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APPENDIX A

DYNAMIC RESPONSE OF PRESSURE TUBING

Bergh and Tijdeman (6) have analysed the motion of a fluid in a tube
with a circular cross-section, the fundamental flow equations being the
Navier-Stokes equations, the equation of continuity, the equation of state
and the energy eguation. By assuming that: all disturbances are sinusoidal
and very small, the internal radius of the tube is small in comparison with
its length and the flow is laminar throughout the system, the above equations
can be gsimplified greatly. Upon applying suitable boundary conditions,
the governing equations can then be solved. Bergh and Tijdeman have done
this for a series connection of N tubes and N volumes (see Figure A.1l),
obtaining a recursion formula that relates the sinusoidal pressure
disturbance in volume j to the sinusocidal pressure disturbances in the

preceding volume j - 1 and the next volume j + 1.
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The quantities are:

ao = mean velqcity of sound

A = /-1

Jn = Bessel function of first kind of order n

k = polytropic constant for the volumes

L = tube length

P = amplitude of pressure disturbance

R = tube radius

Vv = pressure transducer volume

Vt = tube volume

U = dynamic viscosity of fluid

w = frequency

Py = mean density

g = dimensionless increase in transducer volume due to diaphragm
deflection.

From Eguation A.l, the expressions for the complex ratio of the pressure
fluctuations in each transducer j to the sinuscoidal input pressure Py

can be obhtained by sﬁccessively putting j = N, n=-1, ...., 2, 1.
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APPENDIX B

ERROR SOURCES IN SPECTRAL ANALYSIS

The autospectral density function (also called the power spectral
density function or variance spectral function} of random data dJdescribes
the general frequency composition of the data in terms of the spectral
density of its mean value. A variance expression for spectral density
estimates is mest conveniently obtained by direct Fourier transform
operations, where the autospectral density function of a stationary

(ergodic) Gaussian random process x(t) is given by

_ lim 2 _ 2
Ex'® = 1w 7 E [xce,m 2] (8.1)

where E[ ] indicates the expected value and X(f,T) is the finite Fourier

transform of x(t}, that is

(£, = STx(r) e PATEE 4 (8.2)
[a)

An estimate of Exx(f) can be obtained by simply omitting the limit and

expectation operations in Equation B.l, yielding

A _ E. 2
BB = |x(£,D | (B.3)

In a similar manner, the cross—-gpectral density function between two time

series x(t) and y{t) is

2
ﬁxytf) = = |x(g,m ||x(e,m | (B.4)
The simplifications used to arrive at Equation B.3 introduce possible errors
and it can be shown {5) that each frequency component of the estimate ﬁxx(f)

will have a sampling distribution given by

2
ﬁxx (£) Xs

E_(H) 2 (B.5)
XL
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where Xg is the chi-square variable with two degrees of freedom, n = 2.

Increasing the record length does not alter the distribution function
defining the random error of the estimate; it only increases the number of
spectral compcnents in the estimate. If the record length is-interpreted
as a measure of the sample size for the estimate, this implies that
Equation B.3 produces an inconsistent estimate of the autospectral density
function.. The random portion of the estimation error is called the normal

standard error
e = /2 (B.6)
n

For the present case, n = 2 and Er = 1, and the standard deviation of the
estimate is as large as the quantity being estimated. This would be an
unacceptablie random error for most applications but it is not uncommen to

see raw spectral estimates from Eguation B.3 presented as reliable autospectra.

An alternative to presenting the errer in terms of er is to define
cenfidence limits as discussed in Appendix H. Whichever definition of the
error is used, it can be reduced in magnitude by increasing the number of
degrees of freedom, n, in the spectral estimate. This can be achieved by
smoothing the estimate in one of two ways. The first way is to smooth over
an ensemble of estimates by computing individual estimates from g independent
sample records, xi(t): i=1,2, «e.., g, and then averaging the g estimates
at each frequency of a spectral component. The second way is to smeooth
over frequency by averaging together m points either side of a spectral
estimate and replacing'the original value by this average. If the original
frequency resolution was Af, the resolution after smoothing is 2mAf, There
is a similar reduction in frequency resolution for ensemble averaging and is
the penalty which must be paid to increase the reliability ©f the spectral
estimate. With ensemble averaging, the humber of degrees of freedom
becomes n = 2q, whereas n = 2(m+l) for fregquency averaging. In the present
research at least one of these averaging techniques and often both have been

used for the spectra preéented.

An additional effect which should be considered in spectral calculations
is leakage, in which energy is transferred from its correct freguency to a

neiahbouring freguency as a result of the finite length of the recorxd. Thus,
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energy can "leak out" of a spectral bandwidth to bias the spectral estimate
downwards or it can "leak in" so that the spectral estimate can be distorted

upwards (or downwards if the leakage occurs with negative weighting).

