The environmental fate of traffic-derived metals in a section of Wet Tropics World Heritage Area (WTWHA), Far North Queensland (FNQ)

Thesis submitted by:

Chris Pratt, BSc (Hons) Qld in May 2006

for the degree of Doctor of Philosophy in the School of Earth Sciences James Cook University, Cairns campus North Queensland, Australia

Statement of access

I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University and, by microfilm, computer or other means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement

"In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper written acknowledgement for any assistance which I have obtained from it."

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act. Beyond this, I do not wish to place any restrictions on access to this thesis.

Chris Pratt

Date

Electronic copy

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library is an accurate copy of the print thesis submitted, within the limits of the technology available.

.....

Chris Pratt

Date

Declaration

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

.....

Chris Pratt

Date

Acknowledgements

Thanks to many people who have assisted and encouraged me over the past 4 years. First and foremost, I'd like to express my gratitude to my principal supervisor, Associate Professor Bernd Lottermoser for his unwavering moral support and continued technical input into the thesis. Bernd, I greatly appreciated your equal measures of advice and patience during our frequent discussions. I am also indebted to you for acting as an interpreter to Des-the-barman during our field trip stints at the Irvinebank Tavern.

A big thanks to those who gave up their time to assist me collecting samples during some hot and sticky Cairns summer days: Andrei Tonello, Shane Cridland, Ben Gilfedder, Richard Pauku and Dave Harris. My gratitude to Scott Keeling, Paul Nelson and Manfred Thienenkamp for their technical contributions to the laboratory experiments; and to John Broughton and Cedric Mortimer for proofreading. Also, thanks to the staff of the rainforest CRC and Queensland Main Roads for their financial assistance to the project. In the Faculty of Science and Engineering office, I'd like to express my appreciation to Eva King for her ongoing moral support and willingness to assist me in logistical matters. Additionally, many thanks to those staff members and students of JCU who helped me with a number of details throughout the PhD. My gratitude also goes to the staff of the Queensland Herbarium in Brisbane for their assistance in grass sample identification.

A huge thank-you to my family: mum, dad, Steve and Karen for their encouragement and extensive proof-reading of the thesis. You have all spurred me on from day one when I moved to Cairns. Also, thanks to Bianca Tonello, my flatmate for most of the duration of my PhD, for putting up with me over the years and patiently sitting though practise runs of my seminars.

Finally, this thesis would never have been kick-started, let alone submitted, without the support, assistance, encouragement and love of my girlfriend and best mate. Thanks Jaye for the countless days you endured with me wandering down streams as I pretended I knew where we were, sitting in gutters on muggy days drilling into concrete, and listening to my incessant cries of "first flush, first flush" at the sound of raindrops on the roof. I really couldn't have done it without you Jaye.

Abstract

The major aim of this research was to resolve the following question:

What are the key processes affecting the concentrations, mobility and bioavailability of traffic-derived metals (Cd, Cu, Pb, Ni, Zn, Pd and Pt) in roadside environments in a section of the wet-dry tropics in northern Australia?

Specific areas investigated included the Kuranda Range Road, northwest of the city of Cairns; the Captain Cook Highway at the base of the Kuranda Range Road; and adjoining streams and grassed fields. The Kuranda Range Road traverses World Heritage-listed rainforest and the Queensland Department of Main Roads plans to upgrade the road from two lanes to four.

Materials analysed in the study comprised bedrock, road sediments, road runoff waters, stream sediments, roadside topsoils, and grasses. Additionally, background stream sediment, stream water, topsoil and grass samples were collected away from roads.

Geochemical analyses of the road sediments from the Kuranda Range Road revealed variable total metal concentrations (median values: 0.19 mg/kg Cd, 41.7 mg/kg Cu, 53.3 mg/kg Pb, 38.8 mg/kg Ni, 852 mg/kg Zn, 0.035 mg/kg Pd, 0.086 mg/kg Pt). Moreover, the studied road sediments exhibited metal enrichment (Ni excepted) relative to background stream sediments (maximum enrichment factors: Cd 1.8x, Cu 1.5x, Pb 6.8x, Zn 17.3x, Pd 49.5x, Pt 82x). Partial (citrate dithionite) and sequential (as per the method of Tessier et al. 1979) extractions were performed on the road sediments to examine their metal host sites. The results demonstrated that approximately 35 % to 95 % of the sediments' metal content was accommodated by acid (HF-HNO₃-HClO₄)-insoluble fractions, likely residual silicates. However, significant (p<0.01) positive correlations between the C_{org} and Cd, Cu, Pb and Zn concentrations in the road sediments pointed to metal hosting by an organic source, most likely tyre rubber shreds. The extraction techniques revealed that metals associated with tyre rubber are not readily removed by extraction reagents. Hence, other methods, including correlation analyses between metal concentrations and Al, Mn, Fe and Corg values, are necessary to accurately interpret metal hosting within road sediments.

Chemical analyses were performed to evaluate the mobility of Cd, Cu, Pb, Ni and Zn within road runoff waters on the Kuranda Range Road. Maximum Cu, Pb and Zn levels in filtered (< 0.45μ m) road runoff waters taken in November 2004 (after a prolonged absence of rainfall) were 8x, 6x and 12x greater than their respective highest values in samples acquired in February 2003 and January 2004 (following heavy rainfall). Such temporal metal distribution data for road runoff waters suggest that large volumes of rainfall in wet-dry tropical regions are capable of mobilising high levels of metals from road surfaces during the initial flushing event (i.e. the 'first flush'). Furthermore, laboratory leaching and ponding experiments conducted on road sediments indicated that a small proportion of the total heavy metal content (<10 %) of road sediments is readily dissolved in distilled water. In the leach tests, aqueous Cd, Cu, Ni and Zn concentrations showed a pronounced 'first flush' effect (i.e. metal values were much higher in the first few samples than in the remaining leachates).

