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Abstract

Though data mining is a relatively recent innovation, the
improvements it offers over traditional data analysis have
seen the field expand rapidly. Given the critical requirement
for the efficient and accurate delivery of useful information
in today’s data-rich climate, significant research in the topic
continues.

Clustering is one of the fundamental techniques adopted
by data mining tools across a range of applications. It
provides several algorithms that can assess large data sets
based on specific parameters and group related data points.

This paper compares two widely used clustering algo-
rithms, K-Medoids and Density-Based Spatial Clustering
of Applications with Noise (DBSCAN), against other well-
known techniques. The initial testing conducted on each
technique utilises the standard implementation of each al-
gorithm. Further experimental work proposes and tests
potential improvements to these methods, and presents the
UltraK-Medoids and UltraDBScan algorithms. Various key
applications of clustering methods are detailed, and several
areas of future work have been suggested.

1. Introduction

Traditional statistical analysis relies on confirmatory
methods; applying pre-defined mathematical models to data
sets in order to identify trends. This technique, while effec-
tive and extensively used, has limitations when presented
with very large data sets. Data mining, however, is based
on an exploratory framework and analyses data on an adhoc
basis. This provides additional flexibility to the suite of al-
gorithms, and allows efficient processing of large reserves
of data.

As a subsidiary of data mining, clustering is promoted

as an extremely powerful means of grouping related data
points. The technique can efficiently reveal highly relevant
trends in a source data set, and this capability extends to the
large data repositories used by scientists, researchers, and
businesses.

As a result, the field has developed into one of the fore-
most research areas in modern computing. There exist nu-
merous algorithms for performing such analysis, and each
may be more suitable to certain circumstances, depending
entirely upon domain-specific parameters. As previously
discussed, these techniques can analyse both large-scale
databases and data warehouses.

The efficiency and accuracy of results from these data
mining tasks relies directly upon the choice of a suitable
algorithm. Thus, given the many different types of data sets
that exist, there is a strong requirement for further research
into the improvements of these techniques.

1.1. Applications

Data mining in general has a multitude of applications
across a wide variety of fields. Pattern recognition for image
analysis, medical diagnostics, sales forecasting and weather
prediction are a recognised as a few of the more traditional
usages. However, due to extensive development in the field
and the recent explosion in data recording, the capabilities
extend far beyond these basic functions. On-board com-
puter analysis in vehicles, product quality analysis, targeted
advertising campaigns, spam email filtration, fraud detec-
tion, and online crime analysis are but a few of the fields
into which data mining now extends [14]. Clustering ap-
plies to all of the aforementioned applications as a subset of
data mining.

A prominent example of this functionality is the applica-
tion of emergency situation data analysis; for example, data
recorded by authorities during forest fires. This paper will
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investigate that specific scenario in section 5.1, with the test
sets utilised containing fire data from Portugal.

1.2. Other methods

There are a wide variety of clustering methodologies that
exist within this field. These include, but are not limited
to, grid-based categorisation, density-based grouping, hi-
erarchical segmentation, and constraint-based analysis. As
these techniques have been already widely researched, there
are many existing works that compare and contrast each.
The interested reader is directed to [9] for an expansive
summary of these topics.

The research outlined in this paper is concerned with
the application of two of the most widely used methods;
partitioning-based and density-based clustering.

Partitioning algorithms are effective for mining data sets
when computation of a clustering tree, or dendrogram, rep-
resentation is infeasible [13]. In particular, K-Medoids is
highly efficient for smaller data sets with spherical-type
clusters. However, due to the inherent swapping of medoids
to optimise the clustered solution, the algorithm suffers
greatly as large data sets are introduced.

Density-based algorithms perform optimally when op-
erating upon spatially-indexed data. The methods provide
benefits when analysing data sets that contain high levels
of noise or when clusters are arbitrarily shaped. Specifi-
cally, DBSCAN is able to grow clusters within a specified
neighbourhood whilst the minimum points threshold is not
satisfied, thus efficiently dividing real data and noise in a
variety of shapes.

1.3. Purpose of paper

This paper focuses upon the DBSCAN and K-Medoids
algorithms from the density-based and partitioning families
respectively. It outlines the design, advantages and disad-
vantages of each method, and studies similar methodolo-
gies. The work contained goes on to propose both basic im-
plementations of the techniques, as well as initiating new re-
search into improving the efficiency of the aforementioned
methods. A great deal of literature already exists regarding
these techniques, and a review of these documents can be
found in Section 2.

1.4. Experimental data set

The data set chosen for the comparison of and amend-
ments to the K-Medoids and DBSCAN techniques is for-
est fires [5]. The set contains environmental data from fire
instances in northeastern Portugal; representing instances
within space, and including attributes such as date, tem-
perature, humidity, wind conditions, rain information and
burned area.

Analysing this data set is necessary as forest fires cause
millions of dollars worth of damage to property and claim
many lives each year. If clustering techniques can be
used to more accurately determine the patterns of such
fires given prevailing environmental conditions, scientists
and researchers will be able to achieve further understand-
ing of the phenomenon. This knowledge will reap enor-
mous benefits; predictive techniques can be updated, analy-
sis centres local to fires can more accurately forecast fire
behaviour, government agencies can be continuously in-
formed of these conclusions, and residents and business
owners can be warned earlier. This improved system will
result in reduced property damage, lower restoration costs
and, ultimately, fewer lives lost.

1.5. Results overview

The results explained in section 5 form the basis of the
experimental portion of this paper. Based on the forest fires
data set, these figures reflect the implementation results of
the DBSCAN and K-Medoids algorithms.

In addition, testing of the modified algorithms this paper
suggests has shown a level of computational improvement
for both methods when clustering the aforementioned data
set. These findings are detailed and discussed in section 5.

2. Related Work

2.1. Data analysis

A formal definition by Moore [20] states that data analy-
sis is “the examination of data for interesting patterns and
striking deviations from those patterns”. Such processing
can lead to conclusions which assist a multitude of peo-
ple in varying tasks; from medical diagnostics to population
growth predictions to forest fire forecasting. The potential
developments in these research areas due to quality data
analysis are not only beneficial in terms of further knowl-
edge and understanding, but will inevitably benefit ordinary
people in ways beyond the scope of this paper. Data min-
ing is a subset of the broader data analysis field, and as such
can provide the advantages previously discussed when large
data sets require processing.

