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APPENDIX A

DYNAMIC RESPONSE OF PRESSURE TUBING

Bergh and T±j"deman (6) nave analysed the motion of a fluid in a tube

with a circular cross-section, the fundamental flow equations being the

Navier-stokes equations, the equation of continuity, the equation of state

and the energy equation. By assuming that: all disturbances are sinusoidal

and very small, the internal radius of the tube is small in comparison with

its length and the flow is laminar throughout the system, the above equations

can be simplified greatly. Upon applying suitable boundary conditions,

the governiling equations can then be solved. Bergh and Tijdeman have done

this for a series connection of N tubes and N volumes (see Figure A.I) ,

obtaining a recursion formula that relates the sinusoidal pressure

disturbance in volume j to the sinusoidal pressure disturbances in the

preceding volume j - 1 and the next volume j + 1.
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The quantities are:
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mean velocity of sound

1-1

Bessel function of first kind of order n

polytropic constant for the volumes

tube length

amplitude of pressure distul1bance

tube radius

pressure transducer volume

tube volume

dynamic viscosity of fluid

frequency

mean density

= dimensionless increase in transducer volume due to diaphragm

deflection.

From Equation A.l, the expressions for the complex ratio of the pressure

fluctuations in each transducer j to the sinusoidal input pressure Po

can be obtained by successively putting j = N, n-l, •••• I 2, 1.
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APPENDIX B

ERROR SOURCES IN SPEcrRAL l\NALYSIS

The autospectral density function (also called the power spectral

density function or variance spectral function) of random data describes

the general frequency composition of the data in terms of the spectral

density of its mean value. A variance expression for spectral density

estimates is most conveniently obtained by direct Fourier transform

operations, where the autospectral density function of a stationary

(ergodic) Gaussian random process x(t) is given by

E (f)
XX

= lim
T->oo

2
T

E (B.l)

where E[ ] indicates the expected value and X(f,T) is the finite Fourier

transform of x(t), that is

X(f,T) = jTX(t) e-i2TIft dt
o

(B.2)

An estimate of E (f) can be obtained by simply omitting the limit and
xx

expectation operations in Equation B.l, yielding

(B.3)

In a similar manner, the cross-spectral density function between two time

series x(t) and y(t) is

~ (f) = 2
T

IX(f,T) \\Y(f,T) \
xy

(B.4)

The simplifications used to arrive at Equation B.3 introduce possible errors

and it can be shown (5) that each frequency component of the estimate E (f)
xx

will have a sampling distribution given by

E (f)
xx

E (f)
xx

(B.5)
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where X~ is the chi-square variable with two degrees of freedom, n = 2.

Increasing the record length does not alter the distribution function

defining the random error of the estimate: it only increases the number of

spectral components in the estimate. If the record length is' interpreted

as a measure of the sample size for the estimate, this implies that

Equation B.3 produces an inconsistent estimate of the autospectral density

function. The random portion of the estimation error is called the normal

standard error

e:
r

= I~
n

(B.G)

For the present case, n = 2 and e: = 1, and the standard deviation of the
r

estimate is as large as the quantity being estimated. This would be an

unacceptable random error for most applications but it is not uncommon to

see raw spectral estimates from Equation B.3 presented as reliable autospectra.

An alternative to presenting the error in terms of e: is to define
r

confidence limits as discussed in Appendix H, Whichever definition of the

error is used, it can be reduced in magnitude by increasing the number of

degrees of freedom, n, in the spectral estimate. This can be achieved by

smoothing the estimate in one of two ways. The first way is to smooth over

an ensemble of estimates by computing individual estimates from q independent

sample records, x. (t): i = 1,2, •.•. , q, and then averaging the q estimates
~

at each frequency of a spectral component. The second way is to smooth

over frequency by averaging together m points either side of a spectral

estimate and replacing the original value by this average. If the original

frequency resolution was t::.f, the resolution after smoothing is 2mt::.f. There

is a similar reduction in frequency resolution for ensemble averaging and is

the penalty which must be paid to increase the reliability of the spectral

estimate. With ensemble averaging, the number of degrees of freedom

becomes n = 2q, whereas n = 2(m+l) for frequency averaging. In the present

research at least one of these averaging techniques and often both have been

used for the spectra presented.

An additional effect which should be considered in spectral calculations

is leakage, in which energy is transferred from its correct frequency to a

neiahbouring frequency as a result of the finite length of the record. Thus,
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energy can" leak out" of a spectral bandwidth to bias the spectral estimate

downwards or it can "leak in" so that the spectral estimate can be distorted

upwards (or downwards if the leakage occurs with negative weighting) •

A finite time series can be obtained by passing the infinite time

series through a window of finite length. The Fourier transform of the

finite series becomes

X(f) = (B.7)

where Y(f) and U(f) are the Fourier transforms of the infinite time series

and the window respectively. If the time series is simply truncated, the

window function is called a boxcar window, its Fourier transform being

presented in Figure B.1. To reduce this leakage problem, it is necessary

to modify the boxcar type of weighting in the time domain (or its equivalent

Fourier transform operations in the frequency domain) so as to broaden the

main lobe and decrease the side lobes shown in Figure B.1. A number of

different window functions which reduce the leakage have been proposed, the

most popular being the Hanning window (10) and -the one-tenth cosine taper

window (9). The Hanning window has the form of a full cosine bell and is

given by

~(t) = 1 (1 + cos 21ft)
2 T '