A finite time series can be obtained by passing the infinite time
series through a window of finite length. The Fourier transform of the

finite series becomes
X(f) = Y(£) Uf(f) (B.7)

where Y(f) and U(f) are the Fourier transforms of the infinite time series
and the window respectively. If the time series is simply truncated, the
window function is called a boxcar window, its Fourier transform being
presented in Figure B.l. To reduce this leakage problem, it is necessary

to modify the boxcar type of weighting in the time domain (or its eguivalent
Fourier transform operations in the frequency domain) so as to broaden the
main lobe and decrease the side lobes shown in Figure B.l. A number of
different window functions which reduce the leakage have been proposed, the
most popular being the Hanning window (10) and the one-tenth cosire taper
window (9). The Hanning window has the form of a full cosine bell and is

given by

1 2Tt T T
uT(t) = 3 (1 + cos p ), 5 gtg > {B.8)

whereas the one-tenth cosine tape is defined by

5Tt T 2T
20 - T e

cos T ’ > £t ’ 5

’ 27 27
= - kg —= .9

5Kt 27 T
—_ _— gt —

cos T r 5 £ >

The Fourier transform of these two window shapes are shown. in Figure B.1
for comparison with the boxcar window. The reduction in the magnitude of
the side lobes for the two tapered windows is quite apparent. All spectral

analysis in this project has utilized the one-tenth cosine taper window.
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APPENDIX C

ANALYSIS OF VERY NARROW BAND DATA

In determining the energy flux between wind and waves, the two critical
quantities which must be determined are the magnitude of the surface stress
and its phase relative to the surface waves. The techniqgues of auto and
cross spectral analysis are ideally suited to determining these quantities
from time series of surface stress and water level elevation. Indeed,
many previous‘investigators have relied extensively upon such techniques
(117, 134). 1In this research the waves generated by the wave maker were
invariably sinuscidal and therefore distinctly narrow banded. The theor-
etical autospectrum of a sine wave of frequency f is a spike of infinite
height located at £. In practice, this result is distorted by the discrete
finite record length. BAn approximate definition for the autospectrum was

~given by Equation B.3. It can be more rigorously defined by

E (D = Alfi,“{‘) Aif ;_l;‘ % _gT x% (t,£,Af) at] | (c.1)
when spectra are calculated using the Fourier transform technique, Af = 1/T,
so that,for a finite length record,limiting processes in Equation C.1 are
violated. This is true for spectral estimates of any time series, not just
narrow band records. The finite frequency resolution, however, means that
it is highly probably that the frequency f will not coincide with one of the
frequencies of a calculated spectral value, mAf. The final result is a
broader finite height spike rather than an infinite spike. This distortion
becomes progressively worse as the length of the time series is reduced.
Therefore, the calculated spectral shape is dependent upon the record

length and also on how ¢losely the sine wave frequency corresponds to a
discrete calculation frequency. The effects of the finite record length

¢an be seen in Figure C.1l. This figure shows calculated spectra for a
sinusoid with £ = 0.1 Hz but varying record lengths of 136.5, 68.3, 34.1,
17.1, 8.5 and 4.3 mins. Such strong dependence on the sampling parameters
is obviously unacceptable and indicates an alternative technique is required

for reliably analysing such narrow banded records.
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An alternative approach is available in the time domain, where the
equivalents of the auto and cross-spectral functions are the autocorrelation
and crosscorrelation functions. The autocorrelation function of random data
describes the general dependence of the values of the data at one time on
the values at another time. 2An estimate for the autocorrelation between
the values of x{(t) and times t and t + T may be obtained by taking the
product of the two values and averaging over the obserwvation time T. The
resulting average product will approach an exact autocorrelation function as
T approaches infinity:

lim

- i T
Rx('r) = e @ gx(t) x(t + T)dat {c.2)

02, the variance of the record.

Provided the mean of x(t) is zero, RX(O)

For a sinuscidal time series x(t) = a sin Wt,

a2
R {T) = —— cos wrT (c.3)
b4 2

Thexefore, the autocorrelogram will persist periodically over all time
displacements with an amplitude equal to the original sine wave variance
and a period equal to that of the original sine wave. All phase information

is lost however.

The crosscorrelation function can be defined in a similar manner to

Equation C.2 as

(t) =

lim 1 . T
ny oo T éx(.t) y{t + T)dt (C.4)

For the case of two sinuscidal signals with a phase difference ¢, x(t) =

a sin wt and y(t) = b sin (wt + ¢), the cross correlation is

ny(T) = ab cos (WL - ¢) (C.5)

The crosscorrelogram is again periodic with maxima at values of T such that
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2'rr% = ¢ + 2n7 (c.8e)

where T is the period of the sine wave and n is an integer. This behaviour

is illustrated in Figure C.2Z.

In summary, for very narrow band data, the amplitude and frequency of
the signal can be obtained from the autocorrelogram and the phase relation-
ship between the two signals from the crosscorrelogram. This correlogram

technigue has been used in preference to the spectral approach throughout
this research.
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APPENDIX D

CORRECTIONS FOR SYSTEM RESPONSE

In Chapter 4 the response of all the individual systems was examined
and transfer functions obtained. To obtain accurate results it is necessary
to correct recorded time series for the effects of these system responses.
For a system with an input x{t) and an ocutput y(t), Equation 3.30 showed

that their Fourier transforms are related as

¥Y(£) = H{H) X(£) (p.1)

In the discrete finite case, the Fourier transform pair are

N~-1 .
_ T ' _ -12mrk
x(r) = N Eo X ©xp ———— {D.2)
r=0,1,....N-1
and N-1
1 12nrk
= = L X(r) exp ——— in,3)
*x T, N

k=0,1,....N-1

The simple procedure for correcting for the transfer function is then:

(a) Determine Y(f} from the output y{t) and Equation D.2
(b) Divide Y(f) by H(f) to cbtain X(f)
(¢} Determine %(t) from X(£f) and Equation D.3.

