dependent protein kinase type II is concentrated in mushroom bodies of *Drosophila melanogaster* and the honeybee *Apis mellifera*. Journal of Neurobiology 33:33-44
- Muller U (1999) Second messenger pathways in the honeybee brain: Immunohistochemistry of protein kinase A and protein kinase C. Microscopy Research and Technique 45:165-173
- Munger SD, Gleeson RA, Aldrich HC, Rust NC, Ache BW, Greenberg RM (2000) Characterization of a phosphoinositide-mediated odor transduction pathway reveals plasma membrane localization of an inositol 1,4,5-trisphosphate receptor in lobster olfactory receptor neurons. Journal of Biological Chemistry 275:20450-20457
- Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW and others. 2001. Resolution of the early

placental mammal radiation using Bayesian phylogenetics. Science 294:2348-2351.

- Nakagawa T, Okano H, Furuichi T, Aruga J, Mikoshiba K (1991) The subtypes of the mouse inositol 1,4,5-trisphosphate receptor are expressed in a tissue-specific and developmentally specific manner. Proceedings of the National Academy of Sciences of the United States of America 88:6244-6248.
- Nei M, Kumar S (2000) Molecular Evolution and Phylogenetics. Oxford University Press, Oxford ; Melbourne
- Newman AJ, Norman C (1992) U5 snRNA interacts with exon sequences at 5' and 3' splice sites. Cell 68:743-754
- Nieh JC (1998) The food recruitment dance of the stingless bee, *Melipona panamica*. Behavioral Ecology and Sociobiology 43:133-145
- Nouaud D, Boeda B, Levy L, Anxolabehere D (1999) A P element has induced intron formation in *Drosophila*. Molecular Biology and Evolution 16:1503-1510
- Oldroyd BP, Ratnieks FLW (2000) Evolution of worker sterility in honey-bees (*Apis mellifera*): how anarchistic workers evade policing by laying eggs that have low removal rates. Behavioral Ecology and Sociobiology 47:268-273
- O'Neill RJW, Brennan FE, Delbridge ML, Crozier RH, Graves JAM (1998) De novo insertion of an intron into the mammalian sex determining gene, sry. Proceedings of the National Academy of Sciences of the United States of America 95:1653-1657
- Otis GW (1991) A Review of the Diversity of Species within *Apis*. In: Smith DR (ed) Diversity in the Genus *Apis*. Westview Press, Oxford, pp 29-50
- Otis GW (1996) Distributions of recently recognized species of honey bees (Hymenoptera, Apidae *Apis*) in Asia. Journal of the Kansas Entomological Society 69:311-333
- Padgett RA, Grabowski PJ, Konarska MM, Seiler S, Sharp PA (1986) Splicing of messenger RNA precursors. Annual Review of Biochemistry 55:1119-1150
- Page RDM, Holmes EC (1998) Molecular Evolution: A Phylogenetic Approach. Blackwell Science, Oxford
- Palmer JD, Logsdon JMJ (1991) The recent origins of introns. Current Opinion in Genetics and Development 1:470-477

- Palmer KA, Oldroyd BP (2001) Mating frequency in *Apis florea* revisited (Hymenoptera, Apidae). Insectes Sociaux 48:40-43
- Patthy L (1987) Intron-dependent evolution: preferred types of exons and introns. FEBS Letters 214:1-7
- Posada K, Crandall KA (1998) Modeltest: testing the moodel of DNA substitution. Bioinformatics 14:817-818.
- Prentice M (1991) Morphological analysis of the tribes of Apidae. In: Smith DR (ed) Diversity in the Genus *Apis*. Westview Press, Oxford
- Punchihewa RWK, Koeniger N, Kevan PG, Gadawski RM (1985) Observations on the dance communication and natural foraging ranges of *Apis cerana*, *Apis dorsata* and *Apis florea* in Sri Langka. Journal of Apicultural Research 24:168-175
- Ratnieks FLW (1995) Evidence for a queen-produced egg-marking pheromone and its use in worker policing in the honey bee. Journal of Apicultural Research 34:31-37
- Ridley M (1983) The explanation of organic diversity : the comparative method and adaptations for mating. Clarendon, Oxford
- Ridley M (1996) Evolution, 2nd edn. Blackwell Science, Oxford
- Rinderer TE, Oldroyd BP, Sylvester HA (1992) Evolution of bee dances. Nature 360:305
- Rinderer TE, Oldroyd BP, Wongsiri S, Sylvester HA, Deguzman LI, Potichot S, Sheppard WS, Buchmann SL (1993) Time of drone flight in 4 honey bee species in South-Eastern Thailand. Journal of Apicultural Research 32:27-33
- Rinderer TE, Oldroyd BP, Wongsiri S, Sylvester HA, Deguzman LI, Stelzer JA, Riggio
   RM (1995) A morphological comparison of the dwarf honey bees of
   Southeastern Thailand and Palawan, Philippines. Apidologie 26:387-394
- Rinderer TE, Wongsiri S, Kuang B, Liu J, Oldroyd BP, Sylvester HA, De Guzman LI, Kuang H, Dong X, Zhai W (1996) Comparative nest architecture of the dwarf honey bees. Journal Apicultural Research 35:19-26
- Rogers JH (1989) How were introns inserted into nuclear genes? Trends in Genetics 5:213-216
- Ross CA, Danoff SK, Schell MJ, Synder SH, Ullrich A (1992) Three additional inositol 1,4,5-trisphosphate receptors: molecular cloning and differential localization in

