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1.

INTRODUcrION

The obvious causal relationship between wind and surface gravity waves

is evident to even the most casual observer. Nonetheless, the science of

air-sea interaction remains in its infancy. The first real impetus towards

a rational understanding of the processes responsible for the generation of

waves was the 1956 review by Ursell (129) ,whose much quoted opening sentence

succinctly summarises the state of the art at that time: "Wind blowing

over a water surface generates waves in the water by physical processes

which cannot be regarded as known".

In the twenty-seven years which have followed, air-sea interaction

has become one of the most intensely studied (both theoretically and exper­

iIDentally) areas of fluid mechanics. The theoretical predictions of Miles

(78, 79, 80, 81, 82) and Phillips (89) have been investigated in the field

and the laboratory on numerous occasions. Although these measurements have

often proved contradictory, to theory and to each other, the most recent

(117) indicate that the combined Miles-Phillips theory is a reasonable model

for the energy transfer from the atmosphere to the ocean. In evaluating

such experimental results, the considerable difficulties of the task should

be realized. As pointed out by Phillips (94): "It is little wonder, then,

that the results show considerable scatter - the fact that there is any

consistency at all is a tribute to the experimental skill of thOSE! involved".

This work, together with theories of wave-wave interactions (38, 39, 40),

bottom dissipation (65, 43, 110) and a specification of the saturation

spectrum (90, 45, 61) have provided a sufficiently reliable specification of

the source terms of the Radiative Transfer Equation to obtain reliable

mnnerical wave predictions (120 I 136).

The considerable effort which has been applied to the problem of air­

sea interaction has been largely fueled by man's increasing development of,

and re liance upon, the ocean and its resources. The energy crisis of

recent years has increased the economic viability of many offshore oil and

gas deposits. The development of these resources, together with other

Offshore mining activities, port facilities and coastal protection works,

are all dependent upon accurate wave prediction models.



2.

One aspect of air-sea interaction which has had scant attention is the

response of waves to an opposing wind. Such situations are not especially

frequent but, in situations where the wind field varies rapidly either

temporally or spatially, as in tropical cyclones or in the vicinity of

strong frontal. activity , they are not uncommon. King and Shemdin (59) measured the

directional properties of waves in a number of u.S. hurricanes, finding

that many waves propagate as remotely generated swell into areas where they

experience adverse winds. Stewart and Teague (124) have measured the rate

of decay of waves in an opposing wind, following the passage of a front.

Measurements of the actual energy transfer at the air-water interface in

opposing winds (26, 117) are available from experiments specifically

designed to measure wind wave growth, but these data sets are far too

brief to draw any meaningful conclusions.

The object of this research is a laboratory study of opposing air

flow over mechanically-generated water waves. A special-purpose wind-wave

flurr~ was designed and constructed, in which mechanically-generated water

waves propagate against the wind. Measurements of both normal and shear

stresses above the water surface have been made with the aid of a wave

follower, from wpich the energy transfer at the air-water interface has

been inferred.
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2.1

3.

ENERGY TRANSFER AT THE AIR-WATER IN'l'ERFACE

THE RADIATIVE TRANSFER EQUATION

An examination of wave records from any wind sea will immediately

reveal the apparent confusion of the sea surface. The most suitable

representation of the sea surface is in terms of a statistical model,

current practice utilizing the Gaussian random wave model in which the

complex sea state is described in terms of the variance spectral density

F(k) of the surface gravity waves in directional wave number space. At

each position and time, F represents the superposition of free linear wave

components of all wave numbers and from all directions. There are

equivalent variance spectral representations in directional frequency

space, both in terms of cyclic frequency f and angular frequency to = 2nf,

but the F(k) representation leads to the more natural description of spectral

evolution.

Assuming F to be a slowly-varying function of position and time, it

follows from differential calculus that wave energy conservation may be

wri tten as (41)

dF(k ,k ; x,y,t)
x y

dt
=

dF
dt

(temporal accumulation)

dF dx dF dy
(propagation)+ - +

dX dt dY dt

dF
dk dF dk

x -:i.. (refraction/shoaling)+ +dk dt dk dt
x Y

Q(k ,k ; x,y,t)
x y

(source/ sink) (2.1)

The terms x and yare orthogonal co-ordinate directions, k is the component
x

of the wave number vector in the x direction and k is the component in the
y

Y direction. Reading down the page the terms of Equation 2.1 represent

the local or temporal accumulation, propagation and combined refraction and

shoaling. The right hand side of the equation, indicated by the source
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function Q, represents the net transfer of energy to or from or wi thin the

spectrum at the wave number k due to all interaction processes which affect

the component~. This equation, known as the Radiative Transfer Equation,

formally summarises all the various physical processes that contribute to

the evolution of the directional spectrum.

In addition, the kinematics of wave propagation are described by

ray theory (66). The wave number ~ and the angular wave frequency w(k,d)

are also assumed to be slowly varying functions of position and time, related

by the conservation of crests equation

"k
~ + IJwat o (2.2)

and the dispersion relationship, which for linear surface gravity waves

in the absence of currents is

gk tanh kd (2.3)

Equation 2.3 describes a time invariant but space dependent medium through

the depth d(x). Equations 2.2 and 2.3 can be manipulated to yield Eulerian

time rate of change equations for both k and w, namely

elk
dt

dw
dt

=

o

dW
dd

IJd (2.4)

(2.5) .

which have the same characteristic curve

d~

dt !:g (2.6)

Where ~ = IJkW is the group velocity. Equations 2.4 to 2.6 are the

characteristic equations defining the wave orthogonals, again in the absence

of currents. Diffraction, involving wave energy transfer normal to wave

orthogonals, is a boundary value problem and cannot be accommodated by the

present approach, which describes an initial value problem.
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Considering together Equations 2.1, 2.4, 2.5 and 2.6, gives

dF
dt

= Q {2.7}

In deep water the right hand side ofC •
g

C is constant for each frequency and the
g

this is not generally the case in shallow

Equation 2.4 is identically zero,

wave rays are straight lines, but

along wave rays defined by Equations 2.4 to 2.6. This relationship was

first established in the context of gravity waves by Longuet-Higgins {70}

for Q = 0 {no generation, decay or interaction} in which case F{k} is

conserved along the wave rays. Generally however, generation, dissipation

~d interaction are non-zero and Equation 2.7 describes the evolution of

the directional wave number spectrum relative to waves moving along wave

orthogonals at the group velocity

water where the bathymetry progressively reduces C after a small increase
g

~d bends or refracts the rays.

Conventional engineering practice considers the directional frequency

spectrum E{f,8} rather than the directional wave number spectrum F{k ,k },
x y

in recogni tion of Equation 2.5 which specifies the angular frequency W as

a constant along wave rays. These alternative spectral representatives are

related through

-00

If F{k ,k } dk
x y x

dk
Y

00 1T

If
o -1T

E(f,8) df d8 = (2.8)

~ere 0
2 is the variance of the surface gravity waves. Evaluating Equation

2,8 yields

F(k ,k ; x,y,t}
x y

=
CC
-3.
21TW

E(f,8i x,y,t) (2.9)

I~here C = w/k is the phase speed. Substituting Equation 2.9 into Equation

2.1 gives

cc S
g

(2.10)
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where S(f,ei x,y,t) becomes the forcing (source) term. Likewise Equation

2.7 becomes

d (CC E) = CC S
dt g g

(2.11)

the product CC E being the new action variable which is conserved along
g

wave rays for S = O. The characteristic equations defining the wave rays

now become

dx
dt

= C cose
g

(2.12a)

dy = C sine
dt g

(2.12b)

ae
at

=
1
k

aw [ . ad ad ]- Slne - - cose ­
ad ax ay

(2.12c)

The well-known Munk and Arthur (85) equations describe the same ray paths

with wave fronts propagating at speed C, whereas wave energy propagates at

speed C. In deep water, both C and C are independent of depth and constant
g g

for each frequency, the wave rays become straight lines and Equation 2.10

reduces to the familiar form

aE cose aE . e aE
at + Cg ax + Cg Sl.n ay = S (2.13)

~ilized in deep water wave prediction by Gelci et al (35), Pierson, Tick

and Baer (96), Barnett (3), Ewing (30) and Cardone, Pierson and Ward (17).

The formulation of the problem is completed by the specification of

the source term S. Consistent with linear wave theory, the source term is

considered as the summation of a number of separate influences which

transfer energy to, from or within the wave field:

S(f,e) = L
i

S. (f,e)
l

(2.14)
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Three classes of source terms can be identified, namely atmospheric input,

non-linear wave-wave interactions and dissipation (wave breaking or white

capping, bottom friction, percolation, bottom motion), i.e.

S(f,8) = S + S + SDA N
(2.15 )

These terms will be discussed later in this chapter.

The Radiative Transfer Equation describes an Eulerian convective

transport problem, for which analytical solutions are only available

under very special conditions. In general it is necessary to resort to

discrete numerical solutions. The numerical alternatives have been reviewed

by Young and Sobey (136), and by Sobey (118) in another context.

2.2 THEORIES OF AIR-WATER ENERGY EXOIANGE

2.2.1 Potential Theory

The potential theory for gravity waves on a density discontinuity

between two fluids was first investigated by Stokes (125). The theory,

for the case of a uniform mean velocity U in the upper fluid has been

developed in many texts. The development below follows Lamb (65).

The flow in both fluids is considered to be irrotational, incompressible

and inviscid. The velocity potential ¢ is introduced so that

u = -~ox

w = o¢
-~

where x and z are the horizontal and vertical coordinates and u and w,

horizontal and vertical velocities respectively. The water surface is

assumed to be sinusoidal such that

n = a exp [i(wt-kx)]

(2.16a)

(2.16b)

(2.17)



8.

where a is the wave ampli tude and only the real part of Equation 2.17 is

physically realistic. The problem is in essence one of small oscillations

about a state of steady motion, the velocity potential being defined as

¢ = -Ux + ¢'

where by hypothesis ¢' is small and given by

¢' = B exp [ -kz + i (wt - ]{x) ]

(2.18)

(2019)

where B is a constant. Substituting Equations 2.16 into the mass conservation

equation yields the Laplace equation

(2020)

and the kinematic free surface boundary condition is, to first order in n,

~J
dZ

(2.21)

z = 0

Substituting Equations 2.17 and 2.19 into 2.21 gives

B = i a(C-U)

where C = w/k is the phase speed of the waves. From Equation 2.22, the

velocity potential becomes

¢ = -Ux + ia(c-u) exp [-kz + i(wt-kx) ]

The air pressure is obtained from Bernoulli's equation for· unsteady

irrotational motion:

(2.22)

(2.23)

8¢' _! {(U _ ~)2 + (d"p
z
' )2 }

dt 2 dX a - gz + 0 •••

=
8¢' ~at" - U dX - gz + .•.. , (2.24)
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the terms omitted being either of the second order or not relevant in the

present context. Equations 2.23 and 2.24 give

= -a e-
kz

[1 - U/c]2 exp [i(wt-kx)] - z

and since the pressure is a real quantity

= -a e-kz [1 - D/C J2 cos (wt-kx) - z (2.25 )

this result being illustrated in Figure 2.1. The horizontal and vertical

velocity components, u and w, can be found from Equations 2.23 and 2.16 as

and

ulC = D/C - ka [1 - D/C] e -kz cos (wt-kx)

wlC = ka [1 - D/C] e -kz cos (wt-kx + 1T/2)

(2.26 )

(2.27)

which are illustrated in Figure 2.2.

The pressure predicted by Equation 2.25 is only the wave-induced

component, any background static pressure being neglected. The negative

sign indicates that this wave-induced pressure is 1800 out of phase with

the water surface. In addition, the pressure can be quite large for an

opposing wind (D/C negative) due to the term in square brackets. 'I'he

magnitude of the pressure will also decay quite rapidly with increasing

kz, due to the e-kz term. Equations 2.26 and 2.27 predict that the

magni tudes of the u and w wave-induced velocities are equal. The phases

of u and ware dependent upon the magnitude of D/C. If D/C is less than

one, u is in anti-phase with the water surface and w leads the water surface

by 90 0
• Again the velocities decrease in magnitude with increasing kz,

at the same rate as the pressure but the increase in the magnitude of the

velocities with D/C is slower than for the pressure.

As will be shown later (Section 2.6) potential theory has proved

unsuccessful in predicting the pressure or velocity fields above gravity

waves in a following wind. Does it have any relevance in opposing winds?
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The major assumptions of the theory are that the flow is irrotational,

incompressible and inviscid. The assumption that air is an incompressible

fluid is made in many areas of fluid mechanics and at the velocities being

considered « 10 ms-1) seems quite reasonable. The assumptions of irrot­

ational flow and an inviscid fluid are related. Irrotationality requires

that the vorticity be zero. That is, for two dimensional flow

au
~

aw
ax o (2.28)

Rotation may be caused by viscous forces, but a rotational solution also

exists for a perfect fluid, and irrotational flows exist in a viscous

fluid (67) and hence the existence of viscosity is not a sufficient

condition to assure rotational flow. Whether a motion is physically

rotational or irrotational however is evident from a consideration of

friction effects. Near a fixed boundary, along which particle velocities

are zero, and hence, a velocity gradient exists, particles on adjacent

paths will have significantly different velocities (see Figure 2.3). A

line joining at one time two particles on the same path will rotate much

less than that of a line joining two particles on adjacent paths. The

difference in direction of the friction forces acting on the opposite sides

of the particle, causes a torque resulting in a net rotation.

In general, the motion can be assumed to be almost irrotational when

the velocity gradients are small, when streamlines converge rapidly, and

when the velocity distribution depends on the shape of the boundaries and

not their roughness. Thus, within the boundary layer the flow must be

rotational. A flow may be considered almost irrotational only if the boundary

layer is of little importance, Le. relatively thin. In the present problem

interest is concentrated within the surface boundary layer and it would be

expected that the predictions of potential flow theory would be in error.

The degree of error, however, will depend upon just what effect the boundary

layer has on the wave-induced pressure and velocities.

2.2.2 The Kelvin-Helmholtz Instability

The first theory to consider the possibility of an instability on a

density discontinuity between two fluids moving relative to each other was

developed by Helmholtz (47) and later extended to include the effects of

surface tension by Lord Kelvin (56). This solution is known as the
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Kelvin-Helmholtz Instability" and was the earliest attempt at predicting

;he growth of sea waves.

Both fluids are considered to be inviscid with an air boundary layer

of negligible thickness compared with the wave height.

of the air is unifonn, p is the air
a

surface tension T is retained in the

The veloci ty U
a

density and p is the water density;
w

analysis. The water surface elevation

is assumed to be of the fonn given by Equation 2.17. Solving for the phase

speed C gives

C =
g (pw - Pa ) + T k

{k (p + p) (p + p )
w a w a

P P U 2 ~
W a a }

(p + P )2
w a

(2.29)

where C is, in general, complex. In the absence of mean flow, U , and
a

neglecting surface tension, this result reduces to the expression for the

interfacial wave speed

= (2.30)

p U /(p + P ) with speed ± S, where
a a a w

With U non-zero however, the disturbances move relative to the weighteda
mean air flow speed U =

=
P P

a w
(p +

a

U 2
a

(2.31)

Substituting C into Equation 2.29
m

minimum wind speed at which this

provided S2 > O. If SL < 0, C is complex and the disturbances grow expon-
-entially but remain stationary with respect to U. Thus the flow is stable

Or unstable according to whether S2 > 0 or S2 < O. When S2 = 0, the

transitional case, the flow is marginally or neutrally stable.

As a consequence of surface tension, water waves have a minimum

velocity C (see Lamb (65), Section 267) and there is a range of wind
m

speeds which do not generate waves.
-1

yields approximately 6.5 ms as the

mechanism can be effective. Since naturally occurring wind generated waves

are initiated at much lower speeds and in addition the assumption of a very

thin interfacial boundary layer is unrealistic, this mechanism is not thought

to be very effective at the wind speeds and wavelengths commonly observed at sea.
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Jeffreys'Shelterin2Theory

Jeffreys (52) assumed that the energy transfer between the wind

and the water was exclusively form drag, associated with flow separation.

It was assumed that flow separation occurred on the leeward side of the

wave crests with re-attachment somewhere further down on the leeward slopes

of the wave. Tangential stresses were completely neglected and the normal

pressures were assumed to be solely responsible for wave growth. In a

progressive wave train, the rate of working (or energy flux) by the atmos­

pheric pressure distribution is (94)

= an
-p at (2.32)

Thus, it is the component of pressure in quadrature with the water surface

which does the work. Due to the type of flow separation assumed by Jeffreys,

this component of pressure is positive and hence the energy flux represented

by Equation 2.32 will also be positive. Based upon dimensional arguments,

Jeffreys assumed that the pressure can be represented by

p = s P (D - C)2 aD
a 00 ax (2.33)

where the constant of proportionality, S, is called the sheltering

coefficient. Considering Equations 2.32 and 2.33 for Doo/C > 1 yields

and, as shown by Kinsman (60), for D Ie < 1
00

(2.34)

= (2.35)

which indicates that the waves are doing work on the wind. Equations

2.34 and 2.35 predict exponential rates of wave energy growth and decay

respectively.
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The sheltering coefficient S was calculated by determining the rate

of energy loss due to molecular viscosity and the least wind U. that can
m~n

maintain waves against this loss, and then comparing this with observed

least winds which seemed just

value of S varies as (U . ) 3.
m~n

Jeffreys chose 1.1 mis, giving

capable of generating waves. The calculated

The choice of U. is thus critical;
m~n

an S of 0.3. Experiments of air flow over

solid wave models (122), however, appeared to give values of the pressure

difference much smaller than Jeffreys required to account for the observed

rate of wave growth and the 'sheltering hypothesis' fell into disrepute.

It is now recognised that these experiments were almost irrelevant to the

problem of wave generation, and more recent research by Banner and Melville

(2) indicates that air flow separation only occurs with the onset of wave

breaking. The type of air flow separation mechanism postulated by Jeffreys

cannot be responsible for wave growth.

2.2.4 lbe Miles-Phillips Theory

As mentioned in the preceding sections, the central question in wind

wave generation concerns the distribution of stress on t.he water surface

under the action of wind. The surface stress can be resolved into normal

stresses and shear stresses. In addition, these stresses can be of two

kinds: those produced by turbulent eddies in the wind and those produced

by the air flow over the wavy water surface. These two forms of surface

stress were considered independently by Phillips (89) and Miles (78). In

the following review, rather than follow their original derivations, the

approach of Phillips (94) is adopted.

Water surface normal stresses 0 and shear stresses L may be written

as

and

o = 0 + 0 + 0'

"[ = "[ + "[ + "['

(2.36)

(2.37)

respectively, where 0 and L are the time-averaged values representing the

mean flow, 0 and T are the wave-induced stresses caused by air flow over

the wavy surface and 0' and "[' represent the atmospheric turbulence. The



14.

various components of Equations 2.36 and 2.37 are easily separable in

Fourier space. If the wave field near wave number k is defined by dA(k)

exp [i ~ • (~ - ~t) J, the induced stress components near the same wave number

can be represented by

and dT(k)

(2038)

(2.39)

where VI' V2, ~I and ~2 are coupling coefficients. The total surface stress

is the sum of the directly induced variation, Equations 2.38 and 2.39,

together with the random contributions from the atmospheric turbulence.

The wave-induced components provide a selective energy input to the wave

component at wave number ~' whilst the turbulence provides a contribution

over a wide spectral range.

It has been shown by Longuet-Higgins (71) that a fluctuating tangential

stress applied at the free surface is dynamically equivalent to a normal

pressure fluctuation of the same magnitude, lagging TI/2 in phase behind

the tangential stress; a tangential stress in phase with the wave elevation

is equivalent to a pressure in phase with the wave slope. Hence, the effective

Fourier component of pressure at the water surface is

p = (v + i~) P C2 k dA(k) + dp'
w

(2.40)

where V = VI - ~2, ~ = ~I + V2, dp' = do' + idT' and in practice the nett

coupling coefficients are both small, lvi, I~I «1. The linearised gravity

wave equations for the wave number component become

= dp'(~,t) (2.41)

where the complex frequency N = w(l + i~/2) and the dots imply differentiation

with respect to time. SubjBct to quiescent initial conditions, Equation 2.41

solves (94)t"o



F (k, t) = nIT(~,w)

p 2 c2
w

15.

[ sinh 11 wt J
11w

(2.42 )

where IT(~,w) is the wave number-frequency spectrum of the turbulent

atmospheric pressure at the water surface (i.e. p'). To this approximation,

the wave frequency (the real part of N) remains unchanged by the coupling

with the wind, whereas the imaginary part of N, which is proportional

to the component of normal stress in phase with the wave slope, determines

the development with time. Thus it is the normal stress in phase with

the wave slope or the tangential stress in phase with the water surface

which supplies energy to the moving wave.

Equation 2.42 reduces to a simpler form when the wind duration t

is either small or large compared to l/l1W. These two conditions correspond

to different primary mechanisms of wave growth. For small time (t « l/l1w) ,

the square bracketed term in Equation 2.42 becomes t and Equation 2.42

becomes

= nIT (k ,w)
p 2 c2
w

t (2.43)

describing an initial linear growth in the wave spectrum, as established

by Phillips (89). For large time (t » l/l1W) , Equation 2.42 becomes

F (k, t) =
rrIT(k,w)

p ~ C2
w

[exp (}J wt) ]
11W

(2.44)

describing an exponential rate of growth determined by the coupling

coefficient 11, as originally formulated by Miles (78).

The linear growth mechanism (Phillips' mechan~sm) is broadly responsible

for initial excitation of the sea and has an important influence on duration­

limited seas. This mechanism involves a type of resonance between the free

surface waves and the exciting turbulent stress fluctuations. It provides

potentially a broad-band input across the complete wave number-frequency

spectrum with the resonance condition directing energy to those wave

components with a phase speed equal to the convection velocity of the
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atmospheric turbulence component. Numerical evaluation of this mechanism

requires knowledge of the TI(~,w) spectrum, measurements of which will

be discussed in Section 2.6. In order to evaluate the exponential growth

mechanism, knowledge of the dimensionless coupling coefficient ~ is

required.

Miles (78) made the first attempts at evaluating ~ by assuming the

air flow to be quasi-laminar, atmospheric turbulence being neglected except

in so far as it determined the basic mean velocity profile. The basis of the

solution is the inviscid Orr-Sommerfield equation, from which Miles

obtained an approximate solution for ~ for a shear flow with a logaritb~c

velocity distribution. His solution has the form

~ =
P -kz

a TI - 2 C
- -. (u - C) e
p C c
w (du/dz)

c

(2.45)

where the subscript c indicates that terms are to be evaluated at the

so called critical height where the wind velocity equals the wave phase

speed. For an opposing wind, U /C is negative, there is no critical
00

layer, ~ = a and there will be no energy transfer.

In a series of subsequent papers (79, 80, 81, 82), Miles extended

his theory to account for the effects of turbulence and viscosity. He

concluded that the energy transfer is given by

F = F + F
c w (2.46)

where the energy transfer F is identical in form to the prediction of the
c

laminar model. The second term F represents the sum of a vertical integralw
of the mean product of the vertical velocity and the vorticity and the

perturbation in the turbulent shear stress at the air-water interface. Fw
depends on the turbulent Reynolds stresses which are strictly dependent

variables. Phillips (93) has made certain simplified closure assumptions,

later criticised by Miles (82), a~d obtained a solution for F. This
w

solution is shown in Figure 2.4 as a function of u*/C and for a number

of angles a between the wind and waves. As u*/C decreases, the height of

the critical layer increases, the wind profile curvature decreases and
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the laminar model term, P decreases. For u*/C less than approximately
c

0.05 the contribution to ~ from the critical layer becomes insignificant

compared with the contribution from the undulatory turbulent flow near the

water surface. The break in the curve reflects this change in the mechanism

of generation of the induced surface pressure.