T T-- .... ts: 2 .. ~ 2 (B.8)

whereas the one-tenth cosine tape is defined by

=

51ft
cos -

T

1

T 2T
2 l>t<-5

2T 2T-- s:t<-5 ~ 5
(B.9)

cos
51ft

T
2T .;;t< !
5 2

The Fourier transform of these two window shapes are shown in Figure B.l

for comparison with the boxcar window. The reduction in the magnitude of

the side lobes for the two tapered windows is quite apparent. All spectral

analysis in this project has utilized the one-tenth cosine taper window.
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APPENDIX C

ANALYSIS OF VERY NARROW BAND DATA

In determining the energy flux between wind and waves, the t'NO =itical

quantities which must be determined are the magnitude of the surface stress

and its phase relative to the surface waves. The techniques of auto and

cross spectral analysis are ideally suited to determining these quanti ties

from time series of surface stress and water level elevation. Indeed,

many previous investigators have relied extensively upon such techniques

(117, 134). In this research the waves generated by the wave maker were

invariably sinusoidal and therefore distinctly narrow banded. 'Ihe theor

etical autospectrum of a sine wave of frequency f is a spike of infinite

height located at f. In practice, this result is distorted by the discrete

finite record length. An approximate definition for the autospectrum was

given by Equation B.3. It can be more rigorously defined by

E (f)
xx

lim
=

llf-+O
1
T

(C.l)

When spectra are calculated using the Fourier transform technique, llf = liT,

so that, for a finite length record,limiting processes in Equation C.l are

violated. This is true for spectral estimates of any time series, not just

narrow band records. The finite frequency resolution, however, means that

it is highly probably that the frequency f will not coincide with one of the

frequencies of a calculated spectral value, mLlf. 'Ihe final result is a

broader finite height spike rather than an infinite spike. This distortion

becomes progressively worse as the length of the time series is reduced.

Therefore, the calculated spectral shape is dependent upon the record

length and also on how closely the sine wave frequency corresponds to a

discrete calculation frequency. The effects of the finite record length

can be seen in Figure C.l. This figure shows calculated spectra for a.

sinusoid with f = 0.1 Hz but varying record lengths of 136.5, 68.3, 34.1,

17.1, 8.5 and 4.3 mins. Such strong dependence on the sampling parameters

is obviously unacceptable and indicates an alternative technique is required

for reliably analysing such narrow banded records.
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An alternative approach is available in the time domain, where the

equivalents of the auto and cross-spectral functions are the autocorrelation

and crosscorrelation functions. 'l'he autocorrelation function of random data

describes the general dependence of the values of the data at one time on

the values at another time. An estimate for the autocorrelation between

the values of x(t) and times t and t + T may be obtained by taking the

product of the two values and averaging over the observation time T. 'l'he

resulting average product will approach an exact autocorrelation function as

T approaches infinity:

R (T)
x

=
lim
T-+a>

1
T

Tf x(t) x(t + T)dt
o

(C.2)

Provided the mean of x(t) is zero, Rx(ol = 0 2 , the variance of the record.

For a sinusoidal time series x(tl = a sin wt,

R (T)
x

a2
= cos WT

2
(C.3)

Therefore, the autocorrelogram will persist periodically over all time

displacements with an amplitude equal to the original sine wave variance

and a period equal to that of the original ~ine wave. All phase information

is lost however.

The crosscorrelation function can be defined in a similar manner to

Equation C.2 as

R (T)
xy

=
lim
T-+a>

1
T

(C.4)

For the case of two sinusoidal signals with a phase difference <1>, x(t) =

a sin wt and y(tl = b sin (wt + <1», the cross correlation is

R (Tl = a b cos (orr - <1»
xy

(C.5)

The crosscorrelogram is again periodic with maxima at values of T such that
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(C.G)

where T is the period of the sine wave and n is an integer. This behaviour

is illustrated in Figure C.2.

In smnmary, for very narrow band data, the ampli tude and frequency of

the signal can be obtained from the autocorrelogram and the phase relation

ship between the two signals from the crosscorrelogram. This correlogram

technique has been used in preference to the spectral approach throughout

this research.
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APPENDIX D

CORREcrIONS FOR SYSTEM RESPONSE

In Chapter 4 the response of all the individual systems was examined

and transfer functions obtained. TO obtain accurate results it is necessary

to correct recorded time series for the effects of these system responses.

For a system with an input x(t) and an output y(t). Equation 3.30 showed

that their Fourier transforms are related as

y(f) = H(f) X(f)

In the discrete finite case. the FOurier transform pair are

(D. 1)

X(r) =
T
N

N-l
L:

k=O
exp

-i21Trk
N

(D.2)

r = 0.1•••••N-l

and
1

=
T

N-l
L:

r=O
x(r) exp ( 1). 3)

k = 0.1 •••••N-l

The simple procedure for correcting for the transfer function is then:

(a) Determine Y(f) from the output y(t) and Equation D.2

(b) Divide y(f) by H(f) to obtain X(f)

(c) Determine x(t) from X(f) and Equation D.3.

The procedure is complicated. however. by the fact that Fast Fourier

Transform (FFT) algorithms only define the transform in the range r = 0.1 •

•.• •N/2. Therefore it is necessary to determine the remaining Fourier

coefficients before the inverse transform procedure can be applied. These

can be found from the relationships (5)
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~ { x(r)} = ~ { X(N-r) }

Im { X(r)} = -Im { X(N-r) }
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(D.4)

(D.5)

To preserve symmetry, the imaginary part of X(N/2) is set to zero as

illustrated in Figure D.1. The discrete Fourier Transform is thus defined

over the range X(D). X(l), X(N-l) and the previously outlined procedure

for correcting for the effects of system response can be applied.

