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Abstract

Guidance is a central issue in Automatic Theorem Proving systems due to the enormity

of the search space that these systems navigate. Semantic guidance uses semantic in-

formation to direct the path an ATP system takes through the search space. The use of

semantic information is potentially more powerful than syntactic information for guid-

ance. This research aimed to discover a method for incorporating semantic guidance into

linear deduction systems, in particular model elimination based linear systems. This has

been achieved. The GLiDeS pruning strategy is a simple strategy of restricting the model

elimination deduction to one where all A-literals are false in the guiding model. This

can be easily incorporated into any model elimination based prover. Evaluation of the

GLiDeS strategy has shown that when “good guidance” has been achieved, the benefit of

this guidance is significant. However attempts to develop a heuristic for predicting which

model will provide “good guidance” has been largely unsuccessful.



Original Contributions

1. Developed novel strategy (GLiDeS) for applying semantic guidance to full linear

deduction systems.

2. Shown that the new GLiDeS strategy is sound but incomplete.

3. Shown that GLiDeS is complete for a small group of problems termed Semantic

Horn and that this result is essentially equivalent to renaming [Slagle, 1967].

4. Implemented system to demonstrate ease of including GLiDeS into an existing lin-

ear theorem proving system, PTTP.

5. Evaluated performance of the GLiDeS semantic guidance strategy and concluded

that overall the GLiDeS strategy does not provide significant improvement to PTTP’s

performance.

6. It has been shown that when good guidance is achieved the improvement in per-

formance is significant. GLiDeS dramatically reduces the amount of search space

covered before a proof is found (as reflected by the number of inferences made).

In the best case, PTTP covered on average 8 times the search space that GLiDeS

covered (See NHN SEQ Table 6.7).
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Chapter 1

Introduction and Technical Notation

This thesis investigates the application of semantic guidance to linear deduction systems.

Guidance is a central issue in Automatic Theorem Proving (ATP) systems due to the

enormity of the search space that these systems navigate. Semantic guidance uses se-

mantic information to direct the path an ATP system takes through the search space. This

is of interest because the use of semantic information is potentially more powerful than

syntactic information for guidance. This chapter discusses these issues and introduces the

notation and terminology used in this thesis.

This chapter contains:

1. Background to ATP systems.

2. Motivation for semantic guidance.

3. The objectives of this research.

4. Notation and definitions of terminology.

5. An overview of the thesis contents.

1



CHAPTER 1. INTRODUCTION AND TECHNICAL NOTATION 2

1.1 Background

The field of Automated Theorem Proving (ATP) involves the solving of problems, using

logical reasoning, mechanically. Applications of ATP include logic circuit validation, re-

search in mathematics and formal logic, real-time systems control, program debugging

and verification, and expert systems. Research carried out in the ATP field has also con-

tributed to other fields, e.g. deductive databases.

Modern ATP research owes much to the work by J.A. Robinson who developed the res-

olution procedure in 1965 [33]. Prior to this, methods based on Herbrand’s theorem had

been used. One of these was the Davis-Putnam method [12]. Many refinements for res-

olution have been developed including Set of Support [45], hyperresolution [34], linear

resolution [24, 27], and model elimination [22].

ATP systems take as input known facts (called axioms) and a statement of what is thought

to be true (called a conjecture). This data is represented in some form of logic. There are

ATP systems that deal with propositional, temporal and modal logics (to name a few) but

this dissertation deals with ATP systems that work with first order logic (FOL) represented

in conjunctive normal form (CNF). The proof method used is proof by contradiction. In

a proof by contradiction, the conjecture is negated (i.e. assume the conjecture is FALSE)

and a contradiction is searched for. If a contradiction is found then the assumption that

the conjecture is FALSE is incorrect, and so the conjecture is proved.

The main problem with using FOL is that it is semi-decidable i.e. the proofs, and therefore

the theorems, are recursively enumerable, but the non-theorems are not. So it is possible

that the search for a proof may continue forever when no proof exists.

Chapter 2 contains a review of ATP development, with a focus on linear deduction sys-

tems. This may be skipped by readers familiar with the area.
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1.2 The Need for Semantic Guidance

For even relatively simple ATP problems, the search space that needs to be traversed

to find a proof is large. Therefore it is necessary to control the search in an intelligent

manner. Search guidance can be provided in two different ways: search space pruning,

where areas of the search space are excluded from the search path, and search space or-

dering, where preference is given to some areas of the search space but the entire search

space may be searched if necessary. Guidance can use either syntactic information (some

physical feature of the clauses or literals) or semantic information (some truth value in-

terpretation of the clauses or literals). For example, the unit preference strategy, where

preference is given to resolutions involving a clause containing a single literal, is an or-

dering strategy based on syntax. Model Resolution uses an interpretation to divide the

clause set into two subsets and restricts resolutions to those that involve one clause from

each set. This is a pruning strategy based on semantics.

Semantic guidance has been used with some forward chaining (see 1.4 for definition) tech-

niques. For example, Model resolution is a semantic forward chaining technique. Little

research has been carried out on the use of semantic guidance with backward chaining

techniques, such as linear deduction. Chapter 3 contains a review of semantic guidance

strategies employed by both forward and backward chaining methods.

1.3 Research Objectives

The main objective of this research is to investigate ways to incorporate semantic guidance

into linear deductions systems. It was decided to attempt to develop a semantic guidance

strategy that could be incorporated into an existing linear system with only minor modi-

fications to the system. Research has focussed on producing a fully automatic system with

no input required from the user of the system beyond the provision of the input clauses in

the appropriate formats. This requires the generation of a model to provide the interpret-

ation needed by the semantic system. The system developed by this research is named

GLiDeS which is an acronym for Guiding Linear Deductions with Semantics
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1.4 Notation and Terminology

1.4.1 Basic Terminology

� Constants and variables are terms.

� A f is a function symbol of arity n, and t�� t�� ���� tn are terms then f�t�� t�� ���� tn�

is a term.

� A constant can be thought of as a function of arity 0.

� If p is a propositional letter, then it is an atom.

� If p is a predicate symbol of arity n, n � �, and t�� t�� ���� tn are terms, then

p�t�� t�� ���� tn� is an atom.

� A literal is an atom or the negation of an atom.

� A literal that is an unnegated atom is called a positive literal and a negated atom is

a negative literal.

� A clause is a disjunction of literals.

� A unit clause is a clause consisting of only one literal.

� A Horn clause is a clause that contains at most one positive literal. Horn clauses

are of interest as it means the original FOL clause was an implication with a single

consequence. The statement �a� � �a� � � � � � �an � an�� is equivalent to �a� �

a� � � � � � an�� an��.

� A clause consisting of all negative literals is called a negative clause.

� A clause consisting of all positive literals is called a positive clause.

� The empty clause is an empty disjunction, and is unsatisfiable. The empty clause is

symbolized by �.

� A set of clauses is equivalent to their conjunction.
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� Two literals g and f are said to be complementary if f � �g or g � �f .

� Given two FO literals d and e, a unifier ,�, is a substitution such that d� � e�. If

such a � exists, d and e are said to be unifiable.

� A unifier � is said to be a most general unifier (MGU) if for all other unifiers � i

there exists an substitution � such that � � ��i.

� A theorem proving strategy is said to be complete if it can be shown that provided

a proof exists then the strategy will find one.

� A theorem proving strategy is said to be sound if it can be shown that if a proof is

found then the proof is correct.

For readers unfamiliar with the areas of FOL and ATP, there are many excellent texts that

can provide any background material not fully explained in this thesis. The texts by Duffy

[13] and Fitting [14] are recommended.

Theorem proving strategies may be described as forward chaining or backward chaining.

In forward chaining, a strategy starts with known information (axioms) and attempt to

infer clauses that contradict the conjecture. If the analogy of a paper based maze is used,

the forward chaining prover picks a starting point from many options and attempts to

reach the end-goal. When a dead end is encountered, the strategy selects a different path

and tries again. As any child knows, the easiest way to solve such a maze is to start at the

goal and work backwards to the starting point. This an analogous to backward chaining.

A backward chaining strategy starts with the conjecture, and attempts to infer clauses that

contradict a known axiom. For a more formal definition, see [13].

1.4.2 Notation

The notation used for identifier naming throughout this thesis follows the format used

in Prolog [35]. Variables are indicated by identifiers that start with capital letters, while

functors and predicates have identifiers that start with lower-case letters. The standard

symbols ������� are used for the logical operators OR, AND, NOT and IMPLIES.
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Figure 1.1: Two different visual representations of the same Model Elimination deduc-
tions: (a) traditional vertical representation, (b) tableau style representation.

Linear deductions can be visually represented in two different ways: i) as a vertical se-

quence of center clauses or ii) as a tableau. Figure 1.1 shows two different visual repres-

entations of the same model elimination deduction. Due to its more compact nature, the

tableau representation will be used when displaying proofs in this thesis.

The tableau style representation (which shows the proof) should not be confused with the

search space trees (which show all possible paths a deduction may take in the search for

a proof) shown in Chapter 2 .
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1.5 Thesis Structure

Chapter 2 contains a review of the development of linear deductions systems. Chapter 3

contains a review of the development of semantic guidance. Chapter 4 describes the

GLiDeS pruning strategy and the underlying theory considerations. Chapter 5 describes a

heuristic used to try and select the semantics to be used with GLiDeS. Chapter 6 contains

the implementation and performance details for the GLiDeS system, with and without the

model selection heuristic. Chapter 7 concludes.



Chapter 2

Linear Deduction Systems

In this chapter, the history of linear deduction is reviewed.

2.1 Ancient History

In 1965, Robinson’s paper [33] on the resolution procedure changed the way automated

theorem proving was approached. Until this pivotal paper, most of the research in this field

was focused on instantiation based methods that involved determining the unsatisfiability

status of ever expanding sets of ground clauses. The clauses are grounded by making

variable substitution from the clause set’s Herbrand universe. The Herbrand universe is

the set of all terms that may be constructed from the function symbols in the clause set.

Subsets of the clause set’s Herbrand universe are generated and used to ground the clauses.

A check for unsatisfiability is then performed on these ground clauses. If the ground

clauses were satisfiable, the next level Herbrand universe subset is generated and the

process continues.

Example 1 The Herbrand universe subsets are denoted by Hn where n is the level of the

subset. So, given T � f�p�f�X��� p�Y � � �q�a�� q�Z�g, the Herbrand universe subsets

are: H� � fag�H� � fa� f�a�g�H� � fa� f�a�� f�f�a��g and so on.

In this example, onlyH� is needed to prove unsatisfiability giving T� � f�p�f�a��� p�f�a���

8
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�q�a�� q�a�g.

The resolution principle does not involve the grounding of clauses. Instead Robinson

proposed that clauses be resolved together and the newly generated clause, called the re-

solvent, added to the clause set. For example, the ground clauses a � l and b � l� resolve

upon the complementary literals l and l� to give the resolvent clause a � b. If the clauses

are not ground then a substitution, �, is made such that �l and �l� are complementary

and the resolution takes place between �a��l and �b��l� giving the resolvent �a��b.

Clauses are resolved together until the empty clause is found.

The logic behind the resolution step is as follows: if a � l and b � l� are TRUE in some

interpretation than so is any instance of them. However l and l� cannot both be TRUE as

they contradict each other. So for both a � l and b � l� to be TRUE either

� l is FALSE (making a TRUE) and l� is TRUE or

� l� is FALSE (making b TRUE) and l is TRUE.

Either way, the resolvent a � b must be TRUE. Thus, the resolvent is a logical con-

sequence of the parent clauses. If the resolvent is found to be � then we have found

the contradiction i.e. � is FALSE but if the parent clauses are TRUE then � must be

TRUE.

One of Robinson’s major contributions was the algorithm for finding an appropriate �

to use in the substitution process, or unification of the literals L and L�. This algorithm,

called the Unification Algorithm, finds the most general unifier. It was later modified by

Paterson and Wegman [31] to include an occurs check, without which it is unsound.

The following algorithm is a simplified version of unification with occurs check as ap-

peared in [13]:

Let E� and E� be two expressions with no variables in common. Let � be the initial

(empty) substitution. To unify E� and E� proceed as follows:
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1. If E� and E� are identical then stop with the current substitution.

2. Let n be the leftmost position at which the symbols of E� and E� do not match, and

let s� and s� be, respectively, the symbols at this position in E� and E�. If neither

s� nor s� is a variable then stop with failure. Otherwise, if s� is a variable then let it

be x and let t be the term whose first symbol is s�, else let s� (which must thus be a

variable) be x and let t be the term whose first symbol is s�.

3. If x occurs in t then stop with failure. Otherwise, apply the substitution (x� t) to

E� and E�, add x� t to the current substitution, and then return to step 1.

The resolution principle is much more efficient than Herbrand based methods, but can

result in the generation of many unnecessary clauses (for example, tautologies or duplicate

clauses). To apply the resolution principle in a systematic way, the simplest method is to

perform level-saturation:

1. Let k � �, Sk � fg, Rk � S where S is the input clause set.

2. Let Rk�� � fg.

3. Compute all resolvents where one parent is from Sk , and one parent is from Rk.

Place resolvents in Rk��.

4. Compute all resolvents for pairs of clauses in Sk . Place resolvents in Rk��.

5. Check Rk�� for the empty clause. If found exit.

6. Let Sk�� � Sk � Rk.

7. Let k � k � �. Return to 2.

Using this method, clauses may be generated that do not contribute to the finding of

a proof. But even with the removal of these obviously unnecessary clauses, resolution

still produces many new clauses at each level. Much of the research on resolution based

systems is focused on reducing the number of clauses produced at each level.
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Example 2 Given S � fp � q��p��q� r��r � s��r � �s � t� p � �tg

Level Saturation Resolution - removing duplicate clauses and tautologies1:

S� � fg R� � S

R� � fq� p � r��t��q� s��q � �s � t��r � t� p � �r � �sg

Generating R� takes 7 inferences steps and results in 7 new clauses.

S� � S� �R�

R� � fp � s� p � �s � t� r��r� �s� r��q � t��q � �s � p� p � s��r � �q � t�

p � �r� p � �s � t��r � �s��q � �r � t� p � �q � �s� p � �r� s��s� t� p � t�

�s � p��q � �s��r��q� p � �rg

Generating R� takes 22 inference steps but 7 resolvents are duplicates so R� consists of

15 new clauses.

S� � S� �R�

R� � fp � �s� p � �r � t� p � �s� p � �r� s��s � t��q � �s��r� t��s��q� �r�

�q � �s��q � t� p � �q��q��q� p� p � �r � t� s� p � �q � �r��r � t� p � �r�

�q � �r� p � �r � t��s � t��r � t� p � �s� p � �q � �r� p � �s� p� p � �s��r � t�

�s� p � �r� p � �s� p � �q � t� p� p� p � �q� p � �s��q � �r��s� p� p � �q � t�

�q � �r� p � �q��q � t� p � �q��q� p � �q � t��q � t� t� p � �r� p � �s� p � �r�

p � t� p � �r� p � �q� p � t� p� p � �q� p � t��s��q � t� p��� p � �q��r� p � �q� t�

p��qg

Generating R� takes 71 inference steps but 59 resolvents are duplicates so R� consists of

11 new clauses one of which is the empty clause (�) and so a refutation has been found.