This solution has special significance for opposing winds, where

F = 0 and wave growth (or decay) is determined solely by the undulating
c

turbulent flow over the wave form. The Reynolds stress of the induced

air motion extracts momentum and energy from the waves, the rate of loss

of wave energy being given by the exponential coupling coefficient ~'

Phillips (93) calculations show that for opposing winds

~ = (2.47)

where 8 is the angle between the wind and waves (8 = 180 0 indicates wind

and waves in opposition) and u* is the shear velocity. Equation 2.47

is also plotted in Figure 2.4. This predicted decay rate is quite slow,

and comparable with the growth rate produced by the undulatory turbulent

flow in a following wind.

Subsequent investigators (25, 36) have applied more sophisticated

turbulence closure models to the flow over water waves, in an attempt to

assess the importance of turbulence in wave growth. As pointed out by

Phillips (94), however: "Closure schemes in turbulent shear flow are still

rather ad hoc and different methods, which may be reasonably satisfactory

in other flows, give very different results when applied to this problem.

The situation is not one in which firmly established methods lead to

results that one might seek, with some confidence, to verify experimentally.

On the contrary, because of sensitivity of the results to the assumptions

made, the air flow over waves appears to provide an ideal context to test

the theories of turbulent stress generation themselves".
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2.3 WAVE-WAVE INTERACTIONS

2.3.1 Resonant Interactions

As gravity waves grow under the influence of atmospheric forcing, the

individual waves steepen and the nonlinearity of the governing equations

begins to have a major impact on continuing wave growth. The individual

Fourier components of the spectrum are no longer independent and interactions

among wave components redistribute energy within the spectrum. If the

nonlinearity is weak, a perturbation analysis with the wave slbpe ak as the

small parameter will describe the nonlinear effects as small perturbations

on linear wave theory. The nonlinear effects will be small unless there is

dynamic resonance of some kind among wave components.

For second order resonant interactions among a triad of deep water

surface wave components, the conditions

~1 = ~2 + ~3 (2.48)

and (2.49)

where w. = g k. must be satisfied simultaneously. Phillips (91) has shown
1 1

that there are no nontrivial solutions to these equations, so that resonance

cannot occur to this order. For third order resonant interactions among

a tetrad of waves, the conditions

(2.50)

and o

must be satisfied. For many of these sign combinations, no solutions are

possible, but there do exist solution sets to

~l + ~2 =

=

~3 + ~4 (2.52 )

(2.53)
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since such wave-wave interactions occur only at the third approximation,

they are not simply weak, but very weak. They nonetheless give rise to a

number of interesting and observable phenomena.

The effect of the resonant interactions on the entire energy spectrum

was developed by Hasselmann (38, 39, 40). The resultant energy transfer is

=

d ~l d~2 d ~3 (2.54)

The terms D, are complicated
J

coupling coefficients which are functions of the wave numbers ~l' ••••• ~4

where F, = F(k,) and Equation 2.54 represents the net energy transfer to
J -J

(or from) the wave number component ~4.

and are given by Hasselmann (38, 39). The Dirac delta functions o( )
suppress energy contributions from all tetrads save those which satisfy the

resonance conditions, Equations 2.52 and 2.53. The cubic form of the

integral arises since the interaction occurs at the third order. Equation

2.54 can be interpreted in terms of quadruple interactions between three

active wave components, which determine the interaction rate, and a passive

fourth component, which receives energy from the first three components

but has no direct influence on the interaction. Wave-wave interactions

of this type are conservative and merely redistribute the energy within the

spectrum.

The actual evaluation of the energy transfer represented by Equation

2.54 is extremely complicated. As well as the computational effort involved

in evaluating such a six fold integral, the determination of the coupling

coefficients D, is no simple task since it involves long and taxing algebraic
J

manipulations followed by numerical computations. Due to these complexities

it is not surprising that there appear to be inconsistencies in the calcul­

ations which have been performed (40, 106, 73, 32). In an attempt to

overcome some of these inconsistencies and to provide an adequate data base

for the development of a suitable parameterisation of the SN term for wave

prediction models, Hasselmann and Hasselmann (44) have evaluated the integral
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for twenty-nine different spectral shapes. Their computations for the

mean JONSWAP spectrum along with independent computations by Sell and

Hasselmann (106) and Fox (32) are shown in Figure 2.5. The Hasselmann

and Hasselmann and Sell and Hasselmann computations were based on the

complete integral Equation 2.54 and are similar although neither are smooth.

The Fox computations are based on Longuet-Higgins' (73) narrow spectrum

approximation and, although, the curve is smooth it is significantly diff­

erent from the other results.

Despite possible numerical problems which may be responsible for the

irregular results, the extensive computations of Hasselmann and Hasselmann

(44) provide data from which to determine the characteristic features of

the nonlinear transfer. The transfer generally consists of positive lobes

at high and low frequencies with a mid-frequency negative lobe in the

general region of the spectral peak. The positive energy transfer at high

wave numbers leads generally to a directional broadening of the spectrum

at higher frequencies. The positive lobe at low frequencies has a narrow

directional distribution and leads to a shift of the peak to lower

frequencies without appreciable directional broadening. The shape of the

peak has a strong influence on the relative position of the two positive

lobes and the intermediate negative lobe of the nonlinear transfer. In

situations where there is both swell and wind-sea present, there is little

interaction between the two, provided they are sufficiently separated in

frequency. Thus, when swell experiencies an opposing wind, the locally

generated waves would have little effect on the swell due to this form of

resonant interaction.

The significance of wave-wave interactions was first established in

the JONSWAP (45) study where they were considered as the principal source

term, causing a self-stabilising process responsible for the pronounced

peak and steep forward face of the spectrum. Phillips (94) has questioned

the dominant role assigned to wave-wave interactions in the rapid growth

phase for each wave component, arguing that the observed growth of the peak

and forward face of the spectrum is inconsistent with the influence

Hasselmann ascribes to the S term at that stage. The magnitude of wave-
N

wave interactions grow with spectral density, becoming more influential

at later stages of wave growth and evolution. Phillips denies wave-wave

interactions a dominate role in the wind-wave prediction, but nonetheless

concedes their significance.
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Long Wave~Short Wave Interaction

It has long been realized that short surface gravity waves should

have enhanced amplitudes at the crests of long waves, due to the compression

of the short waves by the orbital velocity of the long waves, to the

working of the long wave rate of strain against the radiation stress of the

short waves and to the increased ratio of potential to kinetic energy

for the short waves near long wave crests (34). Phillips (93) has shown

that energy density is a maximum,

E
max

=
- 1 2
E [ 1 + aQ, kQ, (1 + "2 cos e)] (2.55 )

at the crests of the long waves and a minimum,

(2.56)

in the troughs. The slope of the long waves is aQ, k Q,' e is the angle

between the two wave trains and E is the average energy density of the

small waves. The energy density of short waves at the crest is therefore

partly 'borrowed' from the long waves; if no losses occur this is 'repaid'

as the short waves move through the trough. The energy exchange is

oscillatory and there is no nett flux between components. The enhanced

energy of the small waves at the long wave crests may result in preferential

splashing or breaking in this region.

Phillips (92) argued that the energy of the small waves had been

partially acquired from the long waves and the dissipation of the short

waves would damp the long waves. In contrast, Longuet-Higgins (72)

reasoned that as the short waves dissipate, they also give up their momentum

to the long waves; they exert a stress which is in phase with the orbital

velocity of the long waves and which should lead to their growth (or decay

if the waves are in opposite directions). This process is analogous to a

maser, which is a device for coherent amplification or generation of electro­

magnetic waves. Hence this long wave growth process has been called the

maser mechanism. Longuet-Higgins showed that, provided the short waves

were continuously regenerated by the wind, the input of energy to the long

waves due to this maser-type mechanism would greatly exceed the long wave
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damping proposed by Phillips (92). Hasselmann (42), however, showed that

the energy input to the long waves due to the maser mechanism is almost

exactly cancelled by a potential energy transfer, the residual being just

the ori.ginal damping term of Phillips (92).

More recently it has been shown by Garrett and Smith (34) that long

wave growth can result if short wave generation (rather than dissipation)

is correlated with the orbital velocity of the long waves. Since wave

growth due to atmospheric input is essentially exponential and since the

small waves are larger at the long wave crests, it is reasonable to assume

that the atmospheric input to the small waves would be greatest at the long

wave crests. Thus long waves could grow by this mechanism. Using the same

arguments, the larger waves will be damped by this process if the two wave

trains are in opposite directions. Garrett and Smith (34) conclude that

the rate of energy transfer to the long waves is given by

= cos~ (2.57)

where a~, k~ and C~ are the long wave amplitude, wave number and phase

speed, respectively, R
S

is the radiation stress of the short waves, as
is the rate of transfer of momentum to the short waves by the wind and <P

is the phase angle of the long waves. The angle brackets denote that the

expression is phase averaged over the long waves. If the direction of the

short waves relative to the long waves is reversed, the first term in

Equation 2.57 remains unchanged, whereas the second term changes sign. The

first term is the radiation stress term of Phillips (92) and is quite

small in comparison with the second term. If the long and short waves are

in the same direction the long waves will gain energy from the short waves,

whereas the long waves will be damped by the short waves if they are in

opposite directions. From Equation 2.57, at most a fraction a~ k~ of the

wind stress can go into long wave momentum and consequently, the effect

of the small waves would not be large.

2.4 WAVE-CUP..RENT IN'IERAcrION

When a wave train encounters a current, the surface velocity varies

and the excess momentum flux results in an interchange of energy between

the waves and the current. For deep water waves superimposed upon a steady
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current U, the conservation of crests equation (Equation 2.2) gives (94)

w = w + kUcose
o

(2.58)

where w2 = gk in the absence of a current and e is the angle between the
o 0

wave train and the current. This can be written as

C k = k (Ucose + C)
o 0

2 k
UcoseC 0 ...f-or C"2 = +k C C

0 0

(2.59)

(2.60)

which is a quadratic in C/C , solving to
o

C
Co

= ~ + 1 (1 + 4ucose)~
2 2 Co

(2.61)

When Ucose = -~C , the second term in Equation 2.61 vanishes, the convection
o

velocity C is equal and opposite to the local group velocity of the waves

and the wave energy can no longer be propagated against the stream.

Longuet-Higgins and stewart (76) have shown that

E
E

o

C 2
o

C(C + 2Ucose)
(2.62 )

This result is plotted in Figure 2.6 which shows that if Ucose is positive

the wave energy will be reduced but in an adverse current, the energy flux

of the wave motion increases because of the work done by the radiation stress.

Phillips (94) has extended this result for an adverse current to include

wave breaking or white capping, where the waves are initially at their

saturation limit with no superimposed current. The wave energy is

Where the current is a

w •
o

this band is w and the wave energy is El(W)dw.

initially E (w)dw for a frequency band of width dw centred at frequency
o 0 0 0

At the point where the adverse current is greatest the frequency of

maximum, the waves will remain saturated and much of the energy input of

Equation 2.62 will be lost. As the current speed decreases to zero, the

frequency of the band returns to w
o

' the wave energy is reduced by the
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expansion to E2 (W ) dw , and no energy is lost by wave breaking. The ratio
o 0

of the transmitted to the incident spectral densities is given by

E2 (w) w 7

= (...£ ) (2.63)
E (w) w

0

where
w 1 41ulw ~

0
[1 + (1 - 0) ]- = -

w 2 g

components with frequencies greater than g/4lul are not transmitted at all,

and the attenuation is very strong unless w «g/41 u I. Similar results can
o

also be obtained for water of finite depth where the additional effects of

boundary shear stress are present. Iwasaki and Sato (51) have shown that

wave decay can be quite considerable in an opposing current although their

analysis does not include the influence of wave motion on turbulence in the

boundary layer, which their experiments indicate may be important.

2.5 WAVE DISSIPATION

2.5.1 The Saturation Range

The growth of waves under the action of wind cannot continue indef­

initely. Except possibly near the peak of the spectrum, the wave-wave

interactions cannot move energy sufficiently quickly to balance the atmos­

pheric input. The waves become steeper and eventually dissipate their

energy through wave breaking. The intermittent but widespread appearance

of "white caps" in a growing sea is visible evidence of wave breaking and

the associated energy dissipation. Such large scale gravitational breaking

is a transient process, initiated when crests of the wave field run

together or where a wave propagates into an area where the local energy

density is high or when short waves riding over the crests of longer waves

acquire excess energy as a result of radiation stress. The exact criteria

for the onset of breaking in deep water remains the subject of some

controversy. In addition, typical sea states comprise a random collection

of irregular wave forms and the criteria may be continually changing.

Taylor (128) has shown that the limiting condition for standing waves is

that the local downward acceleration of the fluid near the crest is equal
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to the gravitational acceleration. In contrast, in a steady, two-dimensional

progressive wave, stokes' (125) limiting form with a sharp crest is attained

when this acceleration is only ~g. It appears also that wave breaking may

be even more extensive than the occurrence of white caps suggests, as

smaller scale processes contribute to wave energy dissipation without the

intense air entrainment and trails of foam that accompany larger scale

gravitational breaking. Processes such as micro-scale breaking enhanced

by the surface drift layer and the formation of parasitic capillaries are

identified by Phillips (94). The surface drift layer induced by the wind

stress can initiate wave breaking at a much earlier stage in wave growth

than large scale gravitational breaking and without visible evidence, as

the instability at the crest has insufficient vigour to entrain more than an

occasional bubble of air. Phillips has shown that the surface drift

contributes significantly to wave breaking only for frequencies W»2g/u*,

where u* is the shear velocity, so that it is important in the earlier

stages of wave growth. The efficiency of this wind-drift model has, however, been

questioned by Wright (142). Despite the lack of both quantitative measurements

and a satisfactory theory for white capping, it is generally believed

that white capping is the principal dissipative mechanism balancing the

generating processes at more mature sea states. It has been suggested by

Phillips (94) that this lack of knowledge is no great hindrance since the

actual mechanism of white capping may be of secondary importance to the

determination of the saturation or equilibrium spectrum.

It is reasonable to assume that in an actively generated wave field,

the properties of the spectrL~ at high frequencies (saturation range) must

be determined by the physical parameters that govern the stability and the

limiting configuration of the wave crests. In deep water, these include

g the' gravitational acceleration, u* the friction velocity and f the wave

frequency. Provided the effects of surface tension and molecular viscosity

are neglected the functional form of the saturation spectrum in deep water

can be found from dimensional considerations as

where ais the Phillips coefficient. If w»2g/u* the function f can be

neglected and Equation 2.64 reduces to

(2.64)

E (f)
00

(2.65 )
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which was originally derived by Phillips (90). The a term was originally

assumed to be a constant but measurements indicate a possible systematic

dependence upon the peak frequency or alternatively the wave age. Hassel­

mann et al (46) have used a collection of data from a number of sources

and presented this dependency as

A 0.87a = 0.0363 f
P

A
-0,29

or a = 0.0013 E
0

(2.66 )

(2.67)

A

where f =
P

peak and Eo

A 2 4
f Dlol g, E = E g IDlO , f is the frequency of the spectral

p 0 0 p
the total energy within the spectrum.

Further consideration of the saturation spectrum by Kitaigorodskii

et al (62) has shown that Equation 2.65 must be modified to

in transitional and shallow water where

(2.68)

q, (kd) tanh 2kd
=

1 + 2kd/sinh 2kd
(2.69)

For deep water kd is large, q, approaches unity and Equation 2.68 reverts

to Equation 2.65. For small kd, q, approaches ~kd = u/"d/2g whence Equation

2.68 becomes

E (f)
co

= (2.70)

a result which is supported by field observations in shallow water. Thus

Equation 2.70 implies a significant broadening of the saturation spectrum

in shallow water.

The entire concept of the saturation spectrum relies upon the presence

of an active wind-generated sea. To what limit an individual swell component

can grow is not well understood. In addition, the effect of opposing winds
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on the saturation limit has not been investigated. If such winds alter the

spectral energy distribution in some manner, they may indirectly effect

the saturation level.

2.5.2 Bottom Dissipation

In addition to the change in the saturation spectrum in water of

finite depth, there are a number of additional shallow water dissipation

mechanisms that have been identified, in particular bed friction, percol­

ation, bottom motion and bottom scattering. Bottom friction is the most

widely explored of all bottom-interaction processes. Analysis adopts

the quadratic friction law! = -C
f
~ 1~I/Pw' where T is the shear stress

at the bottom, ~ is the velocity at the edge of the bottom boundary layer

and C
f

is a friction factor. The friction factor is not constant but

dependent on the flow Reynolds Number and the bottom roughness height, in

a similar manner to the Darcy-Weisbach friction factor for turbulent pipe

flow. Jonsson (53) has presented a wave friction factor diagram based on

experimental results in the style of the Moody diagram, which shows C
f

varying through two orders of magnitude from 0.005 to 0.5. Hasselmann

and Collins (43) have applied linear wave theory, assuming that bed

friction - wave interactions are weak in the mean and determined the source

term representing wave dissipation to turbulent bottom friction as

= w2 cosh kd

(2.71)

where the over bars indicate time-averaged values, y is the angle of the

orthogonal co-ordinate system at the bed, Ul is the velocity component in

the principal direction of all velocities and u2 is the perpendicular

component of velocity.

For cohesionless bed materials, the oscillatory pressures induced at

the bed by surface gravity waves in turn induce oscillatory flow into and

out of the porous bed. Wave energy is dissipated by this bottom percolation

mechanism, represented by Shemdin

SDp(f,8) = -E(f,8) k laB

et al (110) as

tanh/f kd 1

cosh 2 kd

the source term

(2.72)
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but based on an isotropic analysis by Putnam (102) • The horizontal and

vertical coefficients of permeability are a and S respectively and d 1 is

the thickness of the porous bed.

Where the bed material is cohesive, the bed material itself may

respond to, and extract energy from, the wave field in a visco-elastic

manner. This mechanism is believed to be responsible for significant

swell decay observed off the Mississippi River delta in the Gulf of

Mexico (31) 1 where early results indicate the mechanism may be highly

nonlinear. A strong dependence on wave amplitude is observed but only a

weak dependence on wave frequency. An independent analytical study by

Hsiao and Shemdin (48) represents the bottom motion source term as

SDb(f,8) = -2k C E(f,8)
i g

(2. 73)

where k. is an attenuation coefficient dependent on frequency, water depth
l

and on the physical properties and depth of the mud layer in a complicated

but defined manner. This result is not consistent with the Forristall

et al field measurements but the field program is continuing and may result

in a more satisfactory representation of the bottom motion term.

A further potential shallow water dissipation mechanism is bottom

scattering, identified by Hasselmann (38) and Long (69). The wave prop­

agation medium is described by the dispersion relationship, and variations

in depth change the propaga~ion properties of the medium. The more gradual

trends in the bottom topography, at length scales much greater than the

surface gravity wave lengths, are accommodated by refraction but the more

rapid local variations are equivalent to physical inhomogenieties in the

medium, resulting in a directional redistribution of energy, even to those

modes propagating in the reverse direction. Hence, this mechanism can give

rise to waves propagating into the wind. An analytical expression for the

source term has been developed but it depends on the spectrum of bottom

displacements which is, of course, not readily available. Measurements of

bottom irregulariti.es in the JONSWAP area by Richter et al (103) suggest

that bottom scattering is inadequate to account for swell decay in the area

as was proposed by Long, but this does not mean that the mechanism may not

be important in other areas.
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6 MEASUREMENTS OF AIR-"SEA INTERACTION2.

2.6.1 Wave Growth

Equation 2.42 shows that the rate of wave growth is dependent upon

the wave number-frequency spectrum of turbulent atmospheric pressure

rr(~,w) and the exponential growth rate coefficient~. The turbulent

component of atmospheric pressure in the atmospheric boundary layer has

been the subject of investigation by Priestly (101) and Elliott (29).

priestly investigated downwind and crosswind correlations of pressure along

a land boundary; Elliott, downwind, crosswind and vertical cross-spectra

of pressure within several me tres of a land (and water) boundary. Their

results are quite consistent, indicating that the pressure is typically

isotropic and decays at k-
V

where V = 3. More recent measurements by

Snyder et al (117), however, indicate that V is closer to 2.

The first successful attempts at determining the exponential rate of

wave growth due to atmospheric forcing were conducted by Snyder and Cox

(116). They measured the actual growth of waves and assumed that all this

growth was caused by atmospheric input, neglecting other influences such

as wave-wave interactions. They concluded that the exponential growth

rate parameter, ~, is given by

]J (UlQ IC - 1) (2.74)

where y is a constant equal to 1. Barnett and Wilkerson (4) obtained a

similar result by using an air-born radar to measure the wave growth.

A more direct and hence reliable technique for determining the energy

flux from the atmosphere to the waves is to measure the induced stress at

the water surface, but the problems encountered are formidable. The

recording instrumentation must be as close as possible to the water

surface and ideally should be in a frame of reference oscillating with

the water surface; it can easily be contaminated with spray and even

swamped. In addition, the aim is to measure a rather small phase difference

from 1800 in a pressure signal whose magnitude is quite small (of order

p g a) •
a
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The first measurements of this type were made by Longuet-Higgins

et al (74) using a large flat buoy, but were rather unsuccessful as no

significant phase difference from 180° was found. Later laboratory

experiments by Shemdin and Hsu (111) and Shemdin (108) over mechanically

generated water waves and Kendall (57) over flexible wavy walls were more

successful. These results are summarised in Figures 2.7 and 2.8. Dobson

(27), using a very small buoy in the shallow water of Burrard Inlet,

Vancouver, made an extensive series of observations and found.~ values

consistent with those of Snyder and eox (116) i this perhaps indicates

that Dobson's values are too high. Elliott (29) used a stationary probe

at the same location and obtained y ~ 0.2. Elliott however used Us as his

reference velocity rather than Ul0 as in Equation 2.74. In addition,

Elliott found that the pressure and water surface were 180° out of phase

for zero wind conditions. In the presence of a wind however, he observed

that the pressure lagged the water surface by 120° to 140°. In a similar

set of experiments conducted in the Bight of Abaco, Bahamas, Snyder (l15)

found a still lower value of y equal to 0.1. In order to reconcile the

difference between the results of Dobson, Elliott and Snyder a combined

experiment was conducted (117). This experiment showed that the results of

Snyder were low by a factor of two because of the frequency response of his

instrument and provided an extensive data set indicating y lies between

0.2 to 0.3. Such a range is consistent with both the Elliott and the

corrected Snyder values.

The experiments mentioned above have all concentrated on measuring

the wave-induced normal stress on the water surface. As shown earlier

(Section 2.2.4), the surface shear stress can also transfer energy to the

waves. The turbulent Reynolds stress has been measured in a number of

laboratory experiments (64, 127, 134, 21, 50). Although these experiments

were generally designed to measure the structure of turbulence above waves

for turbulent closure models, they also indicate that the energy transfer

due to shear stress is quite small.

