This file is part of the following reference:

Access to this file is available from:

http://eprints.jcu.edu.au/1249
HONEY BEE BEHAVIOURAL EVOLUTION AND
ITPR GENE STRUCTURE STUDIES

Thesis submitted by

Rika Raffiudin MSc (Honours)
In March 2002

for the degree of Doctor of Philosophy
in Zoology and Tropical Ecology
within the School of Tropical Biology
James Cook University
STATEMENT OF ACCESS

I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and, by microfilm or other means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement:

In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper public written acknowledgment for any assistance which I have obtained from it.

Beyond this, I do not wish to place any restriction on access to this thesis.

Rika Raffiudin

March 27, 2002
ABSTRACT

Honey bees (genus *Apis*) display a rich variety of fascinating traits, which can reveal considerable information about their evolution by means of analysis and investigation. Therefore, my main objective is to investigate some of these traits in order to determine food recruitment and nesting behaviour ancestral traits in *Apis*.

In my first experiment, I focused on foraging behaviour performed by the forager honey bee. Its ability to conduct food recruitment through elegant dance behaviour is facilitated by memory formation in the brain. In the first experimental study described in Chapter 2, I conducted an *itpr* gene characterisation, a highly expressed gene present in honey bee brain (Kamikouchi et al. 1998). A partial sequence of the *A. mellifera itpr* gene was obtained which comprised of 2,091 bp and showed 62%, 60%, 33%, 56%, and 56% similarities respectively to those in *Panulurius argus* (lobster), *Drosophila melanogaster*, *Caenorhabditis elegans*, *Xenopus laevis*, and *Mus musculus itpr*1. A phylogenetic analysis using *itpr* demonstrated that *D. melanogaster itpr* is closest to that of *A. mellifera itpr*. It has two introns showing the same positions as those of *D. melanogaster itpr* introns (Sinha and Hasan 1999) and there are four *Apis itpr* introns which appear absent in *D. melanogaster*. In my research, I investigated several conserved putative sites in *A. mellifera* IP3R protein namely protein kinase A (PKA) and protein kinase C (PKC) phosphorylation sites. These particular phosphorylation sites are considered to be important in honey bee memory formation (Menzel 2001).

Certain parts of *itpr* characterised in Chapter 2 were used as molecular markers for honey bee molecular phylogenetic reconstruction, concatenated with *COII* and *lsRNA* genes.

In further analysis based on the more complex model of DNA evolution, another hypothesis of *Apis* evolution was revealed. According to this model, the monophyletic *Apis* genus is split into two lines; those are the *A. mellifera* group line and the *A. dorsata* and *A.*
Another outcome based on COII molecular phylogenetics combined with previous data, indicated the ambiguity detected in A. koschevnikovi by Willis et al. (1992) resulted from a possible error.

A. florea and A. andreniformis were confirmed as basal species in Apis phylogeny followed by the more derived species: A. dorsata, A. laboriosa, A. d. binghamii, A. mellifera, A. koschevnikovi, A. cerana, A. nuluensis, and A. nigrocincta. My findings suggest that A. nuluensis and A. nigrocincta are the most derived species and that they have recently speciated from A. cerana.

By mapping dance behaviour characteristics onto the weighted Maximum Likelihood (ML) consensus tree, an interesting result was produced. It was found that unordered trait analysis did not answer the question whether horizontal dancing or vertical dancing was the ancestral trait because species with vertical dance behaviour are monophyletic and so are those with horizontal dance behaviour. However, given that horizontal dancing behaviour is less complex, an ordered dance character state seems justified. Based on these considerations, horizontal dance behaviour seems most likely to be ancestral. Another possibility of dance behaviour evolution hypothesis revealed by applying another DNA evolution model in ML analysis, mentioned that the vertical dancer honey bees (A. mellifera and A. dorsata group) are not monophyletic; they are clustered in different clade. The latter are in the same clade with the other horizontal dancers, A. florea group. Hence, it turns another possibility that vertical dance could be the ancestral to that of horizontal dance.