2.2. Clustering

Aggarwal et al. [1] define the process of clustering as:
“Given a set of points in multidimensional space, find a
partition of the points into clusters so that the points within
each cluster are close to one another”. Proximity is mea-
sured using a variety of algorithm-specific metrics, such
that the closer two arbitrary points are to one another, the



Figure 1: Example of clustered points

more strongly they are considered to be related. This pro-
cess results in defined groupings of similar points, where
strong inter-cluster and weak intra-cluster relationships ex-
ist among and between points, an example of which is de-
tailed in Figure 1.

Clustering can be categorised in machine learning terms
as a form of unsupervised learning; that is, clusters are
representative of hidden patterns in the source data set[3].
Raw information is analysed and relationships are discov-
ered by the algorithm without external direction or interfer-
ence; learning through observation rather than by the study
of examples[9]. In addition, this objectivity translates to an
effective means of data analysis without the opportunity for
subjective human conclusions to be drawn from data.

2.3. Partitioning clustering algorithms

Partitioning methods define clusters by grouping data
points into k partitions, defined by the user at the time the
process is executed. A point is determined to be similar to
other points within its partition, and dissimilar to points that
lie outside the boundary of that partition [9]. Comparison is
based on the characteristics of the data set provided. Thus,
the algorithms rely on the conversion of semantic data at-
tributes (width, height, shape, colour, cost or others) into
points that determine physical location on a set of mathe-
matical axes. This provides an objective and computation-
ally acceptable framework for analysis. In the simplest case
only two attributes exist, and thus the conversion renders a
point on a standard Cartesian plane. This process is greatly
complicated when, as often occurs in highly detailed source
sets, hundreds of attributes are present. The rendering plane
takes on high dimensionality, and the complexity of analy-
sis becomes very computationally expensive.

Partitioning offers several features, including efficiency
in processing spherical clusters in small to medium data
sets, and scalability across smaller applications. However,
the algorithms suffer from extreme complexity and compu-
tational cost at higher dimensions in large sets, require the

user to specify the number of clusters to be determined (k)
and experience problems defining arbitrarily shaped clus-
ters.

Previous work has outlined several clustering methods
within the partitioning family; K-means converts data to nu-
merical points on a set of axes and calculates the numerical
mean of these points to dictate cluster centroids [10], K-
modes is similar to K-means though it calculates the mode
of point groupings instead of the mean to define cluster cen-
troids , and K-medoids converts data points to objects on a
set of axes and arbitrarily chooses different objects to act as
cluster centroids until the clusters are optimised [17]. As K-
Medoids provides dramatic improvements in noise immu-
nity over its other partitioning counterparts, a great deal of
further research has been pursued including the forthcom-
ing work in this paper. Partitioning Around Medoids (PAM)
randomly chooses medoids, then randomly calculates the
result of swapping these with other random objects in an
attempt to improve the clustering outcome [18]. This ap-
proach works adequately for small source sets, but does not
scale well as complexity at each iteration is quadratic. Clus-
tering LARge Applications (CLARA) takes a single random
selection of points in the set as representative data and then
applies PAM to this smaller subset [16]. Reducing the size
of the set for analysis improves scalability as complexity at
each iteration is linear, but the method suffers depending
upon the quality of sample data chosen. Clustering Large
Applications based on RANdomised Search (CLARANS)
takes a random dynamic selection of data at each step of
process – thus the same sample set is not used throughout
the clustering process [21]. As a result, better randomisa-
tion of source data is achieved, but the method still suf-
fers depending on the random selection and can be very
slow as the algorithm’s time complexity is approximately
quadratic. UltraK-Medoids, the algorithm proposed in this
paper, makes improvements to the basic K-Medoids method
by performing reassignment of medoids and not assessing
the effect on the data space through recalculation. This pro-
vides performance advantages, reducing time complexity to
linear, but suffers when data sets are vastly dispersed.

2.4. Density-based clustering algorithms

The density-based group of clustering algorithms repre-
sent a data set in the same manner as partitioning methods;
converting an instance to a point using the data attributes of
the source set. The plane contains clusters with high inter-
nal density and low external density in a similar manner to
its partitioning ancestor [19]. The process of adding points
to a cluster is iterative, unlike partitioning methods. Near-
est neighbours of each point can thus be investigated, ar-
bitrary shapes formed, and existing clusters merged as the
algorithm moves through all points. As a result, analysis



can easily isolate noise instances from relevant data, whilst
being able to cluster data object sets that include hollow for-
mations.

Density-based algorithms provide advantages over other
methods through their noise handling capabilities and abil-
ity to determine clusters with arbitrary shapes (eg. a hollow
circle, torus or other non-convex formation). As with par-
titioning techniques, computational cost is a disadvantage
when the technique is used with large amounts of source
data and sets containing excessive noise.

Literature exists on several techniques that utilise the
density-based clustering concept. DENsity based CLUs-
tEring (DENCLUE) uses multiple clustering paradigms
(including density-based, partitioning and hierarchical), is
based on a set of density distribution functions, and uses in-
fluence functions between points to model the data space
[12]. The method has a strong mathematical foundation
which provides advantages in terms of set representation,
but density and noise parameter selection can adversely af-
fect the average linear time complexity. Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN) lo-
cates and grows regions with sufficient density as specified
by input parameters [6]. The algorithm does not require
that all points are allocated to clusters which provides tol-
erance to noise and supports clustering of arbitrary shapes,
but can suffer if input parameters are selected incorrectly.
Time complexity is typically O(n log n) but can be as poor
as quadratic when a spatial index is not used. DBSCAN is
widely used due to its ability to handle noise and define
clusters with non-standard shapes, and thus many exten-
sions to its algorithm are defined in the literature. Order-
ing Points To Identify the Clustering Structure (OPTICS)
is similar to DBSCAN but produces augmented cluster or-
dering instead of defining actual clusters[2]. This approach
is advantageous as the ordering can be used to both de-
rive key cluster characteristics and analyse the structure of
the cluster space, and time complexity is the same as DB-
SCAN; averaging O(n log n). Generalized Density-Based
Spatial Clustering of Applications with Noise (GDBSCAN)
can cluster both polygons and points, and does not rely on
any set definition of a neighbourhood; the method can use
non-spatial attributes rather than number of objects to de-
fine neighbourhood density [22]. The technique does not
limit clusters to a maximum radius and thus achieves inde-
pendence from a neighbourhood size input variable. Time
complexity is similar to DBSCAN, though O(n log n) is
achieved only using RTrees [4]. UltraDBScan, the algo-
rithm proposed in this paper, introduces the concept of a
dynamic cluster radius specification. Changing this value
based on the number of points in the cluster as the algo-
rithm moves through all its points allows dynamic removal
of noise. This is highly advantageous in sets with closely-
bound clusters, but may result in the declaration of valid