In addition, if the input to a system x(t) is known, the output

y(t) can be found in a similar manner. The only difference is that the

Fourier transform of x(t) is mul.tiplied by H(f) rather than being divided.

The analysis procedure described in this appendix and the computer programs

which implement it can be checked in the follOWing manner. For an arbitrary

input to and transfer function for a system the corresponding output can

be found. The reverse procedure can then be run. The final result should

be identical with the initial input. Such a test was conducted and the

results appear in Figure D.2. The time series illustrated in this

figure clearly show that both the correction technique and the computer

programs which implement it are performing satisfactorily.
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APPENDIX E

ANALYSIS OFPRESSURED~A

The ultilnate goal of the pressure measurements described in Chapter

7 was to determine the magnitude and phase of the wave-induced air pressure

relative to the surface waves. The quantities measured were the water

surface elevation, the differential pressure between the disk and total

probes, t,PDt = PD - Pt and the differential pressure between the disk probe

and the free stream static probe, t,PD = P - P • The analysis of these
s D so

signals to determine the wave-induced static pressure, p - p ,was
s so

complicated by the frequency response characteristics of the measurement

system, shown schematically in Figure E.l. Specific influences include:

probe calibration, wave follower oscillation pressures, dynamic response

of the pressure tubing, pressure transducer calibration and response,

low pass filter characteristics and D.C. amplifier response.

The full analysis procedure consisted of nine sequential steps which

are des=ibed below

(1) The analog time series for water surface elevation, n, disk-total

The pressure

the appropriate wave

differential pressure,t,PDt and disk-static

physical units using

differential pressure,

t,p were converted to
Ds

gauge and pressure transducer calibration curves.

readings were also corrected for the particular gain used for the

D.C. amplifiers.

(2) The differential pressure signals were corrected for the effects of

the 5 Hz low pass filters using the analysis technique described in

Appendix D. The filter transfer functions, as shown in Figure 4.28,

were assumed to have IHI = 1 and <I> = 0 0 for frequencies above 5 Hz.

Had this assumption not been made, then the high frequency noise

(above 5 Hz) which the filter was used to remove would have been

regenerated by the filter transfer function correction process.

(3) The pressures created by the motion of the wave follower were calcul

ated assuming the input to the system was the water surface elevation.

This assumes that the wave follower motion and the water surface
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elevation are identical, shown in Section 4.2.2 to be a reasonable

assumption, This step represents the reverse process to step (2).

Here, the input to the system is known and the output is required,

whereas in (2) the output was known and the input had to be determined.

(4) The wave follower oscillation pressures, calculated in step (3)

were subtracted from the differential pressures of step (2).

(5) The resulting differential pressure signals of step (4) were corrected

for the dynamic response of the thin pressure tubes. Although the

transfer functions for each individual tube are known, it is the

effects on the differential measurements which must be considered.

Therefore, the two sides of the differential measurement will be

effected independently by the response of the tubes. The effect on

the differential measurement is complicated and its calculation is

discussed later. The resulting differential pressures at the end of

this stage were the actual pressures sensed by the probes, lIPDS

andllpDt' and were free from the effects of instrumentation response.

(6) The water surface elevation and differential pressure signals were

filtered using a non-recursive digital low pass filter (see Appendix

J) to remove ha:rmonics of the primary frequency. The cut-off

frequency of the filter was chosen such that it lay between the first

and second ha:rmonics.

(7) Using the filtered differential pressure measurements, together

with the disk-probe calibration of Section 4.3.3, p s
determined as outlined in Section 4.3.1. This value

required wave-induced static pressure.

- p was
SO

represents the

( 8) The autocorrelograrns

the crosscorrelograrn

of n and p - p weres SO

of the two signals.

calculated together with

(9) Using the technique for analysing very narrow band data outlined in

Appendix C, the frequency and amplitudes were determined from the

autocorrelograrns and the phase difference from the crosscorrelograrn.
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As mentioned earlier the correction of the pressure signals for the

dynamic effects of the thin pressure tubes posed problems. Although the

transfer functions for the four individual tubes were determined in Section

4.3.6, the output signal for each tube was not known, only the differential

outputs being recorded. It was these differential outputs which needed to

be corrected to determine the actual differential inputs.

The applied and measured pressures are shown 1n Figure E.2 together

with the individual tube transfer functions. The applied pressures are

the total pressure p t (w), the disk pressure PO (w) and the free stream

static pressure p • The corresponding measured output pressures are
SO

P (W), P (w) or P (w) and P. There are two output pressures for the
t 01 02 s

disk as it is connected to the positive parts of both transducers. All the

pressures are expressed as functions of the cyclic frequency w, except

the free stream static pressure which is a constant. The tube transfer

functions are identified as:

to transducer 1 line, H (W)
02

the static line.