Inferring honey bee nest behaviour by mapping onto the molecular phylogenetics tree led me to the conclusion that there were two alternative evolutionary histories accounting well for this behaviour. One scenario has the ancestral state for Apis being open nesting with cavity nesting being a derived state. In the other, equally parsimonious scenario, cavity nesting in Apis is ancestral and apparent derived directly from cavity nesting in the
Bombini and Meliponini, and open-nesting has been evolved twice (or once) in the *A. florea* and *A. dorsata* groups.

Only open nesters that construct platform at the top of their nests perform horizontal dancing. Other open nesters such as the *A. dorsata* group do not construct such platform and so it is possible that their dance behaviour has evolved into a vertical dance. Similar features namely no platform and vertical dance behaviour exists in the *A. mellifera* group. Hence, there is an adaptation of dance behaviour to the nest structure, which shows a correlation between these two behavioural character traits.
ACKNOWLEDGEMENTS

I wish to acknowledge my indebtedness to my supervisor, Prof. Ross Crozier a highly dedicated scientist with never-ending outstanding scientific ideas. One of these ideas was the itpr gene and he suggested to me (3 years ago) to explore this gene for my PhD project. This area of research has proved to be a very interesting one for me in adding to the existing body of knowledge concerning this gene’s evolution and its link to honey bee behaviour. I thank him for his supervision of my work and also for funding part of my PhD project from his ARC honey bee and conference funded (Chiangmai, Thailand, in 2000), as well as for providing other study facilities for me.

Prof. Crozier’s lab members are also an amazing group of friend and I would like to thank them all especially Ching Crozier, Michelle Guzik, Lynn Atkinson, Rebecca Johnson, Melissa Carew, Maria Chiotis, Mike Goodisman, and Graham Thompson for their huge technical assistance and in checking my thesis. Further thanks go to Simon Robson and Simon Cook both of whom gave me excellent ideas during my PhD exit seminar preparation.

I also wish to thank AusAID who sponsored my PhD scholarship as well as Doctoral Merit Research Scheme (DMRS) which funded most of the literature. The Zoology Department and the School of Tropical Biology and Ecology at JAMES COOK UNIVERSITY Townsville also deserve my grateful thanks for providing me with such an excellent place to conduct my molecular research into social insect evolution.

Without the kindness of bee researchers such as Ben Oldroyd, Soesilowati Hadisoesilo, Regula Schimd-Hempel, Jurgen Paar, Siti Salmah, and Gard W. Otis, my study could not have been completed. These people have generously provided the honey bees and the bumbles bees for my study. I am also grateful to Salim Tingek, and Mike Burgess who have given me kind assistance in honey bee and stingless bee collections. I owe further
thanks to Robert Lawn for the *A. mellifera* specimens that I used in my *itpr* cDNA experiments.

For phylogenetic assistance, I thank to Lars Jermiin who gave me assistance in running the TREECONS program.

Several pieces of information in my thesis were obtained from personal communication. Therefore, first I would like to thank Ben Oldroyd for the *A. mellifera* open nest information and the concept of multicombs and singlecomb in *Apis*, which proved to be a fascinating area to pursue. Secondly, I am grateful to Andrew Beckenbach for his unpublished ATP-8 primer, which I have used to amplify 3’-end of *Trigona fimbriata* COII gene. Finally, I thank Tom Seeley for giving me his kind permission to include his *A. cerana* cavity-nesting picture in my thesis.

Soesilowati Hadisoesilo, Siti Salmah and Idris Abas deserve my thanks for their assistance during *A. andreniformis* dance behaviour observations in Padang, Sumatra, Indonesia.