points as noise in more dispersed sets.

2.5. Alternative clustering methods

Two of the most popular clustering methods in use other
than density-based and partitioning are hierarchical and
grid-based.

Hierarchical algorithms can define clusters in two ways;
either top-down (divisive) or bottom-up (agglomerate). Di-
visive techniques define a broader cluster first which en-
compasses all points, then split this into more specialised
child clusters. These child clusters in turn spawn their
own child clusters and the process continues until all points
are accounted for. The agglomerate technique is the re-
verse, defining the smallest and lowest-level clusters first
and working upward until the entire set is contained in
one cluster [8]. The methods are advantageous in terms of
processing time efficiency, but accuracy suffers as they do
not allow for incorrect clustering decisions to be reversed
(back-traversal). Chameleon [15] and BIRCH [25] are ex-
amples of hierarchical methods; Chameleon concerns anal-
ysis of inter-object relationships at each hierarchical level
and BIRCH utilises iterative relocation.

Grid-based techniques divide the data space into a finite
number of cells (hence grid) and clustering methods are ap-
plied to these segments. Due to this division of study space,
such algorithms are dependent in terms of processing only
on the quantity of cells at any dimension. Thus the tech-
nique has very high computational processing efficiency
[9]. The WaveCluster [23] and STING [24] algorithms
both employ grid-based clustering techniques; WaveCluster
utilises wavelet transformations on source data and STING
exhibits typical grid-based analysis behaviour.

2.6. Alternative data mining techniques

Clustering differs from other classical data mining
methodologies in a variety of ways and extensive literature
already exists explaining this. For the purpose of concise-
ness, this paper will compare and contrast clustering only
with the techniques of classification and prediction.

Classification is the process of constructing a learning
model, or classifier, that assigns points in a data set to pre-
defined classes[7]. Whilst this definition initially appears
similar to that of clustering in that points are grouped based
on attributes, any further similarities are thus exhausted.
The technique utilises supervised learning as opposed to
the unsupervised learning environment of clustering. The
model is compiled by studying provided data (known as a
training set) containing class labels; hence the technique
is “supervised” due to example data exposure. Once the
model is complete it can be applied to real, labeled data
and assign each new tuple to its respective class[9]. Clas-



sification is used in the categorisation of discrete or un-
ordered data sets; for example, determining the level of risk
(high/medium/low) associated with a certain financial in-
vestment given pre-existing market data.

Prediction is similar to classification, in that the process
of learning from existing data is supervised, and a model is
constructed. However, prediction techniques are used when
assessing continuous data sets [9]; for example, determining
the price of a stock market share at some point in the future
given previous performance trends. Unlike prediction, clus-
tering is not exclusively used for forecasting future values,
rather grouping like points for immediate assessment.

Whether to utilise clustering in analysis is a decision
based on the purpose of the data mining task. If future
predictions are required, an alternative technique should be
employed, but if like points in the set are to be grouped,
clustering is an appropriate choice.

3. Comparison

This paper aims to draw a detailed comparison between
two general clustering paradigms - density-based and par-
titioning - and in order to do so, examines the differences
between several other techniques. By examining the differ-
ences in how each method operates, their varying capabili-
ties and the circumstances in which they are most applicable
will be revealed.

3.1. DBSCAN

The DBSCAN clustering technique, first proposed in
1996 by Ester et al. [6], requires the user to specify two
parameters: minPoints, defined as the minimum number of
points required to exist in a neighbourhood to be declared
a cluster, and ε, defined as the radius of the neighbourhood
of a point based on a distance metric. The minimum num-
ber of points is used to determine if an arbitrary collection
of points should be considered a cluster. The ε value con-
trols the radius around an object, whether it be in Euclidean,
Manhattan or Minkowski distance, in which the algorithm
should consider other points as neighbours.

The process, as detailed in Algorithm 1, begins by con-
sidering an arbitrary data object that has not already been
assigned to a cluster. The neighbours of this data point P
are then located, according to the user-specified ε value. If
the number of neighbours found is greater than the speci-
fied minPoints value, then the current data object should be
added to the present cluster, and all neighbours should be
processed recursively. Otherwise, if the number of nearby
points is less than minPoints, then the data object is con-
sidered noise. This process then continues for all of the
neighbours, processing them accordingly. At such time that
a given cluster has been fully explored, the process begins

Algorithm 1 DBSCAN

1. For each unvisited point P within the data set D

(a) Get the neighbours of the P , according to the
given epsilon distance

(b) If the number of neighbours is equal or greater
than the user-specified cluster threshold

i. Increment cluster identifier counter
ii. Add the given point to the current cluster

iii. Recursively process all neighbours

(c) Else if the point has fewer neighbours than the
threshold value,

i. Mark P as noise

Figure 2: Initial stage of DBSCAN technique

again, until all points have been visited. At its conclusion,
all defined clusters are finalised; no further points can be
added to any cluster and any unclustered points are declared
as noise [9].

An initial processing stage for the DBSCAN procedure,
performed on a simplified data set, is shown in Figure 2.
The dashed line represents a two-dimensional ε distance ra-
dius and the minimum points threshold is 1.