H (w) for the total line, H (w) for the disk
t 01

for the disk transducer 2 line and H
S

(w) for

Since p is a constant and H (0) = 1.0
s s

.. P
s

Also, since H
02

(0) = 1.0

(E.l)

= F[ P (w) - P ] /H (W)
02 s 02

(E.2)

where the notation F[ ] indicates the Fourier transform of [ ]. Finding

the inverse Fourier transform of the left hand side of Equation E.2 gives

po(W) - Ps which is one of the required differential inputs. Now that

po(w) - p is known and again since HOI (0) = 1.0, it follows that
s

F[P (w) - p ] = F[po(W) - p ] H (W)
01 s s 01

(E.3)

which upon finding the inverse Fourier transform yields P (w) - p •
01 S

Therefore
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p (00) - p =t s
(E.4)

which is calculable since

transducer 1. Proceeding

P (00) - P (00) is the quantity
Dl t

in a similar manner gives

being measured by

= p[P (00) - p ] /!It (00)
t s

(E.5)

which yields Pt(Ol) - ps. Finally then

= (E.6)

where Pt(Ol) - p is known from above and p (00) - p was calculated earlier.
s D s

Thus PD(Ol) - Pt(Ol) represents the .second differential input and the measured

differential values have been corrected for the effects of the pressure

tubing.

Because of the considerable numerical manipulation involved in the above

correction process, a test procedure was devised to confirm the successful

operation of the computer program which performed this process. The details

of this test and its results are shown in Appendix F.
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APPENDIX F

TEST PROCEDURE FOR COMPUTER PROGRAM FOR TRANSFER FUNCTION CORRECTION OF

DIFFERENTIAL PRESSURE RECORDS

In describing the procedure used to test the computer program

TUBTRN.FOR, which corrected the differential pressure measurements for the

finite response of the pressure tubing, the same terminology described

·in Appendix E and Figure E. 2 is adopted. The test followed five individual

steps:

(1)

(2)

Synthetic input signals p , p (00) and Pt(OO) were generated.
s D

Using the standard single channel transfer function correction program

RTRNFR.FOR the corresponding output pressures were determined for

each tube: P ,P (00), Pn.. (00) and P
t

(00) •
s D1 ~.

(3) The output differential pressures were determined

/;P (00)
1

= (F.1)

and ~P (00) = P (00) - P
2 D2 S

(F.2)

( 4) TUBTRN •FOR was used

corresponding input

to process ~P (00) and /;P (00) to determine
1 2

differential pressures ~p (00) and ~p (00).
1 2

the

(5) If TUBTRN.FOR was performed correctly

~p (00)
1

= (F.3)

(F.4)

The results of the test are shown in Figure F.1 and clearly illustrate that

the relations defined by Equations F.3 and F.4 are satisfied. Thus it can

be concluded that the program TUBTRN. FOR was performing correctly.



131.

APPENDIX G

ANALYSIS OF VELOCITY DATA

The aim of the velocity measurements described in Chapter 8 was to

use the data from a cross hot film probe to determine the horizontal and

vertical components of the velocity field. From these velocity measurements

both the structure of the air flow above the waves and the Reynolds stresses

can be determined. This velocity data was acquired in two separate fashions,

by the minicomputer and by the spectrum analyser.

(a) Data Acquired with Minicomputer

The velocity data was considerably easier to analyse than the pressure

data since there were fewer intermediate systems which could distort the

signal. In fact, the only intermediate devices which needed to be considered

were the wave follower and the low pass anti-aliasing filters. The full

system is shown schematically in Figure G.l.

The full analysis procedure was as follows.

(1) The two cross film signals and the water surface elevation signals

were converted from analog values to physical units using the

appropriate calibration data. Particular care was taken to correct

the cross film calibration curves for temperature drift before the

time series were reduced.

(2) The =oss film signals were then corrected for the effects of the

analog low pass anti-aliasing filters.

(3) since the cross film probes were aligned at ±4S o to the x airflow

direction, it can be shown that the cooling velocities for the

probes were (u-w)/12 and (u+w)/12 respectively. Therefore, with

these two records, it was a simple matter to determine u and w by

simultaneous solution.
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(4) Some velocity data was obtained using stationary probes but most was

recorded using the wave follower in a moving frame of reference. In

this case there was no need to subtract any effects due to the oscill

atory motion of the wave follower as was done for the pressure data.

The w time series will have a component equal to the vertical velocity

of the water surface, an/at. This is a true velocity sensed in the

moving frame of reference and bears no similarity to the acceleration

effects of the pressure data. The effects of the hunting motion of

the wave follower were removed using a digital band-reject filter

(see Appendix J) with cut-off frequencies at 15 Hz and 17 Hz.

(5) At this st.age corrected time series of the horizontal and vertical

velocity components, u = u + U+ u· and w = W+ W+ w' had been

obtained and it only remained necessary to determine the stresses

from these time series. The mean values u and w were firstly ·sub

tracted from the two time series and the wave-induced components

U and wwere obtained using a digital band-pass filter (see Appendix

J). The mean values were subtracted from the original time series

to obtain the oscillatory components of velocity, u .. = u + u·

and wll = W+ Wi. Using these components, the product terms u"wlt
,

u"urr and wnw" were obtained. Taking the means of these three

records yielded the Reynolds stresses U";", U"U" and ;n;H, whereas

band-pass filting yielded the wave-induced momentum flux terms
./'V. A./ ~
u"wll

, UUu" and wnw" ..

(6) The variances 0:(, n, li, w, u"w", UIlU" and w"w" were found and hence

the amplitUdes of the reocrds.

(7) The cross correlograms between n and the five wave-induced components

were found, and from these the phase relationships determined.

