JCU ePrints

This file is part of the following reference:

Meek, Susan Denise (1982) Structure, growth and regeneration in the astrocoeniid scleractinian coral, Acropora formosa. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/12114

STRUCTURE, GROWTH AND REGENERATION IN THE ASTROCOENIID SCLERACTINIAN CORAL, <u>ACROPORA FORMOSA</u>

Thesis submitted by Susan Denise Meek, B.Sc.(Hons.) (Surrey), M.Sc. (Southampton)

in August, 1982

for the degree of Doctor of Philosophy in the Department of Botany at James Cook University of North Queensland

STATEMENT OF ACCESS

I, the undersigned author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via Australian Research Online, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and;

I do not wish to place any further restriction on access to this work

Or

I wish this work to be embargoed until

Or

I wish the following restrictions to be placed on this work:

Name (please print)

Signature

Date

ABSTRACT

<u>Acropora formosa</u> Oken, 1815, a fast growing member of the coral genus which dominates regions of dense coral growth throughout the Great Barrier Reef Province and in most reefs of the Indo-Pacific region has been studied with respect to its structure, functional morphology and histology.

The three dimensional lattice structure of the corallites which make up the openly branched colony is described. Aspects of the growth of the corallum including the manner of radial extension and the position of the growth points for longitudinal extension (the "trabecular times") are investigated.

The anatomy and histology of the polyp is described, with particular reference to the relationship between the tissue and the skeleton, the structure of the mesenterial filaments, and the organisation of the musculature. An account is also given of the histochemistry of the gland cells. An attempt is made to relate these observations to various aspects of behaviour of the polyp and the possible evolutionary origins of the genus.

Diel expansion and contraction of the polyp is studied and the cellular mechanisms which effect such changes are analysed. The tissues over the trabecular tines are shown to interconvert between two distinct conformations depending upon the state of expansion of the polyp. Evidence is presented that re-orientation of the cells of the inner body wall at night creates a space into which the trabecular tines extend.

The pattern of cell division is studied by observing the incorporation of tritiated thymidine using autoradiographic techniques. A diel rhythm of DNA synthesis, and hence cell division, is demonstrated. This rhythm varies in magnitude on a seasonal basis. The significance of these observations in relation to skeletal growth is discussed. It is concluded that cell division keeps pace with skeletal growth, allowing extension in the trabecular times to be fully accommodated. Maintenance of coral branches in darkness results in the disappearance of the diel pattern of DNA synthesis.

iii

Infiltration of the characteristic, white tipped branch ends of <u>A. formosa</u> by zooxanthellae is studied and evaluated in terms of its effect on calcium carbonate deposition, and its possible significance to the nutritional balance of the colony. It is proposed that browning is part of a mechanism by which the metabolic resources of the colony are rationalised in response to changes in prevailing environmental conditions.

Histological studies have been made of the pattern of events involved in tissue repair and regeneration in severed branches. It is reported that the gastrodermis initiates the resealing of the tissues and contributes to the reformation of the epidermis before restoration of the mesoglea. The calicoblastic layer is the last to be repaired. The removal of cellular debris from repairing tissue is effected by amoebocytes, whilst the differentiation of interstitial cells at the wound edge appears to be responsible for the re-appearance of non-epithelial cell types in the reformed epidermis. The presence of zooxanthellae in the outer body wall immediately adjacent to the damaged tissue enhances the rate of repair.

Regeneration of axial and radial corallites after severance of a branch tip occurs very rapidly. A detailed description of regeneration, both of the tissues and the skeleton, is supplied, and the possible role of products of zooxanthellae photosynthesis discussed. The response to local infections of the cut surface by filamentous algae is also described. To Rachel