The procedure is complicated, however, by the fact that Fast Fourier
Transform (FFT) algorithms only define the transform in the range r = 0,1,
«-+.N/2. Therefore it is necessary to determine the remaining Fourier

coefficients before the inverse transform procedure can be applied. These
can be found from the relationships (5)
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re { X(x) } Re { X(N-r) } (D.4)

and Im{xX(r)} -Im { X(N-x) } ({D.5)

H

To preserve symmetry, the imaginary part of X(N/2) is set to zero as
illustrated in Figuxe D.1l. The discrete Fourier Transform is thus defined
over the range X(0), X(1), .... X(N-1l) and the previously ocutlined procedure

for correcting for the effects of system response can be applied.

In addition, if the input to a system x{t) is known, the ocutput
y(t) can be found in a similar manner. The only difference is that the
Fourier transform of x(t) is multiplied by H{f) rather than being divided.
The analysis procedure described in this appendix and the computer programs
which implement it can be checked in the following manner. For an arbitrary
input to and transfer function for a system the corresponding output can
be found. The reverse procedure can then be run. The final result should
be identical with the initial input. Such a test was conducted and the
results appear in Figure D.2. The time series illustrated in this
figure clearly show that both the correction technique and the computer

programs which implement it are performiﬁg satisfactorily.
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APPENDIX E

ANALYSIS OF PRESSURE DATA

The ultimate goal of the pressure measurements described. in Chapter

7 was to determine the magnitude and phase of the wave-induced air pressure

relative to the surface waves. The quantities measured were the water

surface elevation, the differential pressure between the disk and total

probes, Ath =Py~ P, and the differential pressure between the disk probe

and the free stream static probe, Ast = P~ Pgor The analysis of these

signals to determine the wave-induced static pressure, P, ~ Pso' was

complicated by the frequency response characteristics of the measurement

system, shown schematically in Figure E.l. Specific influences include:

probe calibration, wave follower oscillation pressures, dynamic response

of the pressure tubing, pressure transducer calibration and response,

low pass filter characteristics and D.{. amplifier resgponse.

The full analysis procedure consisted of nine sequential steps which

are described below

(1)

(2)

(3}

The analeg time series for water surface elevation, N, disk-total
differential pressure, Ath and disk-static differential pressure,
Appg

gauge and pressure transducer calibration curves. The pressure

were converted to physical units using the appropriate wave

readings were also corrected for the particular gain used for the

D.C. amplifiers.

The differential pressure signals were corrected for the effects of
the 5 Hz low pass filters using the analysis technique described in
Appendix D. The filter transfer functions, as shown in Figure 4.28,
were assumed to have |H| = 1 and ¢ = 0° for frequencies above 5 Hz.
Had this assumption not been made, then the high frequency noise
{(above 5 Hz) which the filter was used to remove would have been

regenerated by the filter transfer function correction process.

The pressures created by the motion of the wave follower were calcul-
ated assuming the input to the system was the water surface elevation.

This assumes that the wave follower motion and the water surface



(4)

(5)

(6)

(7}

(8)

(9}
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elevation are identical, shown in Section 4.2.2 to he a reascnable
assumption. This step represents the reverse process to step (2}.
Here, the input to the system is known and the output is required,

whereas in (2) the output was known and the input had to be determined.

The wave follower oscillation pressures, calculated in step (3)

were subtracted from the differential pressures of step (2).

The resulting differential pressure signals of step (4) were corrected
for the dynamic response of the thin pressure tubes. Although the
transfer functions for each individual tube are known, it is the
effects on the differential measurements which must be considered.
Therefore, the two sides of the differential measurement will be
effected independently by the response of the tubes. The effect on
the differential measurement is complicated and its calculaticn is
discussed later, The resulting differential pressures at the end of
this stage were the actual pressures sensed by the probes, Ast

and‘Ath, and were free from the effects of instrumentation response.

The water surface elevation and differential pressure signals were
filtered using a non-recursive digital low pass filter (see Appendix
J) to remove harmonics of the primary frequency. The cut-off
frequency of the filter was chosen such that it lay between the first

and second harmonics.

Using the filtered differential pressure measurcments, together
with the disk-probe calibration of Section 4.3.3, P~ pso was
determined as outlined in Section 4.3.1. This value represents the

required wave-induced static pressure.

The autocorrelograms of n and P, ~ Pgo were calculated teogether with

the crosscorrelogram of the two signals.

Using the technique for analysing very narrow band data outlined in
Appendix C, the frequency and amplitudes were determined from the

autocorrelograms and the phase difference from the crosscorrelogram.
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As mentioned earlier the correction of the pressure signalé for the
dynamic effects of the thin pressure tubes posed problems. Although the
transfer functions for the four individual tubes were determined in Section
4.3.6, the output signal for each tube was not known, only the differential
outputs being recorded. It was these differential outputs which needed to

be corrected to determine the actual differential inputs.

The applied and measured pressures are shown in Figure E.2 together
with the individual tube transfer functions. The applied pressures are
the total pressure pt(w), the disk pressure pD(w) and the free stream
static pressure Peo® The correspeonding measured output pressures are
Pt(w), PDz(m) or PDz(w} and P_. There are two output pressures for the
disk as it is connected to the positive parts of both transducers. Aall the
pressures are expressed as functions of the cyclic frequency w, except
the free stream static pressure which is a constant., The tube transfer
functions are identified as: Ht(w) for the total line, HDl(m) for the disk
to transducer 1 line, HDz {w} for the disk transducer 2 line and HS (w) for

the static line.