3.2. OPTICS

The Ordering Points to Identify the Clustering Structure
(OPTICS) algorithm is procedurally identical to that of the
previously mentioned DBSCAN [2]. Thus its algorithm is
similar to that shown in Algorithm 1, and its time complex-
ity is the same.

The OPTICS technique builds upon DBSCAN by intro-
ducing values that are stored with each data object; an at-
tempt to overcome the necessity to supply different input
parameters. Specifically, these are referred to as the core-
distance, the smallest epsilon value that makes a data ob-
ject a core object, and the reachability-distance, which is
a measure of distance between a given object and another.
The reachability-distance is calculated as the greater of ei-
ther the core-distance of the data object or the Euclidean



Algorithm 2 K-Medoids

1. Arbitrarily select k objects as initial medoid points
from given data set

2. Whilst swaps are occurring

(a) Associate each data object in the data set with its
closest medoid

(b) Randomly select a non-medoid object, O

(c) Compute the total cost of swapping initial
medoid object with O

(d) If the total cost of swapping is less than the total
cost of the current system then

i. Swap the initial medoid with O

(e) Continue until there is no change

distance between the data object and another point[9].
These newly introduced distances are used to order the

objects within the data set. Clusters are defined based upon
the reachability information and core distances associated
with each object; potentially revealing more relevant infor-
mation about the attributes of each cluster.

3.3. K-Medoids

The K-Medoids clustering technique is concerned with
the concept of partitioning data objects into similar groups.
The technique was first developed in 1987 by Kaufman and
Rousseeuw [17] and seeks to reduce the impact of noisy
data experienced in simpler partitioning algorithms, such as
K-Means. Instead of converting data attributes to simple
points, it retains all the information from each record and
represents the points as objects on a detailed axes.

This method, as detailed in Algorithm 2, segments the
given database of objects into a user-specified number of
clusters (k). Each cluster exists such that all contained data
objects are most closely associated with the medoid of the
cluster. The process begins with the initial selection of k
arbitrary points as representative medoids, and then com-
putes cluster assignments for each of the data objects. At
this stage, each point will be associated with a medoid from
the k medoids available, as demonstrated in Figure 3. In
this example, the two marked data objects are considered to
be medoids of their respective clusters. During this initial
stage of the algorithm, the surrounding objects are assigned
to their closest respective medoid.

The algorithm then continues by selecting a random non-
medoid data object, Or, and recalculating the potential ben-
efit were it swapped with its current medoid. If there is such

Figure 3: K-Medoids clustering process

Algorithm 3 K-Means

1. Arbitrarily or heuristically select k objects as initial
centroids for the given data set

2. Whilst centroid changes are occurring

(a) Associate each data point P in the data set to its
closest centroid

(b) For each centroid C,

i. Recompute location according to data points
associated with it

(c) Continue until stopping criteria met

a benefit, the system should make the change and continue.
This process continues until the system is in such a state
that every data object has been assigned to a cluster, and
further swapping would provide no further optimisation to
the clustering outcome [3].

The calculation of prospective benefit after swapping is
based on a cost function; the total distance between all
points and their respective medoids. In a similar manner
to DBSCAN, the term distance used in this case may refer,
depending upon the implementation, to a Euclidean, Man-
hattan or Minkowski metric.

3.4. K-Means

The K-Means technique is similar to that of K-Medoids
in that both methods use the same designations of input vari-
ables, and both attempt to cluster data objects in a similar
manner. Whilst K-Medoids is concerned with using data
objects themselves as cluster mid-points, K-Means, utilises
the centroid, or mean, of a cluster for its computations.

The method, as described in Algorithm 3, begins as the
K-Medoids method does - by using some process to se-
lect k-many objects as initial mean objects from the data
set. From this, each data object is iteratively assigned to
its respective cluster, according to its nearest centroid point.
Once this process has completed, the centroid for each clus-
ter is recomputed accordingly. This process will continue



until the data set has reached a state of convergence; some
stopping condition has been reached, and the clustering re-
sults have thereby been sufficiently optimised [11].

3.5. Capability comparison

Directing responsibility for the choice of correct input
parameters toward the user has clear disadvantages. Given
different circumstances in terms of data shapes and data set
size, markedly different results can be seen using the same
algorithm. K-Means, K-Medoids and UltraK-Medoids re-
quire the user to nominate a desired number of clusters, and
an incorrect choice can seriously compromise results. If
too high a number is chosen, related points may be clus-
tered apart, whilst too low a choice may result in noise
points being allocated to a legitimate cluster. DBSCAN and
OPTICS support location of an arbitrary number of clus-
ters (no k-cluster limitation), but they require both a cluster
radius and minimum-points-per-cluster specification, and
thus suffer similar problems in terms of cluster accuracy to
the K-algorithms. Incorrect choice of these variables can
lead to effects on the final clusters similar to those expe-
rienced when using partitioning techniques. UltraDBScan,
however, alleviates this issue and improves noise removal
through allowing dynamic change of ε by the algorithm
during processing. The minimum points variable is still re-
quired, though the effect of a pre-defined ε is reduced. This
is highly effective when analysing tightly-grouped sets, but
may lead to relevant relationships being discarded in less
compact sets.

K-algorithms require that all points in the set are clus-
tered, whereas DBSCAN and its descendants do not. This
disadvantages the K-series as even noise points are required
to be assigned to clusters, which compromises the quality of
legitimate clusters. DBSCAN-type algorithms are not sus-
ceptible to this issue due to their design, and will correctly
discard such points as noise.

The DBSCAN algorithm, like other density-based tech-
niques, is most suited to data sets where the number, shape,
or size of clusters present are not known, and the presence of
noise would otherwise severely affect results. These are two
benefits which are not available from the partitioning tech-
niques - K-Medoids or K-Means - under review. Both of
these algorithms are sensitive to noise, though K-medoids
has slightly improved outlier tolerance than K-Means.