TABLE OF CONTENTS

			Pa	ge No.
Titl	.e pag	e		i
Stat	tement	of Acces	S	ii
Abs	tract			iii
Ded	icatio	n		v
Tab	le of	Contents		vi
List	t of F	igures		x
List	t of T	ables		xix
Stat	tement	of Sourc	es	xx
Ack	nowle	dgements		xxi
1.	lntr	oduction		1
2.	Mate	erials and	d methods	
	2.1	Collectio	on and maintenance of specimens	7
	2.2	Prepara	tion and examination of skeletal material	8
	2.3	Tissue p	preparation	8
		2.3.1	Fixation	8
		2.3.2	Decalcification	8
		2.3.3	Embedding	9
		2.3.4	Sectioning	9
		2.3.5	Staining	10
			2.3.5.1 Histological stains	10
			2.3.5.2 Histochemical stains	12
	2.4	DNA syn	thesis	13
		2.4.1	5-bromodeoxyuridine incorporation	14
		2.4.2	³ H-thymidine incorporation	15
			2.4.2.1 Scintillation counting	18
			2.4.2.2 Autoradiography	18
3.	The	skeleton	of <u>A.</u> formosa	
	3.1	Introduc	ction and terminology	23
		3.1.1	Skeletal morphology of the Scleractinia	23
		3.1.2	Previous studies of the skeleton of	
			Acropora	27
	3.2	The skel	letal morphology of branch tips of	
		A. form	osa	30

TABLE OF CONTENTS (contd)

				<u>Page No.</u>
		3.2.1	General morphology	30
		3.2.2	Formation of radial corallites	32
		3.2.3	Response of branch tips to	
			obstruction or damage	32
	3.3	Considera	ation of skeletal structure in	
		<u>A. formo</u>	sa	40
4.	The	polyp of	A. formosa	
	4.1	Introduct	tion and terminology	42
	4.2	The poly	p in relation to the skeleton	50
	4.3	Histology	· · · ·	51
		4.3.1	Inner body wall	54
		4.3.2	Outer body wall	54
		4.3.3	Junction of the inner and	
			outer body walls	55
		4.3.4	Oral disc	57
		4.3.5	Tentacles	58
		4.3.6	Stomodeum	61
		4.3.7	Mesenteries and mesenterial	
			filaments	61
	4.4	Histochen	nistry	66
	4.5	Discussio	n	98
		4.5.1	Anatomy	98
		4.5.2	Tissue Structure	100
			4.5.2.1 Epithelial cells	100
			4.5.2.2 Interstitial cells	101
			4.5.2.3 Nematocysts	102
			4.5.2.4 Amoebocytes	103
			4.5.2.5 Gonads	105
			4.5.2.6 Gland cells	107
		4.5.3	Diel expansion and contraction	
			rhythms	113
			4.5.3.1 Cellular mechanisms of	
			expansion and contraction	on 114
			4.5.3.2 Functional significance	of
			expansion and contraction	on 121
		4.5.4	Structure and function in the	
			mesenterial filaments	126

TABLE OF CONTENTS (contd)

				<u>Page No.</u>
5.	DNA	synthesis	in <u>A. formosa</u>	
	5.1	Introduct	ion	130
	5.2	Studies w	vith the 5-bromodeoxyuridine/	
		Hoescht 3	3258 technique	134
	5.3	Measurem	ent of uptake of ³ H-thymidine	
		by scinti	llation counting	135
	5.4	Measurem	ent of incorporation of ³ H-thymidin	e
		by autora	adiography	137
		5.4.1	Diel patterns of ³ H-thymidine	
			incorporation	138
		5.4.2	Effect of maintenance in light and	•
			darkness on diel patterns of	
			³ H-thymidine incorporation	142
	5.5	Discussio	n	148
6.	Com	parison of	white and brown branch tips of \underline{A} .	formosa
	6.1	Introduct	tion	154
	6.2	Results o	f examination of white and brown	
		tips		155
		6.2.1	Position of white and brown tips	
			and behaviour of polyps	155
		6.2.2	Distribution of zooxanthellae in	
			white and brown tips	155
		6.2.3	Skeletal differences between	
			white and brown tips	156
	6.3	Intermed	iate patterns of distribution	
		of zooxar	nthellae	158
	6.4	Inductior	n of browning	159
	6.5	Discussic	n	165
7.	Repa	air and re	generation in A. formosa	
	7.1	Introduct	tion	170
	7.2	Repair		173
		7.2.1	Experimental procedures	173
		7.2.2	General observations	173
		7.2.3	Histological observations	176