2.6.2 Opposing Winds

To date, no experiments have been specifically designed to measure

the rate of decay for waves moving slower than the wind or in opposition

to the wind (U/e < 1) , but a number of experiments do shed some light on
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the problem. In one of the experiments conducted by Dobson (26, 141), a well

defined group of waves (presumably ship waves) were observed on an otherwise

calm sea in the presence of a very low wind velocity. The direction of

propagation of the waves relative to the wind was not recorded but Dobson

inferred that they were propagating into the wind. The magnitude of the

wave-induced pressure agreed well with the predictions of potential theory

but the phase of the pressure signal led the water surface elevation by

165 0 compared to 180 0 predicted by potential theory. This data indicates

that the waves were decaying at a rate slightly less than Dobson's growth

rate. Since the growth rates measured by Dobson have been shown not to be

consistent with later data, this result should be regarded with some

skepticism. The data of Snyder (115) also included some upwind travelling

waves. His analysis indicates that for -2 < ule < 1 the waves are damped 7

whereas for ule < -2 they are amplified. Similar waves are found in the

data of Snyder et al, but they conclude that there is no appreciable shift

from 180 0 in the p-n phase relationship and hence the waves neither decay

nor grow due to the action of normal stress. Stewart and Teague (124)

used a land based radar system to measure wave activity after the passage

of a strong front in the Gulf of Mexico, finding that the rate of attenuation

of incoming waves going against the wind was nearly independent of wind

speed and quite small. The ratio of wave decay rates to wave growth rates,

averaged over all their observations, was 0.15. Thus the wave growth rates

were seven times greater than decay rates for identical wind conditions.

Their growth and decay rates are shown against Die in Figure 2.9. Additional

radar measurements of waves propagating against the wind have also been

made by Crombie et al. (140).

2.7 STRESS AT THE vJATER SURFACE

As shown in Section 2.2.4, the flux of energy from the atmosphere

to the ocean can be found from the stress at the water surface. In particular,

the energy flux to a wave of frequency w can be determined from the oscill­

ating surface stresses at this same frequency w. Invariably, the instrum­

entation used to measure the stress is confined to operate in an x,Z

cartesian coordinate system and hence measures the stress on the horizontal

x,y plane. The water surface is oscillatory and since it is the stress

exerted on the water surface which is required, it is necessary to transform

the stress measurements in the x,y plane to an orthogonal curvilinear system

in the water surface.
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Consider a wavy water surface

n a cos (kx - wt) (2. 75)

which has a vertical stress 0z and a horizontal stress T applied at the
zx

surface. The stress vector can be resolved into stresses normal and tangential

to the water surface as shown in Figure 2.10. Firstly, considering the

vertical stress 0 ,the normal and tangential stresses become
z

o -0 cos ex
z

(2.76)

and T o sin ex
z (2.77)

respectively, where ex is the angle the water surface makes with the

horizontal. Based upon a limiting wave slope of ak = TI/7 before breaking

occurs, it is reasonable to assume that

sin ex ~ tan ex

and cos ex ~ 1

With these simplifications, Equations 2.76 and 2.77 become

o -0
z

(2.78)

and T o
z

tan ex o
z

dn
dX

(2.79)

where from Equation 2.75

ak cos (kx - wt + TI/2) (2.80)

Two cases will be considered; the first where 0
z

constant and the second where it is oscillatory with a frequency w.

varies with time.

Further progress requires a specification of how the vertical stress 0
z

is
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constant, Equations 2.78 and 2.79 become

0 = -0
z

and T = 0 ak cos (kx - wt + TI/2)z

If 0 is given byz

0 = b cos (kx - wt + ¢)
z

(2081)

(2.82)

(2.83)

where b is the amplitude of the stress fluctuation and ¢ the phase shift

relative to the water surface, Equations 2.78 and 2.79 become

and

o = -b cos(kx - wt + ¢)

T = - ~k [cos(2kx - 2wt + ¢ - TI/2) + cos(¢ + TI/2)]

(2.84)

(2.85)

Therefore when resolved into components normal and tangential to the water

surface, a constant vertical stress yields a constant normal stress and a

sinusoidal tangential stress of frequency w, leading the water surface by

TI/2. A sinusoidal vertical stress, however, gives rise to a sinusoidal

normal stress of frequency w and phase ¢ and a shear stress with two

components, one constant and the other sinusoidal with frequency 2w.

The horizontal stress T can be resolved in a similar manner to give
zx

o = T tan a =zx

T = T zx

T an
zx ax

(2.86)

(2. 87)

Again if T = T = constant, Equations 2.86 and 2.87 become
zx zx

o = T ak cos(kx - wt + TI/2)
zx

(2.88)

and T = T
zx

(2.89)
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Similarly if L is sinusoidal and given by
zx

L
zx

b cos(kx - wt + ¢) , (2.90)

Equations 2.86 and 2.87 yield

o abk
2

[ cos (2kx - 2wt + ¢ - TI/2) + cos(¢ + TI/2) ] (2.91)

and b cos (kx - wt + ¢) (2.92)

Therefore a constant horizontal stress gives a constant shear stress and

a sinusoidal normal stress of frequency w, leading the water surface by

TI/2. A sinusoidal horizontal stress gives a sinusoidal tangential stress

at frequency wand phase ¢ and a normal stress with two components, one

constant and the other sinusoidal at frequency 2w.

Using the relationships developed above, it is possible to resolve

any stress vector'measured in the x,zcartesian system into components in the

orthogonal curvilinear system in the water surface. Pressure terms are,

by definition, normal to the water surface but measured Reynolds and

viscous stresses will of necessity be recorded in the x,z cartesian system.

To determine the form of these stresses, it is necessary to consider the

conservation equations of mass and momentum. In tensor form, the conserv­

ation of momentum equation is

duo
p [ dt + u.

-J

dUo
_lJ
dx.

J

pg. +
J

dO ..
lJ

~
J

(2.93)"

where p = p is the air density, u. is the instantaneous velocity in the
a l

x. direction and 0 .. is the instantaneous stress tensor. When i j, the
l lJ

stress tensor 0 .. represents a normal stress which, upon neglecting
II

viscous and turbulent velocity effects, equals the negative of the static

pressure (i.e. 0 .. = -p). Further, the pressure can be expressed as
II

p p + p + pI (2.94)
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~

where p is the mean pressure, p the wave-induced pressure with frequency

w and p' the uncorrelated turbulent residual. By introducing the conserv­

ation of mass equation

dU,
J

dX.
J

o (2.95)

Equation 2.93 can be expressed in conservation form as

dU. d
p [ d: + dX.

J

(u. u.) ]
1 J

pg. +
1

d0 ..
1J

3Z
J

(2.96)

If the velocities are also written as

U.
1

u, + U. + u '
1 1 i

(2.97)

where the terms have the same meaning as in Equation 2.94, Equation 2.96

becomes

~

U,
1

+ u,')
1

+ d
~ (U.U. + u.u, +
oX. 1 J 1 J

J

u u '
i j

+ u,u, + u,u. +
1 J 1 J

u,u, '
1 J

+ u.' u. + u,' u. + u. 'u. ' ) ] = pg J' +
1 J 1 J 1 J

d0 ..
-2:1.

dX.
J

(2.98)

Time-averaging Equation 2.98 and rearranging yields

p [
dU,

1

dt
+ d (U.U.)]

OX. 1 J
J

o
pg. + -- (0, ,

1 dX. 1J
J

u.u.
1 J

u, 'u,')
1 J

(2.99).

which has the same form as Equation 2.96. The additional 'stress' terms

which appear on the right hand side of Equation 2.99 are the well known

Reynolds stresses. In conventional turbulence analysis the wave-induced

component U, in Equation 2.97 is not considered as a separate component,
1

in which case

u "
i

u + u '
i i

(2.100)
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where u." is the fluctuating component of velocity. Using this terminology,
l

the Reynolds stress terms become

U."U."
l J

u.u. + u.'u.'
l J l J

(2.101)

~ ~

the component -P u.u. is the wave­
l J

the turbulent

where -p u."u." is the Reynolds stressj
l J

induced Reynolds stress and the component -p u. 'u.' is
:::-__l-:- J

Reynolds stress. Cross terms of the form u.u.' on the right hand side of
l J

Equation 2.101 are identically zero by definition.

The time-averaging step in deriving Equation 2.99 is necessary to

bring the equation into the same form as Equation 2.96 and shows that the

convective acceleration terms on the left hand side of the equation do not

take on the properties of a stress until they are time-averaged. Fluctuating

Reynolds stress components are not possible since all such terms are

eliminated in the time-averaging step. All the resulting stresses are

shown in Table 2.1.

Table 2.1 Components of the x, z stress vector

stress Group stress Direction

-Pressure p normal
~

normalp

Viscous stresses
2).1

dU
horizontal

dX

2).1
ow

vertical
dZ

ow dU)).1(- + horizontal
dX dZ

Wave-induced -p uu horizontal
a

Reynolds stresses ww vertical-p
a

-Pa uw horizontal

--
Turbulent Reynolds -Pa u'u' horizontal

--
stresses -Pa

w'w' vertical

--
-Pa

u'w' horizontal



37.

In Table 2.l, V is the dynamic viscosity of air.

Any of the stress! components in- Table 2.1 which resolve to give normal

or tangential stresses with a frequency w may cause an energy flux to (or

from) the waves. As shown in Section 2.2.4, this flux is proportional

to the component of stress in phase with the wave slope for normal stresses

or in phase with the water surface for a tangential stress. The phase

relationship was represented by the coefficients PI and V2 in Equation 2.40.

These coefficients can easily be represented in terms of the measured

phase angle ¢ of the stress relative to the water surface. If the surface

stress is represented by

'T or a b cos(kx - wt + ¢) b cos(kx - wt) cos ¢

-b cosCkx - wt - TI/2) sin ¢ (2.102)

the component in phase with the water surface is b cos ¢ and that in phase

with the slope is -b sin ¢. Thus from Equations 2.102, 2.38 and 2.39, PI

and V2 are

-amp (0) sin ¢
p C2 k a

w

(2.103)

and V2
amp(r) cos ¢
P C2 k aw

(2.104)

where the amp function refers to the amplitude of the particular quantity

in brackets and a is the wave amplitude. The magnitude of the phase shift

determines whether the energy flux is positive (wave growth) or negative

(wave decay).

Table 2.2.

The signs of PI and V2 as a function of ¢ are shown in

When the stress components of Table 2.1 are resolved and the phase

relationships accounted for, the final energy flux coefficients are

U"w"- amp (CJn/CJx)- amp (CJn/CJx) p U"U"
a

sin[ -amp (p)
¢pn

+ amp(CJn/CJx) 2p CJu/CJx + amp(CJn/CJx) P (CJ~/CJx + CJu/CJz) ] /pw C
2 ka

(2.105)
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(2.106)

where ¢pn is the phase difference between p and n.

¢ Oo~ ¢ < 90 0 90 0 <. ¢ < 1800 1800
~ ¢ < 270 0 270 0

~ ¢ < 360 0

111 -ve -vee +ve +ve

\)2 +ve -ve -ve +ve

Table 2.2. Energy flux directions as a function of surface

stress - water surface phase difference
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3. LABORATORY WIND-WAVE FLUME

3.1 LABORATORY MODELLING AND SIMULATION

Wind-wave flumes offer a number of advantages for the investigation

of air-sea interaction phenomena. Experimental conditions may be designed

to simplify, amplify or in other ways enhance the observation and study

of complex processes. In the laboratory, experiments may be conducted

in a deliberate, systematic fashion and, most importantly, conditions

may be reproduced and measurements repeated. In the present context it is

intended to investigate the response of waves to an opposing wind. Since

such conditions invariably occur only with complex wind fields, the problems

of investigation under field conditions are further exacerbated.

The successful use of a wind-wave flume in such a study requires

that the essential features of the natural field phenomena be correctly

modelled on the basis of the governing fluid mechanics equations. Cermak

(19) has reviewed the subject of laboratory modelling of atmospheric

boundary layers, conclUding that the general requirements for geometric,

dynamic and thermic similarity can be obtained directly by inspectional

analysis. Appropriate time-averaged equations expressing the fundamental

concepts of mass, momentum and energy conservation for motion of the

atmosphere may be scaled to yield (18)

ap*
at* +

a(p * u. *)
J. =ax. *

J.

o (3.1)

aU *
i [

ax. * +
J

Q *
i u *k

ap*
- ax.*

J.

(liT)
_[_~o

T
o

L g v
~ 2

0
] lIT* g* 8. + [ 0 ]

J.3 U L
000 a~* a~*

(3.2)
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and

=
k

o
e
po

v
v ] [L °u ]
000 d~* d~*

+ J¢* (3.3)

where p is the air density, U., u. and u." are the i th components of mean,
~ ~ ~

instantaneous and fluctuating velocity respectively, L is the upwind
o

fetch length, Q. is the ith component of angular velocity, E: is the energy
~

dissipation rate, p is the local static pressure, T is temperature, e" is

the local potential temperature fluctuation and ¢ is a viscous dissipation

function. Zero subscripts in these equations refer to reference scale

values, whilst asterisks indicate values which have been non-dimensionalised

using the appropriate scale value.

For exact similarity it is necessary to have equality of the non­

dimensional coefficients (quantities in brackets) shown in Equations 3.1,

3.2 and 3.3 for the mode 1 and the atmosphere. These requirements are:

undistorted scaling of geometry and equality of Rossby number [R = U IL Q ],
o 000

Richardson number [R. = (tiT) IT ], Reynolds number [R = U L Iv ], Prandtl
~ 0 0 e 000

number [p = V p e Ik] and Eckart number [E = U 2 Ie (tiT) J. In ther . 0 0 po 0 c 0 po 0

current project only isothermal conditions are being considered and hence

Richardson, Prandtl and Eckert number scaling can be neglected. In

addition, equality of Rossby numbers cannot be obtained. as this would

require modelling the turning of the mean wind direction with height.

Thus, the only remaining dynamic scale criterion for the air flow is

equality of Reynolds numbers.

As well as obtaining correct dynamic scaling of the air flow, similar

consideration must be given to the surface water waves. Once waves grow

to a sufficient extent that they are no longer in the capillary range,

the wave phase speed ceases to be governed by the effects of surface

tension and becomes dependent only upon gravity. Thus waves with a wave length

greater than a few centimetres are properly termed gravity waves. This

fact, coupled with the assumption of inviscid flow, common to almost all
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wave theories, clearly illustrates the dominance of the gravity forces

over the viscous forces. Indeed, wind-generated ocean surface waves have

frequently been modelled by laboratory gravity waves using undistorted

Froude scaling. (99,135,54) [F = U /1 g L ].roo

Thus the requirement for exact modelling in a wind-wave facility is

for equality of both Froude and Reynolds numbers in the field and the

laboratory. The futility of attempting to model using multiple scales

has been well documented and invariably results in a scale ratio of one.

Cermak (19), however, indicates that inequality of the Reynolds numbers

does not seriously limit capabilities for modelling the atmospheric

boundary layer, as the significant flow features are only weakly dependent

upon the Reynolds number, provided the flow is turbulent. It is therefore

possible to neglect the effects of Reynolds number changes under flow

conditions where the Reynolds number is larger than the critical value

at which transition from laminar to turbulent flow takes place. To insure

independence of the laboratory flow from Reynolds number effects, the flow

must be aerodynamically rough. A Reynolds number lower limit has been

determined for aerodynamically rough flows oversand~grain

roughness, but a comparable limit has not been found for flow over random

water waves. It can be speculated that aerodynamically smooth flow

(characterised by a viscous sublp.yer) almost never exists over an ocean

and, moreover, that in a laboratory wind-wave flume the mere presence of

locally wind-generated waves on the water surface insures aerodynamically

rough flow. Thus, since the laboratory air flow is almost certainly

turbulent, the Reynolds number scaling requirements can be relaxed and an

airflow structure similar to the prototype conditions can still be maintained.

On the basis of the remaining requirement of Froude number similitude,

length, velocity and time scales can be defined as

L
L = m n- 1=r L

p

V
-~

V
m= = nr V
p

T
-~and T = m

nr Tp

(3.4a)

(3.4b)

(3.4c)
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where the subscripts m and p refer to the model and prototype respectively.

Therefore, if the scale ratio n equals 50 a typically ocean wave with

H = 4m and T = lOs in a 20 ms- 1 wind would be modelled by a laboratory

wave with H = 80 nun and T = 1. 4ls in an air flow of 2.83 ms- 1 •

In addition to the requirements of dynamic similarity, the conditions

of geometric similarity must also be maintained between the model and real

conditions. Such requirements are particularly important in regard to

modelling the marine atmospheric boundary layer. The three areas which

require particular attention are the boundary layer shape, the turbulence

intensity and the structure of the longitudi~al velocity spectrum.

Plate (97) has shown that in analogy to the turbulent boundary layer

along a flat plate the atmospheric surface layer can be considered as two

regions: (a) an outer sublayer , whose me chanics are governed by the

interaction of pressure gradient and Coriolis force and whose characteristics

are determined mostly by the conditions near the edge of the surface

layer; and (b) an inner sublayer , whose structure is determined by the

flux of momentum to ground (or ocean) which depends on the nature of the

surface. It is this inner region which is of particular interest in a wind­

wave facility. The velocity distribution at zero pressure gradient is fully

specified for the inner layer by a velocity scale, u*, and length scale,

z0' such that

= f(z/z )
o

(3.5)

This functional relationship can be shown (97) to follow the classical

logarithmic form

z-d
In (__0)

~
o

0.6)

where d is a zero-plane displacement and K is von Karman' s constant = 0.4.
o

In the laboratory situation, the boundary layer is similar to that over

a flat plate, for which a logarithmic layer exists in the lower 15%,

obtained by setting d = 0 in Equation 3.6
o



= 1
K

In (~)
z

o
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(3.7)

plate (97) states that this is the only portion of the naturally generated

laboratory boundary layer which is an exact counterpart of the corresponding

sublayer of the planetary boundary layer. From Equations 3.6 and 3.7,

scaling requires that u/u* be the same in the field and laboratory such that

z /z be constant in model and prototype, where z is a scale length.
s 0 s

Rather than allow the laboratory boundary layer to develop naturally,

it is common practice to use artificial devices such as fences and screens

to accelerate its development. By trial and error a velocity profile that

is similar in the laboratory and in the field over a significant fraction

of its height can be achieved. Of particular advantage in modelling by

this method is the use of the power law approximation to Equation 3. 7

u
u

s
= (~)a

zs
(3.8)

where a is an exponent that depends on the surface roughness and u is
s

the velocity as height z. Davenport (23) reports that for open sea
s

conditions a is approximately 0.1. Equation 3.8 represents a good

engineering approximation to the planetary boundary layer and for this

reason both Plate (97) and Cermak (19) recommend its use.

In addition, to realistically simulate field conditions, the thickness

of the logarithmic region should be at least a few multiples of a charact­

eristic physical roughness height such as the standard deviation, a. Bole

and Harris (12) indicate that the log region should extend to at least

Sa above the mean water level. For the example mentioned earlier with

H = 80 mm this would mean a boundary layer of thickness greater than 100 mm.

As well as correctly modelling the mean boundary layer shape, the

turbulent structure of the atmospheric boundary layer must also be

reproduced in the laboratory. It is commonly assumed (113) that in the

high frequency portion of the velocity spectrum the influence of viscosity

is small. In this subrange, known as, the initial subrange, the eddy motion

may be assumed to be independent of viscosity and thus determined soley
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by the rate of energy transfer from larger eddies. From this assumption

known as Kolmogorov's second hypothesis, it follows from dimensional

considerations that

E (f) a f-5 / 3
uu

where E (f) is the spectrum of velocity fluctuations in the x direction.
Uu

The mean square value of the velocity fluctuations may be expressed

(113) as

(3.10)

where f3 is an empirical constant, independent of height and approximately

equal to 6.0. It follows from Equations 3.10 and 3.7 that

I =u u

(J
u= -=- ~u

1
In(Z/Z )

o
(3.11)

where (J is the standard deviation of the x component of velocity and I
u u

is the turbulence intensity. As for the power law for the mean velocity

profile, Equation 3.11 can be approximated by (121)

a
I = 0.097 (z /z)

u g
(3.12)

where Z is the gradient height corresponding to the edge of the boundary
g

layer and again a is approximately 0.1 over the ocean.

3.2 DESIGN OF WIND-WAVE FLUME

3.2.1 Existing Facility

The wind-wave flume used for this study was a development of an

existing wave flume in the main hydraulics laboratory of the Department of

Civil and Systems Engineering of the James Cook University of North Queensland,

and has been described in detail by Mitchell et al (83). The wave flume,

which is shown in Figures 3.1 and 3.2, consisted of an open channel 0.41 m
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square in section and of lengthl4 m. Along its length the flume was

supported and the sides laterally braced by a mild steel framework con­

structed of channel and angle sections. The supports were located at 2.5 m

intervals and, with the exception of the working section, were fixed to the

laboratory with adjustable connections to facilitate flume levelling. The

complete working section was supported by adjustable rubber mountings to

minimise transmission of laboratory vibrations to any instrumentation.

At each end of the flume were steel tanks which rested directly on the

laboratory floor. These were originally part of an estuarine dispersion

experiment for which the flume was originally used and are only relevant

as end supports.

The sides and bottom of the flume were fabricated from 3 mm mild

steel plate, with the exception of the working section, where the walls

were of 6 mm plate glass for a length of 4.85 m to allow close observation

of fluid flow. In a previous experiment, coarse grained sand and paint

had been applied to the floor of the flume over its entire length. The

resulting flume bed equivalent sand grain roughness, k , has been evaluated
s

(83) at 2.0 mm. The dimensions of the flume are shown in Figures 3.1 and

3.2.

The beach at the downstream end of the flume was designed to minimise

wave reflection and consisted of a 30 mm thick layer of 12 mm aggregate

constrained above and below by 6 mm square wire mesh. This was supported

in a steel frame sloping at an angle of 14 0 to the flume floor, as

illustrated in Figure 3.3. Estimates (83) of the reflection coefficient

of 2.0% show that the beach is effective.

Waves were generated in the flume by the motion of a wedge-shaped

piston along an axis inclined at 110 to the longitudinal axis of the flume,

as illustrated in Figure 3.4. A wedge was chosen in preference to a

flapper as it allows better approximation to the vertical profile of

horizontal water velocity, and effectively eliminates all backwash problems

and wave form contamination from flow around the wave maker. Movement of

the wedge was controlled by an analog command signal generated by a PDP-II

mini-computer from a digitised synthetic wave record. Displacement of the

wave generator was maintained in relation to the command signal by means of

an an electro-hydraulic servo-control system. The control system is shown

in Figure 3.5.
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The servo-control system was of a negative feedback type, with the

feedback being an electrical analog of the piston displacement from a

mean position. This was provided by a Schaevitz DC-D 10000 LVDT, having

a maximum output of ±10.00 volts over its operating displacement of ±254 rom.

The command signal and feedback were inputs to a differential amplifier,

the output providing an error signal which was converted to a current

control signal suitable for the operation of a Moog A 076-102 servo-valve.

Incorporated in the control signal was a 240 Hz square wave dither signal

which ensured smooth servo-valve operation. The servo-valve directed

pressurised low viscosity Mobil DTE-24 hydraulic fluid to the appropriate

end of a modified Pongrass H 7-13-B DACEDE 5F-21 double-acting hydraulic

cylinder. The cylinder in its original form exhibited unacceptable shudder

at low frequencies. The use of Sperry Vickers T seals, which necessiated

reconstruction of the cast iron piston and cylinder end blocks, eliminated

virtually all the shudder. Pressurised hydraulic fluid was supplied at

6.89 MFa by a sperry Vickers VIO, fixed vane 18 1 min-I, 5.6 kW hydraulic

power supply. In order to maintain constant operating characteristics the

hydraulic fluid temperature was kept at 35 ± 2~5°C by monitoring the

fluid temperature with a YSI520 thermistor probe. and using this to switch

a flow of water through or to bypass an oil cooler as appropriate.