(b) .Data Acquired with Spectrum Analyser

The data analysis technique used with the spectrum analyser was quite

simple as most of the process was performed by hardware. The outputs from

the hot film anemometer were passed through a linearizing circuit to produce

outputs directly proportional to u + w and u - w. These signals were then

passed through a sum and difference circuit to produce outputs proportional

to u and w. The linearizing, sum and difference circuits were all built
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into the I.S.V.R. hot film anemometer. These signals were then suitable

for direct input to the spectrum analyser. The spectrum analyser removed

the means from the signals and evaluated spectra of u" and w" as well as

the coherence function and phase relationship between u" and w". The spectra

were determined over two frequency ranges, 0 to 10 Hz and 0 to 2500 Hz. To

ensure statistical significance for these spectral estimates (see Appendix

B), a number of individual spectra were averaged to produce the final result.

For the low frequency range 32 spectra were averaged, whereas for the high

frequency range 128 spectra were averaged.

The output from the spectrum analyser was plotted on a Rikadenki

Model BW-132 x, Y plotter and these plots were later digitised using a

S1.1IIllllagraphics digitising table. The digital data was then transferred to

the DEC-SYSTEM 1091 mainframe computer for storage.
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APPENDIX H

ERROR ANALYSIS

In the interpretation of the results of any experiment the question

"How reliable are these results?" must ultimately be asked. It is inevitable

that, even in the most carefully conducted experiments, some errors will

occur. Consequently, it is necessary to estimate the possible magnitude

of such errors and to present these error estimates along with the exper

imental data.

(a) Types of Errors and their propagation

There are four basic types of errors which can occur in an experiment;

accidental errors, fixed errors, mistakes and statistical errors. Accidental

errors are those varying errors which cause repeated readings to differ

without apparent reason. Accidental errors· arise from instrument friction

and lag time, personal errors and many other causes. Fixed errors are

those which cause repeated readings to be in error by the same amount

without apparent reason. (If a reason were known, presumably a suitable

correction could be made and the e,rror eliminated). Fixed errors arise

from such causes as a burr on the lip of a Pitot tube or an incorrect

calibration relationship. Mistakes are completely erroneous readings of

scales, transducers and so on. Statistical errors arise when some property

of a population is estimated from a finite sample of values. An example

is the estimation of the mean wind velocity from a wind record of limited

duration.

There are a number of different ways in which to reJ?resent the estim

ated error for some experimentally determined quantity. The most convenient

method is to use confidence limits. If it is assumed that the errors

follow some known probability distribution, it is possible to define upper

and lower limits between which the true value will have a known probability

of occurring. Therefore, if these limits a and b are chosen such that the

probability of the true value occurring between them is 0.95, then the

interval between a and b is described as a 95% confidence interval. In

other words, the computed interval can be assumed to contain the true

parameter with 95% confidence. Hence some experimentally determined
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parameter x can be expressed as x ± E with (1 - allOO% confidence that the

true value of x lies between x - E and x + E. Because of the nature of the

probability distributions of the errors, the longer the confidence interv<:ll

the higher the confidence that the given interval contains the unknown

parameter. A 100% confidence can, however, never be obtained unless the

confidence interval is infinite.

In addition to estimating the errors for measured quantities, it is

important to determine how such errors will effect a result which i .. a

function of a number of measured quantities. Kline and McClintock (63)

have proposed a procedure to determine the uncertainty OR in a general

dependent quantity R(x.l as
~

n
oR = ±[ l:

i=l
(H.ll

where x. are the measured quantities upon which R is dependent. Thus,
~

using Equation H.l it is possible to de termine the errors for values which

are derived from a number of measured quantities.

(b) statistical Errors

(il Mean Values

Walpole and Myers (132) have shown that the (1 - a) 100% confidence

interval for the mean of a population \l is

(J (J

x - ZCl/2 'Tn' < \l < x + Za/2 "Tn" (H .21

where x is the mean of a sample of size n from a population with known

variance (J2 and Za/2 is the value of the standard normal distribution

leaving an area of a/2 to the right. TO use Equation H.2 it is necessary to

know the standard deviation of the population, cr. This quantity is generally

not known. If n ;l 30, however, (J can be replaced by s, the standard

deviation of the sample, with little error.
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(ii) Variance

The (1 - CI.) 100% confidence interval for the variance cr2 of a population

is (132)

(n-l) S2
2

XVI CI./2

(n-l) S2
2

XV; l-Cl./2
(H.3)

where S2 is the variance of a sample of size

the values of a chi-square distribution with

2 2
n, and XVICl./2 and x;)11-Cl./2
V = n-l degrees of freedom

are

leaving areas of CI./2 and 1 - CI./2, respectively, to the right.

Throughout this project the amplitude of sinusoidal signals has been

determined from the variance, using the relation a = 120'2, where a is the

amplitude. If the error on the variance ocr2 is EO'2 then from Equation H.l

oa =

E
= a-

2
(H.4)

Therefore, the percentage error on the amplitude is half that of the

variance.

(iii) Spectral Estimates

It can be shown (86) that autospectral estimates approximately

follow a chi-square distribution with n degrees of freedom, where

n = 2q(2m + 1) (H.5)

In Equation H.5 the spectrum is ensemble averaged over q spectral estimates

and frequency averaged over 2m + 1 points as described in Appendix B. The

confidence interval then becomes

n f(f)
2 .'

x;:; ;.(~/2
E(f)

n f(f)
< < X'

n;1-Cl./2
(H.6)
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where f(f) is the spectral estimate of the sample.