brain and peripheral tissues. Proceedings of the National Academy of Sciences of the United States of America 89:4265-4269

- Roubik DW (1983) Nest and colony characteristics of stingless bees from Panama (Hymenoptera: Apidae). Journal of the Kansas Entomological Society 56:327-355
- Roubik DW, Sakagami SF, Kudo I (1985) A note of distribution and nesting of the Himalayan honeybee *Apis laboriosa* Smith (Hymenoptera, Apidae). Journal of Kansas Entomological Society 58:746-749
- Ruttner F (1975) Ein metatarsaler haftapparat bei den drohnen der gattung Apis (Hymenoptera: Apidae). Entomologica germanica 2:022-029
- Ruttner F (1988) Biogeography and Taxonomy of Honeybees. Springer-Verlag, Berlin
- Ruttner F, Kauhausen D, Koeniger N (1989) Position of the red honey bee, *Apis koschevnikovi* (Buttel-Reepen 1906), within the Genus *Apis*. Apidologie 20:395-404
- Ruttner F, Mossadegh MS, Kauhausenkeller D (1995) Distribution and variation of size of *Apis florea* F in Iran. Apidologie 26:477-486
- Saier MHJ, Eng BH, Fard S, Garg J, Haggerty DA, Hutchinson WJ, Jack DL, Lai EC, Liu HJ, Nusinew DP, Omar AM, Pao SS, Paulsen IT, Quan JA, Sliwinski M, Tseng TT, Wachi S, Young GB (1999) Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochimica et Biophysica Acta 1422:1-56
- Sakagami S, Matsumura T (1980) *Apis laboriosa* in Himalaya, the little known world largest honeybee (Hymenoptera, Apidae). Insect Matsumurana 19:47-77
- Salmah S, Inoue T, Sakagami SF (1990) An analysis of apid bee richness (Apidae) in Central Sumatra. In: Natural History of Social Wasps and Bees in Equatorial Sumatra. Hokkaido University Press, pp 139-174
- Schneider SS, Stamps JA, Gary NE (1986) The vibration dance of the honeybee I. Communication regulating foraging on two time scales. Animal Behavior 34:377-385
- Schultz TR, Engel MS, Ascher JS (2001) Evidence for the origin of eusociality in the Corbiculate bees (Hymenoptera:Apidae). Jounal of Kansas Entomological Society 74:10-16

Seeley TD (1982) How honeybees find a home. Scientific American 247:158-168

- Seeley TD (1983) The ecology of temperate and tropical honeybee societies. American Scientist 71:264-271
- Seeley TD (1991) Age polyethism for the hive duties in honey bees-illution or reality. Ethology 87:284-297
- Seeley TD (1992) The tremble dance of the honey bee: message and meanings. Behavioral Ecology and Sociobiology 31:375-383
- Seeley TD (1994) Honey bee foragers as sensory units of their colonies. Behavioral Ecology and Sociobiology
- Seeley TD (1998) Thoughts on information and integration in honey bee colonies. Apidologie 29:67-80
- Seeley TD, Mikheyev AS, Pagano GJ (2000) Dancing bees tune both duration and rate of waggle-run production in relation to nectar-source profitability. Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology 186:813-819
- Sharp AH, Nucifora FC, Blondel O, Sheppard CA, Zhang CY, Snyder SH, Russell JT, Ryugo DK, Ross CA (1999) Differential cellular expression of isoforms of inositol 1,4,5-trisphosphate receptors in neurons and glia in brain. Journal of Comparative Neurology 406:207-220
- Sharp PA (1981) Speculations on RNA splicing. Cell 23:643-646
- Sherman PW, Lacey EA, Reeve HK, Keller L. 1995. The eusociality continuum. Behavioral Ecology 6:102-108.
- Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16(8):1114-1116.
- Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers [Review]. Annals of the Entomological Society of America 87:651-701
- Sinha M, Hasan G (1999) Sequencing and exon mapping of the inositol 1,4,5trisphosphate receptor cDNA from *Drosophila* embryos suggests the presence of differentially regulated forms of RNA and protein. Gene 233:271-276