The piston wave generator was designed in the shape of a wedge of

overall dimensions as shown in Figure 3.6. In an effort to prevent

leakage, rubber flaps were attached around the perimeter of the front

surface, these brushed against the flume walls and provided an effective

seal. The wedge was constructed from 5 rom marine plywood, assembled to

form a closed hollow prism which fitted snugly into the flume cross-section.

Directly underneath the wedge, the floor sloped upwards at 110 as shown in

Figure 3.6.

The wedge was suspended at four points from two parallel stainless

steel 25 rom diameter rods sloping at 11° to the horizontal, as shown in

Figure 3.6, and aligned along, the flume axis. These rods passed through

lubricated longitudinal bearings, attached to the wedge by a simple

framework, thus allowing single degree of freedom movement of the wedge in

the direction of the supporting rods. The hydraulic cylinder piston rod

was attached to the wedge at one point on the centre line of the top of

the wedge, with the line of action of the hydraulic piston parallel to, and
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lidway between, the two mounting rods. Attached to an adjustable bracket

on one side of the wedge was the sliding rod or core of the LVDT. The rod

passed through the LVDT, itself attached to the supporting framework and

aligned parallel to the hydraulic piston and supporting rods.

3.2.2 Modified Facility

The major alteration to the existing facility for the present project

was the enclosure of the water channel with a hood and the installation of

a fan. The hood was rectangular in shape and extended 880 rom above the

wave channel. The vertical walls of the hood were attached to the flume

through a series of small angle brackets. Except for the observation

section, which consisted of four 5 rom thick and 1 m long glass panels,

the hood was constructed from 12 rom thick plywood. For a water depth of

320 rom, used throughout this project, a clear air flow region of 0.97 m

was available above the mean water level. with a maximum wave height

of 100 rom, this arrangement provided for a ratio of wave height to mean air

flow depth of 0.10, which was considered sufficient to prevent blockage

effects by the waves (12). The hood was constructed in five separate

sections to allow ease of construction and entry to the flume. From the

beach end of the flume these sections were 2.9 m, 1.7 m, 4 m, 2.4 m and

1.2 m long; the 4 m section being the observation section. In an effort

to prevent the growth of the side and top boundary layers as well as to

reduce the horizontal pressure gradient, these sections were not sealed

at their joints, air being allowed to leak from the hood at these joins

to help in restricting the growth of these unwanted boundary layers. This

system had the additional advantage of minimizing the transmission of

vibrations along the flume.

In designing the fan, the major decision to be made was whether a

sucking or blowing configuration was required. In aerodynamic wind tunnels

a sucking arrangement is generally recognised as superior as there is less

swirl in the air caused by the fan. Such an arrangement would have required

the fan to be placed at the wave maker end of the flume where laboratory

space was limited and a complicated ducting system would have been required

to avoid the moving wave maker. A blowing configuration with the fan mounted

at the beach end of the flume was consequently adopted. As the existing

flume was constructed with the beach against the western wall of the
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laboratory, it was necessary to mount the fan on a high frame and lead the

air flow into the hood via a 90° vertical bend. The ideal arrangement

would have been to have a long horizontal section before the entry to the

flume, in which to develop the boundary layer.

The fan, motor and transmission assembly were mounted atop a heavy

steel frame, 3.7 m high. The fan was a Phoenix 270 SW centrifugal fan

in standard fan arrangement Number I, driven by a 7.5 kW, 1440 r.p.rn. electric

motor via a Dunstan Series 700 hydraulic power transmission. The fan was

connected to the transmission through a triple V-belt drive with a 170 mm

pulley at the transmission and a 280 mm pulley at the fan. This arrange-

ment provided a speed reduction of 0.61, giving a maximum fan speed of 874

r.p.m., consistent with the manufacturer's recommendations. The Dunstan

power transmission provided continuous speed control from 0 to 1440 r.p.m.

The complete motor, transmission and fan assembly was mounted on a single

steel frame and was connected to the larger supporting frame by a series

of spring mounts, which provided vibration isolation of the fan and drive

system from the laboratory floor. The full assembly is shown in Figure

3.7.

A vertical transition duct 540 rom long expanded the 680 rom x 580 mm fan

outlet to 880 rom x 410 rom consistent with the dimensions of the flume hood.

A coarse wire mesh was placed at the fan outlet as an initial measure

towards achieving a more uniform fan flow. Following the transition

section was a vertical rectangular section 400 rom long, filled with 50 rom I.D.

cardboard tubes to assist in removing the swirl in the air produced by the

fan and in strengthening the air flow. A 100 rom rubber gusset connected

the transition and flow straightening sections of the ducting, isolating

the flume from any fan vibrations. After the flow straightening section,

the ducting passed through a 90° vertical bend to enter the flume hood

section. The bend was circular with an outer radius of 1200 rom and an

inner radius of 320 rom. In an effort to achieve even flow around the bend,

five evenly spaced galvanised iron turning vanes were used. The vanes

extended around the full 90° of the bend. Although originally intended

only to provide an even air flow transition from the vertical section of

ducting to the horizontal flume, the vanes also assisted in developing

the boundary layer. Since the outer vanes were considerably longer than

the inner vanes, they provided greater frictional retardation to the flow,

producing a lower wind velocity around the outside of the bend.
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As mentioned in Section 3.1 a boundary layer of thickness greater

than 100 rom was desirable. Yu and Lin (137) have indicated that provided

a fence is used to trip the flow, the surface skin friction coefficient,

C , and the boundary layer thickness, 0, are given by
f

2u 2
*

C = -urf
00

(~ )
-1/5

= 0.003
U

00

and u
gOz = 0.025 (g) 4/5
00

uoo

<3.13a)

(3.13b)

(3.14)

where x is the fetch along the flume. Values of 0 and u* at the flume

working section (x = 7 m), as determined from Equations 3.13 and 3.14, are

shown in Table 3.1.

u 0 u*00

(ms- 1 ) (rom) (ms- 1 )

1 75 0.036

2 99 0.082

3 117 0.134

4 131 0.189

5 143 0.248

6 154 0.308

Table 3.1 Estimated values of boundary layer thickness

at the working section with the aid of a fence

to trip the flow. After Yu and Lin (137).

Based on these figures, a 40 rom high galvanised iron fence was placed at

the beginning of the horizontal flume section; the fence height was a

recommendation by Yu and Lin (137). Initial measurements indicated the

turbulence intensity was quite low. Hence, to increase the turbulence in

the air flow, a fine mesh screen was inserted 200 rom downstream from the

fence. A plan of the complete wind-wave flume is shown in Figure 3.8.
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section per unit time to

~ P u 3 A

E.R.
0 0

=
t.PtA u

0 0

One of the major design considerations was the selection of the fan.

The design constraints were that it must deliver a flow of not less than

2.5 m3s- l , which is equivalent to a velocity of 6 ms- I in the working

section, and that it must not require a motor larger than 7.5 kW, since

such a motor was already available.

Normal practice is to base design upon an estimation of the energy

ratio, the ratio of the kinetic energy in the air passing through the test

the power required at the fan blades (100)

(3.15 )

=
Dynamic pressure in working section
Total pressure loss along the flume

where u and A are the average velocity and cross-sectional area in the
o 0

working section respectively. The energy ratio is also commonly inverted

and quoted as a total loss coefficient Ik whereo

2:k
o

1
=

E. R. ~ p u 2
o

(3.16)

To obtain 2:k , the total pressure loss coefficient k . in each section of
o o~

the flume is estimated and summed:

k .
o~

=
t.p.

~

~ p U 2
o

=
t.p. A 2

~ (-2.)
q. A.
~ ~

= (3.17)

where q. and A. are the dynamic pressure and cross-sectional area at
~ ~

section i respectively and k. is the loss coefficient based on the local
~

dynamic pressure q .• Table 3.2 shows these calculations for the present
. ~

flume with the origin of the estimated values of k .•
~
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Flume A.
A

Section k. J. (-..£)2 k
oi

Source of k.
J. (m2)

A. J.
J.

Inlet 0.5 0.45 0.87 0.44 Phoenix Fan Catalogue
(95)

Coarse Grid 0.3 0.40 1.10 0.33 Pankhurst & Holder ( 88)

Fine Grid 1.0 0.42 1.00 1.00 Pankhurst & Holder (88)

Flow 0.3 0.36 1. 36 0.41 Pope & Harper (100)
straighteners

Turning Vanes 5xO.2 0.36 1. 36 1.36 Pope & Harper (100)

Corner 0.3 0.36 1.36 0.41 Pope & Harper (100)

Exit 1.0 0.42 1.00 1.00 -
Friction ~1.0 0.42 1.00 1.00 Moody Diagram

Table 3.2 Estimated section loss coefficients.

The estimated values of Table 3.2 give Lk = 5.95. Based on this
o

value for Lk , the flume load characteristic as a relationship between
o

total pressure loss and volume flow can be obtained. This is plotted in

Figure 3.9 together with the fan characteristics of the chosen fan as

provided by the manufacturer. The intersection of the fan characteristics

with the load curve gives the volume flow rate corresponding to this

particular fan speed of 600 r.p.m. This point represents a delivery

volume of 2.5 m3s- 1 or 6 ms- 1 in the working section, which satisfies the

design requirements.

3.2.4 Performance Evaluation of Air Flow

Before any air-sea interaction experiments were performed, an extensive

set of evaluation measurements were undertaken to ensure that the air flow

satisfied the similarity conditions described in Section 3.1. Once the wind

had reached the water section of the flume little could be done to alter

its flow characteristics. Indeed one of the objects of this project was

to determine the precise nature of this flow in an opposing wind-wave

situation. Therefore, the goal was to obtain reasonable flow conditions

at the entrance to the water section, any subsequent changes being assumed

to be a result of the physics of air-sea interaction. For this reason the

evaluation measurements were taken at a point 2.7 m downstream from the
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inlet bend and flow trip fence. The mean velocity values were obtained

using a standard pitot-static tube and a Thies precision inclined manometer,

whilst the turbulence data was obtained with a hot film anemometer. The

hot film anemometer system is described in detail in Section 4.4.

The measurements were made with a fan speed of 400 r.p.m. and a

corresponding free stream velocity of 4.6 ms- 1 and concentrated on deter­

mining the structure of the turbulent boundary layer. Mean velocities were

measured at a number of heights above the mean water level, the subsequent

velocity profile being shown in Figure 3.10. A least squares curve approx­

imation to this data gives

u
u

s
(0.091 ± 0.022) In z + (1.1 ± 0.1) (3.18)

Equation 3.18 together

3.5 x 10-6m. These

z
o

reported (23) for calm

where the errors represent 95% confidence limits.

within the z range of 3.0
o

seas. It should, however, be recognised that determining z from such a curve
o

fit is quite inaccurate as a small change in the slope of the curve can

with Equation 3.7 yield u* 0.17 ms- 1 and z
o

values scale to full scale terms of u = 1.2 ms- 1 and
*

x lO-6 m to 4.0 x 10-3m

significantly change the intercept value z. A variety of empirical formulas
o

have been proposed for determining u* above ocean waves. Based on data

from a number of sources Amorocho and De Vries (1) have proposed

d {( ClO - ClO . )
max mln

[ 1 + exp (-
UlQ -m -1

--)]
S

+ CI0 . }
mln

(3.19)

where d = 0.97 ± 0.10, Cw = 0.00225, Cw . = 0.00104, m = 12.5 ms- 1

max mln
and S 1.56 ms- 1

• Equation 3.19 predicts u* values in the range 0.88 ms- 1

-1
to 1.01 ms for the full scale conditions, comparing favourably with the

value of 1.2 ms- 1 obtained from the evaluation measurements. The full

velocity profile predicted by the log law (Equation 3.7) and the equivalent

power law (Equation 3.8) are also shown in Figure 3.10. These plots clearly

indicate the mean boundary layer shape has been reproduced to the correct

scale in the flume. The above results indicate u z Iv ~ 0.04, indicating a
* 0

"smooth wall" flow. This is an unavoidable consequence of the reduced scale

of the modelling.
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In addition to the mean velocity profile, turbulence intensities

were measured at various heights above the mean water level. The vertical

profile of turbulence intensities, along with the theoretical profile,

Equation 3.11 are shown in Figure 3.11, the agreement again being acceptable.

The data used to determine the turbulence intensities is also presented in

spectral form in Figure 3.12 and shows that at higher frequencies the spectrum

decays at approximately f-
5

/
3

as predicted for the inertial subrange.. These

measurements of the structure of the boundary layer clearly indicate that

both the mean flow structure and the turbulence levels are consistent with

correctly scaled field measurements.

In addition to these boundary layer measurements, a number of other

experiments were conducted to ensure the flow was symmetric about the

vertical centre line of the flume. Velocity measurements were made across

the cross section of the flume both at the entrance and at the working

section. Contour plots of the time-mean wind velocities are presented in

Figure 3.13. The flow pattern near the flume inlet is quite uniform with

only thin boundary layers on the side walls. The higher flow in the upper

core region is due to the fine screen which was located immediately upstream

of this location and extended only part of the way up the flume. This core

region is much more diffuse at the working section and the side wall boundary

layers are thicker. There is some asymmetric flow, with a slightly higher

flow on left side of the flume, due to blockage from a wave height probe

located upstream of the working section and described in Chapter 4. The

degree of asymmetry is not serious, however, and the flow is considered

adequate for the purposes of this project.

As an aid for later experiments, the centre line free stream velocity

was also measured as a function of the fan speed. This data, which appears

in Figure 3.14, indicates a linear relationship between the fan speed and

Uoo,the free stream wind velocity. A least squares approximation to the data

yields

U
00

(0.0118 ± 0.0006) *(Fan r.p.m.) (3.20)
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where the errors represent 95% confidence limits. There is no apparent

reason why this relationshp should be linear, since it merely represents

the locus of the intersection points of the fan characteristics for various

fan speeds with the flume load curve. The relationship is, however, very

useful since the fan speed is much easier to measure than Uoo '

3.3 WAVE MAKER PERFORMANCE

3.3.1 Theoretical Transfer FUnctions

The concept of wave generation in the laboratory is not a new one,

and even before the last world war numerous designs were in operation.

Many of them were remarkable for their use of complex mechanical linkages

in an attempt to produce satisfactory waves in flumes and basins. Which­

ever design is used, knowledge of the transfer function relating the wave

generator motion to the wave motion is of fundamental importance.

Biesel and Suquet (8) have calculated a theoretical transfer function,

based on linear wave theory, for a piston wave generator as

(3.21)

where a is the wave ampIitude, e is the piston stroke and H is the complex

transfer function, the amplitude of which is

2 sinh2 (kd)
= sinh (kd) cosh (kd) + kd

(3.22)

where k and d are the wave number and depth respectively. The assumption

of linear wave theory used in developing Equations 3.21 and 3.22 has been

tested experimentally by Ursell, Dean and Yu (130). Their results showed

that for small wave slope, ak, agreement between theoretical and realised

wave amplitudes was good, whereas for larger wave slope agreement was poorer.

It was suggested that this was due to finite amplitude effects, and a proposed

Upper limit for validity of first order theory was suggested in terms of

wave slope as ak t 0.09. Keating and Webber (55) have confirmed this value

but suggested that it could be extended to ak = 0.25 at the expense of only

a slightly greater error.
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The preceeding studies have focussed attention on the ratio of the

stroke to wave height and have regarded the actual wave profile to be of

secondary importance. However, it has been observed (7) that, when finite

amplitude waves are produced by a sinusoidally moving wave generator, the

resulting wave, rather than being of permanent form, breaks down into a

primary and secondary wave. These two waves travel at different phase

speeds and the resulting wave profiles will, of course, exhibit the presence

of these secondary waves, depending upon the distance from the generating

surface. The elimination of these secondary waves would be advantageous

and has been considered by Madsen (77). Madsen's results show that the water

surface profile for a wave produced by a sinusoidally moving piston wave

generator is given by

where

n(t) =
(2) (2)

-a sin (kx - wt) - ap cos 2 (kx - wt) + a
L

cos (k' x - 2wt)

(3.23)

a =

( 2)
a

p

~ tanh kd
n'

ka2
= ---

4
(2 + cosh 2kd) cosh kd

sinh 3 kd

(3.24)

(3.25)

= 1 a2 coth kd (__..:..3--;<'"__
2 d 4 sinh2 kd

~)
2

tanh k'd
n'

(3.26)

n

n'

=

=

1 (1 + 2kd )
2 sinh 2kd

1 2k'd
(1+ )

2 sinh 2k'd

(3.27)

(3.28)

where w2 = gk tanh kd and 4w2 = gk' tanh k' d. ~ is the amplitude of the

wave maker motion and the superscript (2) indicates the terms are of the

second order. Equation 3.23 shows that the water surface consists of a

primary component, a Stokes second order progressive wave and a free second

harmonic. In addition, Madsen showed that, in order to eliminate second or­

der waves, the wave-maker motion must be prescribed by
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[
l a 3

-~ cos wt + "2 nd (4 sinh2 kd
n )
2

sin 2wt]

Equation 3.29 is identical to the periodic part of the depth averaged

horizontal water particle motion beneath a Stokes II progressive wave.

As pointed out by Madsin, one would intuitively expect that, to produce

a wave of permanent form, the generating surface should be given a motion

which corresponds to the water particle motion under the desired wave.

since the two terms of Equation 3.23 with a frequency of 2w have different

wave numbers, the two waves will propagate at different speeds. Hence,

1 . I' d (2) hthe resu t~ng amp ~tu e a of the second armonic terms will vary with

distance from the generator.

In order to assess the relative magnitudes of the primary wave and

it higher harmonics at the test section of the flume, a series of water

surface level experiments were made with a sinusoidal generator motion.

The water surface elevation was measured for wave maker stroke frequencies

of 0.5 HZ, 1.0 HZ, 1.5 Hz and 2.0 Hz. The resultant time series appear

in Figure 3.15 and their corresponding variance spectra in Figure 3.16.

An examination of the time series indicates that there is no evidence of

the secondary waves separating out from the primary waves. Indeed the wave

profile appears to be approximately sinusoidal. The spectra of these

records, however, indicate that not only is there a second harmonic present

but also higher harmonics; the second harmonic is in all cases at least an

order of magnitude smaller than the primary wave and the higher harmonics

are smaller still.

3.3.2 Measured Transfer Functions

The transfer function, H, represented in Equations 3.21 and 3.22 was

developed from the assumption that the wave maker motion was sinusoidal.

The transfer function can, however, be defined in a more convenient and

general form for a broader band input.

Consider a linear system with a single, well defined, input x(t) and

single output y(t). The input and output of the system can be related by

(87)
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2 E (f)
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(3.30)

(3.31)

and E (f)
xy

H (f) E (f)
xx

(3.32)

where Y(f) and X(f) are the Fourier transforms of yet) and x(t) respectively,

and E (f) are the variance spectra of yet) and x(t) respectively,xx
is the cross spectrum between x(t) and yet) and H(f) is the complex

E (f)
yy

E (f)
xy

transfer function of the system. H(f) is complex, containing information

about both the amplitude and phase response of the system.

In the present context the wave maker is not a single system but it

has been represented as an n-stage linear system, for which the realised

water surface elevation spectrum E (f) can be related to the input command
nn

signal spectrum E (f), by a series of complex transfer functions H. (f)
cc l

as

(3.33)

Four distinct stages are immediately recognizable and are shown in Figure

3.17. The first of these transfer functions, Hl(f) is a direct result of

the discrete representation of a given wave record. Digitisation of a

finite time series of length t
R

= N6t at a time interval 6t, discerns

only those frequencies in the range

1 < f < 1
N6t 26t

(3.34)

where the frequency resolution 6f = 1/N6t and the Nyquist frequency f
N

=
1/26t. Any energy at frequencies greater than the Nyquist frequency will

be folded back below f
N

(5). Provided that the input or command signal and

the digitising frequency are chosen so as to avoid folding about the Nyquist

frequency, the transfer function Hl(f) has the form of an ideal low pass

filter with complete cutoff at f •
N
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The first major distortion of the command signal occurs as a result

of the frequency response of the hydraulically-driven wave maker. This

relationship between the command signal and the wave maker motion is

described by H2(f). A second modification of the command signal occurs

as a result of the piston stroke to wave height transfer function H3(f).

The final transfer function H4 (f) is the most difficult to evaluate. It must

include wave dispersion, reflection at the beach, wave breaking or "white

capping", viscous dissipation, non-linear wave interaction and free second

harmonic components as discussed in Section 3.3.1. In fact it should not

be referred to as a transfer function at all as it includes a number of

non-linear effects.

In an effort to determine these various transfer functions, an

extensive set of experiments were devised in which the wave maker motion

and the water surface evaluation at the test section and near the beach

were measured. Such measurements do not allow all of the transfer functions

to be determined but the products Hl(f)oH2(f) and H(f) = H1(f) °H2(f) °

H3(f)oH4(f) can be deduced. The determination of H(f) is of particular

importance.

For direct evaluation of the complex transfer functions, the convenient

choice for an input signal is 'white noise', having a uniform variance

spectrum and a random phase spectrum. To prevent excessive inertial loads

being placed on the supporting framework and to prevent aliasing, an upper

limit of 4.0 Hz was placed on the uniform input spectrum E (f). The
cc

generation of the command signals from the specified variance spectrum was

based upon the inverse Fourier Transform method and is described by Mitchell

et al (83). Seven input spectra were used, each with a different variance

and for each spectrum ten different input records were synthesized, each

corresponding to a different random phase spectrum. A total of seventy

individual experiments were performed to reduce the confidence limits on

the resultant transfer functions (see Appendix B). The command signal spectral

parameters are shown in Table 3.3 and the input spectral variances in Table

3.4.

Time series of the wave maker displacement and of water surface

elevation at the test section and near the beach were recorded. Spectra and

cross spectra were then determined and the resulting transfer function
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Number of points N 2048

Time length of record t 102.4s
R"

Sampling interval /:;t 0.05s

Upper frequency limit f 4.0 Hz
max

Frequency increment /:;f 0.00977 Hz

Nyquist frequency f N 10.0 Hz

Table 3.3

Table 3.4

Command signal spectral parameters

Run Nos.
Variance Variance

(V2) 2(m )

1-10 0.70 4.52 x 10-1+

11-20 1.00 6.45 x 10-1+

21-30 1.50 9.68 x 10-1+

31-40 2.00 1.29 x 10- 3

41-50 2.50 1.61 x 10-3

51-60 3.00 1.94 x 10- 3

61-70 3.50 2.26 x 10- 3

Command signal variances

obtained from Equation 3.32. Average transfer functions were then obtained

for each of the seven inputs with different spectral variances by frequency

averaging the transfer functions from each group of ten command signals.

Thus twenty-one transfer functions were obtained; seven relating the

command signal to wave maker motion, seven between the command signal and

water surface elevation at the test section and the remainder between the

command signal and the water surface elevation at the beach.

The seven transfer functions between the command signal and the

wave maker motion, Hl(f)oH2(f), were almost identical and were averaged

to give the final result shown in Figure 3.18. The gain of the transfer

function is one at zero Hz but gradually decreases with increasing frequency.