In total, 100 inference operations were required of which 31 produced new resolvents.

The proof consists of only 6 inference operations as shown in Figure 2.1.

1Any duplicate clause or tautology generated is shown with a strike through to indicate that it is not kept
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~t

~r

~r v t

~r v sp v ~t~p~q v rp v q

p v r ~p

r

~r v ~s v t

Figure 2.1: Resolution proof for Example 2

Linear resolution was developed independently by Loveland [24] and Luckham [27]. The

motivation behind this approach was to restrict the number of inferences made at each

level of the proof process, and thereby reduce the overall number of inferences needed

to find the proof. In linear resolution, a clause is chosen from the input clause set to be

the top centre clause. The top clause is resolved with an input clause and the result is a

new centre clause. Resolutions can only take place between the current centre clause and

a clause from the input clause set or a centre clause that occurs before the current centre

clause in the deduction. (The non-centre clause used in the resolution will be referred to

as a side clause.) Resolution with a previous centre clause is called an ancestor resolution.

Linear resolution reduces the size of the search space dramatically at each level but often

results in much deeper searches. The main advantage of this method is that it is strongly

backward chaining, provided that the top centre clause is chosen appropriately, i.e., a

clause generated from the negated theorem.

Figure 2.2 shows the search tree for a linear resolution deduction to depth 6 for clause set

S (shown in Example 2) when p � q is chosen to be the top clause. The search tree shows

all possible paths taken in the deduction, with each branch representing a possible linear

deduction. The nodes on a branch are the centre clauses that are created. The branch

segments are labeled with the side clauses used in the resolutions with a node to produce

the next node. If the side clause is an ancestor clause, it is enclosed in a box.

The full tree is not shown as it is too large. When a branch has been truncated, the number

of nodes that are in the truncated section is noted at the leaf. All branches were taken to

the same depth. In this example, a refutation is found at depth 6. In total, a possible 186
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q

r

p v q

~s v t
18 nodes

s
11 nodes

p v ~s v trp v s

p v ~r v t
s

11 nodes
s

10 nodes
~s v t
16 nodes

p v ~r v t
35 nodes

~s v t 
17 nodes

p v ~s
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~r v t
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p v t p v ~q v t
9 nodes

p v ~r

t p
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p

p ~q
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p v r

p v r

~p ~q v r
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~r v s ~p

~r v ~s v t ~p ~r v s ~r v ~s v t

p v ~t ~p
~r v s

~p
p v r p v ~t~q v r

~p p v ~t
~q v r

p v ~t
 ~p

~p
p v q

p

 ~p~q v rp v r

~p

Figure 2.2: Search tree for linear resolution to depth 6

inferences are needed to compute the search space to a depth of 6.

SL-resolution [20] is linear resolution with a selection function. The selection function

chooses the order in which literals can be resolved. This reduces the number of possible

inference steps at each level thus further decreasing the size of the search space. It has a

further restriction that says if an ancestor literal exists that is complementary to a current

centre clause literal then an ancestor resolution must be performed. For example, for the

same set S and top clause p � q, if the selection function used imposes a lexical ordering

on the literals in the clauses and only allows resolutions on the rightmost literal in the

centre clause then the search tree shown in Figure 2.2 reduces to that shown in Figure 2.3.

At the first level, in linear resolution two inferences are possible: p � q can be resolved

with �p to give q (see the left branch in Figure 2.2) or it can be resolved with �q � r to

give p � r (see the right branch in Figure 2.2). In SL-resolution, the selection function

restricts the possible inference steps to those involving the rightmost literal in the centre

clause, q, which makes the resolution with�q � r the only possible step (see Figure 2.3).

Notice in Figure 2.3 at level 3, the centre clause p � �r � t is involved in an ancestor
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resolution on r and not on t which is the literal selected by the selection function. This is

because of the “compulsory” ancestor resolution rule. The search tree for SL-resolution

contains 11 inferences compared to 186 for plain linear resolution.

p v r

p v r

p v r

~r v ~s v t

p v q

p v t

p

p v ~r v t

p v s

p

p v ~r

p v ~s

p v ~s v t

~q v r

p v ~t

~p

p v ~t

~r v s

~p

~r v ~s v t~r v s

Figure 2.3: Search tree for SL-resolution to depth 6

Linear input resolution [7] was developed in 1970. Linear input resolution is a variation

on linear resolution where ancestor resolutions are not allowed. All resolutions take place

between a centre clause and a clause from the input clause set. This extra restriction makes

linear input resolution very efficient but at a cost. Linear input resolution is complete

only for Horn clause sets. Figure 2.4 shows the search tree to depth 7 for a linear input

resolution deduction for the clause set S. Depth 7 contains the first occurrence of �.

Model Elimination (ME) [22] was first proposed in 1968, and a second paper detailing

a simplified format for the procedure [23] was published in 1969. Its relationship to

linear resolution was noted by Kowalski and Kuehner [20] in their paper on SL-resolution.

ME uses a chain format - the disjunctions between literals are implied and are omitted.

Resolutions take place between the centre chain’s rightmost B-literal and chains from

the input set, called side chains. A resolution between a centre chain and a side chain

is called an extension. Literals in a centre chain that have been resolved are retained,

and called A-literals. A-literals are indicated by a box surrounding the literal. All other

literals are called B-literals. For example, the clause p � q is represent by the chain pq.

For the centre chain, pq�p, p and �p are B-literals and q is an A-literal. Side chains are
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Figure 2.4: Search tree for Linear input resolution to depth 7

comprised solely of B-literals.

A-literals are used to perform ancestor resolutions without the need to carry around pre-

viously generated centre chains. When a B-literal exists to the right of a complementary

A-literal in a centre chain, it can be resolved with the A-literal in an inference step called

a reduction. The reduction step takes the place of ancestor resolutions and any associated

factoring. Figure 2.5 show an ME deduction of the proof for the clause set S (using the

traditional vertical format) and Figure 2.6 shows the search tree for this deduction. In ME,

the literals at the right-hand end of the centre chain are operated on first. If an A-literal is

at the right-hand end then it is removed in a truncation step.

2.2 Prolog Technology Theorem Provers (PTTP)

Prolog, a programming language based on Horn clause logic [19], was developed in 1975.

Its inference engine is linear-input resolution. Most implementations use an unsound uni-

fication algorithm (no occurs check), for reasons of efficiency, and an unbounded depth-
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Figure 2.5: Model Elimination deduction for S � fp � q��p� �q � r� �r � s� p � �t�
�r � �s � tg
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Figure 2.6: Search tree for Model Elimination to depth 6
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first search strategy, which is an incomplete strategy. However, Prolog is fast and efficient,

and in the early 1980’s there were several papers published with a view to using Prolog

or Prolog-like engines as theorem provers. Stickel proposed a Prolog technology the-

orem prover (PTTP) [40] as a way of extending Prolog to full linear resolution. PTTP

uses ME as its basis and provides a sound unification algorithm along with a complete

search strategy. In order to represent non-Horn clauses in the Prolog syntax, contraposit-

ive clauses are generated. For example, the clause p � �q is represented in Prolog syntax

as p �� q. For a non-Horn clause, p � q � �s, this would be p� q �� s. As Prolog syntax

only allows one term on the left hand side (or head), contrapositives are needed. The

clause p � q � �s generates the following contrapositives:

p ���q� s

q ���p� s

�s ���p��q

For a clause with n literals, n contrapositive clauses need to be generated.

The addition of contrapositives can significantly increase the input clause set and is seen

as one of the main disadvanatages of the PTTP approach to theorem proving. The other

disadvantage is the need to maintain a list of the A-literals for the reduction operation.

This list can become quite large and add significant overhead to the system as it needs to

be searched continually. Example 3 shows the contrapositives needed for the clause set S

and their transformation into Prolog procedures for a PTTP deduction.

Example 3 For S � fp � q��p��q� r��r� s��r � �s � t� p � �tg the set SC of

contrapositives is as follows:

p ���q

q ���p

�p

r �� q

�q ���r
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s �� r

�r ���s

t �� r� s

�r �� s��t

�s �� r��t

p �� t

�t ���p

The Prolog procedures are as follows:

p(Ancestors) :- not_q([not_p|Ancestors]).

q(Ancestors) :- not_p([not_q|Ancestors]).

not_p(Ancestors).

r(Ancestors) :- q([not_r|Ancestors]).

not_q(Ancestors) :- not_r([q|Ancestors]).

s(Ancestors) :- r([not_s|Ancestors]).

not_r(Ancestors) :- not_s([r|Ancestors]).

t(Ancestors) :- r([not_t|Ancestors]),

s([not_t|Ancestors]).

not_r(Ancestors) :- s([r|Ancestors]),

not_t([r|Ancestors]).

not_s(Ancestors) :- r([s|Ancestors]),

not_t([s|Ancestors]).

p(Ancestors) :- t([not_p|Ancestors]).

not_t(Ancestors) :- not_p([t|Ancestors]).
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Prolog clauses to perform the reduction operation are also needed:

p(Ancestors) :- member(p,Ancestors).

q(Ancestors) :- member(q,Ancestors).

r(Ancestors) :- member(r,Ancestors).

s(Ancestors) :- member(s,Ancestors).

t(Ancestors) :- member(t,Ancestors).

not_p(Ancestors) :- member(not_p,Ancestors).

not_q(Ancestors) :- member(not_q,Ancestors).

not_r(Ancestors) :- member(not_r,Ancestors).

not_s(Ancestors) :- member(not_s,Ancestors).

not_t(Ancestors) :- member(not_t,Ancestors).

The search strategy used in PTTP is depth-first iterative deepening. PTTP uses a depth-

first search to a depth bound which is increased by some increment if a proof is not

found, and the search is then rerun with the new depth bound. Although this means

recomputing results from previous levels with each depth bound increase, because of the

exponential growth in the size of the search space it has been shown that for depth-first

iterative deepening search “in general, it is still only a constant factor more expensive than

breadth-first search” [41].

Stickel’s work to extend Prolog to full first order logic lead to other systems such as Near-

Horn Prolog [25] and Non-Horn Prolog [32]. One of the main problems with a PTTP

style prover is the generation of contrapositives. As well as increasing the number of

clauses, this can lead to ‘unnatural’ search behaviour. To illustrate this, consider the ex-

ample originally given in [32] of the clause and�X�Y � � is true�X�� is true�Y �. In a

PTTP style prover, the following contrapositive would be generated:

not is true�X� ���and�X� Y�� is true�Y�.

Looking at this new clause in isolation, it appears to say that in order to prove that

not is true�X� is true, it is required to first prove that not and�X� Y� is true for an unre-

lated Y and then to prove that is true�Y� is true. This does seem like an odd approach

to take. Both Near-Horn Prolog and Non-Horn Prolog use case-analysis as the means
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of handling multi-literal heads without the need to generate all contrapositive clauses as

done in PTTP and thus avoid this undesirable behaviour.

Case analysis works as follows: the clause p � q can be interpreted as “p may be false as

long as q is true ”.

Given S � fp � q��p��q� r��r � s��r � �s � t� p � �tg

� Assume �p is true, then p � q is true only if q is true.

At this point, instead of following the reasoning and examining the clause �q � r,

the deduction is stopped and restarted with the original conjecture. The truth of the

second head literal q is not contested.

� Given that �p is true, p � �t is true only if �t is true.

� If �t is true then �s is true or �r is true.

� If �s is true, �r is true.

� If �r is true, then �q is true. This contradicts the condition that q is true for the

first stage of the deduction. So the assumption that �p is true is shown to be false.

Both near-Horn Prolog and Non-Horn Prolog required changes to be made to the Prolog

engine. Baumgartner and Furbach proposed a modification to ME-PTTP called restart ME

[1]. This implements case-analysis to avoid the contrapositives in a manner compatible

with ME and is easily added to a PTTP based prover as demonstrated by the theorem

prover PROTEIN [2]. No changes are required to the underlying prolog engine.

2.3 Guidance Strategies Employed by Linear Deduction
Systems

All ATP systems need some form of guidance strategy. The search space is too large to be

traversed fully. Guidance strategies can be based on semantics or syntactic considerations.

Historically, syntax based strategies have been more popular.
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In linear systems, guidance strategies include giving preference to short side clauses as the

resulting new centre clause will be smaller and so hopefully closer to the empty clause

than that generated by resolution with a long side clause. An argument to justify this

heuristic is that statistically there are fewer models supporting a short clause then a long

clause, and that since there are many more long clauses than short ones and the eventual

proof consists of clauses shorter than some (unknown) bound, it makes sense to postpone

the exploration of long clauses as much as possible. An example of this is the unit pref-

erence strategy [45]. Using this strategy, if a choice exist between using a side clause of

length 1 and a side clause of length � � in a resolution set, then the shorter clause is tried

first. It is a preference rather than a rule because unit resolution (where one of the parent

clauses must be a unit clause for all resolutions) is equivalent to input resolution [7] and

is complete for Horn clause sets only.

Identical Ancestor pruning is another syntactic pruning strategy that can be applied to ME

proofs. Under identical ancestor pruning, a deduction cannot contain identical A-literals

in the same central chain. This effectively prevents solving the same sub-goal more than

once in any branch of the proof. When ME is viewed as a clausal tableau, this type of

pruning is called the regularity condition. A clausal tableau is regular if no literal occurs

on any one branch more than once [21]. Figure 2.7 shows two ME linear deductions, one

with identical ancestor pruning and the other without, and Figure 2.8 shows the same two

deductions in tableau format. Identical ancestor pruning (or regularity) is a very powerful

pruning technique for ME based provers.

2.4 Summary

Modern ATP techniques are mostly based on the resolution procedure. Many refinements

of resolutions have been developed with a view to reducing the size of the search space

generated by the level-saturation resolution approach. One of these refinements is linear

resolution. The most “popular” form of linear resolution used in modern ATP systems is

Model Elimination. The Model Elimination paradigm has been successfully adapted to

Prolog giving rise to Prolog Technology Theorem Provers.
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       money tickets(X)

       ~money ~tickets(X)
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       money tickets(X)
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~money ~tickets(buy) ~money

      ~money tickets(buy)

       money tickets(X)

~money ~tickets(buy) ~money tickets(X)

       ~tickets(sell) money

{}
~money  ~tickets(X) ~money  ~tickets(X)

Figure 2.7: Two ME linear deductions for the clause set fmoney� tickets�X��
�money� tickets�buy�� money� �tickets�sell�� �money� �tickets�X�g: a de-
duction using identical ancestor pruning is shown in (a) and a deduction without identical
ancestor pruning is shown in (b).

All ATP systems require some form of guidance strategy. Linear systems are no exception

and techniques such as identical ancestor pruning, linear-input resolution and ordering

strategies have been developed for these systems.
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Figure 2.8: Two ME tableau deductions for the clause set fmoney� tickets�X��
�money� tickets�buy�� money� �tickets�sell�� �money� �tickets�X�g: a
regular tableau is shown in (a) and a tableau without regularity is shown in (b)



Chapter 3

Semantic Guidance Strategies

This chapter examines the history of semantic guidance from the early resolution principle

based systems to the theorem proving systems of today. It also includes a brief discussion

of model generation systems.