(iv) Coherence Function

Bendat and Piersol (5) indicate that empirical studies show that

estimates of coherence functions in the range 0.35 ~ y2 (f) ~ 0.95 based
xy

upon spectral density estimates with n " 40 degrees of freedom can be

evaluated in terms of the transformation

(H.7)= tanh- 1 Y (f)
xy1 - Y (f)

xy

1 + A (f)yxy
= ! In

2
w(f)

Yx/f) is the calculated coherence function of the sample and w(f) has an

approximate normal distribution with a mean and variance of

= (n - 2) -1 + tanh'"l Y (f)
xy

(H.8)

and (J 2 = (n _ 2)-1
W

(H.9)

The (1 - el) 100% confidence interval then becomes

tanh{w(f) - (n - 2)-1 - (J Z /2} <y (fl ~
w el XY

(H.10)

The above result gives the (1 - el)lOO% confidence interval for y (f) as. xy
a function of n, Y (f) and el. The confidence limits for ,y2 (f) are

xy xy
the square of the corresponding limits for y (f).

xy

(v) Transfer Function

Bendat and Piersol (5) have shown that the (1 - elllOO% confidence

interval for H(f) can be determined by a quantity ref) such that

(H.ll)
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(H .12)f (f)
xx

f (f)
yY

F
2

2 [1 _12 (f)],n- .;0. xy
2

(n - 2)
=~2 (f)

where n is the number of degrees of freedom of each spectral estimate,

F
2

2 is the 100a percentage point of an F distribution with nl = 2,n- ;ct.

and n2 = n - 2 degrees of freedom, E (f) is the autospectral estimatexx .
of the output y(t) and ·<t (f) is the sample estimate of the ordinary coh-

xy
erence function between the input x{t) and the output y{t). Geometrically,

Equation H.12 describes a circle of radius ~(f) centred at ~(f). In terms

of the gain estimate [ft{f) I and the phase estimate $(f), the approximate

confidence intervals for the actual gain IH(f) I and phase ~(f) are given

by

I~{f) I - ~(fj , !H{f) I , I~{f) I + ~(f) (H.13a)

and (H.13b)

where ~(f) is the positive square root of r (f) and

= (H.14)

(vi) phase Measurements

The phase difference.between various quantities was determined from

the crosscorrelogram as described in Appendix C. The phase angle ~ is

given

ogram

by ~ = 360 t
l

/T where t
l

is the lag time at which the crosscorrel-
ag ag

is a maximum. Since the sampling interval was ~t the possible error

on t lag, ~tlag = ~t/2 = 1/120 s.

Applying Equation H.1 gives

M = 3f (H.15)

Therefore the possible phrase error increases w~th increasing frequency.
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(c) Error Propagation 'for Specific Quantities

(i) Transfer 'Functions from 'Sinusoidal 'Inputs

As well as determining transfer functions from spectral quanti ties,

they were also evaluated from sinusoidal inputs. The gain of the transfer

function is IHI = bla, where a and b are the amplitudes of the input and

output signals, respectively. If the percentage error in a and b is e;,

Equation H.l yields

(H. 16)

Therefore, the percentage error in the transfer function is 12e;.

(ii) Potential Flow Functions

In the analysis of the recorded data it was ne,cessary to evaluate

three functions derived from potential flow theory for the wave-induced

pressure and velocity. These functions include the pressure function

R1 = ae-kz(l - U/C) 2, the non-dimensional velocity function R2 '= a/U(w-kU)
-kz [ -kzJ2e and the squared velocity function R3 = a (w-kU) e • If it is

assumed that the errors in the measured quantities a, z and U are f::,.a = e; a,
a

f::,.z = E z and f::,.u = e;uu, Equation H.l yields
Z

{e; 2 kz)2 + 4[
e;uu ? l,

f::,.R1 = R1 + (e;
C(l - U/C)] }a z

{e; 2 kz) 2
e;~ 2 1..

f::,.R2 = R2 + (e; + [ (w - kut }'a z

R3°2 {e; kz) 2
e; kU 2 l,

f::,.R3 + (e;z + [(W
U

_ kU)] }a

(H.l7)

(H .18)

(H.19)

(d) Magnitude of Specific Errors

Using the various results derived in this Appendix, it is possible to

assign numerical values to the various measured and derived quantities. These

errors are presented in Table H.l and represent 95% confidence intervals.
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The errors generally consist of an accidental error due to the accuracy of

calibration results or the precision to which an instrument can be read

and statistical errors caused by the finite length of the time series

measured.

Quantity
Accidental

Source
Statistical

Source
Total

Error Error Error

a ±2% calibration ±6% Eqs. H.3 & H.4 ±8%
- ±6%u ±5% Calibration ±1% Eq. H.2

U"UIl ±10% Cal. & H.1 ±3% Eq. H.2 ±13%
-- ±3% ±13%WIlWIl ±10% Cal. & H.1 Eq. H.2
-- ±7% ±15%uTlu" ±8% cal. & H.1 Eq. H.2

amp(u) ±5% Calibration ±6% Eqs. H.3 & H.4 ±11%

amp(w) ±5% calibration ±6% Eqs. H.3 & H.4 ±11%

amp(u)/u ±8% Cal. & H.16 ±6% Eqs. H.3 & H.4 ±14%

amp(w) /u ±8% cal. & H.16 ±6% Eqs. H.3 & H.4 ±14%

amp(u)amp(u) ±10% H.1 & ii ±12% Eq. H.1 & \i ±22%

amp (w) amp (w) ±10% H.1 & W ±12% Eq. H.1 & w ±22%

amp (u) amp (w) ±7% H.1 & ii o.w ±9% Eq.H.1 & u o.w ±16%

<j> - ±6% tit & H.15 ±6%

ii2 ±10% Cal. & H.1 ±2% Eq. H.1 & H.2 ±12%

R 1 - - Eq. H.17 ±12%

R2 - - Eq. H.18 ±8%

R3 - - Eq. H.19 ±19%

IHI - - Eq. H.16 & a ±11%

amp(p) ±3% calibration ±6% Eq. H.3 & H.4 ± 9%

Table H.1 Estimated experimental errors.
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APPENDIX I