I am grateful to my institution in Indonesia, the BOGOR AGRICULTURAL UNIVERSITY, for giving me an opportunity to study overseas at JAMES COOK UNIVERSITY. My special thanks go to the members of the Zoology Laboratory (Biology Department, Faculty of Mathematics and Natural Sciences).

My lovely husband, Drajit Nugraha, and my lovely daughter, Rahmia Nugraha, please allow me to thank you for your unforgettable patience and never-ending encouragement. You have made it possible for me to spend countless hours, day and night, working on my PhD completion.

Last, but not least, I wish to say thank you, to my mama and papa, and to my mother-in-law and father-in-law, for their patient prayers for my study success.
TABLE OF CONTENTS

STATEMENT OF ACCESS ... ii
ABSTRACT .. iii
ACKNOWLEDGEMENTS ... vi
TABLE OF CONTENTS ... viii
LIST OF TABLES ... xi
LIST OF FIGURES ... xiii
LIST OF APPENDICES .. xvi
STATEMENT ON SOURCES .. xvii

CHAPTER 1: General Introduction: Honey bee biology and neural system ... 1

INTRODUCTION .. 1
Honey bee biology .. 1
Honey bee taxonomy ... 2
Honey bee distribution ... 6
Bee fossil records .. 9
Honey bee behaviour: nest structure and dance behaviour 10
Honey bee: behaviour and brain .. 16

CHAPTER 2: A. mellifera Inositol 1,4,5-Trisphosphate Receptor (Itpr) Gene Structure ... 19

ABSTRACT ... 19

INTRODUCTION .. 20
Intracellular second messengers and their genes target in A. mellifera brain ... 20
Inositol 1,4,5-trisphosphate (IP₃): a second messenger pathway .. 21
Itpr gene and the splicing sites ... 21
Inositol 1,4,5-trisphosphate receptor structure 22
Exon-intron organisation ... 24

OBJECTIVES ... 26
LIST OF TABLES

CHAPTER 2:

Table 1: Oligonucleotide primers used in *A. mellifera* itpr gene characterisation ... 28

Table 2: Partial *A. mellifera* itpr gene intron length, conserved and non-conserved introns splice-sequences ... 34

Table 3: *A. mellifera* itpr gene nucleotide variants 35

Table 4: Likelihood value of each itpr tree using different amino acid models ... 36

CHAPTER 3.

Table 1. Nest structure comparisons in Bombini, Meliponi, and Apini … 53

Table 2. Bee sample locations and collectors 57

Table 3. PCR and sequencing primers of honeybee COII and lsRNA genes 59

Table 4. Honey bee COII sequence used in data comparison 62

Table 5. Itpr exon - intron length and intron deletion parts 65

Table 6. Nucleotide sequence data for each codon position and or each gene ... 65

Table 7. The homogeneity of base composition between sequences was tested using TREEPUZZLE 5.0 program 66

Table 8. Numbers of constant, variable and informative sites of unweighted Maximum Parsimony analysis of itpr, COII and lsRNA genes 66

Table 9. List of model of substitutions determined by MODELTEST program (Posada and Crandall 1998) for each gene and the concatenated datasets. ... 69

Table 10. Tree topology comparisons using the concatenated datasets and the HKY+G+I model .. 75

Table 11. Tree topology comparisons between honey bee HKY+G+I and GTR+G+I tree topology under GTR model of substitution 78
Table 12. Tree topology comparisons between honey bee HKY+G+I and GTR+G+I tree topology under HKY+G+I model of substitution…… 78

Table 13. Tree topology comparisons between honey bee GTR+G+I and GTR+G+I outgroup shifted to dwarf honey bees tree topology under GTR+G+I model of substitution ………………………………………………… 79
LIST OF FIGURES

CHAPTER 1:
Figure 1. The cavity nesting of *A. cerana* 14
Figure 2. *A. dorsata* open nesting ... 14
Figure 3. *A. florea* open nesting ... 15
Figure 4. *A. andreniformis* open nesting 15