3.1 Early Resolution Systems

One of the first guidance strategies developed for the resolution procedure, the Set of

Support (SoS) [45] strategy, uses semantics to introduce backward chaining reasoning.

It has proven to be very successful and is still used by some of the powerful theorem

provers today (e.g., OTTER [28]). The input clause set S is split into two sub sets, T

and SnT , where SnT is satisfiable. T is called the set of support. The restriction is then

placed on resolutions such that one parent must belong to T or have an ancestor from

T . It is considered to be semantic based as the set of support is usually chosen from the

conjecture and hypothesis clauses and SnT contains the axioms. Logically, SnT contains

information known/assumed to be TRUE and T contains the things we are trying to prove

and (in the case of the conjecture) assumed to be FALSE. If both the hypothesis and the

conjecture are included in the set of support, then the prover can reason forward from

the hypothesis and backwards from the conjecture. If the set of support is restricted to

the conjecture only then the system becomes purely backward chaining. It achieves good

24
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pruning of the search space at the first level, but the effect diminishes as the search depth

increases.

Chronologically, many early semantic based strategies were developed from syntax-based

ones. For example, in P�-deduction [34] the clauses are separated into positive and neg-

ative groups by examining the signs of their literals. Clauses containing only unnegated

literals are termed positive and the rest negative. In P�-deductions, only resolutions which

have a parent clause from the positive group are allowed. Pp-deduction [30] extends this

idea. It partitions all the atoms in the clause set into two groups, p� and p�. If a clause

contains only negated p� atoms and unnegated p� atoms then it is considered to be a p-

clause. A Pp-deduction consists of resolutions where one parent is a p-clause. In [30] no

recommendations are made as to how to select the atoms for p� and p�.

Model resolution [26] was proposed in 1968. In this method, two models M� and M� are

used as the basis for partitioning the clauses. Together, M� and M� contain all the literals

in the Herbrand universe of the set of clauses i.e. M�

S
M� � H�S�, and M� and M�

are disjoint i.e. M�

T
M� � 	. The clause set S is partitioned into two sets S� and S�.

The set S� contains a clause C 
 S if it is satisfied by M� and H�C�
T
M� � 	. The

set S� contains those clauses satisfied by M�. Deductions are restricted to those that have

one parent from set S� and one parent from S�. Resolvents are also partitioned using the

models M� and M�. One can see that if M� is the set of all positive literals in H�S� and

M� contains all the negative literals then the partitioning of the clauses is the same as that

achieved in a P� deduction. With model resolution, semantics can be used to divide the

clauses into the two partitions instead of using syntactic features such as the sign of the

literals in the clauses.

Semantic resolution [36] is a semantic based equivalent of the earlier syntactic based

strategy of hyper-resolution [34]. In hyper-resolution a negative clause is chosen as one

parent and called the nucleus. Positive clauses, called electrons, are chosen to resolve

against the negative literals in the nucleus. A single hyper-resolution step involving a

nucleus containing n negative literals may involve up to n electrons. The result of a hyper-

resolution step is a positive clause or the empty clause. In semantic resolutions, instead of

the electrons being positive clauses, they are clauses that are (sometimes) FALSE in some
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chosen model M . The word “sometimes” is needed as the clauses are in first order logic

and so contain variables. For an electron, while one instantiation of the clause may be

FALSE in the model M , another may not. Variables in clauses are (implicitly) universally

quantified, so as long as it is possible for the electron to be FALSE, it is to be FALSE.

3.2 Linear Systems

With the development of linear resolution, different ways of using semantic information

for search guidance were investigated. Linear input resolution [7], with its lack of com-

plicating ancestor resolutions, lends itself to semantic pruning [5] in the following way:

The empty clause, �, has the interpretation of FALSE in every interpretation. A FALSE

resolvent must have one or more FALSE parents. Assume there is a refutation, R, of a

set of clauses, S. Assume there is a model M of the side clauses in R. The last centre

clause in R is �, which is FALSE in M . The side clause parent of � is TRUE in M , so

the second last centre clause, Cn, must be FALSE. If Cn is FALSE then its predecessor,

Cn��, must also be FALSE - and so on. From this the initial top centre clause,C�, is

shown to be FALSE. So if the side clauses are known, a model of them, M , can be found

and any centre clause that is TRUE in M can be rejected. For the Horn case, if we take

a negative clause to be the initial centre clause, then the side clauses are the non-negative

clauses and a model can be found for these.

Linear input resolution is complete for Horn clause sets only. Extending the semantic

pruning idea to non-Horn clauses has been discussed. “It may be possible to adapt se-

mantic checking to non-Horn clauses. For instance, by insisting that if a true clause is

introduced attempts are made to ancestor resolve it or its descendants with a non-true

ancestor. To the best of my knowledge no one has attempted this.” [Alan Bundy [5], p.

149].

One way of extending semantic pruning to the non-Horn case is by using linear-input

subset analysis [43]. In many linear deductions, there are situations where ancestor resol-

utions do not take place. These are known as linear-input subdeductions. By identifying
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these situations, it is possible to use semantic pruning on these sections in the same man-

ner as in linear-input resolution.

3.3 Modern ATP systems

Semantic guidance has been used in forward chaining systems for sometime. In semantic

resolution a model is used to partition the clauses into two distinct sets. This model has

to be provided to the theorem prover. “One might hope that someday the program could

devise its own models.” [36] SCOTT [38] and RAMCS [6] both attempt to fulfil this wish.

SCOTT initially uses SoS to partition the input clause set into the support set, U , and the

remaining clauses, T , and then uses a model generator to generate a model, M , for T . As

new clauses are generated, they are tested against M . If a new clause g is satisfied by M ,

then it is added to T . If the clause g is not satisfied by M , then SCOTT tries to find a new

model N for T � g. If N exists then it becomes the new model for T and g is added to T ,

otherwise the model M is retained and g is added to U . Searching for models is expensive

so, after a number of clauses have been evaluated (this is a configurable parameter), the

model is fixed and no further improvement on the model is attempted. From this point

the model is used to decide if new clauses are to be included in T or U . In this manner,

SCOTT devises its own models to guide its search.

Since the first SCOTT system was developed, it has undergone a series of evolutionary

changes [39, 18]. The latest system is SCOTT-5 [17]. A problem with the early SCOTT

systems is that the model generated to guide the search is dependent upon the order in

which new clauses are presented for inclusion in the model. In SCOTT-5, multiple models

are used to overcome this problem. The guidance used in SCOTT-5 is based upon the

idea that if the maximally consistent subset of clauses (MCS) derived at some point in

the proof search was known then, if a clause c could be found that was inconsistent with

MCS then any refutation of MCS � c would include c. Finding sets that are maximally

consistent is not feasible but near-maximally consistent sets (NMCS) can be found. A set

of clauses A is said to be a near-maximally consistent set if it is consistent and there is no

proper extension of A that is known to be consistent [18]. Consistency is determined by
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the ability of the model generation unit to produce a model for the clause set. SCOTT-5

maintains several NMCS and uses these when selecting parent clauses for inference steps.

RAMCS uses constrained clauses (c-clauses) which are [clause:constraint] couples. The

constraints are used in a simultaneous search for models and refutations. When clauses are

resolved together the resulting resolvent inherits the constraints from both parent plus any

new ones generated by the resolution operation. The constraints contain conditions that

force a clause to be evaluated to either TRUE or FALSE in an interpretation. By ensuring

that in a resolution operation one parent evaluates to TRUE and the other to FALSE,

semantic resolution is applied. The model is incrementally built by the constraints created

as clauses are resolved together.

Although resolution based systems dominate the field of ATP, some work has been done

re-examining Herbrand-based instantiation methods. With the increased computing re-

sources and utilizing techniques from propositional theorem proving research, some of

the instantiation methods are now feasible. The CLIN-S system [10] is an instantiation

based prover that uses ordered semantic hyper-linking (OSHL). An initial model M is

provided along with the input clauses, and this model is used to generate ground instances

of the clauses. When ground clauses are created that are not satisfied by the model, the

model M is modified so that it is a model for all the ground clauses. If a set of ground

clauses is found that can not be satisfied by any model than a refutation has been found.

More recently, semantic guidance has been incorporated into a resolution theorem prover

using clause graphs [9]. The nodes of a clause graph are the literals. Complementary,

unifiable literals are connected by a link, and literals are grouped together to form a clause.

So each link represents a possible resolution step in the graph. To perform a resolution

step, a link is selected, the resolution of the linked clauses is performed and the link is

deleted. The new resolvent is added into the graph and new links for this clause are

inserted. The deletion of the resolved upon link may result in the creation of pure literals

- literals that have no links to others. Clauses containing pure literals can be deleted from

the graph. Semantic guidance is used in selecting which links to act upon. A number of

models are generated for the axioms in the original clause set. Each link is labeled with

the number of models in which the resolvent generated from that link is TRUE. The link
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with the smallest label is the one selected for the next resolution step.

3.4 Model Generation

Where does the semantics used in the systems mentioned in Section 3.3 come from? An

informed user of these theorem provers may know enough about the problem they are

trying to solve that they can provide their own. Some of these systems either need to

generate models as they proceed through their search or provide a fully automated mode

where all semantics are generated by the system. Software to generate models have been

around for some time. Some of the earliest ATP systems used instantiation methods

based on Herbrand’s theorem [8]. They generated ground clauses from the input clause

set, using the clause set’s Herbrand Universe as the domain elements, and then tested the

ground clauses for unsatisfiability. If the domain size is finite then the methods can be

used to determine satisfiability and to generate models. The best known of these methods

is the Davis-Putnam-Loveland-Logemann (DPLL) algorithm [12, 11].

The DPLL algorithm is used as the basis for several propositional model generation sys-

tems such as SATO [46] and MACE [28]. It is possible to use the DPLL algorithm to find

models for first-order problems by converting the first-order clauses into propositional

clauses using a finite domain. For example, given the clause p�f�X�� Y�� q�X� g�Y�� and

the domain D � f�� �g, we first need to flatten the clause to remove the functors. The

original clause is replaced with a new clause as follows:

�Z � f�X�� � �W � g�Y��� p�Z� Y� � q�X� W�

Of course this clause in not in CNF. To convert it to CNF two new binary predicates,

predicate f and predicate g, are created such that predicate f�X� Z� represents

�Z � f�X�� and predicate g�Y� W� represents �W � g�Y��. The new clause in CNF is:

p�Z� Y� � q�X� W� � �predicate f�X� Z�� �predicate g�Y� W�

The propositional clauses are generated by substituting values fromD for the variables in

the flattened clause. The DPLL algorithm is then applied to the propositional clauses and

a model generated.
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The conversion of first order clauses to propositional clauses results in a larger input

clause set. The deeper the nesting of the functions the bigger the expansion of the clause

set. In some cases this proves to be prohibitive in that the clause set becomes too large

to manage in the memory available. Other first-order model generators use constraint

satisfaction based algorithms, for example, FINDER [37] and SEM [47]. These systems

are designed for first-order logic and don’t convert clauses to the propositional state.

Model generators have been used in finite mathematics research, and also in theorem prov-

ing to provide counter-examples. More recently, FINDER has been used in the SCOTT

system to generate models to provide semantic information.

3.5 Summary

This chapter has reviewed several different semantic guidance strategies that have been

developed including the Set of Support, model resolution, and semantic resolution. For

linear systems, semantic guidance techniques have been developed for linear-input resolu-

tion and ways of applying these to full linear resolution have been discussed. Modern ATP

systems that use semantic guidance have also been reviewed including SCOTT, RAMCS,

and CLIN-S.

Model generation systems were also discussed as a means of generating semantic inform-

ation for use with a theorem prover. Two main types were reviewed, namely DPLL based

and constraint satisfaction based systems.



Chapter 4

Guiding Linear Deductions with
Semantics

This chapter describes the GLiDeS strategy for guiding a linear deduction system using

semantics. In the first section the theory is explained and completeness discussed. Next

the design and architecture of the implemented PTTP+GLiDeS system is described.

4.1 Theory

The GLiDeS semantic pruning strategy is based upon the strategy that can be applied

to linear-input deductions (see Section 3.2). Linear-input resolution is complete only

for Horn clauses and, unfortunately, the extension of the linear-input semantic pruning

strategy to linear deduction is not direct. The possibility of ancestor resolutions means

that centre clauses may be TRUE in a model of the side clauses. For the non-Horn case,

ancestor resolution is required for refutation-completeness.

In GLiDeS, rather than placing a constraint on entire centre clauses in a refutation, a

semantic constraint is placed on selected literals of the centre clauses as follows: The

input clauses other than the chosen top clause of a linear deduction are named the model

clauses. In a completed linear refutation, all centre clause literals that have resolved

against input clause literals are required to be FALSE in a model of the model clauses.

31
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TRUE centre clause literals must be resolved against ancestor clause literals. This leads

to a semantic pruning strategy for ME that, at every stage of a deduction, requires all

A-literals in the deduction so far to be FALSE in a model of the model clauses. The result

is that only FALSE B-literals are extended upon, and TRUE B-literals must reduce.

4.1.1 Formal Notation

The notation used is that described by Baumgartner and Furbach [3]. Before formally

describing the GLiDeS pruning strategy, it is necessary to redefine Model Elimination in

terms of the new notation.

New Terminology

The ME deduction in Figure 4.1 is shown in tableau format as a tree structure. Extension

operations are performed by resolving a leaf node with an input clause resulting in the leaf

node becoming a new internal node and the literals from the extending clause becoming

new leaf nodes. The leaf node and the literal from the extending clause are said to have a

connection if there exists a MGU � such that when � is applied to the leaf node and the

literal from the extending clause they are then complementary. If a leaf node is comple-

mentary to one of the internal nodes in its branch then the branch contains a contradiction

and is considered closed, indicated with an asterisk. Once a branch is closed it need not be

considered further. If a tableau deduction consists of all closed branches then a refutation

has been found.

~p ~q

~q * qp p

path p

*

Figure 4.1: Tableau ME proof for the clause set fp � q� p � �q��p � q��p � �qg

A path is an open branch and can be described as a sequence of literals from the root of
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the tableau to a leaf node. Given the ME deduction shown in Figure 4.1, the path p can be

described as p � �p � �q where � is the append function for literal sequences. The last

literal in a path p is called the leaf of p or leaf fpg. A ME tableau consists of a multiset (or

bag) of paths. Definition 1 gives the formalization of the Model Elimination procedure in

terms of this notation.

Definition 1 (Model Elimination) Given a set of clauses C , a sequence �P�� ����Pn� is

called an ME derivation iff

� P� is a path multiset f� L� �� ���� � Ln �g consisting of paths of length 1, with

L� � ��� � Ln in C , and

� Pi�� is obtained from Pi by means of an extension step, or

� Pi�� is obtained from Pi by means of a reduction step.

A refutation is a derivation where Pn � fg.

The extension inference rule is defined as

P � fpg L �D

R

where

1. P � fpg is a path bag, and L �D is a variable disjoint variant of a clause in C; L

is a literal and D denotes the remaining literals of L �D.