Since ps ig a constant and HS(O) = 1,0
p, = P (E.1}

Also, since H_ (0} = 1.0
D2

F[pD(u)) - ps] = F[PD2 (w) - Ps]/an“”’ (E.2)

where the notation F[ ] indicates the Fourier transform of [ ]. rFinding
the inverse Fourier transform of the left hand side of Equation E.2 gives
pD(w) = Pg which is one of the required differential inputs. Now that
pD(w) ~ P is known and again since HD1(O) = 1.0, it follows that

}.'"[PD1 (wy - ps] = F[_pD(LU) - B, JH. (w) (E.3)

Dl(

which upon finding the inverse Fourier transform yields PD1(w) i

Therefore
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P (W) - p, = [PDl(w) - pS] - [PD1(w) - -Pt(m)] (E.4)

which is calculable since Py {w) - Pt(w) is the gquantity being measured by
1

transducer 1. Proceeding in a similar manner gives

F[pt(w) - ps] F[Pt(w) - ps]/ﬁt(m) (E.5)

which yields pt(m) - P, Finally then
Ppl® - p (w) = [pD(m -p - [p (@ - ps] (E.6)

where pt(w) - Py is known from above and pD(w) - p, was calculated earlier.
Thus pD(w) - pt(w) represents the .second differential input and the measured
di fferential values have been corrected for the effects of the pressure
tubing.

Because of the considerable numerical manipulation involved in the above
correction process, a test procedure was devised to confirm the successful
operation of the computer program which performed this process. The details

of this test and its results are shown in Appendix F.
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APPENDIX F

TEST PROCEDURE FOR COMPUTER PROGRAM FOR TRANSFER FUNCTION CORRECTION OF
DIFFERENTIAL PRESSURE RECORDS

In describing the procedure used to test the computer program
TUBTRM.FOR, which corrected the differential pressure measurements for the
finite response of the pressure tubing, the same terminology described

in Appendix E and Figure E.2 is adopted. The test followed five individual

steps:

(1) Synthetic input signals P pD(m) and pt(w) were generated.

(2) Using the standard single channel transfer function correction program
RTENFR.FOR the corresponding ocutput pressures were determined for

each tube: PS, PD; (), PD2 (w) and Pt(w) .

{3) The output differential pressures were determined

z’_\.P1 {w) PD1 () - L {w) (F.1)

and APZ(m) PDz(m) - PS (F.2)

(4) TUBTRN.FOR was used to process API(M) and APZ(ul) to determine the

corresponding input differential pressures Ap (W} and Ap (w).
d 1 2

(5) If TUBTRN.FOR was performed correctly

Apl(w) Pplw - P, () (F.3)

and Apz{w) pD(w) - P, (F.4)

The results of the test are shown in Figure F.l and clearly illustrate that
the relations defined by Egquations F.3 and F.4 are satisfied. Thus it can

be concluded that the program TUBTRN.FOR was performing correctly.
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APPENDIX G

ANALYSIS OF VELOCITY DATA

The aim of the wvelocity measurements described in Chapter 8 was to
use the data from a cross hot film probe to determine the horizontal and
vertical components of the velocity field. From these wvelocity measurements
both the structure of the air flow above the waves and the Reynolds stresses
can be determined. This velocity data was acquired in two separate fashions,

by the minicomputer and by the spectrum analyser.

(a) Data Acquired with Minicomputer

The velocity data was considerably easier to analyse than the pressure
data since there were fewer intermediate systems which could distort the
signal. 1In fact, the only intermediate devices which needed to be considered
were the wave follower and the low pass anti-aliasing filters. The full

system is shown schematically in Figure G.l.

The full analysis procedure was as follows.

(1) The two c¢rossg film signals and the water surface elevation signals
were converted from analog values to physical units using the
appropriate calibration data. Particular care was taken to correct
the cross film calibration curwves for temperature drift before the

time series were reduced.

{2) The cross film signals were then corrected for the effects of the

analog low pass anti-aliasing filters.

(3} sSince the cross film probes were aligned at *45° to the x airflow
direction, it can be shown that the cooling velocities for the
probes were (u-w)/v2 and (u+w)/v2 respectively. Therefore, with
these two records, it was a simple matter to determine u and w by

simultaneocusg solution.



(4)

(5)

(6)

(7

(b}
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Some velocity data was obtained using stationary probes but most was
recorded using the wave follower in a moving frame of reference. 1In
this case there was no need to subtract any effects due to the oscill-
atory motion of the wave follower as was done for the pressure data.
The w time series will have a component equal to the vertical velocity
of the water surface, én/dt. This is a true velocity sensed in the
moving frame of reference and bears no similarity to the acceleration
effects of the pressure data. The effectg of the hunting motion of
the wave follower were removed using a digital band-reject filter

(see Appendix J) with cut-off fregquencies at 15 Hz and 17 Hz.

At this stage corrected time series of the horizontal and vertical
velocity components, u = u + U + u* and w = w + w + w' had been
obtained and it only remained necessary to determine the stresses
from these time series. The mean values U and w were firstly sub-
tracted from the two time series and the wave-induced components

u and w were obtained using a digital band-pass filter (see Appendix
J). The mean values were subtracted from the original time sexies
to obtain the oscillatory components of welocity, u" = T+ u

and w" = w + w'. Using these components, the product terms u"w",

u'u” and w"w" were obtained., Taking the means of these three

records yielded the Reynolds stresses u"w", u"u" and w"w", whereas
band-pass filting yielded the wave-induced momentum flux terms

' .
The variances of 7, U, W, u"w", u"u" and w"w" were found and hence

the amplitudes of the reocrds.