- Smith DR, Villafuerte L, Otis G, Palmer MR (2000) Biogeography of *Apis cerana* F. and *A. nigrocincta* Smith: insights from mtDNA studies. Apidologie 31:265-279
- Smith F (1861) Descriptions of new species of hymenopterous insects collected by Mr.
  - A.R. Wallace at Celebes. Proceeding of the Linnean Society, London 5:57-93
- Snodgrass RE (1935) Principles of Insect Morphology. McGraw-Hill Book Company, London
- Srinivasan MV (1998) Honeybee link sights to smells. Nature 396:637-638
- Starr CK, Schmidt PJ, Schmidt JO (1987) Nest-site preferences of the giant honey bee, *Apis dorsata* (Hymenoptera: Apidae), in Borneo. Pan-Pacific Entomologist 63:37-42
- Strimmer K, Rambaut A (2002) Inferring confidence sets of possibly misspecified gene trees. Proceeding of the Royal Society London B 269:137-142.
- Strimmer K, von Haeseler A (1996) Quartet puzzling a quartet maximum-likelihood method for reconstructing tree topologies. Molecular Biology and Evolution 13:964-969
- Stryer L (1995) Biochemistry, 4th ed. edn. Freeman and Company, New York
- Suzuki Y, Glazko GV, Nei M (2002) Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proceedings of the National Academy of Sciences of the United States of America 99:16138–16143.
- Swofford DL (2002) PAUP* 4.0b10. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts
- Tanaka H, Roubik DW, Kato M, Liew F, Gunsalam G (2001) Phylogenetic position of *Apis nuluensis* of northern Borneo and phylogeography of *A. cerana* as inferred from mitochondrial DNA sequences. Insectes Sociaux 48:44-51
- Tarrio R, Rodriquez-Trelles F, Ayala FJ (1998) New Drosophila introns originate by duplication. Proceedings of the National Academy of Sciences of the United States of America 95:1658-1662
- Tautz J, Rohrseitz K (1996) One-strided waggle dance in bees. Nature 382:32
- Taylor SS, Buechler JA, Yonemoto W (1990) cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annual Review of Biochemistry 59:971-1005

- Thakar CV, Tonapi KV (1962) Nesting behaviour of Indian honeybees. II Nesting habits and comb cell differentiation in *Apis florea* Fab. Indian Bee Journal 24:27-31
- Thompson GJ, Miller LR, Lenz M, Crozier RH (2000) Phylogenetic analysis and trait evolution in Australian lineages of drywood termites (Isoptera, Kalotermitidae). Molecular Phylogenetics & Evolution 17:419-429
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Research 25:4876-4882
- Tingek S, Koeniger G, Koeniger N (1996) Description of a new cavity nesting species of *Apis (Apis nuluensis* n. sp.) from Sabah, Borneo, with notes on its occurrence and reproductive biology. Senckenbergiana Biologica 76:115-119
- Tingek S, Mardan M, Rinderer TE, Koeniger N, Koeniger G (1988) The rediscovery of *Apis vechti* Maa 1953: the Sabah honeybee. Apidologie 19:97-102
- Tomita M, Shimizu N, Brutlag DL (1996) Introns and reading frames correlation between splicing sites and their codon positions. Molecular Biology and Evolution 13:1219-1223
- Triglia T, Peterson GM, Kemp DJ (1988) A procedure for *in vitro* amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acid Research 16:8186
- Trung LQ, Dung PX, Ngan TX (1996) A scientific note on first report of *Apis laboriosa*F. Smith, 1871 in Vietnam. Apidologie 27:487-488
- Tunwell REA, Wickenden C, Bertrand BMA, Shevchenko VI, Walsh MB, Allen PD, Lai FA (1996) The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. Biochemical Journal 318:477-487
- Tyshenko MG, Walker VK (1997) Towards a reconciliation of the introns early or late views - triosephosphate isomerase genes from insects. Biochimica et Biophysica Acta - Gene Structure and Expression 1353:131-136
- Underwood BA (1990a) Seasonal nesting cycle and migration patterns of the Himalayan honey bee *Apis laboriosa*. National Geographic Research 6:276-290