2. �leaf�p�� L� is a connection with MGU �.

3. R � �P � fp � � K � jK 
 Dg��

The reduction inference rule is defined as

P � fpg

P�

where
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1. P � fpg is a path bag.

2. There is a literal L in p such that �L� leaf�p�� is a connection with MGU �.

The GLiDeS strategy can be incorporated into this definition for tableaux ME.

Definition 2 (ME + GLiDeS) Given a set of clauses C and an interpretation I , a se-

quence �P�� ����Pn� is called an GLiDeS ME derivation iff

� P� is a path multiset f� L� �� ���� � Ln �g consisting of paths of length 1, with

L� � ��� � Ln in C and L� � ��� � Ln is FALSE in I , and

� Pi�� is obtained from Pi by means of an extension step, or

� Pi�� is obtained from Pi by means of a reduction step.

A refutation is a derivation where Pn � fg.

The extension inference rule is defined as

P � fpg L �D

R

where

1. P � fpg is a path bag, and L �D is a variable disjoint variant of a clause in C; L

is a literal and D denotes the remaining literals of L �D.

2. �leaf�p�� L� is a connection with MGU �.

3. leaf�p� has a FALSE ground instance in I .

4. R � �P � fp � � K � jK 
 Dg��

The reduction inference rule is defined as

P � fpg

P�

where
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1. P � fpg is a path bag.

2. There is a literal L in p such that �L� leaf�p�� is a connection with MGU �.

3. L� has a FALSE ground instance in I .

4.1.2 Completeness and Soundness

The GLiDeS strategy is sound as it is a search space pruning strategy and doesn’t change

any inference operations - it just removes from the search some branches of the search

path. Completeness is a more complicated issue.

The GLiDeS strategy is complete when the guiding model produces a semantic-Horn

set of ground clauses from the input clause set. By semantic-Horn we mean that when

the input clause set is made ground by substitution of the model’s domain elements and

evaluated in the guiding model then there is at most one TRUE literal per clause. A

measure of how close to semantic-Horn a clause set is for a particular guiding model is

the excess TRUE literal count which is analogous to the excess positive literal count used

to measure closeness to a Horn set. The excess TRUE literal count, k, is the sum of the

number of “extra” TRUE literals in a clause. To be semantic Horn a clause may have at

most 1 TRUE literal, any above this is excess and contributes to k.

The completeness proof for ME+GLiDeS for a clause set and guiding model with k � �

is shown below and is essentially the similar to the proof by Slagle for renaming [36].

Theorem 1 Let S be a minimally unsatisfiable set of clauses and M is a finite model of

SnC where C is the chosen top clause that is FALSE in M . If S is semantic-Horn with

respect to M then there exists a GLiDeS-deduction of S.

Proof

Let S� be some domain ground instance of S. Let C � be the chosen top clause from S � for

a ME deduction. Let M � be a model of S �nC � (the model clauses) and C � is FALSE in

M �. M � is called the guiding model.
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Let k�S�� denote the excess TRUE literal count for S � with respect to M �.

Let k�S� � � , that is all clauses in S� have 0 or 1 TRUE literal in M �.

Rename the literals in S � such that all literals that are TRUE in M � are positive and all

literals that are FALSE in M � are negative. Let this renaming of S � be called S �

r, the top

clause C � becomes C �

r, and the corresponding guiding model, M �

r .

Then there exists a linear input refutation of S �

r [16] i.e. a ME refutation without reduc-

tions. As C �

r is a negative clause and each clause in S�

r contains at most 1 positive literal,

all A-literals are negative, i.e., all A-literals are FALSE in M �

r. Therefore, there exists an

ME refutation of S � without reductions and all A-literals are FALSE in M �. That is there

exists a GLiDeS refutation of S � with respect to M �.

If there is a GLiDeS refutation of S � then there is a GLiDeS refutation of S as each clause

C � 
 S� corresponds to some C 
 S. This completes the proof. �

For k�S� � �, when combined with regularity pruning the GLiDeS strategy is not com-

plete.

Example 4 S = f�p � �r � �s� p � s � r��p � t � u� p � �t � �u��q � r��q � s�

�q � t��q � u� q � �r� q � �s� q � �t� q � �ug

The top clause is �p � �r � �s and remainder of clauses are the model clauses. The

guiding model is M = fp� q� r� s� t� u�vg

For S in model M , k�S� is 3.

A GLiDeS proof with regularity doesn’t exist for this set S. The problem is the clause

p � s � r which contains 3 TRUE literals. For a GLiDeS proof to exist this clause needs

to be at the end of a branch that enables the extra TRUE literals to reduce against FALSE

internal nodes. The problem appears to be regularity pruning which is a common pruning

method employed in ME deduction systems. For the problem set given in Example 4

however, a GLiDeS proof is possible if we ignore regularity (see Figure 4.3).
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Figure 4.2: non-GLiDeS proof with regularity
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Figure 4.3: GLiDeS proof without regularity. Internal nodes that violate regularity are
highlighted

A model elimination system would not be implemented without regularity pruning, so for

all practical purposes GLiDeS is an incomplete strategy.

The success of GLiDeS depends on the guiding model chosen. Unlike linear-input de-

ductions where pruning can be successfully used with ANY model of the side clauses,

in GLiDeS pruning one model of the side clauses may result in a proof being found

where another may not. For example, consider the problem MSC006-1 from the TPTP

library [44]. Stated in English the problem is:

“Suppose there are two relations, P and Q. P is transitive, and Q is both trans-

itive and symmetric. Suppose further the squareness of P and Q: any two

things are related either in the P manner or the Q manner. Prove that either P
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is total or Q is total.”

Converting this problem statement to CNF FOL and negating the conjecture produces the

clause set SMSC����� = f�p�X� Y� � �p�Y� Z�� p�X� Z���q�X� Y� � �q�Y� Z�� q�X� Z��

�q�X� Y� � q�Y� X�� p�X� Y�� q�X� Y���p�a� b���q�c� d�g.

A GLiDeS proof for this clause set is shown in Figure 4.4. The chosen top clause is

�q�c� d� and the set of model clauses is SMSC������M� � f�p�X� Y� � �p�Y� Z�� p�X� Z��

�q�X� Y� � �q�Y� Z�� q�X� Z���q�X� Y� � q�Y� X�� p�X� Y�� q�X� Y���p�a� b�g. The guid-

q(c,d) ~q(c,a) ~q(a,d)

~q(c,d)

q(c,a) ~q(a,c)

q(a,c)

q(a,b)

p(a,c)

p(a,b)

~q(a,b) ~q(b,c)

~p(a,b)

q(b,c) ~q(c,b)

q(c,b) p(c,b)

~p(c,b) p(a,b)

~p(a,b)q(a,c)

q(a,d) ~q(a,b) ~q(b,d)

q(a,b) p(a,b)

~p(a,b)

~q(d,b)q(b,d)

q(d,b) p(d,b)

~p(d,b) ~p(a,d) p(a,b)

~p(a,b)q(a,d)p(a,d)

~p(a,c)

Figure 4.4: A GLiDeS deduction for MSC006-1.

ing model for this deduction is

MMSC����� �

��
�

q�X�Y � � TRUE 
X�Y 
 fa� b� c� dg

p�X�Y � �

�
TRUE for X � a� Y 
 fd� cg
FALSE otherwise

��
�

When generating a model for the model clauses, more than one model is possible. Altern-

ative models generated were

MMSC�������� �

�
q�X�Y � � TRUE 
X�Y 
 fa� b� c� dg
p�X�Y � � FALSE 
X�Y 
 fa� b� c� dg

�

MMSC�������� �

��
�

q�X�Y � � TRUE 
X�Y 
 fa� b� c� dg

p�X�Y � �

�
TRUE for X � a� Y � d

FALSE otherwise

��
�
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MMSC�������� �

��
�

q�X�Y � � TRUE 
X�Y 
 fa� b� c� dg

p�X�Y � �

�
TRUE for X � a� Y � c

FALSE otherwise

��
�

Of the four guiding models, onlyMMSC����� results in the GLiDeS guided system finding

a proof. Using any of the other models, MMSC��������, MMSC�������� or MMSC��������,

with the GLiDeS guided system result in non-termination of the program.

Interestingly, the proof discovered using MMSC����� is different from the one discovered

by the unguided system (see Figure 4.5) which is a non GLiDeS proof. At first the proof

shown in Figure 4.5 looks like it will be GLiDeS compliant - it contains some reductions

but no complementary internal nodes. If this proof was a GLiDeS proof the guiding model

q(c,d) ~q(c,b) ~q(b,d)

~q(c,d)

q(c,b) ~q(c,a) ~q(a,b)

q(c,a)

~p(a,b)

~q(a,c) q(a,b) p(a,b)

q(a,c) p(a,c) ~p(a,b)

~p(a,c) ~p(c,b) p(a,b)

p(c,b) q(c,b) ~p(a,b)

q(b,d) ~q(b,a) ~q(a,d)

q(b,a) ~q(a,b)

q(a,b) p(a,b)

~p(a,b)

~p(a,d) ~p(d,b)

p(d,b) q(d,b)

~q(d,b) q(b,d)

q(a,d) p(a,d)

p(a,b)

Figure 4.5: An ME deduction for MSC006-1.

would be given (at least partially) by the leaf nodes of the tableau. In this case, the leaf

nodes contain the literals q�b� d� and �q�d� b�. There is no model of the model clauses

containing these two literals as the model clause�q�X� Y� � q�Y� X� is made FALSE when

X � b, Y � d and q�b� d� � TRUE, �q�d� b� � TRUE.

MSC006-1 is a relatively uncomplicated problem. It contains no functions, only constants

and variables, and it is a minimally unsatisfiable clause set - all clauses are used in produ-

cing the proof. Yet for this problem we can see that applying semantic guidance is not as

straightforward as for a Horn clause set where linear input resolution can be used. There

is no guarantees that any model generated will be effective. However, when an effective

model is found the guidance it provides can be very effective. For example, for MSC006-1

the unguided system found a proof in 100.47 seconds and 1792624 inference steps while
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the guided system found a proof in 5.25 seconds and 14308 inference steps. Given this

type of improvement in performance it is worth investigation the pruning strategy further

to determine:

� Strategies for selection of the “best” guiding model;

� The extent of the incompleteness problems; and

� If it is possible to identify those types of problems where the GLiDeS pruning

strategy is best utilized.

4.2 GLiDeS System

The GLiDeS pruning strategy was evaluated by incorporating it into an existing linear

deduction system and then combining this system with a model generator. The decision

to use an existing system, rather then write a new system from scratch, was motivated by

an unwillingness to “re-invent the wheel” and a desire to evaluate the effectiveness of the

pruning strategy as opposed to the quality of a new theorem prover.

Figure 4.6 shows the architecture of the PTTP+GLiDeS system. PTTP+GLiDeS uses a

Prolog technology theorem prover (PTTP v2e [42]) to compile the input clauses into

Prolog code which is then run on a Prolog engine. An interpretation generator takes

(MACE v1.4 [29]) the model clauses from the input clause set and generates a model

which is also given to the Prolog engine. The Prolog code uses the model to implement

the semantic guidance, as described in Section 6.1.

4.3 Summary

In this chapter, the GLiDeS strategy for semantic pruning of model elimination deduc-

tions was defined. It was shown to be sound but complete only for a subset of problems

termed Semantic Horn. The GLiDeS strategy is incomplete when combined with identical
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Figure 4.6: Architecture of the PTTP+GLiDeS system.

ancestor pruning (also know as regularity pruning). To evaluate the effectiveness of the

GLiDeS strategy, an ATP system incorporating GLiDeS with PTTP (a Model Elimina-

tion based theorem prover) and MACE (a model generation program) was proposed. The

architecture of the PTTP+GLiDeS system was described.



Chapter 5

Model Generation and Selection

One of the major problems with using semantics to guide automated theorem proving

systems is the overhead involved in performing the semantic checks. However, if the

semantics provide effective guidance, this is more than offset by the reduction in the

search space. This leads to the question: What are good semantics and how can the best

semantics be selected from a range of choices?

5.1 Model Generation

For a given set of model clauses, it is usually possible to generate a number of finite

models. During experimentation with PTTP+GLiDeS, it was noticed that different mod-

els sometimes produced very different results. One model would yield a solution very

quickly while another would fail to find a proof within the time limit. The overhead in

time associated with performing the semantic checking is often large. If a model per-

forms effective pruning of the search space this overhead is more than compensated for.

If a model provides little or no guidance than better performance would be achieved by

not using the GLiDeS strategy. The system requires a way of determining which model

from a set of models, would be the best choice for using with GLiDeS.

42
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5.2 Model Selection Heuristic

A set of clauses is said to be semantic Horn with respect to a model M if, when the

clauses are instantiated with the model’s domain elements and evaluated in the model,

there is at most one TRUE literal in each clause. It has been shown in Section 4.1.2 that if

a model of the model clauses produces a semantic Horn set of ground clauses for a given

input clause set then PTTP+GLiDeS is refutation complete. Given a number of different

models for a model clause set, it is hypothesized that the model which produces a ground

clause set closest to semantic Horn will be the best choice for using with GLiDeS.

In order to determine which model produces a ground clause set closest to semantic Horn,

the number of excess true literals for each set of ground clauses needs to be measured.

The excess true literal count is similar to the excess positive literal count used to measure

how near to Horn a set of clauses is. Once the clause set has been grounded using the

model’s domain, the ground clauses are evaluated in the model. If a clause contains 0 or

1 TRUE literal then it is considered semantically Horn. Any TRUE literals after the first

are considered to be excess. For example, a ground clause with 4 TRUE literals has an

excess TRUE literal count of 3. The total excess TRUE literal count for a clause set is the

sum of the individual clause excess TRUE literals. This gives a measure of how far from

semantically Horn a set of clauses are.

When generating models it is possible to specify the domain size to use. Some model

generators (e.g. SEM, FINDER, MACE2, MACE4) will output all models found with a

domain size within a given range (lower and upper bound provided as input data). Other

generators (e.g. MACE) look for models of a fixed domain size. PTTP+GLiDeS uses

MACE as its model generation component and so models generated for a particular clause

set all have the same domain size. It is possible to run MACE with different domain sizes

to build a collection of models with various domain sizes. However, problems occur when

trying to compare the total excess TRUE literal counts of models with different domain

sizes.

If different models for the same clause set have different domain sizes then the number
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of ground clauses generated will be different and so comparing straight excess true literal

counts may not be “fair”. Normalizing the TRUE literal count to give an “average TRUE

literal count per clause” has been considered but is not deemed to be reliable. Early exper-

iments indicate that the models with smaller domains generally have a lower normalized

TRUE literal count and so the normalized TRUE literal count is biased to selection of

smaller models which are not necessarily the ones that provide the best guidance. To en-

sure fair comparison, all models for a particular clause set are generated with the same

domain size.

Tuning of the domain size for a model can have a large impact on the types of models

generated and thus on the performance of the guidance. Ideally, a user of the system

would have a good “feel” for the problem (s)he is trying to solve and could intelligently

choose an appropriate setting. For testing of the model selection heuristic it is desirable to

examine a large number of problems and so individually setting the domain size for each

problem becomes unrealistic. It was necessary to have a default setting to enable large

scale testing.