The cross correlograms between N and the five wave-induced components

were found, and from these the phase relationships determined.

.Data Acquired with Spectrum Analyser

The data analysis technigue used with the spectrum analyser was gquite

gimple as most of the process was performed by hardware. The outputs from

the hot film anemcmeter were passed through a linearizing c¢ircuit to produce

outputs directly proportional to u + w and u - w, These signals were then

passed through a sum and difference circuit to produce cutputs proportional

to u and w. The linearizing, sum and difference circuits were all built
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into the I.S.V.R. hot film anemometer. These signals were then suitable

for direct input to the spectrum analysef. The spectrum analyser removed

the means from the signals and evaluated spectra of u" and w" as well as

the coherence function and phase relationship between u” and w". The spectra
were determined over two frequency ranges, 0 to 10 Hz and O to 2500 Hz. To
ensure statistical significance for these spectral estimates (see Appendix
B) , a number of individual spectra were averaged to produce the final result.
For the low frequency range 32 spectra were averaged, whereas for the high

fregquency range 128 spectra were averaged.

The output from the spectrum analyser was pletted on a Rikadenki
Model BW-132 X, Y plotter and these plots were later digitised using a
Summagraphics digitising table. The digital data was then transferred to
the DEC-SYSTEM 1091 mainframe computer for storage.
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APPENDIX H

ERROR ANALYSIS

In the interpretation of the results of any experiment the question
"How reliable are these results?" must ultimately be asked. It is inevitable
that, even in the most carefully conducted experiments, some errors will
occur. Consequently, it is necessary to estimate the possible magnitude
of such errors and to present these error estimates along with the exper-

imental data.

(a) Types of Errors and their Propagation

There are four basic types of errors which can occur in an experiment;
accidental errors, fixed errors, mistakes and statistical errors. BAccidental
errors are those varying errors which cause repeated readings to differ
without apparent reason. Accidental errors.arise from instrument friction
and lag time, personal errors and many other causes. Fixed errors are
those which cause repeated readings to be in erxor by the same amount
without apparent reason. (If a reason were known, presumably a suitable
correétion could be made and the error eliminated). Fixed errors arise
from such causes as a burr on the lip of a Pitot tube or an incorrect
calibration relationship. Mistakes are completely erronecus readings of
scales, transducers and so on., S$tatistical errors arise when some property
of a population is estimated from a finite sample of values. 2n example
is the estimation of the mean wind velocity from a wind record of limited

duration.

There arxe a number of different ways in which to represent the estim-
ated error for some experimentally determined quantity. The most convenient
method is to use confidence limits. If it is assumed that the errors
follow some known probability distribution, it is possible to define upper
and lower limits between which the true value will have a known probability
of occurring. Therefore, if these limits a and b are chosen such that the
probability of the true value occurringbetween them is 0.95, then the
interval between a and b is described as a 95% confidence interval, In
other words, the computed interval can be assumed to contain the true

parameter with 95% confidence. Hence some experimentally determined
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parameter x can be expressed as x t £ with (1 - 0)100% confidence that the
true value of x lies between x - € and X + €. Because of the nature of the
probability distributions of the errors, the longer the confidencélinterﬁal
the higher the confidence that the given interval contains the unknown
parameter. A 100% confidence can, however, never be obtained unless the

confidence interval is infinite.

In addition to estimating the errors for measured quantities, it is
important to determine'how such erxrors will effect a result which is a
function of a number of measured quantities. Kline and McClintock (63)
have proposed a procedure to determine the uncertainty 6R in a general

dependent quantity R(xi) as

n e
SR = i[ z (—E— ‘5}:.)2] (H.1)

where x, are the measured quantities upon which R is dependent. Thus,
using Equation H.]l it is possible to determine the errors for wvalues which

are derived from a number of measured guantities,

{b) Statistical Errors

(i) Mean Values

Walpole and Myers (132) have shown that the (1 - 0)}100% confidence

interval for the mean of a population ﬁ is

x-zu/275<u<x+za/2 ey (H.2)

where x is the mean of a sample of size n from a population with known
variance 0% and ZW,2 is the value of the standard necrmal distribution

leaving an area of o/2 to the right. To use Equaticn H.2 it is necessary to
know the standard deviation of the population, ¢. This quantity is generally
not known. If n 2z 30, however, ¢ can be replaced by S, the standard .

deviation of the sample, with little error.
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(ii) Variance

The (1 - &) 100% confidence interval for the variance 02 of a population

is (132)

- 2 _ 2
{n-1) S < ? < (n-1) S (H.3)
*v;0/2 91 1-0/2
2 . . : : 2 2
where 5° is the variance of a sample of size n, and Xv;a/z and Xv;l—a/z are

the values of a chi-square distribution with v = n-1 degrees of freedom

leaving areas of 0/2 and 1 - /2, respectively, to the right.

Throughout this project the amplitude of sinusoidal sighals has been
determined from the variance, using the relation a = Jﬁdz, where a is the

amplitude. If the error on the variance 8c® is €0 then from Equation H.1l

_ 2a » _ eo?
N
_ a.% (H. 4)

Therefore, the percentage error on the amplitude is half that of the

variance.