The phase relationship also indicates considerable distortion of the command
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signal, the phase lag of the wave maker increasing with increasing frequency.

The full transfer function indicates that the wave maker acts as a typical

low pass filter. A least squares curve fitting scheme was used to approx-

imate the transfer function. It was found that the ampIitude of the transfer

function could be accurately represented by the single curve

1 (±10%) (3.35)

where a = 0.89 and p = 1.5. A piece-wise approximation was necessary for

the phase relationship, with the final result

<P ( f) = 120f + 4.0 (±8%) , o ~ f < 0.25 Hz (3.36a)
12

<P 12 (f)
180 ? (±2%) 0.25 ~ f < 1.5 Hz (3.36b)=
1 + fn

<P 12 (f)
180 ? + 21f - 33(±2%) 1. 5 ~ f < 4.0 Hz (3.36c)=
1 + fn

where n = 1.2 and the errors in Equations 3.35 and 3.36 represent 95%

confidence limits. These results confirm the result obtained by Mitchell

et al in an earlier attempt to determine the transfer functions for this

facility.

The complete transfer function, IH(f) I, relating the input command

signal to the water surface elevation at the test section is shown for each

of the input spectral variances in Figure 3.19. A typical result for the

phase relationship is shown in Figure 3.20, indicating that the phase is

completely random. Figure 3.19 indicates that, although the transfer

functions are similar, they are not identical, confirming that the system

is slightly non-linear. The differences are not signficant, however, and

the seven results have been averaged to yield a final average transfer

function, illustrated in Figure 3.21. The transfer function has a steeply

rising forward face with a peak at about 1. 4 Hz. At frequencies above

1.4 HZ, IH(f) I gradually decreases in value, except for a small secondary

peak near 2.0 Hz.
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An explanation of the IH(f) I shape can be obtained by examining the

theoretical transfer function IH 3(f) I defined by Equation 3.22. This result

is shown in Figure 3.22 along with the product IH1(f) -Hz(f) 1-I H3(f) I in

Figure 3.23, where IH1(f) -Hz (f) I was obtained from Equation 3.35. A compar­

ison of Figure 3.21 and 3.23 reveals that they are remarkably similar, the

slight differences being presumably the effect of the H4(f) term which is

not included in the theoretical prediction. Based on the theoretical pre­

dictions, however, it is clear the steep forward face of the transfer

function is a result of the machine to wave term H3(£), whereas the higher

frequency face is governed by the command signal to machine term Hz (f) •

The small secondary peak is less easily explained and its cause is not

immediately obvious. Figure 3.19 indicates that the magnitude of this peak

increases with increasing input spectral variance, indicating that it may be

a finite amplitude effect. It is interesting to note, however, that the

natural frequency of the flume in its first transverse mode is

f
o

= 2.2 Hz (3.37)

where Q, = 0.41 m is the flume width. As this value corresponds almost

exactly with the secondary peak it is very likely that it is a result of

excitation of a natural frequency of the flume. Indeed, in subsequent

tests with sinusoidal waves it was obvious that the natural frequency

oscillations could easily be excited by waves with a frequency near 2 Hz.

The average transfer function H(f) at the beach is shown in Figure

3.24. Again this is similar to the transfer function at the test section,

although it has a slightly reduced magnitude. This is presumably due to

the effects of the H4 (f) term, which will be different for different

posi tions along the flume. The secondary peak near 2 Hz is smaller than

at the test section and there are a number of additional secondary peaks on

the low frequency face of the transfer function. The origin of these peaks

is not clear but it is likely that they are finite amplitude effects.

In order to test the accuracy of the measured transfer function H(f) ,

an attempt was made to generate a particular spectrum at the test section.

The target spectrum was a Pierson-Moskowitz spectrum with a variance

crZ
= 5.625 x 10-5mZ and a peak frequency f

p
= 1. 5 Hz. The required input
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spectrum was determined from Equation 3.31 and the corresponding command

signal generated in the manner outlined by Mitchell et al (83). The

measured wave spectrum, together with 95% confidence limits (Appendix H) ,

and the target spectrum are shown in Figure 3.25. The variance of the
-5 2measured spectrum is 4.815 x 10 m, approximately 14% lower than the

target spectrum, although the target spectrum generally lies within the

confidence limits of the measured spectrum. The agreement is not perfect

but it is adequate for the present purposes.

3.4 WAVE REFIEcrIONS

3.4.1 Reflection of Mechanically~GeneratedWaves from the Beach

In the theoretical analysis of Section 3.3, it was assumed that the

wave flume was infinitely long or that the wave energy was completely

absorbed at the end of the flume. In practice this is not the case and the

mechanically-generated wave train will be partially reflected from the

beach. This reflected wave, known as the primary reflected wave, generally

has an amplitude of only a small fraction of the incident amplitude. The

primary reflected wave is reflected (almost completely) from the vertical

face of the wave maker, as a secondary incident wave; this is reflected

from the beach as a secondary reflected wave, and so on. The higher

reflections from the beach have progressively smaller amplitudes and can be

neglected. Using these assumptions, Ursell, Dean and Yu (130) have shown

that the variation in wave amplitude along the flume is given by

a(x) = a [1 + r; cos (kx + ¢ ) + r; cos ¢ ]
oRR R R

( 3.38)

where r;R is a reflection coefficient and ¢R a phase angle. Ursell, Dean

and Yu (130) have also shown that this equation is applicable when written

in terms of wave height, provided the reflection coefficient is small.

Equation 3.38 predicts that the wave height will vary sinusoidally along the

flume with a wave length equal to half that of the incident wave. The mean

of this variation is

(3.39)



63.

and the reflection coefficient may be found from

=
H

max
Hmax

- Hmin
+ H .mln

(3.40)

Mitchell et al (83) have measured the variation in wave height along the

length of the present facility and determined the reflection coefficient

~ = 2.12%. This value is sufficiently small that reflection can be neglectedo
R

3.4.2 Reflection of Wind-C~neratedWaves from the Wave Maker

Because of the unique design of the present facility, wind-generated

waves will propagate towards the wave maker. Thus, in addition to the

mechanically-generated waves being reflected from the beach, the wind­

generated waves will also be reflected from the wave maker. This is a

potentially serious problem although the wind generated waves are small,

as the wave maker will have a reflection coefficient near one. It is possible

for these waves to be reflected back alon<;g the flume and contaminate the

wave field at the test section. A theoretical analysis similar to that of

Section 3.4.1 is not possible .As the waves propagate towards the wave

maker they will be receiving energy from the wind and will grow. Once

reflected, however, they will experience an opposing wind and will lose

energy. The magnitude of these reflected waves at the test section was

determined by measuring the water surface elevation with and without a

temporary beach included at the wave maker end of the flume. In both

cases the wave maker was kept stationary and the fan speed was constant

at approximately 600 r.p.m. The temporary beach was assumed to have a

low reflection coefficient/being constructed of sheet metal and making an

angle of 30° with the horizontal. A total of twenty experiments were

performed, ten with the temporary beach and ten without, each time series

consisting of 16 J 384 points sampled at 20 Hz. The ten resulting variance

spectra for each of the two cases were averaged and the resultant spectra

smoothed using an 80 point block average (Appendix H). The large number of

points in the time series and the repetition of experiments was used to

increase the number of degrees of freedom in the spectral estimate and

reduce the confidence limits.
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The final variance spectra, with and without the beach, are shown in

Figure 3.26 together with their 95% confidence limits. The two spectra

are almost identical except for the small secondary peak at 2 Hz for the

case without the beach. As this frequency corresponds to the fundamental

natural frequency of the flume in the transverse direction, it appears

that the reflected waves have excited this natural mode. Even including

this difference in the spectra at the natural frequency, the variances

for the two cases differ by only 2.3%. Hence, it can be assumed that the

influence of reflections from the wave maker end of the flume are

insigriificant.

3.5 WATER lEVEL SETUP

A steady wind blowing over the water surface exerts a mean horizontal

shear stress at the water surface, in addition to the fluctuating stresses

that are responsible for wind wave growth and decay. In a confined body

of water like the wave flume, this steady surface shear stress L wills
force and maintain a vertical circulation and water level setup along the

flume.

The governing equations are the long wave equations (139) in one

spatial dimension

an au
0-+- =

at ax

au a
(d

u2
) -g(d + n) an 1

(L
S

- L
b

)-+-
ax

+-
at ax + n Pw

( 3.41)

(3.42)

where n is the water surface elevation, U is the depth-integrated flow per

unit width, d is the mean water depth, L is the shear stress at the water
s

surface and L
b

is the shear stress at the bottom. Shear stresses on the

flume sides are neglected. For the steady state situation, Equation 3.42

reduces to

=
L - L

S b (3.43)
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Equations 3.42 and 3.43 assume uni-directional flow throughout the water

depth with L
S

and Lb in opposite directions. In the wave flume, mass

conservation requires that there be a vertical circulation with a return

flow in the lower section of the flume. Therefore L s and Lb will be in

the same direction and Equation 3.43 becomes

=
P g(d + n)

w
(3.44)

where L
S

= ~a u*2 and Lb = fpw ~2/8 with f the Darcy-Weisbach friction

factor and u the average velocity in the bottom boundary layer. Saville

(138) has found that for an enclosed lake system Lb ~ 0.1 L
S

' which upon

substitution into Equation 3.44 yields

1.1L
s

P g (d + n)
w

(3.45)

The simulataneous mass conservation equation may be integrated along

the flume to give

fL n dx = a
o

(3.46)

Equations 3.45 and 3.46 were solved simultaneously using a Runge-Kutta

algorithm for Equation 3.45 with assumed initial n(x = 0). The correct

ini tial condi tion was determined by a trial and error so lution of Equation

3.46.

Solutions are presented in Figure 3.27 for typical u* values of 0.10 ••.

0.25 ms- 1 (see Section 8.1). The maximum water surface setup is approximately

2 x 10-4 m. In addition, Figure 3.27 indicates that the water surface

profile is approximately linear with distance along the flume, consistent

with equation 3.45 if the assumption n « d is made.

These results indicate that the water level setup in the flume is

extremely small and the effect of the sloping water surface would be insig­

nificant. In all subsequent analysis, it has been assumed that the mean

water level is horizontal.
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4. INSTRUMENTATION

The aim of the present project is to determine the energy flux

between the wind and the surface waves in an opposing wind situation.

Chapter 2 has shown that this flux can be obtained from simultaneous

measurements of water surface elevation, surface pressure and turbulent

wind velocity. It is important to determine not only the magnitude of these

quantities accurately but also their phase relationships, for which a

sophisticated laboratory instrumentation system is required. The following.

sections will describe the present system, including an evaluation of its

accuracy and performance.

4.1 WATER LEVEL l-1E AS UREMENT SYSTEM

The water surface elevation was measured by a twin wire resistance

probe. The probe consisted of two fine parallel stainless steel wires

(diameter 0.25 rom, spacing 10 rom) tensioned in a perspex frame as shown

in Figure 4.1. The conduction of electricity between the wires varies

wi th the depth of submergence and hence the electrical resistance of the

gauge will decrease with increasing depth of submergence. The lower

section of the perspex frame has an elliptical cross-section in order to

minimise flow disturbance. A schematic illustration of the apparatus is

given in Figure 4.2, and shows the wave probe incorporated as the active

element in an A.C.-excited Wheatstone bridge. In operation the bridge

was balanced to give a zero voltage output at the mean water level position.

The bridge excitation of 5 ~HZ at 2.5 V r.m.s. was applied by a Sanei

M52 carrier strain amplifier. The resulting demodulated amplified output

was suitable for direct input to the minicomputer analog to digital (A/D)

converters.

Initial tests with the wave gauge system indicated that a lone

gauge worked satisfactorily but, when more than one gauge was placed in

the flume, there was interference between the gauges, even when the gauges

were separated by several metres. Based on advice from Dr. J.L. Hammack

of the University of Florida, small audio transformers were included as

isolaters on the input side of the Wheatstone bridge. Isolation trans­

formers were already built into the demodulator electronics on the output

side. The isolation transformers proved to be very successful and
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=ompletely eliminated interference between probes. An electrical circuit

diagram showing the Wheatstone bridge and input isolation transformer

appears in Figure 4.3.

The calibration system consisted of a long slender vertical rod

upon which the wave gauge was mounted and an adjustable pointer gauge

mounted atop the flume. The mounting rod was connected to the pointer

gauge at one end and protruded through the bottom of the flume at the

other. A rubber seal, through which the rod ran, prevented water leaking

from the flume. By adjusting the pointer gauge the wave gauge could be

raised or lowered, thus altering its depth of submergence. A vernier

scale on the pointer gauge provided accurate positioning of the wave

gauge to ± 0.1 rom. The calibration and mounting system for the wave

gauge is shown in Figure 4.4.

The calibration procedure consisted of firstly balancing the Wheat­

stone bridge with the probe submerged in still water to a physical zero

reference. This reference was provided by a line marked approximately

half way up the vertical leg of the perspex frame. The probe was then

moved in 10 rom increments over a range of 50 rom above and below the mean

level by manual operation of the pointer gauge. At each level the output

voltage was sampled by the minicomputer, the final value being the average

of 200 readings taken over a 10 s period. In addition to this mean value,

the standard deviation of the 200 points was also calculated to confirm

correct instrument behaviour. As the minicomputer was located some distance

from the laboratory, the sampling sequence was initiated remotely from the

laboratory. Completion of sampling was signalled by a status indication

on a small control module.

A typical example of a calibration curve is shown in Figure 4.5.

It is very nearly linear and water surface records were reduced to physical

units by using the calibration data as a linear look-up table. It was

found that the calibration curve for the wave gauges varied slightly from

day to day, presumably depending upon impurities in the water, and a fresh

calibration curve was obtained at the beginning and end of each day's

experiments. Individual wave records were reduced assuming a linear

variation with time between these two calibration curves. Such variations

were, however, invariably very small, provided the gauges were regularly

cleaned with alcohol. If not, dirt tended to accumulate on the wires and
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the gauges would exhibit a calibration drift with time. The stability of

the gauges can be seen from Figure 4.6 which shows the output voltage

from the gauge in still water over a period of four hours. The maximum

variation in output voltage over this period is only 1%. Based on these

results, it is believed that the wave gauges can measure the water surface

elevation to better than ±0.5 rom.

4.2 WATER rEVEL FOLLOWER

Water level follower or wave follower describes a range of mechanisms

which can be used to maintain instruments in close proximity to an undulating

water surface. The simplest type of wave follower is a simple float.

Mechanically-driven systems with a water level sensor and a negative feed­

back circuit generally give better frequency response. Although the details

of individual systems vary, their basic design is similar and has been

reviewed by Shemdin and Tober (112). The following section describes the

wave follower used in this project to determine normal and shear stresses

a small distance above the water surface.

4.2.1 Wave Follower Description

The wave follower system is illustrated in Figures 4.7 and 4.8 and

was powered by a 24 V Electro-Craft Corporation D.C. servo-motor. The

rotational motion of the motor was converted to a vertical reciprocating

motion through a chain drive. The chain ran about two sproketsi the

bottom sproket was mounted in bearings and free to rotate whilst the

top sproket was connected directly to the motor shaft. A 5 rom diameter

vertical stainless steel shaft was connected to the chain. The shaft was

supported by two linear bearings, one at the top of the flume and the other

approximately mid-way between the water and the flume top. Connected to

the end of the shaft was a 200 rom length of 1.5 rom outside diameter hypo­

dermic tubing. This tubing proved rigid enough to prevent buffeting by the

wind yet slender enough not to cause significant flow disturbance. Limit

switches, connected in series with the power supply to the motor, were

located adjacent to the top and bottom chain sprokets. These switches

prevented any possibility of an excessive vertical displacement damaging

the drive assembly.
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The feedback system for the motor control was provided by the water

acting as a switch to complete an electrical circuit. One terminal of the

circuit was permanently immersed in the water. The second terminal was the

end of the thin tubing attached to the vertical shaft. When the tubing

touched the water surface, the circuit was made and when it broke contact

with the water surface the circuit was broken. When the circuit was

complete, the controlling electronics provided a voltage to the drive

motor, causing it to lift the shaft and when contact with the water surface

was broken, the motor was directed to drive in the opposite direction. Thus

the wave follower hunted for the water surface. The full wave follower

assembly was mounted such that the contact point with the water surface

was beside the wave gauge at the test section. The wave gauge and the

wave follower were separated across the flume by approximately 80 rom and,

provided the waves were two dimensional, the wave gauge and the wave

follower would be responding to the same water level change.

4.2.2 Wave Follower Performance

The efficiency of the wave follower is measured by the transfer

function between the water surface and the wave follower motion. Ideally,

such a transfer function should have a gain of one and a phase of zero,

indicating that the wave follower followed the water surface perfectly.

To determine the transfer function it was necessary to record

simultaneously the water surface elevation and the wave follower position.

The water surface elevation was easily measured with the wave gauge. The

wave follower position was determined by attaching a ten turn linear

potentiometer to the shaft of the drive motor. Thus, when a constant

input voltage was applied to the potentiometer, the output voltage was

proportional to the wave follower position. This voltage was then sampled

directly by the minicomputer. The calibration relationship between the

output voltage of the potentiometer and the wave follower position was

obtained by manually raising and lowering the wave follower shaft and

recording the output voltage.

As mentioned before, the ideal input signal for determining a transfer

function is a signal with a white noise spectrum. The input signal in

this case was the water surface elevation. Due to the frequency response
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of the wave maker such a wave spectrum cannot be generated. Instead, a

white noise command signal was used for the wave maker. The resulting

wave spectrum and wave follower position spectrum are shown in Figure 4.9.

These spectra represent the average of ten experiments, each with a diff­

erent random phase spectrum for the wave maker command signal. As before,

the experiments were repeated to obtain acceptable confidence limits on

the spectral estimates. The final transfer function between the water

surface elevation and the wave follower position is shown in Figure 4.10

and the corresponding coherence function in Figure 4.11.

The gain of the transfer function is one for frequencies below

approximately 1.9 Hz. Above this frequency the gain behaves quite erratic­

ally, reaching a maximum of 1.1 at 2.2 HZ, falling to a minimum of 0.75

at 3.0 Hz before rising again to 1.1 and 3.9 Hz. The phase of the transfer

function is much better behaved being zero for frequencies below 1.6 Hz.

Above this value the phase is positive, indicating the wave follower

leads the water surface. The maximum phase difference, however, is only

12° which occurs at 2.8 Hz. This transfer function indicates that the wave

follower performs well for frequencies below about 2.0 Hz.

The irregular behaviour of the transfer function is not easily

explained but some insight can, however, be gleaned from the corresponding

coherence function of Figure 4.11. The coherence function has a value of

one for frequencies below 2.0 Hz. Above this value the coherence function

decreases rapidly in value. For a linear system, the coherence function

y 2(f) is the fractional portion of the mean square value at the outputxy
yet) which can be directly attributed to the input x(t) at frequency f.

If the value of the coherence function falls below unity, one or more of

three possible situations exist (5):

(a) Extraneous noise is present in the measurements

(b) The system relating x(t) and yet) is not linear

(c) yet) is an output due to other inputs as well as x(t).

It is unlikely that the system would suddenly become non-linear above 2.0

Hz when it behaved quite well below this value but the other two explanations

for a reduction in the value of y2(f) are, however, quite possible. Indeed,

it has been observed that above 2.0 Hz the mechanically generated waves
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lose their two dimensional nature and become short crested. Since the

wave gauge and the wave follower are separated by 80 rom in the across

flume direction, the wave measured at the wave gauge may not be the input

driving the wave follower. This will be especially true if the waves

are short crested. In addition, the wave spectrum (Figure 4.9) which

provides the input to the system has a peak at 1.5 Hz and decreases rapidly

in magnitude for higher frequencies. Therefore, as the frequency increases,

the signal to noise ratio will decrease and noise may well contaminate

the system. These two factors tend to indicate that the behaviour of both

the transfer function and the coherence function are results of the

experimental technique and not instrument response.

In conclusion, it can be said that the wave follower accurately

tracks waves up to a frequency of at least 2.0 Hz. The instrument response

above this frequency cannot be accurately determined. In view of the

observed short crested behaviour of waves above 2.0 Hz, the experimental

study was limited to frequencies below 2.0 Hz.

An additional experiment was conducted to determine the frequency at

which the wave follower hunted for the water surface. With a stationary

water surface, the wave follower position was sampled at 100 Hz for a period

of 2.73 min, yielding a time series of 16,384 points. The resulting

spectrum appears in Figure 4.12. This figure clearly indicates that the

hunting frequency is 16 Hz. Since this value is far above the wave

frequencies used in this project, it is reasonable to assume that the

high frequency oscillations of the wave follower will have no significant

effects on experimental results.

4.3 PRESSURE MEASUREMENT SYSTEM

4.3.1 Description of System

The pressure measurement system was designed to measure the very

small wave-induced static pressure above the waves. The system has two

parts, a probe section located within the flume and a sensing section

located externally. The probe system consisted of three individual probes.

A disk probe and a total head probe were mounted on the wave follower

close to the water surface whilst a static probe was located in the free
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stream flow, 0.7 m above the mean water level. The sensing system consisted

of two Setra Systems Model 239 E capacitance type low range differential

pressure transducers with a full scale range of ±69 pa. The probe and

sensor systems were connected through a system of valves and thin tubing,

allowing the transducers to be switched to one of three positions. The

transducers could be switched either to the probe system or a calibration

system and when not in use they could be vented to atmosphere. A schematic

diagram showing the full system appears in Figure 4.13.

The disk probe was constructed from perspex and was 9.4 mm in diameter

with a thickness of 2.6 mm. A small hole of diameter 0.5 mm passed through

the disk in a transverse direction. This small passage was intersected

mid-way through the disk by a radial passage. The radial passage was in

turn connected to the pressure tubing. The disk probe is illustrated in

Figure 4.14. Because of the finite thickness of the probe, it compresses

the adjacent streamlines and will record a pressure slightly below the

true static pressure. Bryer and Pankhurst (16) indicate that the pressure

recorded by the disk,PD' follows the relationship

( 4.1)

where Ps is the static pressure, v is the wind velocity and K is a constant

which must be determined by calibration.

Equation 4.1 indicates that it is necessary to also know the instant­

aneous wind velocity at the probe, which required the installation of a

tota,l head probe on the wave follower adjacent to the disk. This probe

consisted simply of a stagnation tube constructed from 1.62 mm outside

diameter hypodermic tubing aligned into the flow. The pressure sensed

by the total head probe is

(4.2)

where Pt is the total pressure. The disk and total head probes were conn­

ected to either side of one of the differential pressure transducers. The

differential pressure sensed by the transducer is then
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(4.3)

Therefore, since K is known from calibration, the velocity can be determined.

This single differential pressure record is sufficient to determine

v but an additional measurement is required to determine p. This
s

additional measurement was achieved by placing a Pitot-static probe in the

free stream of the flow. The pressure sensed by the static port of this

probe was connected across a second transducer with the disk output. This

second transducer then sensed the differential pressure

= (p - p ) - K~pv2
S so

(4.~

where p is the free stream static pressure. Since ~pv2 was obtained
so

from the first transducer output in conjunction with Equation 4.3, the

output of the second transducer, along with Equation 4.4, yields the

quantity p - p • As P is merely the mean static pressure within the
s so so

flume, this term represents the wave-induced pressure. The three pressure

probes are shown in Figure 4.15.