TABLE OF CONTENTS (contd)

			Page	No.
7.3	Regenerat	ion	179	
	7.3.1	Experimental procedures	179	
	7.3.2	External appearance of		
		regenerating branch ends	179	
	7.3.3	Histological observations	181	
	7.3.4	Microscopic appearance of the		
		skeleton	181	
7.4	Response	to colonisation of severed		
	branches	by filamentous algae	182	
7.5	Discussion	ſ	198	
	7.5.1	Cell division and differentiation		
		during repair	198	
	7.5.2	Exchange of cells between layers		
		during repair	198	
	7.5.3	Contribution of different tissue		
		layers and cell types to repair	199	
	7.5.4	Regeneration of severed branches	205	
	7.5.5	Response to colonisation of damage	d	
		surfaces by filamentous algae	206	
Summary	and Concl	usions	208	
Reference	S		213	
Appendix	A: Statist	ical analyses of results of		
auto	oradiograp	hic studies of 3 H-thymidine		
inco	poration	into branch tips of <u>A. formosa</u>	237	

LIST OF FIGURES

		Page	No.
1.	Evolutionary pattern of the scleractinian		
	sub-orders and families (reproduced from Wells,		
	1956, pF363)	4	
2.	Map of Cleveland Bay area and position of Nelly		
	Bay collecting site	21	
3.	Growth form of A. formosa routinely collected from		
	Nelly Bay for experimental work	22	
4.	Decalcified A. formosa tip embedded in an agar		
	block	22	
5.	Experimental apparatus	22	
6.	Scanning electron micrograph of a lightly		
	calcified, white tipped A. formosa branch tip		
	(a) end on view of axial corallite,		
	(b) oblique view of same branch	35	
7.	Longitudinal view of the tip region of the		
	skeleton of an A. formosa branch with part of		
	the axial corallite broken away to reveal internal		
	structure	37	
8.	Recolonisation of dead branches in the basal		
	region of an <u>A. formosa</u> colony	37	
9.	Pad of coenenchyme developed in response to		
	obstruction after 3 weeks	38	
10.	The growth of coenenchyme six days after tissue		
	damage by abrasion	38	
11.	Coenenchyme growth along the edge of a broken		
	off branch end, $1rac{1}{2}$ months after fracture	38	
12.	Generation of new axial corallites in a re-oriented	1.	
	branch (a) Initial condition,		
	(b) After three months	39	
13.	Longitudinal section through a white tipped		
	branch end of <u>A. formosa</u>	68	
14.	Transverse section of a branch tip of A. formosa		
	at the level of the second circle of radial		
	corallites	69	
15.	Portions of the inner body wall	70	
16.	Nematocysts in the calicoblastic epidermis around		
	a trabecular column near a branch tip	70	

		<u>Page No.</u>
17.	The outer body wall during daylight	70
18.	The outer body wall at night	71
19.	MSB stain of the outer body wall	72
20.	Alcian blue–PAS stain of the inner and outer	
	body walls	72
21.	Toluidine blue stain of outer body wall	72
22.	Tissue in contracted state around the site of a	
	trabecular tine	73
23.	Tissue in the expanded state around the site of a	
	trabecular tine	73
24.	Rupture of tissue in the contracted state	74
25.	Rupture of tissue in the expanded state	74
26.	Conformation of tissues over the trabecular tines	
	of white tipped branch ends of A. formosa fixed	
	at 2 hourly intervals over a period of 24 hours	75
27.	Diagramatic representation of the conformation	
	of tissues found over the trabecular tines	
	(a) expanded, (b) contracted	76
28.	Tip region of a white tipped branch end of	
	<u>A. formosa</u> in late afternoon (5 p.m.)	77
29.	Tip region of a white tipped branch end of	
	<u>A. formosa</u> in early morning (1.30 a.m.)	77
30.	Dissection of decalcified tip of A. formosa with	
	retracted tentacles	77
31.	Longitudinal section through a tentacle tip	78
32.	Longitudinal sections through an expanded oral	
	disc and tentacles (a) The section passes through	1
	the edge of the oral disc, the bases of 5 tentacle	S
	and 2 trabecular tines, (b) Section through the	
	edge of the oral disc, (c) Section through the	
	back wall of the centre tentacle, (d) Enlargement	
	from (b) of point of contact of mesenterial exten-	
	sions with oral disc	79