Initially, the default MACE setting (starting with a domain size of two and incrementing

by one until one or more models were found) was tried. For some clause sets, this ap-

proach works well but for many it did not. After thinking about what the domain of a

model represents it was decided to set the domain size equal to the number of constants

(including Skolem constants) in the clause set. The rationale for this is that it was felt that

the constants were placed there by the problem’s author and so in some way represent

the domain of the problem. Of course, Skolem constants are added by the conversion

from FOL to CNF and so represent something of an artefact, but at this stage they are

considered equivalent to “normal” constants.

Another reason for starting the model search at the number of constants is that the more

detailed a model, the more able it is to distinguish between different terms. For example,

a model with a domain size of 2 for a clause set with three constants a� b� c might assign

the following values, a � �� b � �� c � �, thus causing the terms p�a� b� and p�c� b�

to be perceived to be identical with respect to the model. A model with a domain size

equal to the number of constants has the ability to distinguish between the constants (e.g.
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a � �� b � �� c � �) and thus the terms may evaluate to different truth values.

While these arguments do not hold in all cases, the PTTP+GLiDeS system is designed to

run fully automatically and it has been found that, in the majority of cases, the domain

size choice worked satisfactorily. Again, an informed user with knowledge of their prob-

lem can customize the domain size decisions to ones more appropriate to their particular

situation.

The exception to the “domain size = number of constants” rule occurs when the problem

contains equality. In the case of equality, the domain size is initially set to 2. MACE has

inbuilt equality and will only allow a � b if a and b are assigned to the same domain

element. With the initial domain size set to either 2 (in the case of equality) or the number

of constants, MACE is given some time to find models. If, at the end of this time, no

models have been found then domain size setting resorts to the default MACE behaviour.

The domain size is either i) incremented if the initial domain size was less than or equal

to 2 or ii) set to 2 if greater than 2. This process is repeated until i) a model is found, ii)

the time limit expires, or iii) the domain sizes between 2 and number of constants have

been searched unsuccessfully.

5.3 Implementation and Performance

PTTP+GLiDeS performs best on non-Horn problems [4]. PTTP+GLiDeS uses MACE as

its model generator. As discussed in Section 3.2, semantic guidance for linear deductions

involving Horn sets has been researched previously. So experiments focused on non-Horn

problems for the TPTP Library. MACE was used to generate up to 10 different models for

each problem. The aim of this experiment was to evaluate the effectiveness of the model

selection heuristic. It was felt gathering data for 10 models - comparing the heuristic

value of each model with the model’s performance with respect to guiding the prover to

a solution - would provide sufficient data to either support or refute the assertion that the

heuristic provides a means for selecting a model capable of guiding the theorem prover

effectively.
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5.3.1 Initial Implementation

The version of PTTP+GLiDeS used in the initial tests used clause ordering but no literal

ordering (see Chapter 6, Section 6.2 for details). The “unbiased, non-Horn” problems

from the TPTP Library v2.3.0 were used. The model generator was MACE v1.3.2.

There are 1208 unbiased, non-Horn CNF problems in the TPTP Library v2.3.0. For 1072

problems, no models were generated. Of the remaining 138 problems, MACE generated

more than one model for 89 problems. For these 89 problems, MACE was used to gen-

erate up to 10 different models for each problem. PTTP+GLiDeS was then run on each

problem using each of the different models generated by MACE, with a time limit of 300

seconds. In most cases, the choice of model made no real difference to the end result. Of

the 89 problems with more than one model, for 22 of these problems MACE generated

models that all scored the same. These problems had the same result whichever model

was used (16 Timeout, 6 Theorem). For 67 problems, models that scored differently were

generated. In 53 cases this made no difference to the result (35 Timeouts, 18 Theorems).

For 14 problems the choice of model had a very significant effect (see Table 5.1). To show

what effects the pruning has on the theorem provers results, the unguided PTTP was also

run on the 22 problems of interest with a 300 second time limit. These results are shown

next to the results for PTTP+GLiDeS.

As can be seen from Table 5.1, in 10 cases the model chosen was the best choice possible.

In 2 cases, the model chosen was adequate - a proof was still found. In 2 cases, the worst

model was chosen and no proof was found. The results of the unguided PTTP system are

also shown. In 11 of the 14 cases, PTTP+GLiDeS with the best model performs as well

or better than PTTP.
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Table 5.1: Results of the best and worst models in the 14 cases
where there was a significant difference in the outcomes.

� Model selected by the Model Selection Heuristic
Scr Total Excess True Literal Score
Infer. Number of inference made during search
Time CPU time (in seconds) for search for proof only

PTTP+GLiDeS PTTP
Problem Model Scr Result Infer. Time Result Infer. Time
CAT002-3 m01 44 theorem 555334 282.42 TIMEOUT

m02 44 TIMEOUT
� m03 40 theorem 535580 255.51

m04 40 theorem 599876 275.51
m05 40 theorem 553352 246.3
m06 40 theorem 596609 263.64
m07 40 theorem 534248 217.16
m08 40 theorem 602558 228.87
m09 40 theorem 556743 206.23
m10 40 theorem 604280 219.52

KRS001-1 � m01 1 theorem 48 0.01 theorem 69 0.0
m02 5 theorem 78 0.01
m03 5 TIMEOUT

KRS002-1 � m01 4 theorem 631 0.1 theorem 334 0.02
m02 8 theorem 273 0.03
m03 8 TIMEOUT

KRS015-1 � m01 17 theorem 2310 0.32 theorem 555 0.03
m02 21 TIMEOUT
m03 21 TIMEOUT

MSC006-1 � m01 58 theorem 14308 5.25 theorem 1792624 100.47
m02 61 TIMEOUT
m03 61 TIMEOUT
m04 64 TIMEOUT

PUZ013-1 � m01 4 theorem 25 0.01 theorem 27 0.0
m02 6 TIMEOUT
m03 5 TIMEOUT
m04 5 TIMEOUT

PUZ014-1 � m01 4 TIMEOUT theorem 127 0.06
m02 6 theorem 117 0.02
m03 5 theorem 176 0.04
m04 5 theorem 267 0.05
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Table 5.1: (continued)

� Model selected by the Model Selection Heuristic
Scr Total Excess True Literal Score
Infer. Number of inference made during search
Time CPU time (in seconds) for search for proof only

PTTP+GLiDeS PTTP
Problem Model Scr Result Infer. Time Result Infer. Time
PUZ023-1 m01 101 TIMEOUT theorem 100051 6.19

m02 100 TIMEOUT
m03 100 TIMEOUT
m04 99 theorem 363774 124.86

� m05 98 theorem 101659 31.78
m06 99 TIMEOUT
m07 99 TIMEOUT
m08 100 TIMEOUT
m09 100 TIMEOUT
m10 100 TIMEOUT

PUZ025-1 � m01 708 TIMEOUT TIMEOUT
m02 712 TIMEOUT
m03 708 TIMEOUT
m04 708 TIMEOUT
m05 708 TIMEOUT
m06 712 TIMEOUT
m07 716 TIMEOUT
m08 712 theorem 296870 276.20
m09 712 theorem 296870 258.31
m10 712 theorem 296870 237.88

SET006-1 m01 44 theorem 52 0.01 theorem 53 0.0
m02 58 TIMEOUT
m03 44 theorem 60 0.01

� m04 36 theorem 51 0.0
m05 43 theorem 52 0.0
m06 54 TIMEOUT
m07 57 TIMEOUT
m08 37 theorem 60 0.01
m09 44 theorem 60 0.01
m10 36 theorem 51 0.0

SYN055-1 � m01 2 theorem 87 0.01 theorem 37 0.0
m02 3 TIMEOUT
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Table 5.1: (continued)

� Model selected by the Model Selection Heuristic
Scr Total Excess True Literal Score
Infer. Number of inference made during search
Time CPU time (in seconds) for search for proof only

PTTP+GLiDeS PTTP
Problem Model Scr Result Infer. Time Result Infer. Time
SYN084-2 m01 6 TIMEOUT theorem 7934 0.56

m02 5 TIMEOUT
m03 5 TIMEOUT
m04 5 TIMEOUT
m05 5 TIMEOUT

� m06 4 theorem 1225 0.13
m07 5 TIMEOUT
m08 4 theorem 1225 0.14
m09 5 TIMEOUT
m10 5 TIMEOUT

SYN325-1 m01 4 TIMEOUT theorem 5 0.0
m02 4 TIMEOUT
m03 4 TIMEOUT
m04 4 TIMEOUT
m05 2 TIMEOUT

� m06 0 theorem 5 0.0
m07 0 theorem 5 0.0
m08 2 TIMEOUT
m09 4 TIMEOUT

SYN352-1 m01 21 TIMEOUT theorem 46191 4.01
m02 20 TIMEOUT
m03 20 TIMEOUT
m04 20 TIMEOUT
m05 20 TIMEOUT
m06 19 TIMEOUT
m07 20 TIMEOUT
m08 20 TIMEOUT

� m09 17 theorem 12956 4.07
m10 20 TIMEOUT

In the majority of cases were more than one model is generated, it seems to make little

difference which model is used. If one model finds a solution, the rest will usually perform

similarly. However in some cases, the choice of model has a dramatic effect of the end

result. In these cases, the model selection criteria of selecting the model which produces
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a ground clause set closest to semantic Horn seemed to be effective.

5.3.2 Final Implementation

After the initial implementation, some changes were made to the PTTP+GLiDeS prover.

In addition to clause ordering, literal ordering was also included. It was felt that the model

selection criteria tests should be rerun. The final testing was performed using v2.4.1 of

the TPTP Library. The model generator used was MACE v1.3.3. The same conditions

of a maximum of 10 models generated per problem and a time limit of 300 seconds were

used.

There are 2744 non-Horn CNF problems in the TPTP Library v2.4.1. MACE failed to

generate models for 2195 of these problems. Of the remaining 549 problems, MACE can

generate more than one model for 358 problems. For these 358 problems, MACE was

used to generate up to 10 different models for each problem.

In most cases, the choice of model made no real difference to the end result. Of the 358

problems with more than one model, for 89 of these problems MACE generated models

that all scored the same. For all 89 problems with multiple models of equal score, all

but 1 had the same result whichever model was used (55 Timeout, 25 Theorem, 9 No

solution). For 256 problems, models that scored differently were generated. In 239 cases

this made no difference to the result (146 Timeouts, 56 Theorems, 37 No Solutions). For

18 problems the choice of model had a very significant effect (see Table 5.2).

As can be seen from Table 5.2, in 7 cases the model chosen was the best choice possible.

In 3 cases, the model chosen was adequate - a proof was still found. In 8 cases, the worst

model was chosen and no proof was found.
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Table 5.2: Results of the best and worst models in the 18 cases
where there was a significant difference in the outcomes.

� Model selected by the Model Selection Heuristic
Scr Total Excess True Literal Score
Infer. Number of inference made during search
Time CPU time (in seconds) for search for proof only

PTTP+GLiDeS PTTP
Problem Model Scr Result Infer. Time Result Infer. Time
KRS015-1 m01 84 theorem 856 0.26 theorem 555 0.03

m02 86 theorem 902 0.25
m03 84 NO SOLUTION
m04 86 NO SOLUTION
m05 84 NO SOLUTION
m06 88 NO SOLUTION
m07 84 theorem 865 0.20

� m08 78 theorem 902 0.25
m09 84 NO SOLUTION
m10 94 NO SOLUTION

MSC006-1 � m01 58 theorem 14,308 5.24 theorem 1,792,624 100.47
m02 61 TIMEOUT
m03 61 TIMEOUT
m04 64 TIMEOUT

NUM016-1 m01 30 theorem 113 0.03 theorem 160 0.01
m02 31 theorem 120 0.03
m03 31 theorem 109 0.03
m04 30 TIMEOUT
m05 31 TIMEOUT
m06 31 TIMEOUT

� m07 29 TIMEOUT
m08 30 TIMEOUT
m09 30 TIMEOUT
m10 29 theorem 126 0.03

NUM016-2 m01 11 theorem 73 0.02 theorem 91 0.01
m02 12 theorem 73 0.02
m03 11 theorem 73 0.01

� m04 10 NO SOLUTION
m05 11 NO SOLUTION
m06 10 NO SOLUTION
m07 10 NO SOLUTION
m08 11 NO SOLUTION
m09 10 NO SOLUTION
m10 11 theorem 73 0.02
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Table 5.2: (continued)

� Model selected by the Model Selection Heuristic
Scr Total Excess True Literal Score
Infer. Number of inference made during search
Time CPU time (in seconds) for search for proof only

PTTP+GLiDeS PTTP
Problem Model Scr Result Infer. Time Result Infer. Time
PUZ013-1 � m01 4 theorem 23 0.00 theorem 27 0.0

m02 6 NO SOLUTION
m03 5 NO SOLUTION
m04 5 NO SOLUTION

PUZ014-1 � m01 4 NO SOLUTION theorem 127 0.06
m02 6 theorem 114 0.02
m03 5 theorem 111 0.04
m04 5 theorem 212 0.05

PUZ023-1 m01 101 TIMEOUT theorem 100,051 6.19
m02 100 TIMEOUT
m03 100 theorem 839,763 325.73
m04 99 theorem 102,469 32.32

� m05 98 theorem 101,437 31.12
m06 99 theorem 832,506 296.89
m07 99 TIMEOUT
m08 100 TIMEOUT
m09 100 TIMEOUT
m10 99 TIMEOUT

PUZ035-1 � m01 350 TIMEOUT TIMEOUT
m02 350 TIMEOUT
m03 352 theorem 45,246 22.77
m04 357 theorem 391,253 163.46

PUZ035-2 � m01 350 TIMEOUT TIMEOUT
m02 350 TIMEOUT
m03 352 theorem 74,038 36.81
m04 357 theorem 941,542 388.49

SET006-1 m01 44 theorem 53 0.01 theorem 53 0.0
m02 58 TIMEOUT
m03 44 theorem 61 0.01

� m04 36 theorem 51 0.00
m05 43 theorem 53 0.01
m06 54 TIMEOUT
m07 57 TIMEOUT
m08 37 theorem 55 0.01
m09 44 theorem 61 0.01
m10 36 theorem 51 0.01
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Table 5.2: (continued)

� Model selected by the Model Selection Heuristic
Scr Total Excess True Literal Score
Infer. Number of inference made during search
Time CPU time (in seconds) for search for proof only

PTTP+GLiDeS PTTP
Problem Model Scr Result Infer. Time Result Infer. Time
SET046-5 m01 4 NO SOLUTION theorem 1,135 0.05

m02 3 NO SOLUTION
m03 5 NO SOLUTION
m04 3 theorem 1,220 0.30
m05 5 theorem 385 0.05

� m06 2 theorem 805 0.16
m07 3 NO SOLUTION
m08 3 theorem 480 0.08

SYN011-1 � m01 2 theorem 20 0.00 theorem 14 0.0
m02 2 theorem 20 0.00
m03 2 NO SOLUTION