(1ii) Spectral Estimates

It can be shown (86) that autospectral estimates approximately

follow a chi-square distribution with n degrees of freedom, where

n = 2g(2m + 1) (H.5)

In Equation H.5 the spectrum is ensemble averaged over g spectral estimates
and frequency averaged over 2m + 1 points as described in Appendix B. The

confidence interval then becomes

< E{(f) <
o2 M 1-0s2

(H.6)

n £(£) o n B8



137.

where E(f) is the spectral estimate of the sample.

(iv) Coherence Function

Bendat and Piersol (5) indicate that empirical studies show that
estimates of coherence functions in the range 0.35 € Y2 (£) € 0.95 based
upon spectral density estimates with n 2 40 degrees of freedom can be

evaluated in terms of the transformation

1 1+5 (B .
wif) = 3 In ——le_ny(f) tanh™" §_(£) (2. 7)

~

ny(f) is the calculated ccherence function of the sample and w(£f) has an

approximate normal distribution with a mean and variance of

- _ _ oyt =1
. (n - 2) + tanh ny(f) (H.8)
and crwz = (n-2)-! (H.9)

The (1 - o) 100% confidence interval then beccomes

| -1
tanh{w(f) - (n ~ 2)7" - G, Za/z} <ny(f) <

, - - -]
tanh{w(£) n-2"1 + 0 Za/z} (H.10)

The above result gives the (1 - 0)100% confidence interval for ny(f) as
a function of n, ?xy(f) and ¢. The confidence limits for.Yiy(f) are

the square of the corresponding limits for ny(f).

(v) Transfer Punction

Bendat and Piersocl (5) have shown that the (1 - o) 100% confidence
interval for H(f) can be determined by a quantity ¥(f) such that

8o - 1D |2 s 22D (H.11)
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E ()
A2 - 2 . - A2
(D = oy Fonez;e bl T Vg0 Ei{(Lf) (H.12)

where n is the number of degrees of freedom of each spectral estimate,
F2,nr2;a is the 1000 percentage point of an F distribution with n; = 2

and n, = n - 2 degrees of freedom, ﬁxx(f) is the autospectral estimate

of the output y(t) and ?;y(f) is the sample estimate of the ordinary coh-
erence function between the input x{t) and the output y(t}. Geocmetrically,
Equation H.12 describes a circle of radius T(f) centred at A(f). In terms
of the gain estimate [ﬁ(f)| and the phase estimate $(f), the approximate
confidence intervals for the actual gain |H(f)| and phase ¢{(f} are given

by
lBee) | - 208 < [B5H] < [8O] + 2D (H.13a)
and  $(E) = AB(E) < d(H) < (B + A§(H) (H.13b)

where T(f) is the positive square root of r (f) and

r(f)

- s =1
A$(f) = sin TI/'I(T)!- (H.14)

(vi) Phase Measurements

The phase difference .between various quantities was determined from
the crosscorrelogram as described in Appendix C. The phase angle ¢ is

given by ¢ = 360 tlag/T where t is the lag time at which the crosscorrel-

lag
ogram is a maximum. Since the sampling interval was At the possible error

t = At/2 = 1 .
on tlag' A lag At/ 1/120 s

Applying Equation H.1l gives

Ap = 3f (H.15)

Therefore the possible phrase error increases with increasing frequency.
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(c) Error Propagation for Specific Quantities

(1) Transfer Functions from Sinusoidal Inputs

As well as determining transfer functions from spectral quantities,
they were also evaluated from sinusoidal inputs. The gain of the transfer
function is IH| = b/a, where a and b are the amplitudes of the input and
output signals, respectively. If the percentage error in a and b is g,

Equation H.l yields
Alg| = v2 e b/a (H.16)

Therefore, the percentage error in the transfer function is V2e,

(ii) Potential Flow Functions

In the . analysis of the recorded data it was necessary to evaluate
three functions derived from potential flow theory for the wave-induced
pressure and velocity. These functions include the pressure function

R, = ae_kz(l - U/C)?, the non-dimensional velocity function Ry = a/U{w-kU)
. \ -k ey -

e and the squared velocity function Ry = [a(w—kU)e z]2. If it is

assumed that the errors in the measured quantities a, z and U are Aa = Eaa,

Az = €2 and AU = SUU, Eguation H.l1 yields

2
= ' 2 2 U 4tk
AR, = Ry {e® + (e k2)® ¢ af TR U/C)] } (H.17)

€
Ri{e;'+(€zkﬂ2 +[—Jﬁ——ﬂ

2 L
}a
{w - ku

AR, (H.18)

€_kU 2

1 }* (E.19)

-' 2 ——
ARg Rg=2{e_ + (g, ka2) +[(w —0)

(q) Magnitude of Specifiec Errors

Using the various results dexived in this Appendix, it is possible to
assign numerical values to the various measured and derived gquantities.  These

errors are presented in Table H.l and represent 95% confidence intervals.
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The errors generally consist of an accidental error due to the accuracy of