		Page No.
33.	Transverse section through the basal region of	
	a slightly retracted tentacle	80
34.	Transverse section through the mid-region of a	
	moderately retracted tentacle	80
35.	Longitudinal section through one wall of a	
	fully extended tentacle	81
36.	Longitudinal section of tentacle undergoing	
	initial stages of retraction	81
37.	Longitudinal section of buckling in the circular	
	musculature of the gastrodermis of a retracting	
	tentacle	81
38.	Longitudinal section of an advanced state of	
	buckling in a retracting tentacle	81
39.	Diagramatic representation of buckling in a	
	retracting tentacle of <u>A. formosa</u> (a) Epidermal	
	buckling, (b) Gastrodermal buckling	83
40.	Longitudinal section through part of a partially	
	retracted tentacle	85
41.	Longitudinal section of a completely retracted	
	tentacle	85
42.	Oblique longitudinal section through a highly	
	retracted tentacle	85
43.	Oblique transverse section through a highly	
	retracted tentacle	86
44.	Transverse section of a radial polyp at the	
	level of the oral disc	87
45.	Transverse section of a radial polyp at the	
	level of the stomodeum	87
46.	Transverse section of a complete and an	
	incomplete mesentery	87
47.	Transverse section of a radial polyp at the	
	base of the stomodeum	88

		Page	No.
48.	Transverse section through part of the		
	stomodeum of a radial polyp	89	
49.	Longitudinal section through the cnidoglandular		
	band of a type I mesenterial filament	89	
50.	Longitudinal section through the cnidoglandular		
	band of a type I mesenterial filament	89	
51.	Transverse section through a type I mesenterial		
	filament in the upper part of a polyp	89	
52.	Transverse section of two type I and a pair of		
	type II mesenterial filaments	91	
53.	Longitudinal section of a type I mesenterial		
	filament	91	
54.	Longitudinal section of a type II mesenterial		
	filament	91	
55.	Alcian blue-PAS stain of a type I mesenterial		
	filament	93	
56.	Alcian blue-PAS stain of a type II mesenterial		
	filament	93	
57.	Liisberg's stain of a type I mesenterial		
	filament	93	
58.	Spirocyst in a lateral lobe of a type I		
	mesenterial filament	94	
59.	Zooxanthellae in an oblique section of a lateral		
	lobe of a type I mesenterial filament	94	
60.	Zooxanthellae in the process of extrusion		
	from the ingestion-excretion region of the lateral		
	lobes of a type I mesenterial filament	94	
61.	Zooxanthellae on the membranous portion of		
	a type I mesenterial filament	94	
62.	Bolus of material for extrusion in coelenteron		
	of an axial polyp	95	
63.	Longitudinal section through an hermaphroditic		
	radial polyp taken in mid-October	95	
64.	Comparison of mature and immature testes		
	(a) Mature, (b) Immature	95	

		Page No.
65.	Developing oocyte on a type I mesenterial	
	filament	95
66.	Serial sections through type II mesenterial	
	filaments extruded through the outer body wall	
	(a-d)	97
67.	Longitudinal section of a white tipped branch	
	end of <u>A.</u> formosa treated with the BrdU/Hoescht	
	33258 techique - 4 a.m. sample	146
68.	Longitudinal section of a white tipped branch	
	end of A. formosa treated with the BrdU/Hoescht	
	33258 technique – 4 p.m. sample	146
69.	Uptake of 3 H-thymidine into white tipped	
	branch ends of A. formosa (1 hour incubation)	
	at different times over a 24 hour period.	136
70.	Autoradiograph of a longitudinal section through	
	the outer body wall over the extreme tip of an	
	axial polyp following exposure of the intact tip	
	to ³ H-thymidine	147
71.	Masking of silver grains by mucus deposition	
	in an autoradiograph of a longitudinal section of	
	the outer body wall proximal to a branch tip	147
72.	Mitotic cells in an axial polyp at the distal	
	edge of the outer body wall epidermis	147
73.	Autoradiographic measurement of ³ H-thymidine	
	incorporation into white tipped branch ends of	
	A. formosa (1 hour incubation) at different	
	times over a 24 hour period at various times	
	of the year	139
74.	Mean percent labelled cells in grouped	
	samples of white tipped branch ends of	
	$\frac{A}{2}$ formosa following incubation with	
	³ H-thymidine	141
75.	Autoradiographic measurement of ³ H-thymidine	
	incorporation into branch ends of colonies of	
	A. formosa (one hour incubation) at different	
	times over a 24 hour period following main-	
	tenance of the colony in continuous darkness	143