SYN034-1 m01 4 NO SOLUTION theorem 2,076 0.09
m02 3 NO SOLUTION
m03 5 TIMEOUT
m04 3 theorem 1,204 0.29
m05 5 theorem 742 0.11

� m06 2 theorem 779 0.16
m07 3 TIMEOUT
m08 3 theorem 839 0.08

SYN055-1 � m01 2 theorem 72 0.00 theorem 37 0.0
m02 3 NO SOLUTION

SYN069-1 m01 58 theorem 509 0.18 theorem 1,783 0.07
m02 58 theorem 509 0.17
m03 58 theorem 509 0.17
m04 58 theorem 509 0.16
m05 58 theorem 509 0.15
m06 58 theorem 509 0.14
m07 58 theorem 509 0.14
m08 58 theorem 509 0.13
m09 58 theorem 509 0.12

� m10 55 NO SOLUTION
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Table 5.2: (continued)

� Model selected by the Model Selection Heuristic
Scr Total Excess True Literal Score
Infer. Number of inference made during search
Time CPU time (in seconds) for search for proof only

PTTP+GLiDeS PTTP
Problem Model Scr Result Infer. Time Result Infer. Time
SYN325-1 m01 4 NO SOLUTION theorem 5 0.0

m02 4 NO SOLUTION
m03 4 NO SOLUTION
m04 4 NO SOLUTION
m05 2 NO SOLUTION

� m06 0 theorem 5 0.0
m07 0 theorem 5 0.0
m08 2 NO SOLUTION
m09 4 NO SOLUTION

TOP001-2 m01 31 theorem 315,895 490.29 theorem 49,343 3.03
� m02 25 TIMEOUT

m03 32 TIMEOUT
m04 31 theorem 315,895 426.13
m05 25 TIMEOUT
m06 32 TIMEOUT
m07 26 theorem 15,993 13.78
m08 32 theorem 315,888 343.46
m09 26 TIMEOUT
m10 32 TIMEOUT

TOP005-2 m01 40 TIMEOUT theorem 1,893,918 138.45
m02 40 TIMEOUT
m03 40 theorem 2,475,591 192.71
m04 36 theorem 3,543,490 278.70

� m05 30 TIMEOUT
m06 37 TIMEOUT
m07 33 TIMEOUT
m08 41 TIMEOUT
m09 30 theorem 4,662,475 377.50
m10 36 theorem 3,543,490 279.04

There are a number of differences between the results from the initial test (see Table 5.1)

and those in the final testing (see Table 5.2). Some differences are due to the differ-

ent test data (v2.3.0 unbiased nonHorn did not include problems NUM016-2, PUZ035-

2, SET046-5, SYN011-1,TOP001-2, TOP005-2) and some is due to the difference in
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MACE versions; either models were found where none had been found before (NUM016-

1, PUZ035-1) or more then one model was found where only one have been found before

(SYN034-1, SYN055-1, SYN069-1). Of more interest are the problems that are present

in Table 5.1 and not in Table 5.2, such as CAT002-3.

In the initial testing only clause ordering was used and in the final testing literal ordering

was added. For CAT002-3, in the initial testing some models produced a solutions and

others did not. In the final testing, CAT002-3 is not present as under the new conditions

all models produce a proof. This is also the case for KRS001-1, KRS002-1, PUZ025-1,

SYN084-2 and SYN352-1. The models produced by MACE v1.3.2 and MACE v1.3.3 for

these problems are the same. The difference in performance is the literal ordering. The

models that produced solutions in the initial testing “got lucky” in that the default order

of the literals favour these models. By adding literal ordering with respect to the model

being used this unseen bias in the results is removed and all models perform equal well.

It would appear that the initial hypothesis that the model that produces a clause set closest

to semantic Horn is best is false. Examining the results of the final testing would indicate

that the model selection heuristic used here does not much perform significantly better

than simply selecting the first model generated.

5.4 Some Examples

To try to understand what is happening with the semantic guidance, two problems from

the final experiments were examined.

5.4.1 PUZ014-1 and PUZ013-1

For these problems, the total excess TRUE literal count heuristic resulted in a bad choice

of model for PUZ014-1 and a good choice for PUZ013-1. Any model choice other then

m01 would have produced a solution for PUZ014-1 and any model choice other than m01

would not have produced a solution for PUZ013-1. These two problems are from the
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puzzle section of the TPTP library and are different attempts to prove the same problem.

The problem stated in English, reads as follows (taken from header section of PUZ014-1):

All the boys, in a certain school, sit together in one large room every

evening. They are of no less than five nationalities - English, Scotch, Welsh,

Irish, and German. One of the Monitors (who is a great reader of Wilkie

Collins’ novels) is very observant and takes MS. notes of almost everything

that happens, with the view of being a good sensational witness, in case any

conspiracy to commit a murder should be afoot. The following are some of

his notes.

1. Whenever some of the English boys are singing “Rule, Britannia,” and

some not, some of the Monitors are wide awake.

2. Whenever some of the Scotch are dancing reels, and some of the Irish

fighting, some of the Welsh are eating toasted cheese.

3. Whenever all the Germans are playing chess, some of the Eleven are not

oiling their bats.

4. Whenever some of the Monitors are asleep, and some not, some of the

Irish are fighting.

5. Whenever some of the Germans are playing chess, and none of the

Scotch are dancing reels, some of the Welsh are not eating toasted

cheese.

6. Whenever some of the Scotch are not dancing reels, and some of the

Irish are not fighting, some of the Germans are playing chess.

7. Whenever some of the Monitors are awake, and some of the Welsh are

eating toasted cheese, none of the Scotch are dancing reels.

8. Whenever some of the Germans are not playing chess, and some of the

Welsh are not eating toasted cheese, none of the Irish are fighting.

9. Whenever all of the English are singing “Rule, Britannia,” and some of

the Scotch are not dancing reels, none of the Germans are playing chess.
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10. Whenever some of the English are singing “Rule, Britannia,”, and some

of the Monitors are asleep, some of the Irish are not fighting.

11. Whenever some of the Monitors are awake, and some of the Eleven are

not oiling their bats, some of the Scotch are dancing reels.

12. Whenever some of the English are singing “Rule, Britannia,” and some

of the Scotch are not dancing reels, .....

Here the MS. breaks off suddenly. The problem is to complete the sentence,

if possible.

To convert this problem into FOL, the last rule is implemented as “if some of the English

are singing “Rule, Britannia”, and some of the Scotch are not dancing reels, then are the

monitors all awake?”. Using proof by contradiction it can either be assumed that “some

of the monitors are awake” is FALSE or that “some monitors are not awake” is TRUE,

and then search for a contradiction. PUZ013-1 uses the first option and PUZ014-1 uses

the second. The models generated by MACE are the same for each as the set of model

clauses (shown in Figure 5.3) are identical - it is only the conjecture that differs.

For the conjecture �some monitors are awake that is used by PUZ013-1, the obvi-

ous approach is to attempt to use Rule 1. Rule 1 says that if some english sing and

some english sing not are TRUE then some monitors are awake is TRUE. This is

the approach taken by the unguided theorem prover and results in the proof shown in

Figure 5.1.

Unfortunately, this proof is not possible with any of the models generated for the model

clauses. The first model, m��, prunes this proof away very early as

some english sing not is FALSE in this model. All of the remaining models reject

this proof much later as some monitors are not awake is FALSE in all models. These

two pruning points are highlighted in Figure 5.1.

Another refutation for PUZ013-1 is possible and is found using m��. This refutation is

shown in Figure 5.2. This refutation is a re-organization of the previous proof. The points

that were pruned in Figure 5.1 have been moved to the leaf nodes in Figure 5.2. The
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Rule 1 �some english sing� �some english sing not

� some monitors are awake

Rule 2 �some scotch dance� �some irish fight

� some welsh eat

Rule 3 �some germans play� some germans play not

� some of the eleven are not oiling

Rule 4 �some monitors are awake� �some monitors are not awake

� some irish fight

Rule 5 �some germans play� some scotch dance � some welsh eat not

Rule 6 �some scotch dance not� �some irish fight not

� some germans play

Rule 7 �some monitors are awake� �some welsh eat � �some scotch dance

Rule 8 �some germans play not� �some welsh eat not� �some irish fight

Rule 9 �some english sing� some english sing not

��some scotch dance not � �some germans play

Rule 10 �some english sing� �some monitors are not awake

� some irish fight not

Rule 11 �some monitors are awake� �some of the eleven are not oiling

� some scotch dance

Rule 12a some english sing

Rule 12b some scotch dance not

Auxiliary 1 some english sing not � some english sing

Auxiliary 2 some monitors are not awake � some monitors are awake

Auxiliary 3 some scotch dance � some scotch dance not

Auxiliary 4 some irish fight � some irish fight not

Auxiliary 5 some welsh eat � some welsh eat not

Auxiliary 6 some germans play � some germans play not

Table 5.3: Model clause for PUZ013-1 and PUZ014-1
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Table 5.4: Four models generated by MACE for PUZ014-1

Model Number Statements supported by the model
m�� None of the Scots are dancing reels.

All of the Eleven are oiling their bats
None of the Germans are playing chess.
All of the English are singing.
All of the Welsh are eating toasted cheese.
All of the Irish are fighting.
All monitors are awake.

m�� None of the Scots are dancing reels.
All of the Eleven are oiling their bats.
Some of the Germans are playing chess and some are not.
Some of the English are singing and some are not.
Some of the Welsh are eating and some are not.
None of the Irish are fighting.
All monitors are awake.

m�� None of the Scots are dancing reels.
All of the Eleven are oiling their bats.
Some of the Germans are playing chess and some are not.
Some of the English are singing and some are not.
None of the Welsh are eating toasted cheese.
None of the Irish are fighting.
All monitors are awake.

m�	 Some of the Scots are dancing and some are not.
Some of the Eleven are not oiling their bats.
None of the Welsh are eating toasted cheese.
All Germans are playing chess.
Some of the English are singing and some are not.
None of the Irish are fighting.
All monitors are awake.
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some_english_sing

~some_english_sing

some_scotch_dance_not

~some_scotch_dance_not

~some_scotch_dance_not

some_scotch_dance_not

~some_english_sing

some_english_sing

~some_english_sing_not

~some_monitors_are_not_awake

some monitors are awake

~some_monitors_are_awake

some_monitors_are_awake

some_english_sing_not

~some_english_sing

some_english_sing

~some_germans_play

some_germans_play ~some_irish_fight_not

some_irish_fight_not

some monitors are not awake

Figure 5.1: Tableau ME proof for PUZ013-1

other models, m��, m�� and m�	, prune this proof as some english sing not TRUE

for these models.

some_monitors_are_awake

~some_monitors_are_not_awake ~some_english_sing

some_english_sing

~some_scotch_dance_not

some_scotch_dance_not

some_english_sing

~some_english_sing

some_scotch_dance_not

~some_scotch_dance_not

~some_english_sing_not

some_monitors_are_not_awake

some_monitors_are_awake

some_english_sing

~some_english_sing

~some_monitors_are_awake

some_irish_fight_not

some_germans_play~some_irish_fight_not

~some_germans_play

some_english_sing_not

Figure 5.2: Tableau GLiDeS ME proof for PUZ013-1

The result for the four models is reversed when PUZ014-1 is attempted. In this prob-

lem the conjecture is some monitors are not awake. The refutation produced by the

unguided prover is quite large and not compatible with any of the four models. For this
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problem, unlike PUZ013-1, it is the models m��, m�� and m�	 that produce solutions

and m�� that does not.

As the models for both these problems are the same, it is perhaps not surprising that the

model selection heuristic gets it right for one and not the other.

5.5 Summary

In the majority of cases where more than one model is generated, it seems to make little

difference which model is used. If one model finds a solution, the rest will usually perform

similarly. However in some cases, the choice of model has a dramatic effect of the end

result. Initially it was hoped that the closer to semantic Horn a model makes a set of

clauses the better the guidance. This does not generally seem to be the case. As it has

been shown in Section 4.1.2 that the semantic pruning is complete only for models that

yield an excess TRUE literal count of 0, if such a model is available it makes the best

choice (see SYN325-1). Once the model has an excess TRUE literal score above 0, the

value of this measure is limited.



Chapter 6

PTTP+GLiDeS Implementation and
Performance

This chapter describes the implementation and performance of the PTTP+GLiDeS sys-

tem. The initial implementation is discussed and its performance reviewed in Section 6.1.

Additional features such as ordering of clauses and literals is discussed in Section 6.2.

Finally the performance of the system against the different CNF categories in the TPTP

library is examined.

6.1 Initial Implementation

PTTP+GLiDeS consists of modified versions of PTTP v2e [42] and MACE v1.3.3 [28],

combined by a csh script. PTTP+GLiDeS takes problems in TPTP [44] format as input.

The tptp2X utility is used to transform the input problem to PTTP and MACE formats.

The transformation to PTTP format selects the first negative conjecture clause as the top

clause for the linear deduction. If there aren’t any negative conjecture clauses, then the

first conjecture clause is selected.

A perl script is used to remove the first conjecture clause from the MACE format file,

and MACE is called to generate a model of the remaining clauses. In this initial im-

plementation MACE is only required to output a single model. If MACE is unable to

62
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generate a model then PTTP+GLiDeS terminates. Otherwise MACE outputs its model in

the form of Prolog facts, e.g.,

eval(domain,0).

eval(domain,1).

eval(functor,a,0).

eval(functor,b,1).

eval(functor,f(0),0).

eval(predicate,p(0,0),true).

These Prolog facts are interpreted as follows:

eval(domain,0).

This fact states that one of the domain elements is 0.

eval(functor,a,0).

a is a functor of arity 0 that is mapped to the domain value 0.

eval(functor,f(0),0).

f is a unary functor and when given the argument 0 it returns the

domain value 0.

eval(predicate,p(0,0),true).

p is a binary predicate symbol. p(0,0) is mapped to the truth value TRUE.

Once the model generator is finished the modified PTTP is run. The modified PTTP

produces Prolog procedures that

i) maintain a list of all A-literals that have been produced in the deduction so far, and

ii) call a semantic checking procedure, check (see Appendix A), after each extension

and reduction operation.

The facts produced by MACE are used to interpret the A-literals. The semantic checker

pulls the term apart and replaces firstly constants and variables, and then functors with

domain values, and finally predicates are given a truth-value. For example, the A-literal

p�f�a�� a� would be pulled apart to give f�a� and a. As the first term is not yet a constant

or variable, it is pulled apart to give a. a is mapped to � by the fact eval�functor� a���.
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Replacing a for its domain value gives f���. Using the fact eval�functor� f���� �� al-

lows f�a� to be replaced by �. This enables is to replace p�f�a�� a� by p��� �� and use the

fact eval�predicate�p������ true� to assign the truth value of TRUE to the A-literal.

If the semantic checking procedure finds an A-literal that is TRUE then the extension or

reduction is rejected.

6.1.1 Performance

Testing has been carried out using 1248 “difficult, unbiased” problems from the TPTP

library v2.4.1. The testing was done on a SUN Ultra-80, with a CPU time limit of 600

seconds. For PTTP+GLiDeS, MACE produced models for 437 of the 1248 problems

and thus PTTP+GLiDeS could attempt only those problems. Table 6.1 gives an overall

summary of the results.

