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Abstract

Guidance is a central issue in Automatic Theorem Proving systems due to the enormity
of the search space that these systems navigate. Semantic guidance uses semantic in-
formation to direct the path an ATP system takes through the search space. The use of
semantic information is potentially more powerful than syntactic information for guid-
ance. This research aimed to discover a method for incorporating semantic guidance into
linear deduction systems, in particular model elimination based linear systems. This has
been achieved. The GLiDeS pruning strategy is a simple strategy of restricting the model
elimination deduction to one where all A-literals are false in the guiding model. This
can be easily incorporated into any model elimination based prover. Evaluation of the
GLiDeS strategy has shown that when “good guidance” has been achieved, the benefit of
this guidance is significant. However attempts to develop a heuristic for predicting which
model will provide “good guidance” has been largely unsuccessful.



Original Contributions

1. Developed novel strategy (GLiDeS) for applying semantic guidance to full linear
deduction systems.

2. Shown that the new GLiDeS strategy is sound but incomplete.

3. Shown that GLiDeS is complete for a small group of problems termed Semantic
Horn and that this result is essentially equivalent to renaming [Slagle, 1967].

4. Implemented system to demonstrate ease of including GLiDeS into an existing lin-
ear theorem proving system, PTTP.

5. Evaluated performance of the GLiDeS semantic guidance strategy and concluded
that overall the GLiDeS strategy does not provide significant improvementto PTTP's
performance.

6. It has been shown that when good guidance is achieved the improvement in per-
formance is significant. GLiDeS dramatically reduces the amount of search space
covered before a proof is found (as reflected by the number of inferences made).
In the best case, PTTP covered on average 8 times the search space that GLiDeS
covered (See NHN_SEQ Table 6.7).
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