The voltage output from the two pressure transducers was ±2.5 V for

the full scale range of ±69 Pac As the pressures to be measured could

be as small as 1 pa, it was necessary to amplify the output signals. It

was also important to ensure that extraneous noise did not contaminate the

pressure signals. Althoug~ the manufacturer's specifications indicated

that electrical noise lavels were less than 0.02% of the full range output,

the signals were passed through 5 Hz low pass filters. The filtered

signals were then fed into D.C. amplifiers with selectable gains of 1, 5

or 10. The output from the amplifiers was then recorded directly by the

minicomputer. A schematic diagram of this system appears in Figure 4.16.

4.3.2 Pressure Transducer Calibration

Calibration of pressure transducers with such extreme sensitivity

poses considerable problems. Merely applying a differential pressure of

order 10 Pa, only 0.01% of atmospheric pressure, is no trivial task.

Initially, an extremely accurate manometer system was designed and const-
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rueted for this purpose but it proved unsuitable. Any system which creates

a static differential pressure requires the transducer to be connected to

a closed volume, where a change in temperature 6.T will cause a change in

pressure 6.p as predicted by the ideal gas law

6.T = Q'£T
P

(4.5)

where p and T are the initial pressure and temperature in the closed volume.

For p = 10 5 Pa (1 atmosphere) and T = 298°K (25°C), a temperature change of

only 0.2°C is required to produce a pressure change of 69 Pa, equal to

the transducer full scale value. Such large changes in the pressure were

observed with the manometer system as a result of small air temperature

fluctuations; they persisted even when the manometer system was housed

in thick thermal insulation.

To avoid these problems, a system which generated a dynamic pressure,

and hence avoided the problems associated with a closed volume, was designed.

The final system relied upon measuring the pressure distribution about a

cylinder in a uniform flow. A cylinder of diameter 16 rom was placed

in a small aerodynamic wind tunnel capable of producing a wind velocity

of 7 ms- I , and shown in Figure 4.17. A pressure tap was placed on the

surface of the cylinder and this tapping was connected to one port of the

transducer to be calibrated. The second transducer port was connected

to a static pressure tap located on the wall of the wind tunnel, the

transducer measuring the dynamic pressure at the cylinder's surface. By

rotating the cylinder, the differential pressure ranges from approximately

+25Pa at the forward stagnation point (8 = 0°) through 0 Pa at about

8 = 50° to -18Pa for 8 beyond about 80° for a centreline wind velocity of

6.5 ms- I .

The calibration procedure consisted of firstly rotating the cylinder

until the surface pressure port faced directly into the air flow. The wind

velocity was then gradually increased until a precision inclined manometer,

connected in parallel with the pressure transducers, indicated that the

differential pressure was approximately equal to the transducer full scale

positive value. The cylinder was then rotated in small increments, the

manometer reading noted and the minicomputer prompted to sample the
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transducers. The prompt to the minicomputer was initiated from the remote

module described in Section 4.1. Each sample consisted of an average over

ten seconds. This procedure was continued until the manometer indicated

that a pressure equal to the transducer full scale negative value had been

reached. A schematic diagram of this calibration system appears in Figure

4.18.

A typical calibration curve, obtained through the above procedure

is shown in Figure 4.19. The relationship is linear to good approximation.

As with the wave gauges, the pressure transducers were calibrated at the

beginning and end of each session of experiments Ctypically 2 hrs) , but

variations in the calibration curves were quite small. Hence, no calibration

changes were necessary during a session of experiments.

4.3.3 Disk Pressure Probe Calibration

Use of the disk pressure probe system to measure static pressures

required the determination of the calibration constant K in Equation 4.1.

The disk probe was mounted in the small aerodynamic wind tunnel mentioned

previously, with a standard pitot-static tube directly alongside. The

two pressure transducers were then connected such that one measured p - p
s D

and the other Pt - Ps = ~pv2, where Ps and Pt are the pressures recorded

by the static and total pressure ports of the pitot-static tube and PD

is the pressure measured by the disk probe. The outputs from the

transducers were then recorded for wind velocities ranging from 0 ms- I

to 7 ms- I
• This range of wind velocities corresponds to the range used

in subsequent experiments and eliminates the need to investigate any Reynolds

number dependence in the calibration result. The final calibration curve

appears in Figure 4.20. It is clear from this figure that the linear

relationship predicted by Equation 4.1 is a reasonable approximation to

the data. A least squares approximation to the data yields K = 0.22 ±

0.02. This value is higher than typical values quoted by Bryer and Pank­

hurst (16) but this was expected as the present probe has a relatively high

thickness to diameter ratio.

In the above calibration procedure, the disk was aligned so that

it lay in a vertical plane with its edge pointing into the air flow.

To assess the probes complete usefulness, however, it was also necessary
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to measure its response to pitch (rotation about the transverse horizontal

axis) and yaw (rotation about the vertical axis). The results are presented

in Figure 4.21. Because of the s}'IDIlletric nature of the disk it has a flat

response to variations in pitch. This is a considerable advantage in the

present context since the pitch angle will vary due to the undulating nature

of flow over the surface waves. As expected, the probes response to yaw

is more dramatic. The results show a region of approximately ±5° in which

the response is flat. For larger yaw angles the pressure increases rapidly,

presumably as a result of flow separation from the edge of the disk.

Fortunate ly, the probe should experience-._ little variation in the angle of

yaw as the flow in the wind-wave flume is two dimensional. The flat

section of the curve is, however, sufficiently wide to prevent significant

errors due to probe misalignment with the flow.

4.3.4 Calibration of Total Probe for Pitch and yaw

The effects of pitch and yaw are also important for the total head

probe, although there is no distinction for a symmetric probe. The same

procedure as previously described for the disk probe was again used for

the total probe, the results appearing in Figure 4.22. The calibration

curve is relatively flat for angles up to 21°, but beyond this the pressure

sensed by the probe decreases rapidly. The maximum slope possible for

gravity waves is 'IT/7, which corresponds to an angle of 24° to the horiz­

ontal. It is reasonable to assume that the maximum angle of pitch that

the probe would experience would also be of a similar value. Since the

probe response is relatively flat for angles less than 21° any errors due

to the angle of pitch of the probe relative to the air flow would be quite

small.

4.3.5 The Effects of Flow Turbulence

When placed in a turbulent flow, pressure probes will not only respond

to the static and dynamic pressures but also to the normal Reynolds stress

terms -pu"u", -pv"v" and -pw"w". Goldstein (37) has considered the effects

of turbulence on a total pressure or Pitot tube. He concludes that the

reading of a Pitot tube will exceed the total pressure by an amount

corresponding to the mean kinetic pressure of the turbulent velocity

fluctuations, u", v", w". The magnitude of the increase in Pitot reading
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is given simply by ~Pa(u"u" + v"v" + w"w"). For a high turbulence

intensity (113)

I = 0.15 =
u

(4.6)
u

U"U" equals 0.0225 u. In addition, measurements have shown that, in the

surface layer (113) u"u" : v"v" : w"w" -+ 1 : 0.6 : 0.3, from which the

total effect of the turbulence would be only 4% of the dynamic pressure

~P u2
• This error has been neglected.

a

There is almost no mention in the literature of the effects of

turbulence on a disk probe. It is reasonable to assume, however, that the

turbulent fluctuations will be quite small at the centre of the disk.

A similar assumption is commonly made for a surface pressure tapping in

parallel streamline flows where Shaw (107) has shown that the error caused

is less than 1% of ~P u2 • Since the flow past the disk is not dissimilar
a

to that near a wall, turbulence effects on the disk probe can be neglected

with reasonable confidence.

4.3.6 The Dynamic Response of Pressure Tubing

Long lengths of tubing can have a considerable influence on the

measured fluctuating pressures, the classical example being organ pipe

resonance (105). An extensive theoretical analysis of the problem has

been presented by Bergh and Tijdeman (6) and is outlined in Appendix A.

Each of the pressure probes was connected to the pressure transducers by

a 2 m length of 2 mm inside diameter flexible plastic tubing followed by

a 1.5 length of 3 mm inside diameter P.V.C. tubing. Along the length

of this second section of tubing there were a number of valves and manifolds

which are not included in Bergh and Tijdeman J s analysis. Their theoretical

prediction of the transfer function appears in Figure 4.23. Figure 4.23a

shows the transfer function for the frequency range 0 Hz to 4 Hz. The gain

of the transfer function is relatively flat in this region, steadily

increasing from 1. 0 at 0 Hz to 1. 03 at 4 Hz. The phase lag of the transfer

function steadily increases and reaches a value of 19.4° at 4 Hz. Although

the high frequency response of the tubing system is of no immediate interest

in this project, Figure 4.23 b shows the transfer function for frequencies
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up to 300 Hz. This figure clearly illustrates the presence of resonance

peaks at a number of frequencies as well as the general falloff in response

due to frictional losses to the tube walls.

As the phase lag is particularly critical to the present experiments

and as the valves and manifolds of the tubing system are not included in

the above analysis, it was desirable to confirm, or otherwise, this theor­

etical prediction of the transfer function. To measure the actual transfer

function for the various tubes, an apparatus capable of generating small

dynamic pressures in the frequency range from 0 Hz to 4 Hz was designed

and constructed. It consisted of a metal drum of volume 60 1 connected

to a small piston and cylinder of diameter 25 rom. The cylinder was a

modified bicycle pump, the pump bucket having been removed and replaced

with a piston sealed with "a" rings. Thus pushing the piston in would

increase the pressure in the drum whilst pulling the piston out would

reduce the pressure in the drum. The piston was driven by a crank shaft

and connecting rod system, the crank shaft bein.g driven through a double

reduction 16 to 1 chain drive powered by a variable speed electric motor.

By varying the length of the crank shaft, the piston stroke length could be

varied and hence oscillating pressure signals of various amplitudes were

generated within the drum. The frequency of the pressure signal was varied

by altering the speed of the electric drive motor. To prevent pressure

changes within the drum due to atmospheric temperature variations, a small

air leak to atmosphere was provided. Since this leak has a relatively

long time constant, it had no effect on the generated pressure signals. The

full dynamic pressure generating system is illustrated in Figure 4.24.

To determine the response of the pressure tubing system, one pressure

transducer was placed flush against the drum and a second was connected

to the end of the pressure tubing with the pressure probe sealed within the

drum. The first transducer recorded the actual dynamic pressure signal

within the drum whereas the second transducer recorded the pressure signal

after modification by the tubing. The transfer function can be determined

from these two signals. If the pressure in the drum is described by

A coswt, the signal at the end of the tubing is AIHI cos (wt + ¢), where

IHI and ¢ are the gain and phase of the transfer function respectively.

Each record yields the transfer function for only one frequency and it

was necessary to repeat the process a n.umber of times with different

frequency signals to determine the full transfer function.
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A basic assumption in this analysis is that the pressure sensed by

the probe and that by the flush mounted transducer are equal. This will

only be true if the pressure response within the drum is instantaneous.

Obviously such a response would not occur and thus there would be a further

transfer function relating the two pressures. The drum was 0.37 m in

diameter and 0.56 m long, whilst the flush transducer tapping and the probe

were separated by only 50 mm. Hnece, in relation to the overall drum

dimensions the two pressures were sensed at approximately the same point.

Therefore the effects of the flow distrib~tion within the drum would be

minimised and the flush transducer and probe can be assumed to be sensing

the same pressure to reasonable accuraCy.

To apply the above analysis, it is necessary that the pressure

generated in the drum be sinusoidal; this became the major design constraint

for the dynamic calibration system. Applying the universal ideal gas law,

the pressure in the drum is given by

t::.p =

and since t::.V«V for this design

(4.8)

where t::.p is the change in pressure caused by the volume change t::.V, PI is

the initial pressure and VI is the initial volume of the drum-cylinder

system. Therefore, if t::.V varies sinusoidally and the pressure response

is immediate and uniform, t::,p will also be sinusoidal. A sinusoidal

variation of t::.V implies a sinusoidal variation of the piston. For the

crankshaft-connecting rod system, the motion of the piston is described

by (84)

x =
1

r [cose + q - 2q
. 2 e 1

s~n - ~
8q

(4.9)

where r is the crankshaft length, qr is the connecting rod length and e

is the angle the crankshaft makes with the horizontal. The motion will
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only be sinusoidal if the connecting rod is of infinite length but sufficient

accuracy can be obtained if q > 4.0. For the present case q = 4.4 which

produces a second order term in Equation 4.9 of only 5% of the sinusoidal

term.

Transfer functions were evaluated for each of the four probe-tube

systems used in subsequent experiments. These systems were the disk probe

line to transducer number one, H
D
i' the total probe line to transducer

number one, H , the disk probe line to transducer number two, H , and
Tl D2

the static probe line to transducer number two, H • The four resulting
82

transfer functions appear in Figure 4.25 and differ quite markedly from the

theoretical predictions of Figure 4.23. These differences reflect the

result of neglecting the presence of the probe and the various valves and

manifolds in the pressure lines in the theoretical analysis. All of the

transfer functions are of similar shape showing a continual decrease in

IHI and increasing phase lag with increasing frequency. Least squares

polynomial approximations were applied to the data with the results

rl.. = -15.6f
'I'DI

¢ = -10.4f
Tl

-20.5f

(4.10a)

(4.1Gb)

(4.11a)

(4.11b)

(4.12a)

(4.12b)
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IH I = 1 - 8.35 x 10-2 f + 1.08 x 10-2 f 2 - 5.76 X 10-3 f 3
S2

th = -19.4f
'l'S2

( 4.13a)

(4.13b)

with 95% confidence limits of ±5% for the gain equations and ±7% for the

phase. The pressure tubing system has a very significant impact on the

recorded pressure signal. If such effects has been ignored, the results

of any measurements would be in serious error.

4.3.7 Wave-Follower-Induced Pressure

The vertical oscillatory motion of the wave follower will cause the

column of air within the tubing to be accelerated, resulting in an

oscillatory pressure that will be sensed by the pressure transducers. If

the motion of the wave follower is z = a cos wt, then the acceleration is

z: = _aw2 cos wt. For a rigid tubing system between the probe and pressure

transducer, it is then reasonable to assume that the induced pressure

will be of "the form p a w2 cos.wt as proposed by Shemdin (108). In the
WF

present experimental setup, the tubing is not rigid and the wave follovler

induced pressure may well deviate from the above relationship. A series

of experiments were consequently conducted to determine the transfer

function relating the motion of the wave follower to the induced pressure.

The wave follower was driven in a sinusoidal fashion by a signal

generator in the absence of waves and the motion of the wave follower was

recorded by the potentiometer on the drive motor. Initial experiments with

commercial signal generators proved unsuccessful as any slight D.C. bias

in the signal would cause the wave follower to gradually move beyond its

vertical traversing limits. This problem was overcome by using an extremely

sensitive signal generator designed by Dr. C. Kikkert of the Department of

Electrical and Electronic Engineering at James Cook University. Rather than

measure the induced pressure for each line, the differential pressures

between the disk and total probe lines and the disk and static probe lines

were recorded. These were the only pressures of relevance, being the

differential pressures subsequently measured in experiments. The resulting

transfer functions for these two system appear in Figure 4.26.
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The gain of both transfer functions are rather similar and both

approximate to a power law relationship with frequency. Least squares

curve approximations give for the disk-static system

= (4.l4a)

whereas for the disk-total system

= (4.l5a)

with 95% confidence intervals of ±5%. Thus, neither transfer functions

follows the f2 relationship expected for a rigid tubing system, but neither

are they greatly removed from this relationship. As well as the differences

in slope of the tvlO relationships, it is significant that the magnitude

of the disk-static system is considerably larger than the disk-total

system. This is apparently caused by the disk and total probes being

mounted beside each other and their pressure tubes being taped together

for the major part of their length. Hence the flexing of the tubing

as the wave follower moved was almost identical for each system. If the

induced pressures in each length of tube were almost identical the resulting

induced differential pressure would be small. Examination of the individual

pressure signals revealed that this was the case. The induced pressures

in the disk and total lines were very similar whereas the induced pressure

for the static line was considerably smaller, thus accounting for the

observed magnitudes of the transfer functions.

The phase relationships of the two transfer functions are also

similar, exhibiting phase lags which increase with increasing frequency.

The actual magnitudes of these phase angles, however, are quite different.

Least squares curve approximations gave

and

= -2.55 - l7.2f + 3.56f2 - 0.580£3

-116 - 1.48f - 4.69f2 + 0.6l5f3

(4.l4b)

(4.l5b)

with 95% confidence intervals of ±6%. The phase relationship for the disk-
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static system is as expected, with the phase lag approaching zero at f O.

In contrast, the behaviour of the disk-total system is rather unusual

with an apparent phase lag of approximately 116 0 at f = O. Such a value

is clearly not realistic. This behaviour can, however, be explained by

considering the induced pressures in each line and their differences, If

the pressures in two lines are given by A sin wt and B sin(wt + ~¢), the

differential pressure between the two is given by

whence

C sin(wt + a) A sin wt - B sin(wt + ~¢) (4.16)

and

C

tan a

(A - B cos ~¢)/cos a

-B sin ~¢

A - B sin ~¢

(4.17a)

(4.17b)

When A and B differ considerably the resultant differential phase angle

varies almost linearly with ~¢. If A and B are of similar magnitude,

however, a small phase difference, ~¢ produces a large differential phase

angle a. As ~¢ increases, however, a reduces considerably in magnitude as

can be seen in Figure 4.27. The unusual behaviour of the phase relationship

for the disk-total system is most likely a consequence of the similar

magnitudes of the pressure signals in each line. The disk-static system

behaves completely differently since the pressure signals in the individual

lines are of significantly different magnitude.

4.3.8 Response of Electronic Systems

The output voltages from the pressure transducers were firstly passed

through 5 Hz low pass filters to remove any high frequency noise and then

amplified to obtain reasonable resolution on the minicomputer's 12 bit

A/D converters. Recursive analog filters can introduce considerable

phase lags as well as having non-ideal cut-off behaviour, and a set of

experiments was performed to determine the transfer functions for the

low pass filters. The transfer functions for the D.C. amplifiers were also

found experimentally.
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The experimental procedure consisted of firstly generating a digital

white noise signal on the minicomputer. This signal was then fed through

a D/A converter to produce an analog signal. This signal was passed through

the filter or amplifier and the output sampled by the minicomputer through

an A/D converter. The transfer function was then found from Equation 3.320

The resulting transfer functions for the two 5 Hz low pass filters appear

in Figure 4.28. They are quite similar, although not identical, with a

gradual falloff in the gain of the transfer function with increasing

frequency, becoming considerably steeper above 5 Hz. There are very large

phase lags; for example, at approximately 3.75 Hz the output signal lags

the input by 180°.

The transfer functions for the D.C. amplifers showed completely flat

gain characteristics and zero phase errors for the frequency range of

interest in this project. Indeed, the response was flat up to frequencies

of 10 kHz.

4.4 VELOCITY MEASUREMENT SYSTEMS

4.4.1 Hot Film Anemometer System

Mean velocity measurements were made using a standard Pitot-static

tube and an inclined manometer but such a system is unsuitable for the

measurement of turbulence. Turbulent velocity traces were obtained with

a dual channel I.S.V.R. constant temperature hot film anemometer (24).

For the measurement of single velocity components, the probe was a TSI

Model 1210-20 standard hot film probe and for two component measurements

the probe was a TSI Model 1243-20 boundary layer cross film probe. Both

these probes have a diameter of 51 microns and a sensing length of 1 rom,

giving a length to diameter ratio, Q,/d = 20. A special mounting bracket

on the wave follower enabled both the yaw and pitch angles of the probe to

be individually adjusted to ensure accurate alignment of the probe. This

mounting system is shown in Figure 4.29. The analog outputs from the hot

film anemometer was fed through low pass anti-aliasing filters and recorded

either by the PDP-II minicomputer or the HP spectrum analyser (see Section

4.5) •
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The calibration of a hot film probe simply requires recording the

anemometer output voltage for various known air velocities. Additional

insight can, however, be gained by considering some practical anemometer

cooling laws. The heat loss from the film includes both the convective

loss to the flow and conductive loss to the supports. In normal constant

temperature operation, the probe resistance is maintained substantially

constant. The probe forms one arm of a Wheatstone bridge which is auto­

matically maintained in balance by a specially designed amplifier. The

heat supplied to the wire is proportional to E2
, the square of the anemometer

bridge output voltage. The heat lost due to forced convection can be

expressed by the difference E2 - E 2, where E corresponds to the bridge
o 0

output at zero flow. A practical correlation between flow velocity and

convective heat loss can be expressed by the empirical law

= E 2 + KUn
o (4.18)

where the constant K and the exponent n are functions of the flow speed

and the probe geometry. A number of so-called universal values have been

proposed for n, the best known being "King's law" (22) in which n = 0.5.

More recent work has shown that an exponent of 0.45 gives a better

correlation than an exponent of 0.5 in the Reynolds number range usual in

hot-wire anemometry (13) although there is some evidence that the value of

n is dependent upon the probe Reynolds number (24). Therefore, it is good

practice to determine n from calibration results. In addition, the

intercept value of Equation 4.18 is generally dependent upon the temperature

of the fluid in which the probe is immersed. Hence the calibration curve

can drift as a result of room temperature changes.

The calibration curve parameters E , K and n were determined, in situ,
o

in the flume free stream flow against a standard Pitot-static tube. In

addition, the probes were recalibrated at intervals not exceeding one hour

to prevent excessive drift of E due to temperature changes. Such temper-o
ature effects were further reduced by performing experiments either in the

evening or the middle of the day, when the room temperature was relatively

stable. The parameters of the calibration curve were determined from a

least squares approximation to the data, as outlined in Appendix I. A

typical calibration curve appears in Figure 4.30.
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According to the equations of motion, the flow over an infinitely

long wire in the plane normal to its axis should be independent of the

veloci ty along the axis of the wire. The heat transfer, on the other hand,

depends upon both the axial and the normal components of flow but to first

approximation is independent of the axial component of velocity. This

cosine law for the effective cooling velocity U
eff

is (13)

= U cos </J (4.19)

where </J is the angle between the flow direction and the plane normal to the

wire axis. In addition to this simple relationship, a number of empirical

laws, which include axial cooling, have been proposed. Champagne et al

(20) have suggested that for hot wire probes

= (4.20)

where kl falls from 0.2 at ~/d = 200 to zero at ~/d = 600, the range of

validity being 2S o<</J<600. Friehe and Schwartz (33) have proposed

=
~ ?

U L1 - k2 (1 - cos </J) ] (4.21)

where k2 = 1-2600 (d/~}2 for hot wires and 1-2.2 d/~ for cylindrical hot

films, the range of validity being 00<</J<600. For the hot film probes used

in this project k2 = 0.89. To assess the sensitivity of these probes to

the longitudinal cooling component, Equations 4.19 and 4.21 are compared

in Figure 4.31. The deviation from the cosine relationship is very small

for this probe and the cosine law has been adopted in all subsequent

analyses.

Based on the cosine relationship, it is clear that alignment is not

critical for a probe placed approximately perpendicular to the air flow,

as the cooling velocity is relatively invariant for -lSo<</J<15°. For cross

film probes, which are at approximately ±45° to the flow, however, alignment

is critical. For such probes an alignment error of 5° can result in an error
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of 9% in U
eff

' Because of the sensitivity of the cross film probes to

alignment, the housing bracket which connects the probe to the wave follower

was fitted with a yaw adjustment (see Figure 4.29). Using this adjustment

the probe was accurately aligned (±0.5°) against a theodolite.