For the problems solved, the CPU times taken and the number of inferences made during

the search were recorded. For PTTP+GLiDeS, the number of rejected inferences was also

recorded. The CPU time for PTTP+GLiDeS includes: time taken for preprocessing of the

MACE input file to exclude the chosen top clause leaving only the model clauses; model

generation and output time; and the Prolog search time. The CPU time for PTTP includes

the Prolog search time only.

The number of inferences made during the search give an indication of the amount of

the search space being covered during the search. A smaller inference count on the same

problem would not necessarily indicate that the proof itself is any smaller but that less of

the search space was covered before the proof was found.

Of the 437 problems for which models were generated, plain PTTP solved 38 and

PTTP+GLiDeS solved 24. These 24 were a subset of the 38 solved by PTTP. In 23 of

the 38 problems solved by PTTP, the models used by PTTP+GLiDeS made no difference

to the search for a proof by PTTP+GLiDeS, i.e., there were no rejected inferences recor-

ded. In these 23 cases, PTTP+GLiDeS performs the same search as PTTP but, with the

overhead of the semantic checking, solves only 14 within the time-limit. The remaining
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15 problems, i.e., those where the semantic guidance in the PTTP+GLiDeS system had

some effect, are shown in Table 6.2.

The inferences columns give the total number of extension and reduction operations per-

formed during the search for a solution. The rejected inferences are the number of infer-

ence operations that were rejected by the semantic pruning routine. The inference ratio

shows the number of inferences made by PTTP+GLiDeS relative to PTTP.

PTTP+GLiDeS timed out on five problems that PTTP solved. In four of these five prob-

lems, PTTP+GLiDeS solves them eventually. For TOP005-2 PTTP+GLiDeS prunes the

PTTP solution and fails to find another. In all cases where both systems found a solution,

PTTP+GLiDeS takes no more inferences than PTTP, and in many cases significantly less.

The times taken by PTTP+GLiDeS are higher than for PTTP in most cases. Two in-

teresting cases to note are CAT012-3 and GRP008-1. These are non-Horn problems,

and have the best reduction in inference counts. Of the 15 problems solved by either

system, 8 are non-Horn and it is in these cases (with the exception of TOP005-2) that

PTTP+GLiDeS performs best.

In the case of TOP005-2 the model found by MACE is inadequate. The proof found

by PTTP contains reductions but no complementary internal nodes across branches of

the tableau. A model exists that will find this proof but unfortunately it is not generated

by MACE. The model found by MACE in this case has all functors of arity 1 or greater

mapped to the same domain element. This removes a lot of the detail from the model and

results in the proof found by PTTP being rejected by PTTP+GLiDeS.

Total Number of Problems: 1248
Number of Problems with Models: 437
Number of Problems Solved from 437: PTTP PTTP+GLiDeS

38 24
with Useful Models: PTTP PTTP+GLiDeS

15 10

Table 6.1: Summary of experimental data.
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Problem PTTP PTTP+GLiDeS Inference
CPU time Inferences CPU time Inferences Rejected Ratio

(sec) (sec) inferences
� CAT003-3 139.9 2,445,727 409.0 945,266 215,287 0.39

CAT004-4 125.4 3,339,787 TIMEOUT
� CAT012-3 10.1 175,367 7.7 49,150 4,124 0.28
� CAT016-3 1.8 529 1.5 399 21 0.75
� CAT017-3 1.3 1,616 1.5 734 58 0.45
� GRP008-1 108.1 1,938,834 53.6 404,620 3,896 0.21

HEN009-5 55.4 1,122,032 TIMEOUT
PLA007-1 16.7 342,934 TIMEOUT
PLA016-1 9.3 176,746 466.1 176,746 710 1.0
PLA019-1 14.5 287,761 TIMEOUT
PLA022-1 3.8 73,866 187.2 73,866 2 1.0
PLA022-2 1.3 2,485 108.5 2,485 2 1.0

� RNG040-2 2.7 32,127 8.5 30,274 758 0.94
� RNG041-1 1.6 6,325 2.7 5,935 207 0.94
� TOP005-2 139.2 1,893,918 TIMEOUT
Average
when solved by 27.94 485,362 127.01 168,948 22,507
both Systems

Table 6.2: Results for problems where semantic guidance rejected some inferences. Non-
Horn problems are marked with “�”.
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6.2 Ordering of Clauses

For the problems tested in Section 6.1.1, the clauses were presented to PTTP+GLiDeS

in the order in which they occurred in the TPTP library. Changes to the order in which

clauses are presented may result in changes in the path taken through the search space.

This means the performance of the system, as describe in Section 6.1, may depend on the

format of the problem to be solved. This is undesirable. A system should be able to solve

a problem consistently regardless of the order in which the clauses are presented. This

means the system needs to perform its own ordering.

Ordering the clauses using semantic information has been achieved by the assigning of

a measure of the “trueness” of each clause and then ordering the clauses with respect

to this measure. Each clause is grounded with respect to the domain of the generated

model. For each clause, the set of ground clauses are examined and a value of TRUE or

FALSE is given to each literal. The total number of TRUE ground literals for each clause

is calculated and divided by the total number of ground literals generated for that clause.

This gives a number between 0 and 1 that rates the “trueness” of the clause. A clause gets

the value 0 if all its literals are FALSE in the model for any instantiation. A clause gets

the value 1 if all its literals are TRUE in the model for any instantiation. Literals within a

clause can be ordered in the same manner.

Having obtained a measure by which to order the clauses and literals, the next question

is which order. If clauses and literals are ordered in a ascending manner with respect to

“trueness”, the system is presented with clauses least likely to result in pruning first. If

clauses and literals are ordered in a descending manner with respect to “trueness”, the

system is presented with clauses most likely to result in pruning first. In the first case,

it would be expected that the clauses least likely to result in pruning are the ones most

likely to lead to a proof, and so this would appear to be the better choice. Experiments

were carried out to determine if this was the case. As it turns out, it appears that the

sooner pruning occurs, the more dramatic the reduction in the search space and the more

effective the pruning is.
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Testing has been carried out using the same 1248 “difficult, unbiased” problems from the

TPTP library v2.4.1 and under the same conditions as in Section 6.1.1. Table 6.3 shows a

summary of the results. As can be seen from these results, either ordering obtains better

results than no ordering at all with 3 more problems solved. Table 6.4 shows the results

for all problems solved by any system. CPU time includes the time taken to generate

models and order the clauses using the models if applicable.

Total Number of Problems: 1248
Number of Problems with Models: 437
Number of Problems Solved from 437: No-ordering Ascending Descending

24 27 27

Table 6.3: Summary of experimental data.

For some problems, changing the ordering has no impact on the search path. Problems

LCL194-1, LCL230-1 and LCL231-1 are solved by all three methods in the same

number of inferences. Some problems are solved with no rejected inferences, but different

inference counts. For these problems, while the semantic pruning has had no impact, the

semantic ordering is playing a role. RNG001-5 is not solved without ordering, but with

ordering (either ascending or descending) a proof is found.

While both the ascending and descending ordering methods solve an equal number of

problems, overall the descending ordering results in lower averages for CPU time, number

of inferences made, and number of rejected inferences. This seems to indicate that a

few early rejected inferences have a greater impact on the guidance than more rejected

inferences later in the search.
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Table 6.4: Comparison of results using no ordering, ascend-
ing ordering, and descending ordering based on the “true-
ness” rating of each clause.

Problem No Order Ascending Descending
CPU Infer. Rej. CPU Infer. Rej. CPU Inferences Rej.

Time(s) Infer. Time(s) Infer. Time(s) Infer.
CAT001-3 TIMEOUT TIMEOUT 499.5 629,924 21,937
CAT002-3 TIMEOUT TIMEOUT 55.0 106,873 4,499
CAT003-3 432.1 945,266 215,287 408.5 947,246 215,635 6.1 11,074 530
CAT012-3 7.1 49,150 4,124 7.6 48,535 4,114 7.6 48,535 4,114
CAT012-4 2.7 16,356 0 3.2 15,705 0 3.2 15,705 0
CAT016-3 0.9 399 21 1.4 381 21 1.4 381 21
CAT017-3 0.9 734 58 1.5 716 58 1.5 716 58
GRP008-1 53.5 404,620 3,896 57.8 435,913 4,181 57.8 435,913 4,181
HEN009-5 TIMEOUT 354.3 377,437 29,234 354.3 377,437 29,234
LCL040-1 122.7 521,758 0 119.3 522,574 0 119.3 522,574 0
LCL064-1 3.8 13,831 0 4.3 13,462 0 4.2 13,462 0
LCL065-1 47.9 215,593 0 40.5 184,315 0 40.5 184,315 0
LCL194-1 11.0 460 0 11.5 460 0 11.6 460 0
LCL195-1 38.8 10,403 0 38.8 10,403 0 38.7 10,403 0
LCL230-1 273.2 58,295 0 267.3 58,295 0 268.5 58,295 0
LCL231-1 354.2 82,841 0 344.1 82,841 0 344.2 82,841 0
LCL359-1 83.5 1,404 0 84.1 1,167 0 84.0 1,167 0
PLA001-1 32.1 28,610 0 35.0 31,941 0 35.2 31,941 0
PLA016-1 489.9 176,746 710 378.3 142,434 537 TIMEOUT
PLA019-1 TIMEOUT 594.0 231,976 944 TIMEOUT
PLA022-1 189.7 73,866 2 168.4 61,272 3 206.9 96,916 0
PLA022-2 108.2 2,485 2 107.9 1,933 1 181.2 74,687 0
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Table 6.4: (continued)

Problem No Order Ascending Descending
CPU Infer. Rej. CPU Infer. Rej. CPU Inferences Rej.

Time(s) Infer. Time(s) Infer. Time(s) Infer.
RNG001-5 TIMEOUT 562.1 3,926,803 0 565.1 3,926,803 0
RNG005-2 8.8 94 0 9.4 163 0 9.5 163 0
RNG006-2 8.1 249 0 8.7 423 0 8.7 423 0
RNG037-2 8.9 212 0 9.4 199 0 9.5 199 0
RNG040-1 1.0 130 0 1.7 236 0 1.8 236 0
RNG040-2 8.8 30,274 758 8.6 30,144 758 8.5 30,144 758
RNG041-1 2.2 5,935 207 3.5 6,971 441 3.5 6,971 441
Average
when solv. 78.26 107,085 9,755 75.76 106,752 9,792 63.21 70,762 439
by all
Average
when solv. 106.36 270,381 10,178 94.93 237,270 1,573
by ordered
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6.2.1 Performance of GLiDeS+Model selection heuristic

Experiments were conducted to review the effect of adding the model selection heuristic

to the existing GLiDeS system. In addition to the model selection heuristic, two additional

changes were made to the system described in Section 6.2.

1. It has been observed that unless pruning occurs early in the proof search, the guid-

ance it provides is minimal compared to the overhead of performing the semantic

checks. Taking this into account, the current GLiDeS implementation turns off

semantic pruning if no pruning has occurred in the first 3 search levels.

2. It has also been observed that for Horn problems without equality, no pruning oc-

curs. So for Horn problems without equality, semantic ordering is applied but prun-

ing is turned off.

Experiments were once more conducted using the 1248 “difficult, unbiased” problems

from the TPTP library v2.4.1. A summary of these results are shown in Table 6.5. For

those problems with models, PTTP+GLiDeS solves 40 problems, compared to 38 by

PTTP. Eight of these problems were solved by both systems in the same number of infer-

ences and so are of little interest.

Average total CPU time includes for PTTP+GLiDeS the time taken to generate the mod-

els, score and choose a model, and reorder the clauses and literals using the chosen model.

Average CPU search time is the time taken for the search by the theorem prover only. For

PTTP+GLiDeS this includes the time taken for the semantic checking if applicable. It is

pleasing to note that, while the total CPU time average favours PTTP, the average CPU

search time for PTTP+GLiDeS is significantly better than PTTP. This improvement is no

doubt due to the selective use of the pruning. The overhead from semantic checks associ-

ated with the pruning is large unless the pruning is effective. By turning off the pruning

when it is evident that it is having little effect and leaving the guidance to the semantic

ordering alone appears to be the best option.
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Results for those problem solved by either system where GLiDeS has some effect are

shown in Table 6.6. PTTP solves one problem that PTTP+GLiDeS does not; this is

TOP005-2 where the model selected by GLiDeS prunes away the solution found by PTTP.

PTTP+GLiDeS solves 3 problems that PTTP does not. For two of these three problems,

PTTP+GLiDeS doesn’t perform any pruning. They are solved by the guidance provided

by the reordering of the clauses and literals.

6.3 Performance of GLiDeS + Model selection heuristic
across TPTP

The TPTP Library v2.4.1 contains 5882 problems, of which 4419 are CNF problems.

These problems can be classified into Specialist Problem Classes (SPCs) [15]. There

are 14 classifications in CNF, 7 pertaining to satisfiable problems and 7 pertaining to

theorems. The two main classes of theorems are EPR (effectively propositional) and

RFO (real first order). Effectively propositional problems are either true propositional

Total Number of Problems: 1248

Number of Problems with Models: 437

Number of Problems Solved from 437: PTTP PTTP+GLiDeS
38 40

Average Total CPU time for all problems
solved by both systems: 43.06 89.57

Average CPU Search time for all problems
solved by both systems: 42.41 31.62

Number of Problems Solved from 437
where GLiDeS had some effect: 30 32

Average Total CPU time for problems solved
by either system where GLiDeS had some effect: 37.00 85.23

Average CPU Search time for problems solved
by both systems where GLiDeS had some effect: 36.34 22.41

Table 6.5: Summary of experimental data.
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PTTP PTTP+GLiDeS
Problem CPU Infer. Search CPU Infer. Rej. Search Infer.