K-Means will scale more effectively than K-medoids due
to its reduced processing requirements, however density-
based algorithms are far more applicable to larger data sets
due to their inherently robust nature. The K-algorithms
work very well for smaller data sets (in terms of both dimen-
sionality and quantity of records), but lose efficiency as the
size of the source set increases. In terms of efficiency, which
is directly related to scalability, K-algorithms perform bet-

ter than density-based for small sets, but are surpassed in
performance by DBSCAN and OPTICS when larger sets
are introduced. This conclusion is supported by the time-
complexity metric for each technique; K-algorithms operate
in quadratic time, whereas density-based have O(n log n)
average times, and quadratic only in worst-case scenarios.

Given the aforementioned observations and conclu-
sions, traditional K-algorithms are recommended for low-
dimensional data sets with few records, low noise and
spherical data groupings. The original density-based al-
gorithms are well-equipped to handle more expansive sets
with higher dimensionality, larger quantities of tuples,
widespread noise and arbitrarily-shaped cluster formations.
Of the adapted algorithms proposed in this paper, UltraK-
Medoids is recommended for the same style of data set as its
ancestors, while UltraDBScan is recommended for lower-
noise sets of the type suited to its ancestors.

4. Customisations

As previously mentioned, the subject area under consid-
eration has already been extensively investigated by other
authors over time. Many previous works have discussed
ways in which clustering algorithms can be optimised and
made otherwise more resilient. This paper attempts to add
to the already voluminous amount of work in the field of
clustering by introducing two new techniques. These new
methods are derived from the existing DBSCAN and K-
Medoids algorithms, which were chosen for analysis as they
both operate successfully, return useful results, and are well
established and understood throughout the existing litera-
ture.

It should be noted that these customisations aim only to
modify the aforementioned techniques, rather than to con-
struct extended methodologies. This choice is justified by
the fact that any significantly complex modification to an
existing clustering technique would affect its speed and per-
formance, whilst leaving core functionality the same. As
this paper focuses upon performance as a key aspect of clus-
tering algorithms, research beyond the scope of the work
contained herein would be required to investigate further
performance enhancements. Thus, whilst this paper does
not suggest entirely new clustering techniques, the modi-
fications proposed do appear to have significant respective
uses.

4.1. DBSCAN

Some authors [9] highlight that an issue which affects
DBSCAN, and many other clustering techniques, is the ne-
cessity to correctly select input parameters. In the case of
DBSCAN, these values are the minimum number of points
needed to form a cluster, minPoints, and the distance value,



Figure 4: Customised DBSCAN procedure

ε 4.1. As expected, if a set of input variables are incorrectly
selected - whereby the margin between correct and incor-
rect may vary greatly, depending on the data set - the results
produced may be completely unexpected, and in some cases
rendered useless.

This paper suggests that the DBSCAN algorithm be
modified to offer dynamic change in ε distance, rather than
using a static, potentially unsuitable value for all data ob-
jects within a collection. To achieve this change, the dis-
tance value is adjusted according to the number of points
present within the current cluster. This modification aims
to decrease the distance checked around each point within
a cluster, in order to reduce the risk of data instances being
included in a cluster to which they do not belong. Consider
a dense cluster of objects, such as that in Figure 4, and that
this cluster also has a number of outlier objects surrounding
it. Using a constant distance value in this situation would
be ineffective and result in the objects marked as noise be-
ing assigned to the cluster incorrectly. The consideration in
these situations is that a very dense cluster will see its mem-
bers similarly spaced. For any given ε, if many data objects
are found using such a value, ε can be decreased to reduce
the effect of noise, and lessen the potential for the bridging
effect, whereby two clusters are inadvertently joined.

4.2. K-Medoids

As previously mentioned in Section 3.3, one of the
biggest issues that affects the K-Medoids algorithm is the
computational time required to determine the suitability of
a given random object becoming a new medoid [9]. This
overhead is largely unnecessary, as a system will frequently
be in such a state that the reassignment of a given medoid
will not affect a large amount of the data objects present.
This would be especially relevant for a large data set that
consists of many clusters; a single medoid change would
only affect the small number of objects and clusters nearby.

Within the original algorithm, detailed in Algorithm 2,
the step described at 2c has been determined as the most su-
perfluous. At present, calculating the cost of swapping one
medoid for another is significant, with the time complexity
of this one sub-operation being O(n), where n is the num-
ber of objects present within the given database. When one

considers this operation in context - that the entire set of
data objects need to be iterated over each time a swap, or
potential swap, occurs - the overhead is evident.

A suitable customisation to the K-Medoids procedure is
an attempt to limit the number of times that data objects
need to be processed, per iteration of swaps of medoids.
This suggested concept requires the clustering associations,
and thereby the distances from a given data object to its
related medoid, be recalculated at most only once when a
medoid object is changed. At present, the algorithm re-
computes the cluster and medoid assignments for all points
in two instances: initially or after a swap has occurred,
and also in order to determine the total cost of swapping a
medoid within the system. In many situations, this would
be grossly inefficient as most points should and will re-
main associated with the same medoid. The only data in-
stances that would change are those which have close to
dual-medoid membership, given the location of the new, po-
tential medoid. With the suggested customisations, the al-
gorithm only recalculates cluster membership after a change
has been made, and rather than recomputing all member-
ships at the second instance, it instead swaps a given medoid
out temporarily with the other randomly selected medoid.

Because the second iteration through the entire data set
is made redundant, the act of swapping medoids can be
performed at the same time that clustering assignments are
made. The result of this change is a significant improve-
ment in time complexity, reducing the original system from
O(2n) to O(n), whereby n is the number of objects within
the given set of data. Put into practice, the results of experi-
ments performed on this specialised algorithm are shown in
Section 5.

5. Results and Discussion

5.1. Experimental details

The experimentation detailed in this section was carried
out within the Waikato Environment for Knowledge Anal-
ysis (WEKA) suite for machine learning. This software,
developed in the Java programming language, offers a pow-
erful testing harness for analysis of various data mining con-
cepts and implementations. In addition, it offers the ability
to extend the suite with additional modules, and in the case
of the presented work, clustering methods.