calibration results ox the precision to which an instrument can be read

and statistical errors caused by the finite length of the time series

measured.
Quantity Accidental. Source Statistical Source Total .
Error Error o Error
a £2% Calibration 6% Egs. H.3 & H.4 8%
u 5% Calibration * Eg. H.2 tes
uru” +10% cal. & H.1 t33 Eq. H.2 *13%
W *10% cal., & H.1 3% Eqg. H.2 t13s%
u"u" 8% cal. & H.1 7% Eg. H.2 t15%
amp (1) 5% Calibration *6% Egs. H.3 & H.4 *11%
amp (W) +5% Calibration 6% Egs. H.3 & H.4 11
amp (W) /u +8% cal. & H.16 16% Eqs. H.3 & H.4 | *14%
“amp (W) /u + 8% Cal. & H.16 +6% Eqs. H.3 & H.4 | t14%
amp () amp (1) +10% H.l & 1 +12% Eq. H.1 & 0 +22%
amp (%) amp (w) +10% H.1 & @ +12% Eq. H.1 & w +22%
amp (1) amp (W) +7% H.1 48 & w +9% Eq. H.1 &0 & w| *16%
) - 6% At & H.15 6%
u? £10% cal. & H.1 +2% Eq. H.l & H.2 +12%
R, - - Egq. H.17 t12%
Ry - - Eq. H.18 g
Ry - - Eq. H.19 *19%
] - - Eq. H.16 & a +11%
amp (B) +3% Calibration 6% Eq. H.3 & H.4 t 0%
Table H.1l Estimated experimental errors.
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APPENDIX I

IEAST SQUARES CURVE FITTING

Throughout this project extensive use has been made of least sguares
curve approximations to recorded data. Two types of curves were used:
polynomial relationships and, for the hot film probe calibration curves,

a specific power relationship.

(a) Polynomial Curve Approximations

It is desired to fit a curve of the fomrm
vy = @ + a;x + Bp%% + ee.. amxm (r.1)

m
= % a.x (1.2)

to the known data points, xi, Yi’ i=12....n., Therefore it is necessary

to minimize

m .
_ _ 3
a = I [y, Z (2%, )] (I.3)

-1 S - Hh1 = \
o 2 iil [yi ji (a, x,7)] =0 (I.4a)
g - 3 j
= —-2 ’ : 2. - . = L]

da; ifl by [Yi jE (ay %) 13 ° (£.40)
g t {xD S By

daz ~ 121 {xi [yi ) j-z—- (aj %) o=o (1-4c)
; 2 m T 3

5.5. = -2 1 { X, [y. - ¢ (aj X, °) ]} =0 (I.49)

™ i=1 1 =0
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Equations I.4 represent a system of m + 1 linear simultaneous equations in
the unknowns ag «.«.-« am. 8ince the eguations are linear, their solution is

quite simple.

(b) Hot Film Curve Approximation

To approximate the hot film calibration curves, it was desired to fit

a curve of the form
c
y = a+ bx (I.5)

to the measured data points X Yi' i=1.,...1n. Therefore, it is

required to minimize

a = I (g -a-bx9 (1.6)

for which the normal equations become

aq o I}

rrle -2 I (yi -a- bxi') = 0 (I.7a}
i=1

3q  [x.© c

= = 2 E [xi (yi—-a.-bxi)] = 0 (I.7b)
i=1

da oo ¢ c 0 (I.7¢)

= = -2 iEl[(b x,© 1n x) (y; - a-bx )]

Equations I.7 represent a system of three nonlinear simultaneous equations
in the unknowns a, b and ¢. Since the normal equations are nonlinear, their
solution requires an iterative approach. It was found that the Secant

Method (133) proved very successful in their solution.
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APPENDIX J

TESIGN OF DIGITAL FILTERS

Throughout the analysis procedures described in this project, extensive
use has been made of digital filters. These filters have been used for a
number of purposes including noise removal, the suppression of unwanted
harmonics and the extraction of a particular frequency band from a signal.
The three types of filters used are shown in idealised form in Figure J.1

and include low pass, band pass and band reject filters.

The general relationship between the input x(t) and the output y(t)

of a linear filter is given by (5) the convoluticn integral
o0
y(t) = [ h(t) x(t - 1) ar (3.1)

where h(T) is the weighting function of the filter. The frequency response
function or transfer function of the filter, H(f), is the Fourier transform

of h(T), defined by
[ ]
H(£) = _f h(1) exp(-i2nfr)dt {3.2)

In designing a digital filter, unlike an analog filter, it is not necessary
for the filter to be physically realizable. That is, it is not required
that h(T) be zero for T<0, since the data can be stored in the computer

and then run backwards, to filter the data in reverse order.

The finite sum equivalent in Equation J.1 for t = kAt, k = 1,2, ...,M,

can be expressed by a symmetric filter hawving the form

M
z X
n k=M n-k

¥ n = llzloovqu (J.3)

o
1]

where hk = h_k. Note that Equation J.3 involves future)yalues of the input.
Although this poses no problems in a digital sense, it again indicates

that the filter is not physically realizable. For convenience, the sampling
interval At is usually included in the filter weights. With a symmetric
filter, the finite sum equivalent to Equation J.2 gives a filter with zero

Phase characteristics, namely
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M
H(f) = Z hk cos (2mEkAt) (J.4)
k=-M

Eqguations J.3 and J.4 have a total of 2M + 1 coefficients hk' known as
filter weights. The kth weight is given by the inverse Fourier transform

of Equation J.4 as (5)

= . [TH(£) cos(2mfkAt) Af (J.5)
h =4

Due to the symmetric nature of the filter and since the physically realistic
limits of integration are zero and the Nyquist Freguence fN' Equation J.5

becomes

£
n = 2 g'nH(f) cos (27w fkAtL) af (3.6)

Filters of this type, whether symmetric or not, are called nonrecursive
digital filters because their output is the result of a finite sum of input
terms only. Using Equation J.6 it is possible to design any required
filter simply by specifying H(f) and solving the integral. This is done

below for the three specific filters used in this project.