- Underwood BA (1990b) Time and drone flight of *Apis laboriosa* Smith in Nepal. Apidologie 21:501-504
- Valcarcel J, Gaur RK, Singh R, Green MR (1996) Interaction of U2AF⁶⁵ RS region with pre-mRNA of branch point and promotion base pairing with U2 snRNA. Science 273:1706-1709
- Venkatesh K, Hasan G (1997) Disruption of the IP3 receptor gene of *Drosophila* affects larval metamorphosis and ecdysone release. Current Biology 7:500-509.
- Venkatesh K, Siddhartha G, Joshi R, Patel S, Hasan G (2001) Interactions between the inositol 1,4,5-trisphosphate and cyclic AMP signaling pathways regulate larval molting in *Drosophila*. Genetics 158:309-318
- von Frisch K (1967) The Dance Language and Orientation of Bees. Harvard University Press, Cambridge, Massachusetts
- Wagener-Hulme C, Kuehn JC, Schulz DJ, Robinson GE (1999) Biogenic amines and division of labor in honey bee colonies. Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology 184:471-479
- Waldorf U, Hovemann BT (1990) Apis mellifera cytoplasmic elongation factor 1α (EF-1α) is closely related to Drosophila melanogaster EF-1α. FEBS Letters 267:245-249
- Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Molecular Biology and Evolution 18:691-699
- Wille A, Michener CD (1973) The nest architecture of stingless bees with special reference to those of Costa Rica (Hymenoptera: Apidae). Revista de Biologia Tropical 21:9-278
- Willis GL, Winston ML, Honda BM (1992) Phylogenetic relationships in the honeybees (Genus Apis) as determined by the sequence of the cytochrome oxidase II region of mitochondrial DNA. Molecular Phylogenetics and Evolution 1:169-178
- Wilson EO (1968) Karl von Frisch and the magic well. Science 159:864-865
- Wilson EO (1971) The Insects Societies. The Belknap Press of Harvard University Press, Massachusetts
- Wilson EO. 1990. Success and dominance in ecosystems: the case of the social insects. Kinne O, editor. Oldendorf: Ecology Institute. 104 p.

- Winston ML (1987) The Biology of the Honey Bee. Harvard University Press, Cambridge
- Withers GS, Fahrbach SE, Robinson GE (1993) Selective neuroanatomical plasticity and division of labour in the honeybee. Nature 364:238-240
- Witthorft W (1967) Absolute anzahl und verteilung der zellen im hirn der honigsbiene. Z. Morph. Tiere 61:160-184
- Wojcikiewicz RJH (1995) Type I, II, and III inositol-trisphosphate receptor are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. The Journal of Biological Chemistry 270:11678-11683
- Wongsiri S, Lekprayoon C, Thapa R, Thirakupt K, Rinderer TE, Sylvester HA, Oldroyd BP, Booncham U (1997) Comparative biology of *Apis andreniformis* and *Apis florea* in Thailand. Bee World 78:23-35
- Wongsiri S, Limbipichai K, Tangkanasing P, Mardan M, Rinderer T, Sylvester HA, Koeniger G, Otis G (1990) Evidence of reproductive isolation confirms that *Apis* andreniformis (Smith, 1858) is a separate species from sympatric *Apis florea* (Fabricius, 1787). Apidologie 21:47-52
- Wongsiri S, Thapa T, Oldroyd B, Burgett DM (1996) A magic bee tree home to *Apis dorsata*. American Bee Journal 136:796-799
- Woyke J (1997) Expression of body and hair color in three adult castes of the red honeybee *Apis koschevnikovi* Von-Buttel-Reepen, 1906 in Sabah, Borneo. Apidologie 28:275-286
- Wu Y, Kuang B (1987) Two species of small honeybee-a study of the genus *Micrapis*.Bee World 68:153-155
- Yamada N, Makino Y, Clark RA, Pearson DW, Mattel MG, Guenet JL, Ohama E, Fujino I, Miyawaki A, Furuichi T, Mikoshiba K (1994b) Human inositol 1,4,5trisphosphate type-1 receptor, InsP₃R1: structure, function, regulation of expression and choromosomal localization. Biochemical Journal 302:781-790
- Yoshikawa S, Tanimura T, Miyawaki A, Nakamura M, Yuzaki M, Furuichi T, Mikoshiba K (1992) Molecular cloning and characterization of the inositol 1,4,5-trisphosphate receptor in *Drosophila melanogaster*. The Journal of Biological Chemistry 267:16613-16619

- Zeuner FE, Manning FJ (1976) A monograph of fossil bees (Hymenoptera: Apoidea). Bulletin of the British Museum of Natural History 27:155-254
- Zhang JF (1990) New fossil species of Apoidea (Insect:Hymenoptera). Acta Zootaxon Sinica 15:83-91