4.5 DATA ACQUISITION AND EXPERIMENTAL CONTROL

4.5.1 Minicomputer System

All experimental control and most data acquisition was handled by

the PDP-II minicomputer. The computer served the dual role of simultaneously

controlling the wave generator and sampling from up to eight channels.

Although the experimental control was largely automatic, remote control of

each stage was available from a control module located in the laboratory.

In almost all experiments, there were three individual stages. The

first stage involved moving the wave maker forward to its maximum position

and halting. The piston was moved forward with a steady linear motion to

its maximum foward position, corresponding to the starting point of the

wave record at its lowest trough. At this point the gradient of the wave

record was zero enabling smooth transition from rest into the wave record

signal. On a signal fran the control module, the wave maker began to cycle

through its programmed wave record. This phase allowed the wave pattern

to stabilise before sampling commenced; a period of five minutes was

typical. The third and final stage of the experiment was the data

acquisition. While continuing to cycle, sampling took place at a selected

rate and, upon completion, the wave maker was moved back to its initial

position with a steady linear motion.

Each of these successive phases was initiated by an enable signal sent

to the minicomputer from the control module. The enable signals consisted

of simple, manually selected discrete D.C. voltage levels. At any stage

during execution, the minicomputer program status was indicated on the con­

trol module by a series of lights, successively illuminated by a signal

from: the minicomputer upon successful entry into the next phase of the

program. The module also incorporated eight manually selectable low pass

filters, with cut-off ranging from 1.0 to 24 HZ, to reduce input of high

frequency noise to the servo-amplifier, thus smoothing wave maker operation.
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The wave maker transfer functions described in Section 3.3.2 were obtained

with the module low pass filters set at 6 Hz. If another filter setting

had been used it would have been necessary to obtain a new wave maker

transfer function corresponding to this setting. An automatic cut out

ensured that, should the minicomputer crash, the resulting voltage surge

would not damage the wave maker.

The sampled data was transferred from the computer's memory to floppy

disks for storage and subsequently to the University's main frame computer

system, a DEC-SYSTEM 1091, for further analysis. The full control and

data acquisition system was shown schematically in Figure 3.5.

4.5.2 Spectrum Analyser

The maximum sampling rate which could be obtained from the mini­

computer using FORTRAN was approximately 300 Hz. Although this was more

than adequate for most requirements, it was not adequate for determining

the turbulent structure of the air flow close to the water surface.

Consequently the turbulence data from the hot film anemometer was recorded

using a Hewlett Packard HP 3582 A Spectrum Analyser, capable of sampling

at selected rates up to 50 k Hz and determining amplitude spectra, coherence

functions and transfer functions automatically. The Spectrum Analyser

is shown in Figure 4.32 along with much of the other instrumentation

described in this chapter.
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5. SURFACE DRIFT CURRENT

When the wind blows over a water surface, fluctuating stresses can

lead to the growth or decay of waves. In addition the mean shear stress will

cause a momentum transfer to the water which induces a surface current.

provided the wind duration is relatively short, such currents are confined

to the region near the water surface and are called wind-induced surface

drift currents. The wave flume is an enclosed basin and the conservation

of mass requires a return flow in the lower section of the flume. Since

such a recirculating flow will influence the phase speed of the surface

waves, the magnitude of the surface drift current was determined experim­

entally.

Small styrofoam floats were timed over a 4.6 m length of the flume.

The floats were flat disks to keep them low to the water surface and to

minimize additional drift due to direct wind-induced drag on the float.

In addition, the depth of sumbergence of the floats was very small and their

velocity could be assumed to quite closely approximate the surface drift

velocity, rather than a depth-integrated value. The experiments were

conducted for free stream wind velocities ranging from 1 to 6 ms- I and

in the absence of mechanically-generated waves. Each experiment was

repeated ten times and the results averaged. The data is presented in Table

5.1 and plotted in Figure 5.1.

U u
00 c

(ms- I ) (ms- I )

0.85 (1.26 ± 0.13) x 10-2

1.60 (2.50 ± 0.24) x 10-2

2.08 (3.15 ± 0.20) x 10-2

2.62 (3.85 ± 0.35) x 10-2

3.25 (4.75 ± 0.38) x 10-2

3.75 (5.65 ± 0.30) x 10-2

4.12 (6.53 ± 0.47) x 10-2

4.89 (7.32 ± 0.41) x 10-2

5.89 (8.63 ± 0.33) x 10-2

'rable 5.1 Surface drift current versus free stream wind
velocity.
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From Figure 5.1 there appears to be a linear relationship between u and
c

U , the free stream wind velocity. A least squares approximation yields the
00

result

u
c

(0.015 ± 0.002) U
oo

(5.1)

where the error represents 95% confidence limits. Both the magnitude of

this drift current and the linear dependence upon the wind velocity are

consistent with the results of Keulegan (58), Van Dorn (131) and Shemdin

(108) •

One potential consequence of the wind-induced drift current is to

alter the phase speed of the surface waves. Lilly (68) has considered

this problem, assuming the current profile to have a parabolic shape with

zero net mass transport and the flow to be laminar. He shows that the

phase speed becomes

c =
Uc 3

C { 1 + C [ 1 + 2 (kd) 2
1 + 2 cosh(2kd) ] }
kd sinh (2kd)

(5.2)

where C2 = (g/k) tanh (kd) and d is the water depth. In the present context

C and u are in opposite directions and Equation 5.2 indicates that the wave
c

phase speed will be reduced by the presence of the current.

In Table 5.2 Equation 5.2 has been applied to the wind wave flume

for a free stream wind velocity of U = 6 ms- 1 to assess the relative
00

importance of the drift velocity in altering the wave phase speed.

It is clear that the effects of the surface drift current become more

important as the wave frequency increases, the wave orbital velocity field

becoming concentrated closer to the surface where the drift current is a

maximum. The 6 ms- 1 wind velocity used in Table 5.2 is the maximum wind

velocity used in this research. The magnitude of the surface drift

current and its effects on the phase speed will be reduced for lower wind

speeds. In addition, Table 5.2 gives only a rough estimate of the effects

of the surface current, since Lilly (68) assumed laminar flow in deriving

Equation 5.2. Dye. tracer experiments, however, indicated the flow in the

experimental facility was in fact turbulent. Despite this, Table 5.2
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-
f kd C C - C % difference

(d = 0.32 m) (ms-1) (ms-1) -
(HZ) between C and C

0.75 0.97 1.56 1.26 x 10-2 0.8
-2

1.00 1. 44 1.40 2.25 x 10 1.6

1.25 2.08 1.21 3.33 x 10-2
2.8

1.50 2.91 1.04 4.41 x 10-2
4.2

1. 75 3.95 0.89 5.31 x 10-2
6.0

2.00 5.15 0.78 6.06 x 10-2
7.8

Table 5.2 Effect of surface drift current on wave phase speed.

should provide a reasonable order-of-magnitude estimate, the alteration

in phase speed being, at most, 10% with an average value of approximately

3%. Based on these figures, the reduction in phase speed caused by the

surface drift current should be a secondary effect and has been neglected

in all subsequent analyses.

It was shown in Section 2.4 that an opposing current can lead to very

substantial wave decay. Using Equation 2.63, the ratio of the wave energy

after encountering a current to that before can be calculated. These

values have been evaluated for the experimental facility and appear in

Table 5.3.

f w u t w /w E2 /E0 c
(Hz) (Hz)

-1 0 0(ms )

0.75 4.71 0.090 0.993 0.952

1. 00 6.28 0.090 0.991 0.937

1.25 7.85 0.090 0.988 0.922

1. 50 9.42 0.090 0.986 0.906

1. 75 10.99 0.090 0.984 0.891

2.00 12.56 0.090 0.981 0.876

t Value based on U = 6 ms- 1
co

Table 5.3. Wave attenuation due to opposing current.
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Again the figures of Table 5.3 provide only an order-of-magnitude estimate

of the effects of the opposing current, since, Equation 2.63 was derived

for a uniform current and its applicability to a recirculating flow, such

as that of the experimental facility, is difficult to assess. The

assumption of a uniform current velocity profile is equivalent to placing

the waves in a moving frame of reference. In such a reference frame, the

wave frequency will be Doppler shifted but the flow structure within

the wave will remain unchanged. For a current with a depth-dependent

velocity profile, the orbital motion beneath the wave will be distorted

and presumably also the wave profile. In addition, the attenuation

described by Equation 2.63 was derived for an active wind sea with an

f- s saturation spectrum, whereas monochromatic sinusoidal waves have been

used in the present study. Although the applicability of the specific

values presented in Table 5.3 is questionable, they indicate that measured

attenuation rates cannot be attributed completely to air-sea interaction,

since wave-current interaction and possibly other effects may be substantial.

Plate, Chang and Hidy (98) have indicated that, for a following wind,

the presence of a surface drift current can also alter the air-sea energy

flux. The surface current will alter the air boundary layer profile and

hence change the height of the critical layer, whose position is vital in

the Miles instability theory. For an opposing wind, no critical layer

can exist and energy flux measurements inferred from surface stress

measurements should not be effected by the presence of the surface drift

current.
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6. SPATIAL WAVE DECAY

In order to determine the wave decay with fetch along the flume,

wave heights were measured at the mid-flume working section (x = 7.49 m) ,

and near the beach (x = 3.30 m). These experiments were repeated for a

number of free stream velocities and for wave frequencies of 0.75, 1.00,

1.25, 1.50 and 1.75 Hz. From the time series at both locations, the wave

amplitudes were determined using the procedure described in Appendix C.

It was then assumed the decay followed an exponential relationship

exp(bflx/e )
g

(6.1)

where E1 and Ez are the wave energies at the mid-flume test section and the

beach respectively, 6x = 4.19 m is the distance between the two measurement

points, e is the wave group velocity and b is an exponential decay
g

coefficient. Therefore, b can be determined as

b (6.2)

where a1 and az are the wave amplitudes at the two points. Since measurements

were made at only two points, the assumption of an exponential decay cannot

be confirmed from the measurements. The assumption is not completely

without basis, however, since Bole (11) and numerous others have shown that most

growth and decay processes for waves irr~wind-wave flumes follow suc~ ~ ~elationshil

The variation in the exponential decay factor, b, as a function of U Ie
00

is presented in Figure 6.1 for each of the wave frequencies. The trend

in each plot is quite similar, with b approximately equal to -0.02 ± 10% s-l

at U Ie = 0 and increasing in magnitude as an apparent power law function
00

of U Ie. In interpreting these results, it would be wrong to attribute
00

this rate of wave decay completely to the effects of air-sea interaction,

since processes such as viscous dissipation, wave-current interaction, wave­

wave interaction, wave reflection and dispersion and turbulent shear, will

also be active in this situation. Determining the individual contributions

from these various processes is no trivial task and, as pointed out in

Chapter 2, the effects of wave-current and short wave-long wave interactions

are still not fully understood. When U Ie is zero, neither of these
00

processes will be active and air-sea interaction will probably be very small
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Therefore, the value of b = -0.02 ± 10% at U Ie = 0 can reasonably
00

be assumed to be a result of the other processes. It was shown in Section

3.4 that wave reflections within the flume are quite small and, since

sinusoidal waves are being used, wave dispersion should not be significant.

The effects of viscous dissipation and turbulent shear, however, will be

active. Hunt (49) has considered viscous damping of wave energy within

the wall and floor boundaries of rectangular flumes and derived the

re iationship

= exp [_ 4k (~) ~
B 2w

kB + sinh (2kd)
2kd + sinh (2kd)

~x ] (6.3)

where B is the flume width and V the kinematic viscosity of water. Equation

6.3 is, however, only an order-of-magnitude estimate of the effects of

viscous dissipation as a laminar boundary layer assumption was used in

its derivation. Using Equation 6.3 together with Equation 6.1, the theor­

etical exponential decay factor for viscous dissipation can be determined

for the present experimental facility. These results are presented in

Table 6.1.

f w k e b
g (viscous decay)

(Hz) (Hz) (m-1) -1 (s-1)(ms )

0.75 4.73 3.03 1.22 -0.039

1.00 6.28 4.50 0.92 -0.040

1.25 7.85 6.49 0.68 -0.040

1.50 9.42 9.11 0.54 -0.041

1. 75 10.99 12.33 0.45 -0.043

Table 6.1 Theoretical viscous decay rates of waves

When compared with the measured values of b at U Ie = 0, it can be
00

seen that the values of Table 6.1 are almost twice the magnitude of the

experimental data. Despite this discrepancy, the relative invariance of

the b values from Table 6.1 is consistent with the trend observed in the

present experiments.
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7. SURFACE PRESSURE FIELD

The wave-induced pressure field was determined (see Appendix E)

from a total of 336 pressure experiments. Three parameters could be

freely varied: the wave frequency f, the free stream wind velocity qlO
and the height of the wave following probe above the water surface, z.
The values chosen for these three parame ters were f = O. 75, 1. 00, 1. 25 ,

1.50, 1.75 and 2.00 HZ, Z = 20, 35, 63 and 120 mm and U
oo

was taken at

various but not fixed values between 0 and 6 ms-1 • Using the recorded

time series in conjunction with the reduction techniques of Appendix E

and analysis techniques of Appendix C, it was possible to determine the

amplitudes of the wave and pressure signals and the phase relationship

between them for each experiment.

An examination of this data immediately reveals that the water

surface and pressure records are almost exactly 180° out of phase. This

is clearly apparent in Figure 7.1, which shows time series of water surface

elevation and pressure at a variety of wind speeds, for 1 Hz waves and a

probe height of 20 mm. In addition, this trend continues across the

entire data set and appears to be uninfluenced by changes in the wave

frequency, probe height or wind velocity. Figure 7.2 shows the phase

angle"between the two records as a function of U /C. The mean of these
00

values is 183° with 95% confidence intervals of ±6°. This result is quite

different from that consistently obtained by others (see Figure 2.7) for

a following wind where a marked phase shift from 180° has been reported.

It would have been desirable to confirm these following wind results in

this experimental flume. The fan design however, would not allow the air

flow direction to be reversed, thus precluding such experiments. In view

of the differences from the following wind case, it is unlikely that a

Miles-type instability mechanism is active in the opposing wind situation.

Certainly a critical layer cannot exist.

A phase angle of 180° is consistent with the predictions of potential

theory as outlined in Section 2.2.1. Figure 7.3 shows amp(p)/p g plotted
~z a

against a e (1 - U /C)2; potential theory (Equation 2.25) predicts
00

a e-kz (1 - U /C)2
00

(7.1)
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Figure 7.3 shows a definite linear trend, but falling slightly below the

potential flow solution. A least squares approximation yields the result

= (0.8 ± 0.2) a e-kz (1 - U /C)2
'"

(7.2)

where the error represents the 95% confidence limits. Although the

potential flow prediction does lie within these bounds, a slight divergence

fran the theoretical result is indicated, presumably due to the violation

of one or more of the assumptions inherent in the potential flow solution.

As indicated in Section 2.2.1, these assumptions are those of incompress­

ible, irrotational and inviscid flow. The assumptions of irrotational

and inviscid flow are very questionable when considering flow within a

boundary layer and it would be surprising if they were not Violated. It

is perhaps surprising that the experimental results do agree so well with

the potential flow situation.

The implications of such a potential flow result for the pressure

field are very significant, since, as indicated by Equation 2.105, it is

the pressure component 90° out of phase with the water surface which causes

an energy flux. If the pressure signal is in anti-phase with the waves

as indicated by the potential flow solution, there will be no energy flux

and hence neither wave growth nor decay due to normal stresses. In

addition, there is no obvious deviation in the data trend at high values

of U",/C and it appears unlikely that there was any air flow separation,

even at high wind velocities. This seems to preclude a decay mechanism

similar to that proposed by Jeffreys (52) for wave growth.
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8. SURFACE VELOCITY FIELD

8.1 BOUNDARY LAYER PROFILES ABOVE WAVES

The physics of air-sea interaction and the wind-wave energy flux are

largely dependent upon the nature of the air flow near the water surface

and measurements of the mean air velocity profile were a routine part of

the experimental program. A stationary hot film anemometer was used to

measure the mean air velocity at various heights above mechanically generated

waves of frequencies 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00 Hz and for six

different fan speeds, a total of thirty-six velocity profiles being

determined. These velocity profiles are plotted in Figure 8.1. In the

boundary layer region, the profile is clearly logarithmic and the logar­

ithmic boundary layer profile, Equation 3.7,was least-squares curve fitted

to this part of the profiles. The alternate power law profile, Equation

3.8,could also have been used to approximate these measurements. Although

the power law is useful in modelling the shape of the atmospheric boundary

layer profile, it provides no insight into the physics of the boundary

layer. In contrast, the logarithmic profile has a sound physical basis

and was hence adopted in this analysis.

Phillips (94) and Brooke-Benjamin (15) have considered the air flow

above waves and predicted theoretically that, near the water surface, the

atmospheric boundary layer will be "bent" to follow the large-scale

surface undulations. Although the velocity profiles of Figure 8.1 appear

to be logarithmic, Brooke-Benjamin (15) has shown that an oscillatory
. -kz

= z, - a e must be used to obtain a truly logar-

Adopting this coordinate transformation, the boundary

In (.£)
1;;0

(8.1)

Where 1;; is the roughness length. When a stationary probe is used, as is
o

the case in the present context, the expected velocity profile can be

obtained by expanding Equation 8.1 in a Taylor series about 1;; = z. The

final result becomes (94)
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o

(8.2)

where F(~) is the directional wave number spectrwn. The second term in

this expression arises from the curvature of the velocity profile, together

with the fact that a constant height does not correspond to a constant

distance above the water surface. This departure from a simple logarithmic

profile is significant only near the surface, where kz is small. Measure­

ments well clear of the surface, particularly by Roll (104) and Brocks

(14), have confirmed the logarithmic nature of the velocity profile over

waves. Takeda (126) has however measured departures from a logarithmic

form very close to the surface that may be associated with the second term

of Equation 8.2.

For the present experiments, the minim1Jlll height above the mean water

level was 50 rom and the maxim1Jlll wave amplitude was approximately 40 rom.

The results do not indicate any obvious deviation from the logarithmic

relationship and it must be assumed that the second term of Equation 8.2

is negligible at these heights.

An additional effect which could lead to a deviation from the logar­

ithmic profile is the presence of the surface drift current. To include

the effects of the drift current, the boundary layer equation should

be written as

u(z} =
K

(8.3)

where the second term is the surface drift current as given by Equation 5.1.

This second tenn in Equation 8.3 is quite small and, except very close to

the water surface, would be negligible in comparison to the first tenn.

The values of u* obtained. from the least squares curve approximations

to the boundary layer profiles are presented as a function of U in Figure
00

8.2 for each of the six wave frequencies used. For all frequencies, the

values of u* increase with U
oo

until approximately U
oo

= 4 mS-1. For values

of U
oo

between 4 ms-1 and 5 ms-1, the u* curves reach a plateau region with

a mean values of approximately u* = 0.16 ms- 1 • For free stream wind
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velocities above 5 ms-1, there is some evidence that u* again increases.

This unusual behaviour of the shear velocity is presumably related to

changes in the surface roughness. Simiu and Scanlan (113) have shown that

the surface roughness

endent parameters and

length z and the shear velocity u* are not indep­
o

an increase in the surface roughness will cause a

corresponding increase in u*. The plateau in the u*, Uoo curve may well

be caused by a decrease in the surface roughness. It is perhaps possible

that the mechanically-generated waves control the surface roughness at

low wind speeds. As the wind velocity increases, the mechanically-generated

waves decay in magnitude and their influence on the surface roughness

decreases. At the same time the wind generated waves are increasing in

magnitude with the wind velocity. The plateau region possibly marks the

transition between these two roughness regimes. Below 4 ms-1, the roughness

may be determined by the mechanically-generated waves whereas above 5 ms- 1

the roughness could be govemed by the wind generated waves.

The values of u* as a function of UO.1, the velocity 100 mm above

the mean water surface, are presented in Figure 8.3 along with data for

growing laboratory wind waves obtained from a number of different sources

and collated by Am()rocho and De Vries (1). The comparison between this

data and the current results is surprisingly good, despite possible

differences in surface roughness, with the present data lying slightly

below the mean of the following wind data.

8.2 WAVE-INDUCED VELOCITIES

Turbulent velocities above the water surface were measured with both

stationary and wave following probes, involving 132 experiments with the

stationary probe and 264 experiments with the wave following probe. The

same wind speed and frequency ranges used for the pressure experiments were

again adopted. For the sta.tionary probe, measurements were taken at z = 60
s

and 80 rom above the mean water level, and for the wave following experiments

heights of z = 30, 55, 77 and 100 mm above the oscillating water surface

were used. This data was analysed as described in Appendix G to determine

the u and w velocity fields and the various Reynolds stress terms.
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As indicated in section 2.7, the u and w velocity signals can be

expressed as the sum of a mean component, a wave-induced component and a

turbulent component

and

u = u + U + u·

w = w + w + Wi

(8.4a)

(8.4b)

Removing the mean from the records yields the oscillating components of

velocity

u" = U + u l (8. Sa)

and wIt = W + w· ( 8.Sb)

Typical time histories of these velocity components are shown in Figure 8.4

together with the water surface records for a range of wind speeds blowing

in opposition to 1 Hz mechanically-generated waves. A stationary velocity

probe at z = 60 mm was used for all these experiments. The wave-induced
s

components U and ware clearly visible in these records at the 1 Hz wave

frequency; they have considerably greater magnitude than the random

turbulent components u' and w·. Rather than being purely sinusoidal, these

wave-induced components exhibit a saw-tooth structure in many of these

plots. This is particularly evident in the w" records. The most likely

explanation for this structure is the presence of higher harmonics in the

velocity records. This is discussed in more detail in Section 8.3. These

velocity records shOW that u and n are approximately 1800 out of phase,

whereas w leads n by approximately 900
• These trends extend across the

entire stationary probe data set and can also be seen in Figure 8.5,

which shows the phase angle between u and n, <1>_ , as a function of U Ieun 00

and Figure 8.6, which shows the phase angle between w and n, <l>Wn' as a

function of uoo/e. There is little scatter in this data, the mean phase

angles being constant despite variations in wind velocity, wave frequency

and probe elevation. The mean values of <l>un and <l>Wn are 1820 and 89 0

respectively, compared with potential flow predictions (Equations 2.26 and

2.27) of 1800 and 90 0
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With knowledge of the potential flow predictions for the wave-induced

velocities (Equations 2.26 and 2.27). amp(u)/Uoo and amp(w)!Uoo have been

Plotted against a/U (w - kU) e -kz in Figures 8.7 and 8.8. There are clear
00 00

linear trends in both cases. with least square curve approximations

yielding

amp(u) (0.65 ± 0.16) (w - kUoo)e
-kz

= a

and amp(w) (0.59 ± 0.14) (w - kU )e
-kz

= a
00

(8.6)

(8.7)

where the errors represent 95% confidence limits.