!EAST SQUARES CURVE FITTING

Throughout this project extensive use has been made of least squares

curve approximations to recorded data. Two types of curves were used:

polynomial relationships and, for the hot film probe calibration curves,

a specific power relationship.

(a) Polynomial CUrve Approximations

It is desired to fit a curve of the form

2 m
(I.l)y = ao + alx + a2 x + ....... + a x

m

m
a.x

j
= l: (I.2)

j=O J

to the known data points, xi' y i' i = 1. •.•n. Therefore it is necessary

to rninirni. ze

q =
n
l:

i=l
[ y. -

~

m
l:

j=O

. 2

(a.x. J)]
J ~

(I.3)

The normal equations which must be solved to minimize Equation I.3 are

aq
n m

x. j)]= -2 l: [yi - l: (a
j

= 0
aao i=l j=O

~

.1EL
n m

x. j)= -2 l: { x/[Yi - l: (a. n 0
aal i=l j=O J ~

.1EL
n m

x.
j
)"]}'{ m= -2 l: x. [Yo - l: (a. = 0

aa2 i=l ~ ~ j=O J ~

(I. 4a)

(I. 4b)

(I. 4c)

.is..
da

m

= (I. 4d)
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Equations I. 4 represent a system of m +. 1 linear simultaneous equations in

the unknowns ao

quite simple.

a. Since the equations are linear, their solution is
m

(b) Hot Film Curve Approximation

To approximate the hot film calibration curves, it was desired to fit

a curve of the form

y = a+. bX" (I.5)

to the measured data points xi' yi' i = 1 •••• n. Therefore, it is

required to minimize

q =
n
~

i=l

C 2
(y. - a - bx. )

~ ~

(I.6)

for whiCh the normal equations become

dq =
da

-2
n
~

i=l
( c.y. - a - bx. )

~ ~.
= o (I. 7a)

s =
db

-2
n _

[ c
~ x.

i=l ~
(y. - a - bX. c)]

~ ~
= o (I. 7b)

daac = -2
n
~ [(b xic In xi) (yi-a - bX/)]

i=l

= 0 (I. 7c)

Equations I.7 represent a system of three nonlinear simultaneous equations

in the unknowns a, b and c. Since the normal equations are nonlinear, their

solution requires an iterative approach. It was found that the Secant

Method (133) proved very successful in their solution.



143.

APPENDIX J

IESIGN OF DIGITAL FILTERS

Throughout the analysis procedures described in this project, extensive

use has been made of digital filters. These filters have been used for a

number of purposes including noise remova.l, the suppression of unwanted

harmonics and the extraction of a particular frequency band from a signal.

The three types of filters used are shown in idealised form in Figure J.l

and include low pass, band pass and band reject filters.

The general relationship between the inputx(t) and the output y(t}

of a linear filter is given by (5) the convolution integral

y(t)
00

= f h(T) x(t - T) dT
-00

(J.l)

where h(T} is the weighting function of the filter. The frequency response

function or transfer function of the filter, H (f), is the Fourier transform

of h (T), defined by

H(f}
00 •

= f h(T) exp(--z,27ffT)dT
-<X>

(J .2)

In designing a digital filter, unlike an analog filter, it is not necessary

for the filter to be physically realizable. That is, it cis not required

that h(T) be zero for T<O, since the data can be stored in the comptiter

and then run backwards, to filter the data in reverse order.

The finite sum equivalent in Equation J.l for t = k~t, k = 1,2, ••• ,M,

can be expressed by a symmetric filter having the form

=
M

l: ~
k=-M

x
n-k

, n = 1,2, ..•. ,N (J .3)

Note that Equation J. 3 involves future values of the input.

interval ~t is usually

problems in a digital sense, it again indicates

For convenience, the sampling

with a symmetricweights.

physically realizable.

included in the filter

= h •
-k

this poses no

filter is not

where ~

Although

that the

filter, the finite sum equivalent to Equation J.2 gives a filter with zero

phase characteristics, namely
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M
l: ~ cos (2rrfkllt)

k=-M
(J.4)

Equations J. 3 and J. 4 have a total of 2M + 1 coefficients ~, known as

filter weights. The kth weight is given by the inverse Fourier transform

of Equation J. 4 as (5)

00
= . f H(f) cos(2rrfkllt)df

-00
(J.5)

Due to the symmetric nature of the filter and since the physically realistic

limits of integration are zero and the Nyquist frequence f
N

, Equation J. 5

becomes

=
f

2 f nH(f) cos(2rrfkllt)df
o

(J.6)

Filters of this type, whether symmetric or not, are called nonrecursive

digital filters because their output is the result of a finite sum of input

terms only. Using Equation J. 6 it is possible to design any required

filter simply by specifying H(f) and solving the integral. This is done

below for the three specific filters used in this project.