		Page No.
76.	Mean percent labelled cells in grouped	
	samples of branch ends of colonies of	
	A. formosa incubated with 3 H-thymidine	
	following maintenance in either natural	
	illumination or continuous darkness	145
77.	White tipped branch of A. formosa fixed with	
	buffered sea water formalin	160
78.	Longitudinal section through the axial	
	corallite of a white tipped branch of A. formosa	
	stained with Liisberg's stain	160
79.	Brown tipped branch of A. formosa fixed with	
	buffered sea water formalin	160
80.	Longitudinal section through the axial	
	corallite of a brown tipped branch of A. formosa	
	stained with Liisberg's stain	161
81.	Skeleton of a branch tip of A. formosa recently	
	infiltrated by zooxanthellae (for comparison with	
	Figure 6a).(a) End on view, (b) Oblique view	162
82.	Detail of a trabecular tine (from Figure 6a)	
	in a white tip	163
83.	Detail of trabecular tines (from Figure 81a)	
	in a brown tip	163
84.	Detail of a broken trabecular tine (from	
	Figure 81a) showing stereome deposition	164
85.	Brown tipped branches of <u>A. formosa</u> showing	
	daytime expansion	164
86.	White axial polyp of <u>A.</u> formosa with brown	
	tentacles showing daytime expansion	164
87.	Skeletal compression in white tipped branches	
	of <u>A. formosa</u> after prolonged maintenance in an	
	aquarium	164
88.	Longitudinal section from near the centre of	
	a severed branch of A. formosa immediately after	
	removal of the tip	183
89.	Longitudinal section from near the centre of	
	a severed branch of <u>A. formosa</u> , 3 hours after	
	removal of the tip	183

		Page	No.
90.	Longitudinal section from near the centre of		
	a severed branch of <u>A. formosa</u> , 31 hours after		
	removal of the tip	183	
91.	Gastrodermal cells in repairing epidermis 13		
	hours after removal of tip	184	
92.	Nematocysts in repairing gastrodermis 15 hours		
	after removal of the tip	184	
93.	Nematocysts in repaired gastrodermis 38 hours		
	after removal of the tip	184	
94.	Mucus secretion over a severed branch end 13		
	hours after removal of the tip	185	
95.	Extrusion of type II mesenterial filaments from		
	a severed branch end 11 hours after removal of		
	the tip	185	
96.	Detail of mucus exuded from a branch end 6		
	hours after removal of the tip	186	
97.	Different stages in the progress of repair		
	between the trabecular columns of successive		
	synapticulothecal rings 27 hours after removal of		
	the tip	186	
98.	Gastrodermal cells sealing the coelenteron		
	13 hours after removal of the tip	186	
99.	Epidermal cells from the wound edge migrating		
	across the wound surface 13 hours after removal		
	of the tip	186	
100.	State of repair of the tissues over the		
	coelenteron 21 hours after removal of the tip	187	
101.	State of repair of the tissue over the		
	coelenteron 27 hours after removal of the tip	187	
102.	State of repair of the tissues over the		
	coelenteron 34 hours after removal of the tip	187	
103.	State of repair of the tissues over the site		
	of a trabecular column 27 hours after removal of		
	the tip	188	