Building upon the functionality that already exists within
WEKA, several existing techniques - specifically, DB-
SCAN and K-Medoids - were implemented, as were the
customisations detailed in Section 4. Once developed, these
clustering algorithms were applied to the specified test set
of forest fire data to determine their effectiveness in terms of
the number of clusters found and noise points classified. Ef-
ficiency was also monitored in terms of running time com-



Figure 5: Density-based performance by epsilon

plexity. For each different input and clustering technique,
the effects of the previously-mentioned customisations were
also noted, and corresponding results recorded. Analysis of
these results aimed to demonstrate whether the modified al-
gorithms were able to offer any degree of improvement over
their original counterparts.

Each test was performed on the same computing hard-
ware in order to ensure objectivity - a recent-model desktop
computer with a 2.5GHz Intel Centrino dual-core proces-
sor and 3GB of RAM, running the latest stable release of
the Java Virtual Machine (JVM 1.6). These experiments
examined a range of varying input parameters to determine
their effect on an algorithm’s results, and to determine any
changes in speed.

It should be noted, however, that whilst the results of the
experiments described may appear conclusive, there are a
number of other factors that may have a significant impact
upon the generated output. For example, consider the per-
formance measure of a given clustering technique. In order
to perform this analysis, the algorithms need to be run on
a computer which, due to operating system overhead, may
skew results as a result of other tasks consuming proces-
sor load. Similarly, given that the algorithms detailed here
are implemented using Java, the JVM or WEKA suite it-
self may implement some degree of caching, such that the
results of one test may unknowingly become the first pre-
processing step for the next. These issues can be overcome,
however, through the consideration of generalised trends
and average results over a number of different tests.

5.2. Comparison results

Density-based Performance The four clustering algo-
rithms used concern density-based techniques: the original
DBSCAN algorithm that was implemented within WEKA,
the newly implemented DBSCAN algorithm (UltraDB-
Scan), its customised counterpart described in Section 4.1
(UltraDBScan (Custom)), and finally, the WEKA imple-
mentation of the OPTICS method.

Figure 5, 6 and 7 show a detailed comparison of the per-
formance of these density-based clustering algorithms. The

Figure 6: Density-based performance by min-
Points

first demonstrates the speed of clustering based upon differ-
ent ε distance values, given the expectation that a larger ε
value would result in generally larger clusters being found.
The second graph shows that whilst there are minor fluctu-
ations from the change in minPoints, the overall trend ap-
pears to be that as the value increases, the time taken to
achieve results decreases. The exception to this appears to
be the OPTICS algorithm, which was otherwise essentially
the same throughout. The final figure examines the change
in speed for each method given an increasing number of at-
tributes that need to be processed.

These first set of tests demonstrate that for the given data
set, the processing time is generally the same for each clus-
tering algorithm, irrespective of a change in ε. Similarly,
the second set of testing shows that the processing time for
each technique increased at a similar rate as the number of
attributes grew. The tests demonstrate that, on average, the
original DBSCAN algorithm has the worst performance of
each of the algorithms for increases in both ε distance and
the number of attributes present. Notably, the new imple-
mentation of UltraDBScan was able to typically perform
faster than that of the original implementation that ships
within WEKA. On closer inspection of the source code be-
hind the original algorithm, it was clear that a difference in
how each traverses to a given point’s neighbours was the
cause of the performance improvement. The two remain-
ing techniques, the customised UltraDBScan and OPTICS,
were able to outperform the rest. The reasoning for the cus-
tomised algorithm performing better than its original coun-
terpart is the addition of the dynamic ε value. As this value
essentially constricts the allowable spread of clusters, fewer
recursive calls are required to the objects surrounding each
cluster. This reduction in processing complexity produces
an algorithm that is typically faster, overall.

Partitioning-based Performance The three clustering
algorithms used for these tests focus on partitioning-based
techniques: the K-Means algorithm, which ships as a stan-
dard algorithm within WEKA, the newly implemented K-
Medoids algorithm, and its customised counterpart - de-



scribed in Section 4.2, referred to as K-Medoids (Custom).
Figure 8 and 9 show a performance analysis of these

partitioning-based clustering algorithms. Figure 8 shows
that changing the number of clusters to be defined ( k) ef-
fects the performance of each method; as expected given
that a larger value of k will result in more clustering cal-
culations being performed. In order to test how well each
clusterer handles a higher level of dimensionality, Figure
9 shows the test results from changing the number of at-
tributes of each data object processed.

The first set of tests highlight that as the value of k in-
creases and more clusters are calculated, the time needed
to process the data set similarly increases. It is evident that
the K-Medoids algorithm is the worst-performing of those
tested, with the time taken growing extremely quickly for
higher values of k. This time complexity can be attributed
to the number of calculations that need to take place for
each cluster examined. Thus, these results are to be ex-
pected from the standard K-Medoids algorithm. However,
the modified version of K-Medoids was shown to be the
most robust. This demonstrates that the changes suggested
have a notable effect on processing time, given that far
fewer recalculations are required for a given data set. Fi-
nally, the K-Means algorithm ranked between the other two
methods, and showed a gradual increase in processing time
across testing. Most notably, this rate change was less than
that of K-Medoids, but evidently greater than that of the
customised algorithm.

Trends in the results when changing the number of at-
tributes of each data object differed somewhat from that of
modifying the value of k. In these tests, the two flavours
of K-Medoids algorithms performed equally well, with the
customised version, as expected, slightly out-performing
that of its original version. The K-Means algorithm was
slower, given the change in parameters. It should be ex-
pected that each of these algorithms suffers a decrease in
performance as the dimensionality of the given data objects
becomes higher, and this is evident in the results shown.
The increase in the time taken for the K-Means algorithm to
complete most probably relates to a difference in implemen-
tation, rather than a fundamental change in the way each
algorithm handles attributes and distances.

Clustering Results The ability for each of the density-
based algorithms to detect noise was also examined. The re-
sults for each of the density algorithms are described within
Figure 10 and 11.