Time(s) Time(s) Time(s) Infer. Time(s) Ratio
CAT002-3 TIMEOUT 98.1 107,373 4,532 95.68 � 0.0
CAT003-3 145.0 2,445,727 144.26 10.2 11,081 590 7.82 0.005
CAT004-4 129.4 3,339,787 128.77 64.3 1,398,313 off 62.19 0.419
CAT012-3 9.8 175,367 9.08 8.2 48,535 4,114 6.10 0.277
CAT012-4 1.3 16,356 0.62 2.6 15,705 off 0.64 0.960
CAT016-3 0.7 529 0.02 2.1 381 21 0.03 0.720
CAT017-3 0.8 1,616 0.07 2.1 716 58 0.07 0.443
COL011-1 54.0 655,391 53.37 80.6 899,667 off 78.65 1.373
COL033-1 51.6 677,020 51.03 55.5 682,123 off 53.50 1.008
GRP008-1 111.5 1,938,834 110.87 57.3 435,913 4,181 55.30 0.225
HEN009-5 55.4 1,122,032 54.73 28.4 502,183 off 26.37 0.448
LCL014-1 TIMEOUT 390.7 4,890,578 - 388.44 � 0.0
LCL040-1 38.3 521,758 37.65 37.5 522,574 - 34.93 1.002
LCL042-1 TIMEOUT 558.5 10,883,088 - 555.76 � 0.0
LCL064-1 1.5 13,831 0.94 3.5 13,462 - 0.88 0.973
LCL065-1 14.4 215,593 13.77 14.0 184,315 - 11.49 0.855
LCL359-1 0.7 1,404 0.09 84.7 1,167 - 0.10 0.831
PLA001-1 1.7 28,610 1.00 11.4 31,941 - 1.11 1.116
PLA007-1 16.4 342,934 15.77 119.8 276,543 - 12.61 0.806
PLA016-1 8.9 176,746 8.24 113.9 142,434 - 6.62 0.806
PLA019-1 14.2 287,761 13.59 118.3 231,976 - 11.13 0.806
PLA022-1 3.3 73,866 2.62 109.4 61,272 - 2.13 0.830
PLA022-2 0.7 2,485 0.11 107.1 1,933 - 0.08 0.778
RNG001-5 207.2 4,777,282 206.46 171.6 3,926,803 - 167.87 0.822
RNG005-2 0.7 94 0.00 385.0 163 - 0.01 1.734
RNG006-2 0.7 249 0.01 10.9 423 - 0.02 1.699
RNG037-2 0.7 212 0.01 384.0 199 - 0.01 0.939
RNG040-1 0.7 130 0.01 4.1 236 off 0.02 1.815
RNG040-2 2.2 32,127 1.46 5.1 31,997 off 1.59 0.996
RNG041-1 1.0 6,325 0.31 3.0 10,054 off 0.60 1.590
SYN311-1 11.3 278,285 10.72 369.4 197,842 - 8.03 0.711
SYN312-1 188.9 4,716,889 188.31 107.6 2,496,242 - 99.92 0.529
TOP005-2 143.9 1,893,918 143.20 TIMEOUT �

Average
when solv. 37.00 753,422.1 36.34 85.23 418,144.59 22.41
by both

Table 6.6: Results for problems solved by either PTTP or PTTP+GLiDeS where a model
was generated and GLiDeS had some effect. “-” indicates no pruning attempted, “off”
indicates pruning turned off after no early pruning occurred.
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problems without variables or FO problems which have variables and constants but no

functors of arity one or greater. These FO problems are termed effectively propositional

as it is a simple exercise to instantiate the variables with all possible constant values thus

yielding a ground clause set. So called “real” first order problems on the other hand

contain functors of arity one or greater.

The PTTP+GLiDeS system works with unsatisfiable CNF problems and the SPCs that

exist for these problems are:

THM EPR CNF - effectively propositional problems (414 problems)

THM RFO NEQ CNF HRN - real first order Horn problems containing no equality

(396 problems)

THM RFO NEQ CNF NHN - real first order non-Horn problems containing no equal-

ity (438 problems)

THM RFO SEQ CNF HRN - real first order Horn problems, containing some equality

(388 problems)

THM RFO SEQ CNF NHN - real first order non-Horn problems, containing some equal-

ity (1745 problems)

THM RFO PEQ CNF UEQ - real first order problems containing pure unit equality

(431 problems)

THM RFO PEQ CNF NUE - real first order problems containing pure non-unit equal-

ity (125 problems)

Once again problems were tested with a 600s CPU time limit, on an UltraSPARC 80 Sun

box. Model domain size was determined by the following set of conditions:

Equality MACE has built in equality. If we have two constants a and b such that a � b

should evaluate to TRUE then a and b have to map to the same domain element in

the model. So if a clause set contains equality we start the search for a model with
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a domain size 2 (MACE’s default minimum) and progressively increment domain

size until a model is found.

Number of constants If the problem contains no equality, then the domain size is set to

be equal to the number of constants. The reason for this is that it was felt that in

general the constants were meant to represent different objects and so should be

assigned unique domain elements in the model to illustrate this. If a model cannot

be found at this domain size, the domain size is reset to size 2 (MACE’s default

minimum) and the search for a model proceeds as for equality until the domain size

once more reaches the number of constants. At this point the search for a model is

abandoned.

THM CNF
RFO

EPR NEQ SEQ PEQ
HRN NHN HRN NHN UEQ NUE

No.Problems 414 396 438 388 1745 431 125
No.Problems
with models 318 355 117 354 72 296 105
Number of Problems (with model) solved
GLiDeS 247 190 58 89 13 68 11
PTTP 252 188 64 88 12 68 11
Number of Problems (with model) solved by one system but not the other
GLiDeS/not PTTP 0 2 6 1 2 0 0
PTTP/not GLiDeS 5 0 13 0 1 0 0
Average Inferences for problems solved by both system
GLiDeS 73,126 155,134 403,559 396,472 56,857 724,467 62,636
PTTP 137,486 177,469 472,278 439,318 449,052 595,657 118,424
Average Search CPU time for problems solved by both system
GLiDeS 7.15 9.36 23.40 21.65 12.10 46.04 3.39
PTTP 7.21 11.78 24.05 22.58 27.92 40.88 6.42
Average Total CPU time for problems solved by both system
GLiDeS 20.52 33.85 41.24 23.82 14.61 48.12 5.45
PTTP 10.62 12.11 24.41 22.99 28.35 41.21 6.75
Percentage of problems with model solved
GLiDeS 77.67% 53.52% 48.74% 25.14% 18.06% 22.97% 10.48%
PTTP 79.25% 52.96% 56.30% 24.86% 16.67% 22.97% 10.48%

Table 6.7: Summary of results for PTTP and PTTP+GLiDeS across all 7 SPCs for unsat-
isfiable CNF problems from the TPTP Library v2.4.1



CHAPTER 6. PTTP+GLIDES IMPLEMENTATION AND PERFORMANCE 76

Results for the SPCs for both PTTP and PTTP+GLiDeS are shown in Table 6.7. As can

be seen from this table, the GLiDeS guidance strategy has little impact on pure equality

(PEQ) problems. Here PTTP and PTTP+GLiDeS solve the same problems in about the

same times. Average inference counts for PTTP+GLiDeS are worse than PTTP for unit

equality (UEQ) but better for non-unit equality (NUE).

For problems containing some equality (SEQ), PTTP+GLiDeS did better than PTTP on

both Horn and non-Horn problems, solving more problems with better search times on

average.

For problems with no equality (NEQ), PTTP+GLiDeS has mixed results. For the Horn

problems, PTTP+GLiDeS was run without pruning - guidance was provided by the or-

dering only. Under these conditions, PTTP+GLiDeS did better than PTTP in number of

problems solved, used marginally fewer average inferences and had better average search

times. However the time taken to generate the models is significant and on average added

approximately 24 seconds to the total CPU time, making PTTP+GLiDeS much slower

overall.

For the non-Horn NEQ problems, PTTP solved more problems than PTTP+GLiDeS.

While PTTP+GLiDeS solved 6 problems that PTTP did not, it failed to solve 13 problems

that PTTP did. On the problems solved by both systems, PTTP+GLiDeS narrowly does

better than PTTP in terms of average inferences and search time but again the addition of

the model generation time means PTTP is faster on average then PTTP+GLiDeS.

A similar situation can be seen with the effectively propositional problems (EPR). PTTP

solves more problems and while PTTP+GLiDeS used about half the number of inferences

on average, PTTP was much faster with respect to average overall CPU time.

From these results, it can be seen that while the semantic guidance hasn’t had a dramatic

effect, it has in most categories resulted in equal or better performance compared to PTTP.



Chapter 7

Conclusion

This chapter discusses how well the research objectives have been met and examines the

performance of the PTTP+GLiDeS system. Areas for future work are also discussed.

7.1 Summary of objectives

This research aimed to discover a method for incorporating semantic guidance into linear

deduction systems, in particular ME based linear systems. This has been achieved. The

GLiDeS pruning strategy is a simple strategy of restricting the ME deduction to one where

all A-literals are false in the guiding model. This can be easily incorporated into any ME

based prover. The main issues of concern are with respect to the completeness of this

strategy.

While Section 4.1.2 has shown that the GLiDeS strategy is complete for clause sets with

a semantic Horn model, this situation arises infrequently. Whether GLiDeS can be shown

to be complete in other cases is of interest but to some extent academic as it has been

shown that GLiDeS is incomplete when combined with regularity pruning. As regularity

pruning is such a powerful tool for ME deductions, in practise it would be unlikely to

be “turned off” and so for practical use we know GLiDeS to be incomplete. The issue

then is, how often does this problem arise? From experiments run on the SPCs in the

TPTP library and examination of the results, 10 problems solved by PTTP and not by
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PTTP+GLiDeS were not solved due to suspected incompleteness. By “suspected” it is

meant that PTTP+GLiDeS pruned away the solution found by PTTP and failed to find

another within the time limit. It may be possible that in some of these cases another

solution might have been found eventually but that has not been established.

What has been shown is that given an effective model, the GLiDeS pruning and or-

dering works well. The number of inferences made during a search for a proof is a

measure of the amount of the search space covered. The PTTP+GLiDeS system gen-

erally makes fewer inferences then PTTP. The results in Table 6.7 show that in the best

case (THM CNF RFO SEQ NHN category problems), PTTP covered 8 times more of

the search space than the GLiDeS guided system. Ordering alone (which is a com-

plete strategy as it doesn’t prevent any inferences, only changes the order in which they

would occur) has proved to be an effective form of semantic guidance by itself, with

the PTTP+GLiDeS system using ordering only solving more problems than PTTP in the

THM CNF RFO NEQ HRN category. The key to semantic guidance is (as would be ex-

pected) the quality of the semantic provided. It would be expected that GLiDeS would be

more effective when the semantics had been carefully considered before use.

Chapter 5 examined a heuristic for selecting models. This heuristic was shown not to be

significantly more effective then simply accepting the first model discovered by the model

generation software.

The final system, using semantic ordering of clauses and literals and selective use of se-

mantic pruning is effective. By turning off the pruning when it is shown to be ineffective

results in the pruning only being used when it will have an impact, so the overhead of se-

mantic checks is only incurred when there is a likelihood of effective pruning. In Section

6.2.1, it was shown that the pruning was only used in 7 cases, and in most of these the

reduction in the number of inferences made is dramatic. Only in one case (TOP005-2)

did the pruning have a detrimental effect and in this case the selected model resulted in

suspected incompleteness.
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7.2 Future Work

It is possible to extend Restart ME [1] to include semantic guidance. Instead of restarting

when a positive B-literal is encountered, restarts would be triggered by TRUE B-literals

that cannot reduce. It is expected that a semantic Restart GLiDeS system would not

suffer from incompleteness as regularity pruning is implemented in a restricted form.

An early implementation of a semantic Restart GLiDeS system has shown this to be the

case experimentally i.e. cases that are not solved by PTTP+GLiDeS are solved with

PTTP+Restart+GLiDeS. Further work needs to be done on this interesting area.

Further examination of model generation and selection issues also need examination. De-

termination of the best domain size needs further examination but it may prove not to be

possible to come up with some general setting that works for all problems. Also, exclud-

ing only the chosen top clause from the clause set to get the model clauses is not sufficient

if the clause set is not minimally unsatisfiable. Additional work on selection of the model

clauses may also assist with better model generation.
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Appendix A

Semantic Checking

%-----------------------------------------------------------
%-- test_model\2
%-- Take the TopClause from the input clause set and pass to
%-- test_model\1
test_model((_ModelClauses,TopClause)):-

!,
test_model(TopClause).

%-----------------------------------------------------------
%-- test_model\1
%-- Negate the literals in the TopClause and check them
%-- against the model. All literals need to be FALSE in the
%-- model for the model to be useful. If they fail the check,
%-- print error message and exit with code 15
test_model(Y):-

Y =.. [:-,query,Lits],
split_and_reverse(Lits,CheckList),
\+ check(CheckList,_),!,
write(’Centre clause not false in model’),
nl,
write(CheckList),
nl,
halt(15).

%-- otherwise, succeed.
test_model(_).

%-----------------------------------------------------------
%-- check/2
%-- Check list of A-literals against model

85
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%-- Input Parameter: InAList - list of A-literals
%-- Ouput Parameter: OutAList - list of A-literals with
%-- ground A-literals removed

%-- if model is a positive trivial model then use
%-- simplified p_check
check(InAList,OutAList):-

model(pTrivial),!,
p_check(InAList).
remove_ground(InAList,OutAList).

%-- if model is a negative trivial model then use
%-- simplified n_check
check(InAList,OutAList):-

model(nTrivial),!,
n_check(InAList),
remove_ground(InAList,OutAList).

%-- otherwise, take a copy of the A-list and perform full check
check(InAList,OutAList):-

copy_term(InAList,CheckList),
do_check(CheckList),

!.

%-- if all fail then A-list doesn’t pass the test
%-- increment the number of rejected inferences and fail
check(_,_):-

!,
inc_nrej,
fail.

do_check([]).

do_check([H|T]):-
is_false(H),
do_check(T).

is_false(equal(X,Y)):-
!,
\+ eval_term(predicate,equal(X,Y),true).

is_false(pttpnot_equal(X,Y)):-
!,
eval_term(predicate,pttpnot_equal(X,Y),false).

is_false(Term):-
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eval_term(predicate,Term,false).

eval_term(predicate,equal(X,Y),true):-
eval_args([X,Y],[Z,Z]),
!.

eval_term(predicate,equal(_,_),false):-
!.

eval_term(predicate,pttpnot_equal(X,Y),false):-
eval_args([X,Y],[Z,Z]),
!.

eval_term(predicate,pttpnot_equal(_,_),true):-
!.

eval_term(Type,X,EX):-
X =.. [F|Args],
( Args == [] ->

EArgs = [];
% or

eval_args(Args,EArgs)),
X2 =.. [F|EArgs],
eval(Type,X2,EX).

eval_args([],[]).

eval_args([Head|Tail],[NewHead|NewTail]):-
( var(Head) ->

!,
eval(domain,Head),
NewHead = Head;
( integer(Head) ->

NewHead = Head;
eval_term(functor,Head,NewHead))),

eval_args(Tail,NewTail).

split_and_reverse((X,Y),[NewX|Rest]):-
!,
reverse_sign(X,NewX),
split_and_reverse(Y,Rest).

split_and_reverse((Y),[NewY]):-
reverse_sign(Y,NewY).

reverse_sign(X,Not_X):-
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X =.. [Functor|Args],
name(Functor,F),
name(pttpnot_,Neg),
( append(Neg,F2,F) ->

name(NewF,F2),
Not_X =.. [NewF|Args];

%true ->
append(Neg,F,F2),
name(NewF,F2),
Not_X =.. [NewF|Args]).

n_check([]):- !.

n_check([Head|_InAList]):-
Head =.. [Predicate|_],
name(Predicate,P),
name(pttpnot_,N),
append(N,_,P),!,
inc_nrej,
fail.

n_check([_Head|AList]):-
n_check(AList).

p_check([]):- !.

p_check([Head|AList]):-
Head =.. [Predicate|_],
name(Predicate,P),
name(pttpnot_,N),
append(N,_,P),!,
p_check(AList).

p_check(_):-
!,
inc_nrej,
fail.
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