The phase relationships for the data obtained with the wave follower

are similar to those for the stationary probe and are presented in Figures

8.9 and 8.10. Although the data is more scattered (perhaps caused by

vortex-induced lateral vibrations of the stem of the wave follower) it is

clear that both phase angles are constant. The data yields mean values of

<!>un = 186 0 and <!>Wri = 86 0 which again agree well with the potential flow

s::>lutions. The nondimensiona1. wave-induced velocities amp(u) /0
00

and

amp(w) IU obtained in the wave following frame of reference are shown in
00

Figures 8.11 and 8.12 as functions of the potential flow solution. Although

there is some scatter in the data. linear trends are still apparent with

least squares approximations of

and

amp(u)

amp(w)

=

=

(0.80

(0.30

± 0.20) a (w - kU )e-
kZ

00

± 0.07) a (w - kU )e-kz
00

(8.8)

(8.9)

where the errors again represent .95% confidence intervals. As expected.

these results differ quite considerably from the stationary probe results.

the largest difference being for the w component. For the wave following

results, the probe is always a fixed distance above the water surface but

the effective height of the stationary probe varies with the phase of the

waves. The actual differences in the velocities will depend on the stream­

line pattern above the water surface. If the streamlines at various· heights

exactly reflected the shape of the water surface. the wave following probe

would follow a streamline and record a constant velocity. In contrast,
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the stationary probe would be continuously "cut" by various streamlines

and would sense a fluctuating velocity with the passage of waves. The

wave follower results are more relevant, more closely reflecting the true

influence of the oscillating water surface.

The wave-induced velocity measurements discussed above consistently

fall below the predictions of potential theory. To ensure that this

was not the result of an instrumentation or calibration error, the measure­

ment system and analysis techniques were carefully checked and found to be

satisfactory. It can only be concluded that this difference is the result

of a different flow structure to that predicted by potential theory. The

general qualitative predictions of potential theory are, however, confirmed

and it is interesting to speculate why this should be the case. Indeed

it is possible that this agreement occurs, for no other reason, than that

the potential flow functions are dimensionally correct. This is insured

by the potential flow result at z. = o. This argument of the equations being

dimensionally correct is confirmed in other areas of fluid mechanics. A

typical example is why eddy viscosity works in some turbulent closure

models.

Although no similar measurements in opposing wind situations could

be found in the published literature, both Stewart (123) and Chao and Hsu

(21) have measured wave-induced velocities above waves moving slower

than the wind (Le. O<U"/C<l), where Uoo is the wind velocity outside

the boundary layer. This situation has some similarity to the present

case, since no critical layer can exist, and provides an interesting

comparison with the present results. The magnitude and phase of their

wave-induced velocities are shown in Figure 8.13, for O<U /C<l and for
00

U /C>l. For U /C<l, their data indicates constant phase relationship
00 00

of <1>- '" 1800 and <1>- "900
, which is cbnsistent with both the present

un WTl
research and the predictions of potential theory. The corresponding

amplitude data in Figure 8.13 is less easily compared with the present

result, since neither the wave height nor U have been reported by either
00

stewart or Chao and Hsu. For constant wave amplitude a and constant Uoo/C

however, their wave-induced velocities increase at a possibly exponential

rate with decreasing nondimensional height kz, which is consistent with the

e -kz behaviour predicted by potential theory. The data for Uoo/C > 1 is

significantly different. Above the critical layer, <I>;;m is constant at
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approximately _40 0 whereas below the critical layer the phase angle increases

very rapidly towards 1000
• In contrast, <Pun increases in a roughly linear

fashion from -1600 to 300 with increasing nondimensional height and exhibits

no marked change in behaviour at the critical height. The amplitudes of

the wave-induced velocities are also quite different to those for U Ie < 1
'"

with amp (w) decreasing in magnitude with decreasing kz. These comparisons

indicate that a marked change occurs at U le= 1 in the air flow pattern
'"

above waves. Above this value, a critical layer exists and strongly

influences the flow in its vicinity. For u",/e < 1 no critical layer can

exist and the flow appears to follow, at least qualitatively, the predictions

of potential flow theory.

8.3 REYNOLDS STRESSES

In Section 2.7 it was shown that, when the llYOmentum flux terms u"u",

wnw" and U"W" in the momentum equation are time-averaged, they take on the

properties of stresses, hence their common name of Reynolds stresses. For

each of the experiments performed, both in the stationary and wave following

coordinate systems, the u"u", w"w" and UIlW"- products and their time means

(Reynolds stresses) were evaluated (see Appendix G).

By considering the structure of the Reynolds stress terms, some

insight can be gained into their possible form. It was shown in section

2.7 that these Reynolds stress terms can be expressed as the sum of a wave­

induced Reynolds stress and a turbulent Reynolds stress

u"u" """" u'u· ( 8.l0a)= uu +

wnw" ""=" + w'w' (8.l0b)= WW

u"w" """" u'w' (8.l0c)= uw +

The wave-induced velocities in Equations 8.10 are sinusoidal with frequency

w and can be expressed as

-u amp(u) cos(wt + <P )
u

(8.lla)

and w = amp(w) cos (wt + <P )
w

(8.llb)
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If the trigonometric identity

2 cos A cos B = cos (A - B) + cos (A + B) (8.12)

where A and B are general angles, is considered the wave-induced product

terms in Equations 8.10 become

uu = ~[amp(u)]2[1 + cos(2wt + 2~ )]
u

ww = ~[amp(w)]2[1 + cos(2wt + 2~ )]
w

uw = .. amp(u) amp(w) [cos(~ - ~ ) + cos(2wt + ~ + ~ )]
u w u w

The wav~-induced Reynolds stress terms consequently are

(8.13a)

(8.l3b)

( 8.l3c)

'='"uu = (8.14a)

(8.14b)

and '='"uw = .. amp(u) amp(w) cos (~ - ~ )
u w

( 8.14c)

The structure of the turbulent Reynolds stresses is more difficult

to estimate since it will depend on the nature of the turbulent flow. The

turbulent Reynolds stress is most conveniently represented as the variance

of the tU11bulent velocity spectrum (Section 3.1)

""
u'u' = IEu·u'

df (8.1Sa)
0

""
w'w' = IEw·w· df ( a.lSb)

0

""
u'w r = IEu'w' df (8.1Sc)

0

To determine the relative magnitudes of these terms as compared to the wave­

induced Reynolds stress, the spectrum analyser was used to measure the

velocity spectra for a number of cases. Figure 8.14 presents a sample of
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these results for 1 Hz mechanically-generated waves, a stationary probe

height of 50 rom and for six wind speeds between 0 and 6 ms-1. The figure

shows the u.. and w" autospectral functions as well as the phase between

u.. and w", <p and the coherence between u.. and w", y • At high frequencies
uw u~5/3

the velocity spectra decay at a rate proportional to f ,characteristic

of the inertial subrange as described by Equation 3.9. Because of this

rapid decay with frequency, the major contribution to the Reynolds stress

will be from the low frequency components of the spectrum. The low

frequency regions of both the u.. and w" spectra are characterized by a large

spike at 1 Hz, corresponding to the wave-induced velocity component u and w,

and by smaller spikes at the harmonics of this value. In general, this

wave-induced spike in the spectrum is approximately two orders of magnitUde

greater than the background levels. Although the spike is quite narrow

banded, the area under this section of the spectrum is significantly

larger than the area of the remainder of the spectrum. Hence it can be

concluded that the wave-induced Reynolds stress will be larger than the

turbulent Reynolds stress, which can be neglected as an initial approxim­

ation.

Mention was made earlier of the saw-tooth structure of many of the

velocity time series shown in Figure 8.4. Examination of the Fourier

series expansion for a saw-tooth wave indicates that it consists of the sum

of the primary component. and each of its hannonics with a redilction in

their amplitude with frequency. The presence of such higher hannonics is

confinned by the spectra of Figure 8.14. The magnitude of the harmonics

is more pronounced in the w" spectra than the u.. spectra. This is consistent

wi th the stronger saw-tooth trend in the w" time series. The higher

hannonics are present in the velocity records since the mechanically

generated water waves were not purely sinusoidal. Although the harmonics

are relatively insignificant in the water surface record the velocities

they induce are relatively more significant. This occurs since the wave­

induced velocity is proportional to wZ•

Figure 8.14 also shows the phase and coherence between u.. and w".

The wave-induced component is again clearly evident in both these functions.

The phase relationship appears random at all ·frequencies except near the

frequency of the mechanically-generated waves were the phase difference is
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consistently 90° as indicated in section 8.2. The coherence function is

characterised by a spike of magnitude One at this same frequency, indic­

ating that the wave-induced components u and ware highly correlated.

Neglecting the effects of the turbulent Reynolds stresses, Equations

8.10 yield

= ~[amp(u) J2 (8.16al

and W"W" ~ =ww = ( 8.16b)

Equation 8.l4c indicates that the con.tribution to the u"w" Reynolds stress

by the wave-induced Revnolds stress is a function

section 8.2 this phase difference was shown to be

from Equation 8.14c

=uw .. 0

and therefore

of (<I> - <I> ).
u w

approximately Hence

(8.17)

(8.18)

In view of the relationships given by Equations 8.16, and since it has

shown that u and w follow the general trends of potential flow theory,

u"u" and w"V' obtained with the fixed probe have been plotted in Figures

8.15 and 8.16 against [a(w - kU le-kz]2. This function is the square of
""

the wave-induced velocity predicted by potential theory. Both plots show

an increasing and approximately linear trend with increasing values of the

potential flow function. There is considerable scatter at low values of

the independent variable, presumably because, at these values, the wave­

induced Reynolds stresses are quite small, a significant portion of the

total Reynolds stress coming from the turbulent components u' u' and w' w' •

As the wave-induced contribution increase in magnitude, however, they begin

to dominate and the scatter reduces. Least squares curve approximations

to these plots yield
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( 8.19)

and (8.20)

Figure 8.17 also shows the Reynolds shear stress term, u"w", measured with

the stationary probe, as a function of this potential flow function. As

predicted by Equation 8.18 and =nfirmed by this figure, ~ is independent

of the wave-induced Reynolds stress.

similar plots can be presented for the data obtained with the wave
-- --

follower and these are shown for UI~U", w"w" and U"W" in Figures 8.18, 8.19

and 8.20 respectively. Again the u"u" and w"w" terms have· approximately

linear relationships with the potential flow function, given by

u"u" = (0.7 ± 0.2) [a(w - kU ) e -kZJ2
co

(8.21)

and = (0.2 (8.22)

As for the fixed probe data, the term u"w" appear to be independent of

the wave-induced velocity. When plotted as a function of U 2 (Figure 8.21),
co

however, there is a: tendency for UIlWIl to increase with U 2, although
co

scatter suggests that u"w" is not solely a function of U 2. Since this
co

term is dete:anined by the product of the turbulent =mponents u' and w' ,

it is reasonable to assume that u"w" is also a function of surface J;"oughness

and elevation and probably other parameters. This te=, however, is

considerably smaller than either u"u" or w"w" and the accuracy of the

experiments precludes the determination of a more involved functional

relationship. Nevertheless, Figure 8.21 can be approximated by

u"w" = (6 ± 2) x 10-~ U 2
co

(8.23)

As shown earlier, it is only the mean =mponents of the momentum

flux terms u"u" I wllw" and U"W" which have the properties of stresses and

hence potentially cause an air-sea energy flux. Chao and Hsu (21) and Wu

et al (134) have defined these terms in a similar manner to Equations 8.4,

as
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/'V
UUu" = UnUIi + UnU" + turbulence

/\./
wnw" = wnw" + wnw" + turbulence

/'v
and unw" = unw" + unw" + turbulence

(8.24a)

(8.24b)

(8.24c)

where the second terms represent the components of the records with

frequency w. These terms vanish from the mean-flow momentum equations

·when the equations are time-averaged and consequently are not apparent

stresses. Yet they are termed wave-induced oscillating stresses (at

frequency w) by the above authors. Nevertheless, it is interesting to

examine the time series of UIiUIl
; WIlWIl and unw" to determine whether the

/'-./ /'0./ ./'-'
uUu", wnw" and u"wll components are present.

Figure 8.22 shows typical spectra of the ullu" I wnw" and unw" products.

A peak at a frequency of 2w is clearly apparent and is caused by the product

of the wave-induced velocities as predicted by Equations 8.13. In addition,

a smaller peak is also present at frequency w. The following wind data

of Chao and Hsu (21) (Figure 8.22) shows the reverse trend with a major

peak at w and a smaller peak at 2w. A spectral peak at frequency w must be

caused by the product of random turbulent components, which according to

Kendall (57) must be a result either of variations in u' or w' or by the

variation in the correlation between them. Whatever the reason, the cyclic

behaviour indicates that there must be some controlling processes organising

these otherwise random turbulent quantities at the wave frequency. Since

the peak at W in the present data is considerably less marked than in the

following wind case, it appears that these controlling processes are weaker

in the opposing wind situation.
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9. THE WIND-WAVE ENERGY FLUX

As discussed in Section 2.2.4, surface wave generation by air-sea

interaction involves an initial linear phase followed by an exponential

phase, described respectively by Equations 2.43 and 2.44. If expressed

as source terms of the Radiative Transfer Equation (Equation 2.10), these

energy fluxes become

SA(f,8) = a
A

+ b
A

E(f,8) (9.1)

where

a
A

(f,8) =
27[2 W II(k,W)

(9.2)
P 2 C3 C
w g

and = lJ W (9.3)

In the present context it is the exponential term defined by Equation 9.3

which is of interest. The coupling coefficient, lJ, has already been shown

(Section 2.2.4) to be the sum of two terms III and 'J2 given by Equations

2.105 and 2.106, respectively. Assuming the viscous stresses are negligible,

Equation 2.105 can be simplified to

Il = - amp ( an/ax) p u"u"
a·

since amp (an/ax) = ak, Equation 9.4 further reduces to

(9.4)

Il = [-amp(p) sin'h - akp u"u" - akp u"w" ]/p C2 aka a w
(9.5)

Using the experimental result, Equation 7.2 with kz = 0, and <PI = 183 ± 6°

the first term of Equation 9.5 be comes

( 1)
Il ± 10.5) x 10-2 p Ip (1 - U IC)2

a w 00
(9.6)
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similarly, using Equation 8.21, the second teJ:lll becomes

(2)
]..I = (-0.7 ± 0.2) P /p (ak)2 (1 - U /C)2

a w 00
(9.7)

and from Equation 8.23 the final term is

( 3)
]1 = (-6

A comparison of these three terms is complicated by the square of

the wave slope in Equation 9.7, as this introduces a free parameter not

present in either of the other terms. In addition, when the experimental

errors are considered ]1 (1) could in fact be zero; this is highly probable

since it is unlikely

f lux. The]1 (3) term

very small, of order

that an opposing wind would cause a positive energy

is extremely small and the wave slope would need to
2 (2)

10- , for it to be of comparable magni tude to]1 .

be

A reasonable approximation to the energy flux coefficient is then

]..I = (-0.7 ± 0.2) P /p (ak)2 (1 - U /C)2a w 00
(9.9)

Equation 9.9 is plotted in Figure 9.1 for values of the wave slope ak of

0.10, 0.20 •.. 0.45 together with ]1 for a following wind as reported by

Snyder et al (117) and summarised in Equation 2.74 with Y = 0.25. The

strong dependence on the wave slope is clear, indicating that steep waves

will be quickly attenuated whereas less steep waves will almost be uneffected

by an opposing wind. From Equation 9.9 the decay of a particular wave

component can be deteJ:lllined. A typical deep water swell component with

f = 0.05 Hz and H = 3 m and propagating into an adverse wind of 15 ms- I

will be reduced in height to 2.99 m over a period of 20 hours. This is

a reduction in height of less than 1% over this long duration. In contrast,

a short 0.20 Hz wave with the same initial 3 m height will be reduced in

height to 1.5 m over the much shorter duration of 1 hour. This represents

a reduction of 50% in wave height. These examples clearly illustrate the

importance of the wave slope ak and ratio of wind velocity to the wave

phase speed. This point is illustrated in Figure 9.2, which shows the decay

of waves with various wave slopes against fetch or duration, as predicted by

Equation 9.9.
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10. VISUALOBSERVATICNS

Figures 10.1 shoW a series of photographs of the water surface

profile for mechanically generated wave frequencies of f ~ 0.75, 1.00, 1.25,

LSD, 1. 75 and 2.00 Hz and various opposing free stream wind velocities

between 0 and 7 ms-1. In these photographs, the mechanically generated

waves are propagating from left to right, where'as the wind is in the opposite

direction.

For a fan speed below approximately 300 rpm (Uoo = 3.5 ms- 1 ) , there is

little apparent alteration of the wave profile due to the opposing wind.

Above this velocity, however, wind generated waves can be seen propagating

from right to left. In Section 3.2.4 it was noted that- there was a plateau

region in the U versus u* relationship at U '" 4 ms- 1 and postulated that
00 00

this plateau may mark a transition in the surface roughness. Below the

transition the surfaoeroughness may be determined by the mechanically

generated waves, whereas above the transition the wind generated waves may

govern the surfaoe roughness. The appearance of wind waves at Uoo .. 3.5 ms- 1

is consistent with this hypothesis, the plateau occurring at a slightly

higher wind velocity where the wind generated waves had grown in height.

When long and short waves interact, the short waves should have

enhanced amplitudes at the crests of the long waves (see Section 2.3.2).

Such an effect can be seen in Figures 10.lc to 10.lf. In some of these

photographs there also appears to be some "white capping" of the wind

generated waves at the crests of the mechanically generated waves. The

presenoe of such wave interaction processes indicates that not all the

wave decay observed can be attributed to the effects of air-sea interaction.

This illustrates the importance of using surface stress measurements to

determine the air-water energy flux rather than inferring it from rates

of spatial wave decay.

In Chapter 9 it was shown that the surface stress measurements

indicated that the rate of wave decay increases very rapidly with increasing

wave frequency. This result is confirmed by Figures 10.1. Waves of frequency

1 Hz (Figure 10.1b) appear to experience no obvious decay even at high wind

velocity. In contrast, waves of frequency 2 Hz (Figure 10.lf) are attenuated

very rapidly and for Uoo > 4.7 ms- 1 (400 rpm) it is difficult to disoern any
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remaining mechanically generated waves. This flattening' of the water

surface has also been reported by fishermen in Northern Australian waters

who observed the passage of a tropical cyclone through the relatively

shallow and protected Great Barrier Reef waters of the Whitsunday passage.

Because the region is protected by numerous coral reefs only locally

generated high frequency wind waves would be present. After the passage

of the eye of the storm and the accompanying wind direction reversal, they

report that the waves were completely flattened by the strong winds.
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11. COMPARISON WITH OTHER RESULTS

As discussed in Chapter 2, there are only four reliable sets of

measurements which can be used as a comparison with the present results. 'lhese

experiments have been conducted by Snodgrass et al(114) , King and Shemdin

(59), Stewart and Teague (124) and Snyder et al (117).

Snodgrass et al (114) observed the propagation of deep water waves

across the Pacific Ocean from south of Australia past Hawaii to Alaska.

They found that, for frequencies below 0.075 Hz, the waves decayed so slowly

that the rate could hardly be measured. Above this frequency the decay rates

were still very small and increased in magnitude with frequency. Interpreting

these results is not straight forward as the waves would have encountered

various local wind fields during their passage. As an approximation, however,

it can be assumed that U IC = 0, in which case these results are consistent
00

wi th the present findings. COnsidering the same swell component as previously,

with f = 0.05 HZ, H = 3 m and Uoo/C = 0, over a fetch of 15,000 km (approximate

propagation distance for Snodgrass et al experiment), the wave height is

reduced by only 3%.

In interpreting these results it has been assumed that Uoo/C = 0 is,

in fact, an opposing wind situation. Although this assumption is not

immediately obvious it can be reconciled by considering a frame of reference

moving with the wave form. By considering such a reference frame it can

be seen that U IC = 1 marks the transition between following and opposing
00

winds.

King and Shemdin (59) have observed swell with frequencies near 0.08 Hz

propagating ahead of hurricanes and seemingly uneffected by the very strong

cross and adverse winds encountered. For such situations the wind velocity,

U may be as high as 40 ms-1. Because the wave frequency is so low, however,
00

U IC is still only of order -2 and the (1 - U IC) 2 term in Equation 9.9 will
00 00

be of order 10. The (ak) 2 term, however, will be very small and at the fetches

investigated by King and Shemdin (-100 km) almost no swell attenuation would

be expected. 'lhus, it can be seen that, despite the very strong adverse winds

which can be encountered in parts of hurricanes or tropical cyclones, low

frequency waves remain almost uneffected. In contrast, high frequency waves

will be quickly attenuated by such winds and this is apparently confirmed by

the absence of high frequency wave images ahead of the storm in the King and

Shemdin radar data.
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'!he most comprehensive field measurements of wave decay in opposing

winds have been obtained by Stewart and Teague (124) who observed the growth

Their measured growth rate was 6.7

and decay of approximately 0.14 Hz waves before and after

a frontal system. The wind velocity

wind shift was almost exactly 1800
•

was approximately 13

the passage of

ms- 1 and the

tires the decay rate. In comparing these results with the present findings

it is necessary to make some assumption about wave height. They report that

the spectral variance of the waves was 0 2 = 0.093 m2 ; assuming that the

waves are sinusoidal, this yields a wave amplitude a = 0.43 m. The wave

slope is then ak = 0.034 and IU",/cl = 1.17. Equation 2.74 with y = 0.2

gives ~ = 0.034 P /p for growing waves whereas Equation 9.9 yields aa w
corresponding decay rate of ~ = -0.0038 P /p ; the growth rate is predicteda w
to be 8.9 times larger than the decay rate, compared with the value of 6.7

obtained by Stewart and Teague. Such a difference is well within the

experimental uncertainty of both the data of Stewart and Teague and of the

present project.

The data of Snyder et al (117) provides some careful field measurements

of the surface ,normal stress distribution for opposing winds. Their

measurements indicate that the surface pressure and the water surface

elevation are essentially 1800 out of phase, in agreement with both the

predictions of potential flow theory and the results of this project.

This supports the Chapter 7 experimental result that there is no air-sea

energy flux due to normal stresses.
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12. CONCLUSIONS

An extensive set of laboratory experiments have determined the wind­

wave energy flux in an opposing wind-wave situation. The experiments were

conducted for a variety of wind speeds and wave frequencies, covering quite

a wide parameter range.

The wave-induced pressure above the waves was approximately in anti­

phase with the water surface, consistent with the predictions of potential

theory. The magnitude of the wave-induced pressure fell below the potential

theory prediction but still followed the same qualitative trend. These

relationships between the water surface elevation and the surface pressure

indicate that there is no wind-wave energy flux due to normal stresses, in

sharp contrast to that obtained in following wind situations, where pressure

;;Eor<;es·: are the dominant. source of the wind-wave energy flux. It appears

likely that this difference is related to the non-existence of a critical

layer in the opposing wind situation.

Measurements of the near surface velocity field indicated that the

Reynolds stress unu" .was the dominant source of tile wind-wave energy flux

in an opposing wind. The resulting wave decay is proportional to the wave

slope, ak, squared and the fUnction (1 ­

frequency waves will be attentuated much

U IC) squared. As a result, high
00

more rapidly than low frequency

waves. Typical examples indicate that low frequency swell can propagate

vast distances in an opposing wind and experience negligible decay. In

contrast, high frequency waves under the same conditions will be attenuated

quite rapidly.

This research was designed to obtain a broad understanding of the

processes involved in the decay of waves due to opposing wind. Now that it

has been determined that it is the Reynolds stress -p u"u" which is
a

responsible for wave decay in such situations, a more extensive set of

experiments aimed specifically at determining the structure of this term

would be most useful.

Despite the preliminary nature of this research, it has resulted in a

source term for the Radiative Transfer Equation which should assist in

achieving reliable wave predictions in complex wind fields.
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