The overall trend described by these tests demonstrates
the expected behaviour of any density-based technique: as
the distance checked for neighbours increases, the number
of points classified as noise decreases. In addition, this di-
rectly affects the size of the clusters discovered. Similarly,
as the value of minPoints increases, the number of points

Figure 7: Density-based performance by attributes

Figure 8: Partitioning performance by k

Figure 9: Partitioning performance by attributes

Figure 10: Density-based performance by result-
ing noise from change in epsilon



Figure 11: Density-based performance by result-
ing noise from change in minPoints

being classified as noise increases also.

The results demonstrate that all techniques - with the ex-
ception of OPTICS which considered all points to be noise
for all values of ε - were able to detect similar amounts of
noise, and thus define a similar number of clusters. The
exception to this trend was the customised DBSCAN al-
gorithm which, for most ε distances, and values of min-
Points, tested, discovered a slightly greater amount of noise,
or a greater number of clusters. The reasoning for these
changes is directly associated with the dynamic change of
ε, as the size of clusters grew throughout the processing of
the database. Having this modification present also demon-
strated that the number of points assigned to certain clusters
changed also. For instance, with a minPoints value of 1, the
size of several clusters changed considerably, thus illustrat-
ing the the dynamic ε value is having an effect. In com-
parison, the same cluster was defined as only a single point
for the other methods. Thus, these results demonstrate that,
depending on the application, this type of interchangeable
variable may bring about more-suitable clustering assign-
ments.

Overall, the original WEKA implementation of DB-
SCAN performed comparably with the newly implemented
UltraDBScan for all tests. This result demonstrates that not
only was the new implementation able to compute clusters
correctly, as it was able to find the same amounts of noise
and clusters, but that the provided algorithm was not as ef-
ficiently written.

Due to comparable limitations of the K-Medoids and K-
Means algorithms, a similar figure cannot be produced. The
inherent purpose of these partition-based techniques is to
ensure that all elements in a database are assigned to a clus-
ter, and thus none are discarded as noise. This is described
in the operations in Algorithm 2 and 3, whereby each object
present is assigned to its nearest medoid or centroid. Unlike
the density-based techniques described here, no degree of
analysis occurs to determine if a given point should legiti-
mately belong to any cluster.

5.3. Issues

As is to be expected of any data mining procedure, the
best results from a clustering operation depend entirely
upon many different factors. These include, but are not lim-
ited to, the actual data set being processed, the clustering
technique selected, and the input parameters provided to the
technique. In some situations, a certain algorithm may de-
termine suitable clusters within one data set, but may be
completely ineffective with another. Likewise, using un-
suitable input parameters for a given clustering process may
result in similarly unsuitable cluster assignments for data
instances. As a result, all of the aforementioned aspects of
data mining need to be considered before an algorithm is
chosen, and the application of the technique should be per-
formed by a person who has sufficient domain knowledge
to make correct decisions that will reveal suitable output.

Furthermore, as detailed in Section 2, the most suitable
types of data are detailed for each given subset of clustering
techniques. It should be noted that the results demonstrated
in this paper summarise tests executed within the given test-
ing environment, and only represent output associated with
the single data set of forest fire information. described in
Section 1.4. As mentioned previously, using a different set
of data may, and most likely will, reveal different patterns
and see a change in processing time complexity. This would
be especially evident if incorrect input parameters are used
for the given clustering algorithms. However, the results de-
tailed in Section 5.2 indicate that for the data set under con-
sideration, the DBSCAN and K-Medoids algorithms (and
their customised counterparts) reveal useful clusters. From
this, it can be generally inferred that for similar types of
data, these same algorithms should result in the definition
of similar clusters in a similar processing time-frame.

6. Conclusion

The results demonstrate that for density-based algo-
rithms, an incorrect or non-optimised selection of ε dis-
tance can significantly alter the clusters defined. However,
a change in ε distance had very little effect on the effi-
ciency of the technique. This outcome is caused by the
way in which this type of clusterer progresses through the
database. Whilst some algorithms may utilise recursion to
examine points, the time complexity essentially resolves
as O(n log n), where n is the number of objects in the
database. This occurs because each point only needs to be
checked once, and only compared to its own neighbours.
Thus, any effect caused by either of the input variables,
minPoints or ε, will be negligible. This stands in contrast
to the change in performance seen when the k value is al-
tered for partitioning-based clustering techniques. As this
value directly affects the number of calculations that need



be performed on each data object, searching for increasing
numbers of clusters has an inflationary effect on the time
required to process a data set.

A notable conclusion that can be drawn from the results
is that an increase in the number of attributes being pro-
cessed will see a decrease in the processing speed for all
given clustering types tested. The cause of reduction in per-
formance is related to the time taken to compute distances
between each of the objects that need to be compared. In
lower dimensions, when few attributes are present, calcu-
lations are simple as the results have shown. However, as
higher dimensions need to be considered, the time complex-
ity increases accordingly.

The given data set demonstrates potential for both of the
customised algorithms. For UltraDBScan, the set showed
that different quantities of noise could be found. Whilst
not strictly applicable to this specific data set, this ability to
locate additional noise could greatly affect the clustering re-
sults for data from other domains. As an example, consider
several clusters with a bridge of objects between them. As
the algorithm begins to cross the bridge from an initial clus-
ter, it will decrease the distance it checks for neighbours ac-
cordingly, essentially severing the link, and declaring each
point of the bridge as noise.

Whilst not quantifiable, due to the difficulty of attempt-
ing to compare one cluster to another, the improvement sug-
gested in this paper to K-Medoids is similarly useful. As
this customised method no longer needs to re-analyse the
entire data set twice for each iteration, the time complexity
decreases significantly, and results in a technique that is far
more robust as an increasing number of clusters is found.

Overall, the different methods of clustering have been
shown to produce varying levels of performance and yield
different degrees of usefulness from results. Whilst there
are similarities between the clustering algorithms and their
generalised types, the overall results produced show that a
choice of technique is one of the most important decisions
to be made in clustering.

7. Future Work

As data mining, and specifically clustering, becomes
more of a part of every-day business and organisational op-
eration, the necessity for faster and equally accurate algo-
rithms rises. The improvements suggested in this paper,
while novel and logically presented, are not entirely com-
prehensive and thus scope for further ongoing research ex-
ists in several areas. There are many other potential im-
provements that could be investigated within the field of
clustering techniques - extensions to the work presented
here are essentially unbounded.