(a) Low Pass Filter

An ideal low pass filter has a transfer function of the form

1, 0££< fc
H(L) = . (7.7)

o, fC < £« fN

where fc is the cutoff frequency of the filter. Substituting Equation J.7

into J.6 gives

£
2 f Ccos(2mfkAt) 4f (J.8)
o

]

e

sin(2wfdkAt)

= TRAT (.9}
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Eguation J.9 can also be expressed in terms of the sinc function, where

sinc(x) = sin x/%x, as
hk = 2 fC 51nc(2ﬂfpkAt) (5.10)

Equation J,10 can introduce errors when used in Equation J.3 because of the
finite number of filter weights M. These problems can be scolved by noting
that

2 f = = (3.11)

C o
S 51nc(2ﬂfckAt)dt

-Cco

Replacing the integral in Equation J.11 with a summation and substituting

in Equation J.10 yields

sinc(2ﬂkaAt)

hk = M (J.12)

r  sinc(2mf _JAt)AL
. C

From Equation J.2 it can be seen that the filter weights are proportional
to (1/k), sco that large values of k are required before these weights
become small. In practice, this type of nonrecufsive filter usually
requires so many weights (100 or more} that it is not considered to be a
very efficient method of filtering. In addition, if the number of filter
weigh;s is not large, truncation erxeors will occur between the desired
H(f) and that found by the h, weights. This is a result of the abrupt
transition in H(f) from zero to one which causes a "Gibbs" phenomenon
overshoot -in the wvicinity of the cutoff frequency. The transfer function
of this low pass filter is shown for various numbers of filter weights in
Figure J.2. It is clear from this figure that for 200 filter weights

the transfer fuﬁction is nearly ideal. Since computer resocurces were not

at a premium, this form of filter was used with 200 filter weights.
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(b} Band Pass Filter

The transfer function for an ideal band pass filter can be defined
as

0, 0 ¢ £<¢£
L
H(f) =+ 1, £ € £ £ (7.13)

0, £ < f g £

where fL and fH are the low and high frequency limits of the pass band
respectively. Substituting Equation J.13 into J.6 gives

£

h, = 2/ H os (2m8kAL) &F (7.14)
£
L

which, upon integration, yields

sinc(2wakAt) sinc(ZﬂkaAt)

hk = n - v (J3.15)
z sinc(2mEf _JALYAL - z sinc(27f_jAt) At
. H . L
="M Jj=-M

The transfer function for this band pass filter with £ = 7.5 Hz, £, = 17.5
Hz and M = 200 is shown in Figure J.3. The very sharp cutoff characteristics
and zero phase response are c¢learly evident in this figure. The phase
relationship outside the pass band appears to be random. This, however, is
purely a numerical round-off effect caused by the extremely small amount of
energy left outside the pass band after filtering. Hence, the phase results

for frequencies outside the pass band are of no significance.

(c} Band Reject Filter

The transfer function for an ideal band reject filter can be defined

as

l1, 0L £ £

= <
H(f) 0, fL £ < fH (J.186)

1, fH £ £ g fN
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where fIl and fH are the low and high frequency limits of the reject band
respectively. Substituting Equation I.16 intec J.6 gives

£ b

h = f Leos(2mfkAt) dt + S ¥ cos(2mEkAt) dt (3.17)
[a} [w)

which, upon integration vields

sinc({2mf_kAt) sinc(27£ kAt)
_ L N N
Py u v
P sinc{2mf_kAt) At ) sinc(2mf kAt) At
L N
k=-M =-M
sinc(2Tf kKAL)
- H . (J.18)
M
b3 sina{2TEf _kAt) At
==M B

The transfer function for this band reiject filter with fL = 7.5 H=, fﬂ =
17.5 Hz and M = 200 is shown in Figure J.4. The sharp cutoff characteristics

and zero phase response of the filter can be clearly seen in this figure.

Whenever a nonrecursive filter of any of the designs discussed above
is used, M points at the beginning and end of the time series must remain
unfiltered. In the present project M = 200 and, therefore, the first and

last 200 points in any filtered time series were discarded.
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APPENDIX K
RELATIONSHIP BETWEEN FIXED PROBE AND OSCILLATING PROBE MEASUREMENTS

The ultimate aim of the pressurevand velocity measurements described

in Chapter 7 and 8 was to determine the stress at the alr-water interface.
Since it is not possible to measure the stress exactly at the interface, it
is necessary to determine the air flow quantities at various heights above
the interface and then extrapolate the results to the water surface. In the,
fixed probe co~ordinate system, the elevation of the probe varies with the
phase of the wave, thus complicating the extrapolation process. For the wave
_folldwing probe, however, the probe elevation is constant with respect to the

water surface, despite the wave phase.

If any external flow disturbances are neglected, the relationship between
pressure and velocity fields in the oscillating and fixed frames of reference
can be related by a simple co-ordinate transformation. The relationships

between the two reference frames are

X=X; z=2 +acos (WF); t=T (x.1)
where (x,z,t) and (X,Z,T) are the space and time co-ordinates in the fixed
and moving frames respectively, Any function f(x,z,t) expressed in the fixed
frame of reference can be described in terms of the moving co-ordinates by
Equation X,!1

fix,z,t) = flxX,2z,T), z(X,2,T), t(X,Z,T}] (K.2>

Hence, the pressure and velocity fields, as measured in Chapter 7 and 8, will

vary depending on the reference frame for the measurements.
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