		Page No.
104.	State of repair of the tissues over the site	
	of a trabecular column 31 hours after removal of	
	the tip	188
105.	State of repair of the tissues over the site	
	of a trabecular column 34 hours after the removal	
	of the tip	188
106.	Acidophilic granules and granule containing	
	vacuoles in repairing tissue 27 hours after	
	removal of the tip	189
107.	A mesogleal amoebocyte in repairing tissue	
	31 hours after removal of the tip	189
108.	Lateral lobes of a type I mesenterial	
	filament near the repairing surface 31 hours after	
	removal of the tip	189
109.	State of repair of outer body wall 34 hours	
	after removal of the tip	190
110.	State of repair of the outer body wall 38 hours	
	after removal of the tip	190
111.	Differentiating interstitial cells in the pre-	
	wound epidermis 31 hours after removal of the tip	190
112.	Broken branch end of <u>A. formosa</u> after 18 days	
	regeneration. (a) Macroscopic view, (b) Longi-	
	tudinal section through the axial polyp	191
113.	Broken branch end of <u>A. formosa</u> after 26 days	
	regeneration. (a) Macroscopic view, (b) Oblique	
	longitudinal section through the axial polyp	192
114.	Broken branch end of <u>A. formosa</u> after 46 days	
	regeneration. (a) Macroscopic view, (b) Longi-	
	tudinal section through the axial polyp	193
115.	Broken branch end of <u>A. formosa</u> after 84 days	
	regeneration	193
116.	Skeleton of a branch of <u>A. formosa</u> after 8 days	
	regeneration. (a) Low power, (b) High power	194

		Page No.
117.	Skeleton of a branch end of <u>A.</u> formosa after	
	26 days regeneration	195
118.	Skeleton of a branch end of <u>A.</u> formosa after	
	46 days regeneration	195
119.	Broken branch end of <u>A. formosa</u> 7 days after	
	colonisation by filamentous algae	196
120.	Broken branch end of <u>A. formosa</u> 23 days after	
	colonisation by filamentous algae	196
121.	Broken branch end of <u>A. formosa</u> 40 days after	
	colonisation by filamentous algae	196

.

LIST OF TABLES

<u>Page No.</u>

1.	Initiation of new branches in a reoriented	
	branch tip of <u>A. formosa</u>	34
2.	Morphology and histochemistry of the glandular	
	cell types in the polyps of <u>A.</u> formosa	52
3.	Distribution of non-epithelial cell types in the	
	polyps of <u>A. formosa</u>	53
4.	Summary of the major results of histochemical	
	studies of gland cells in corals compared with	
	the writer's findings with A. formosa	108
5.	Time course of the repair process in branches	
	of A. formosa severed 25mm from the tip	175
6.	Rate of extension of the axial corallite and	
	development of radial corallites in a	
	regenerating tip of A. formosa	180

I declare that this thesis is my own work and has not been submitted in any form for another degree of diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

S. D. Meek 13th August 1982 The author wishes to thank the following people:-

- Prof. D.J. Griffiths for his wise counsel, patience and support as supervisor of this thesis,
- Dr. D.J. Barnes for his role as associate supervisor, especially for arranging the use of facilities at the Australian Institute of Marine Science to conduct laboratory-based experimental work,

Dr. Dave Maguire, Dr J.E.N. Veron, Dr John Collins, Len Zell,

- Dr. Margaret Streamer and Dr Bruce Chalker for their interest and advice at various stages of the project,
- Dr Carden Wallace for her taxonomic identifications and assistance with scanning electron microscopy,

Fellow Ph.D. students Vicki Harriot, Jamie Oliver, Peter Harrison and Zena Dinesen for their stimulating company,

Leigh Winsor and Phil Osmond for their histological expertise,

Trev Cox for his practicality and sense of humour,

- Monty Devereaux and David Berker for assistance in the field,
- Dr. Russell John and Dr. Rhonda Jones for help with statistical analysis,
- The photography department at James Cook University,
- Rachel Berker and Evelyn Dillon for their artistic insight,
- Anneke Silver for German translation,
- The Commonwealth Government for the Commonwealth Post-graduate Award which made this all possible, especially their local representative, Ron Morris of the Education Office,
- Barry Dillon for his forbearance in the final stages of this thesis.
- Maree Davoren of The Typing Centre for her skill and care in typing this manuscript,

and

The Berker family for their unfailing love and support.