Partitioning techniques (including the suggested UltraK-
Medoids algorithm) require that all points in the data set are

allocated to a cluster, unlike density-based methods which
can leave noise points in an unclustered state. This creates
varying levels of noise sensitivity across the K-algorithms,
and research into development of a method that works on
both principles would be beneficial.

The requirement that both partitioning and density-based
techniques specify input parameters places certain limita-
tions on the effectiveness of the algorithms when these val-
ues are not optimised. Choosing the values correctly takes
both experimentation and time, which adds overhead to the
process of drawing useful conclusions from mined data.
Partitioning methods require that the number of clusters to
be found is statically set, and incorrect choice of this value
can lead to serious noise sensitivity. Investigation of the ad-
vantages of allowing the algorithm to dynamically choose
the number of clusters (as used in density-based techniques)
is thus justified. Density-based methods suffer from incor-
rect choice of ε neighbourhood radius and minimum points
per cluster. UltraDBScan has addressed the issue of ε se-
lection by allowing the algorithm to dynamically chose this
value as it progresses through points in the data set under
analysis. However, more research into managing the effect
of the minimum points variable would be clearly beneficial.
By reducing or eliminating the effects these variables have
on results, a system will be able to produce more objective
output with greater accuracy.

Given that the algorithms this paper discusses have been
in existence for up to 20 years, and that there have been
various papers and theses produced regarding the aforemen-
tioned issues, the suggestions made in this section appear as
the logical path for future investigation. Others can extend
this work by seeking alternative ways of improving the se-
mantics of the proposed algorithms, rather than attempting
to improve the actual operations which have been already
been fine tuned through the extensive research summaries
in section 2.

A. Implementation

This paper presents a method for developing for classes
for WEKA, using a Java integrated development environ-
ment (IDE) named IntelliJ. Developed by a company named
JetBrains, IntelliJ has been found to be one of the most pow-
erful and useful development environments, and as such,
these instructions are specific to this program. They may
be extended, with some investigation, to other development
environments, such as NetBeans. However, no assurances
can be placed upon whether the same procedure here can be
replicated using another program.

Follow these guidelines to easily create and further de-
velop clustering algorithms, classifiers and association rules
processes for use within WEKA:

1. Install the latest version of IntelliJ from



http://www.jetbrains.com/idea/. It
is a commercially licensed piece of software, so a
developer either needs to use the trial version, or
otherwise purchase or obtain a license key. You will
also need a Java Development Kit (JDK); version 1.6
is the latest as of the time of writing.

2. Install the latest version of WEKA from
http://www.cs.waikato.ac.nz/ml/weka/.

3. Create a new IntelliJ project, and set up your JDK ac-
cordingly.

4. Set up your project so that you can use the WEKA
classes within your own.

(a) Go to File ⇒ Settings ⇒ Project Settings ⇒
Global Libraries

(b) Add a new Global Library and call it something
like “WEKA”

(c) Attach WEKA’s JAR file by selecting “Attach
Classes” and locating the relevant file. You will
find this located in your WEKA install location.
You may wish to make a copy or move this JAR
into your own project folder.

(d) Click onto “Apply” to save the changes. The li-
brary will be parsed accordingly and you can now
access and utilise WEKA libraries in your own
code.

5. Add a run configuration for WEKA, so you can run
and debug your code from IntelliJ.

(a) Go to Run⇒ Edit Configurations

(b) Click onto the “Add” button, and select “Appli-
cation”

(c) Under “Main class” enter weka.gui.Main

(d) Under “VM Parameters” you can control the
JVM environment. Using a value such as
-Xmx512m will allocate the JVM 512MB of
RAM, rather than 128MB or less that would oth-
erwise be the default. Tweaking these settings
is especially useful if you find your data set is
too complex and it causes the JVM to run out of
memory.

(e) You may wish to change your “Working direc-
tory” to be where your data sets reside, for ease
of access. This location specifies where the de-
fault folder is for when you open any file dialogs
within WEKA.

(f) Ensure that your classpath is specified to be that
of your current project so your classes can be
found within WEKA.

(g) Ensure that under “Before launch” the option
“Make” is not ticked. If it is, your classes will
not be visible as your build location will be inad-
vertently cleaned when you run WEKA.

(h) Click “OK” to save the changes.

6. Make your classes visible within WEKA requires an
extra step, as classes are found dynamically in the lat-
est version of the data mining suite.

(a) Locate the previously-used JAR file for the
WEKA library - it is most likely in your WEKA
install location.

(b) Open it within your favourite archive extraction
utility, noting that you may need to rename the
.jar to .zip, if your program does not support
the .jar format.

(c) Enter the “weka” folder, and then the “gui”
folder.

(d) Find the GenericPropertiesCreator.props
file and extract this into the base of your user
home directory.

(e) Edit the file in a text editor, and near the top, lo-
cate the line UseDynamic=false.

(f) Change the false to true and your classes,
once created correctly, will be accessible from
within WEKA.

7. Build your classes, taking the following into account:

(a) Make each of your classes part of the weka pack-
age. For example, if you were creating a clus-
terer, like the ones described in this paper, use
the weka.clusterers package.

(b) Make each of your classes extend a certain inter-
face or abstract class from WEKA. This is neces-
sary to allow WEKA to dynamically find your
classes, and IntelliJ will automatically fill out
which methods need to be implemented and ex-
tended. For example, you can use DensityBased-
Clusterer for this type of clusterer, or Randomis-
ableClusterer for those that need some degree of
randomisation in their processing.

8. When you want to test your classes, go to Build ⇒
Rebuild Project. Your classes will be compiled in your
build directory. Then, run the WEKA configuration
from IntelliJ. WEKA will start, and your new classes
can be tested.

This introduction has introduced the method of creating
new classes for the WEKA data mining environment. Fur-
ther documentation is available, as at the time of writing,



from http://weka.wiki.sourceforge.net/.
The various resources at this website explain details at
even more depth on how each part of your code is used in
WEKA.
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