(a) Low Pass Filter

An ideal low pass filter has a transfer function of the form

H(f) =

{

I,

0,

o ::; f';; f
C

(J.7)

where f
c

is the cutoff frequency of the filter. Substituting Equation J.7

into J.6 gives

= 2 f fccos (2rrfkllt) df
o

(J.8)

sin (2rr f III t)
=

rrkllt
(J.9)
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Equation J. 9 can also be expressed in terms of the sinc function, where

sinc(x) = sin x/x, as

= (J .10)

Equation J.IO can introduce errors when used in Equation J.3 because of the

finite number of filter weights M. These problems can be solved by noting

that

=
1

(J.ll)

Replacing the integral in Equation J.ll with a summation and substituting

in Equation J.IO yields

M

E sinc(2TIf j6t)6t
. M CJ=-

(J .12)

From Equation J.9 it can be seen that the filter weights are proportional

to (11k), so that large values of k are required before these weights

become small. In practice, this type of nonrecursive filter usually

requires so many weights (100 or more) that it is not considered to be a

very efficient method of filtering. In addition, if the number of filter

weigh~s is not large, truncation errors will occur between the desired

H(f) and that found by the ~ weights. This is a result of the abrupt

transition in H(f) from zero to one which causes a IlGibbs ll phenomenon

overshoot in the vicinity of the cutoff frequency. The transfer function

of this low pass filter is shown for various numbers of filter weights in

Figure J.2. It is clear from this figure that for 200 filter weights

the transfer function is nearly ideal. Since computer resources were not

at a premium, this form of filter was used with 200 filter weights.
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(b) Band Pass Filter

The transfer function for an ideal band pass filter can be defined

as

0, o :;; f< f
L

H{f) = 1, f
L

~ f ~ f (J .13)
H

0, f
H

< f .; f
N

where f
L

and f
H

are the low and high frequency lirni ts of the pass band

respectively. Substituting Equation J.l3 into J.6 gives

= 2 /HCOS(21rfkl\.t)df
f

L

(J .14)

which, upon integration, yields

=
M
2: sinc(21rf jl\.t) l\.t -

j=-M H

sinc{21rfr!<l\.t)

M
2: sinc(21rf jl\.t)l\.t

j=-M L

(J .15)

The transfer function for this band pass filter with f
L

= 7.5 Hz, f
H

= 17.5

Hz and M = 200 is shown in Figure J. 3. The very sharp cutoff characteristics

and zero phase response are clearly evident in this f-igure. The phase

relationship outside the pass band appears to be random. This, however, is

purely a numerical round-off effect caused by the extremely small amount of

energy left outside the pass band after filtering. Hence, the phase results

for frequencies outside the pass band are of no significance.

(c) Band Reject Filter

The transfer function for an ideal band reject filter can be defined

as

1, o :;; f ~ f
L

H{f) = 0, f
L

< f < f
H

(J .16)

1, ~ , f ~ f
N



147.

where f
L

and f
H

are the low and high frequency limits of the reject band

respectively. Substituting Equation I.16 into J.6 gives

= rfLCOS(2~fk~t)dt
o

f
+ r N

o
cos (2~fk~t)dt (J .17)

which, upon integration yields

=
M
L sinc(2~fLk~t)~t

k=-M

sinc(2~f k~t)
H .

M
L sinc(2~fHk~t) ~t

k=-M

sinc(2~fNk~t)

+--:-:--------"'-----
M

L sinc(2~fNk~t)~t

k=-M

(J .18)

The transfer function for this band reject filter with

17.5 Hz and M = 200 is shown in FigureJ. 4. The sharp

f = 7.5 Hz f =
L ' H

cutoff characteristics

and zero phase response of the filter can be clearly seen in this figure.

Whenever a nonrecursive filter of any of the designs discussed above

is used, M points at the beginning and end of the time series must remain

unfiltered. In the present project M = 200 and, therefore, the first and

last 200 points in any filtered time series were discarded.
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APPENDIX K

RELATIONSHIP BETWEEN FIXED PROBE AND OSCILLATING PROBE MEASUREMENTS

The ultimate aim of the pressure and velocity measurements described

in Chapter 7 and 8 was to determine the stress at the air-water interface.

Since it is not possible to measure the stress exactly at the interface, it

is necessary to determine the air flow quantities at various heights above

the interface and then extrapolate the results to the water surface. In the,

fixed probe co-ordinate system, the elevation of the probe varies with the

phase of the wave, thus complicating the extrapolation process. For the wave

following probe, however, the probe elevation is constant with respect to the

water surface, despite the wave phase.

If any e~ternal flow disturbances are neglected, the relationship between

pressure and velocity fields in the oscillating and fixed frames of reference

can be related by a simple co-ordinate transformation. The relationships

between the two reference frames are

x X; z Z + a cos (WT); t T (K. 1)

where (x,z,t) and (X,Z,T) are the space and time co-ordinates in the fixed

and moving frames respectively. Any function f(x,z,t) expressed in the fixed

frame of reference can be described in terms of the moving co-ordinates by

Equation K. 1

f(x,z,t) = f[x(X,Z,T), z(X,Z,T), t(X,Z,T)] (K.2r

Hence, the pressure and velocity fields, as measured in Chapter 7 and 8, will

vary depending on the reference frame for the measurements.
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