CHAPTER 2:
Figure 1: Nucleotide and predicted amino acid sequence of partial *A. mellifera itpr* based on genomic and cDNA. 34
Figure 2: *A. mellifera* and *D. melanogaster itpr* gene (Sinha and Hasan, 1999) and the intron positions comparisons 35
Figure 3: The quartet puzzling tree with its support values constructed from amino acids *itpr* gene of *A.mellifera, D. melanogaster, P. argus, C. elegans, X. laevis, M. musculus* 36

CHAPTER 3:
Figure 1. *Itpr* exons (boxed) and introns (lined) regions amplified..... 58
Figure 2. Honey bee *COII* (upper) and *lsRNA* (lower) primers that are used in this study ... 59
Figure 3a. *Itpr* exons substitution numbers and distances for each codon positions. ... 67
Figure 3b. *Itpr* transition and transversion relative rates 67
Figure 4. *COII* relative rate ... 68
Figure 5. *lsRNA* substitution numbers of each pair of species and Tamura Nei corrected distances. ... 68
Figure 6. Honey bee most likely tree based on *itpr, COII* and *lsRNA* genes by using GTR+G+I model of substitution (ln = -9649.26840) 70
Figure 7a. Honey bee *itpr* ML tree based on HKY+G+I substitution model... 71
Figure 7b. Honey bee *itpr* unweighted MP tree 71
Figure 8a. Honey bee COII ML tree based on HKY+G+I substitution model ... 72

Figure 8b. Honey bee COII unweighted MP tree .. 72

Figure 8c. Honey bee COII ML tree based on GTR+G substitution model 73

Figure 9a. Honey bee lsRNA ML tree based on HKY+G+I substitution model ... 74

Figure 9b. Honey bee lsRNA unweighted MP tree 74

Figure 10a. ML-rule consensus of honey bee phylogenetic tree by using HKY+G+I substitution model .. 76

Figure 10b. The most parsimony honey bee phylogenetic tree 77

Figure 11. Honey bee COII phylogenetic ML tree based on HKY substitution model, compiled from previous studies............................. 81

Figure 12. Mapping of honey bee dance behaviour onto ML (HKY+G+I model of substitution) & unweighted MP tree, by using (a) unordered and (b) ordered assumptions.. 83

Figure 13. Mapping of honey bee dance behaviour onto ML tree (GTR+G+I model of substitution), by using (a) unordered and (b) ordered assumptions. .. 84

Figure 14. Mapping of honey bee nesting behaviour onto ML (HKY+G+I model of substitution) & unweighted MP tree, by using (a) unordered and (b) ordered assumptions, and applying non-homologous assumption of nesting trait ... 86

Figure 15. Mapping of honey bee nesting behaviour onto ML tree under GTR+G+I model of substitution, by using (a) unordered and (b) ordered assumptions, applying non-homologous assumption of nesting trait... 87

Figure 16a. Mapping of honey bee nesting behaviour onto ML (HKY+G+I model of substitution) & unweighted MP tree, by using unordered and ordered assumptions, and applying Bombini, Meliponini and Apini homologous cavity nesting behavioural trait....... 88

Figure 16b. Mapping of honey bee nesting behaviour onto ML tree under GTR+G+I model of substitution by using unordered
and ordered assumptions, and applying Bombini, Meliponini and Apini homologous cavity nesting behavioural trait………………… 89
LIST OF APPENDICES

CHAPTER 2:

APPENDIX 1. Partial itpr gene alignment ... 45
APPENDIX 2. A. mellifera partial itpr gene: intron and exon sequences…. 48

CHAPTER 3:

APPENDIX 1. Itpr DNA sequence alignment 95
APPENDIX 2. COII DNA sequence alignment 101
APPENDIX 3. IsRNA DNA sequence alignment 105
STATEMENT ON SOURCES

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

March 27, 2002

Rika Raffudin