To explore the dispersion of metals from road surfaces, stream sediments from Avondale Creek (intersecting the Kuranda Range Road) were analysed for their total metal contents and Pb isotopic ratios (208 Pb/ 206 Pb, 207 Pb/ 206 Pb, 208 Pb/ 204 Pb and 206 Pb/ 204 Pb). The results revealed: a) elevated total Pb (29.6 mg/kg) and Pt (0.025 mg/kg) concentrations in the sediments collected downstream of the road compared to sediments upstream of the road (Pb = 7.3 mg/kg, Pt = 0.006 mg/kg); and b) non-radiogenic Pb isotopic signatures (characteristic of Broken Hill Pb used in petrol) in sediment samples downstream of roads relative to background stream sediments. The results likely reflect contamination of the catchment by road sources.

The verification of metal contamination within Avondale Creek triggered an investigation into the bioavailability of traffic-derived metals. This involved an assessment of the uptake of soil-hosted metals by a grass species (*Melinis repens*), growing adjacent to the Kuranda Range Road. Median total metal concentrations in topsoils collected adjacent to the road were much higher than median total metal values in topsoils taken 5 metres from the road edge. In the *M. repens* grass specimens, Cu, Pb, Ni and especially Zn concentrations were elevated in roots acquired from immediately adjacent to the Kuranda Range Road. *M. repens* clearly has the ability to incorporate high concentrations of trace elements when growing

on contaminated roadside soils, particularly Zn and to a lesser degree Cu, Pb and Ni. Additionally, extractions using a DTPA-CaCl₂-TEA-HCl (DTPA) solution revealed a significant positive correlation (p<0.01) between soil-DTPA and root Zn levels in the roadside *M. repens* samples. This indicates that the DTPA reagent is a rudimentary indicator of Zn to the roots of this grass species. Metal concentrations in *M. repens* samples grown in road sediments as part of a greenhouse experiment, were similar to the values exhibited by the field specimens. Moreover, the metal levels extracted from the road sediments by an EDTA-NH₄HCO₃ solution were commensurate with DTPA-extractable values, indicating that both of these solutions target similar metal fractions in road sediments.

The final research phase examined remediation measures for road runoff waters on the planned Kuranda Range Road Upgrade. A treatment selection process identified dissolved metals as the most significant category of pollutants because of their high lability and potential toxicity. Site constraints, including the close proximity of the road to sensitive water catchments, indicated that at-source pollutant attenuation will be the most effective remediation option for the road upgrade. Thus, existing at-source primary treatment measures (e.g. trash racks); secondary technologies (including sand filters); and tertiary structures (such as biofilters) were identified as the most suitable treatment options for the Kuranda Range Road Upgrade. Few tertiary treatment devices exist for road runoff waters (the StormFilter is an exception). Hence, this research explored the capacity of commonly-available materials, including mushroom compost and bentonite, to remove dissolved metals from road sediment leachates. In laboratory experiments conducted in this project, mushroom compost and bentonite displayed strong capacities to reduce dissolved heavy metal concentrations in road sediment leachates (Pb and Zn removal over 80 %). Both materials were very fast-acting (<5 minutes) in achieving metal attenuation. It is envisaged that these adsorptive materials have the potential to be included into structures (such as sand filter beds) that can achieve tertiary treatment of road runoff waters on the upgraded Kuranda Range Road.

Overall, this research demonstrated that annual wet-dry climate cycles control the concentrations, mobility and bioavailability of traffic-derived metals in roadside corridors in the tropics. Metals accumulate in roadside sediments and soils during the prolonged 'dry season' from April to October, and are mobilised by road runoff waters over the 'wet season' (November to March). Mobile metals are bioavailable to organisms living adjacent to roads. Consequently, remediation strategies that can reduce the dispersal of these contaminants into natural environments are important in road design and maintenance in the tropics. The use of adsorptive materials such as bentonite in sand filter beds is presented as one such remediation option.

Table of Contents

Chapter 1	Project Introduction	1
1.1 N	Natural abundance of metals	1
1.1.1	Introduction	1
1.1.2	Crustal abundance	1
1.1.3	Pedosphere	2
1.1.4	Biosphere	3
1.1.5	Surface waters and sediments	4
1.1.6	Significance of understanding the natural distribution of metals	4
1.2 (Current knowledge on traffic-derived metal contamination _	5
1.2.1	Introduction	5
1.2.2	Metal contamination on road surfaces	5
1.2.3	Metal mobility in road runoff waters	
1.2.4	Metals in roadside soils	9
1.2.5	Bioavailability of traffic-derived metals	12
1.2.6	Remediation of metals from road runoff waters	13
1.2.7	Previous research within the study area	14
1.2.	.7.1 Total metal values in roadside topsoils	14
1.2.	.7.2 Dispersion of heavy metals from road edges	15
1.2.	.7.3 Pb isotopic ratios in topsoils adjacent to the Kuranda Range R	oad 17
1.2.	.7.4 Sediment metal values on the Kuranda Range Road	18
1.2.	.7.5 Implications of previous local studies	18
1.2.8	Unexplored aspects of traffic-derived metal contamination	19
1.3 I	Research aims and thesis outline	21
1.3.1	Primary objective	21
1.3.2	Specific aims	22
1.3.3	Thesis outline	23
Chapter 2	Materials and methods	25
2.1 I	Project area characteristics	25
2.1.1	Project setting: environmental significance of the area	25
2.1.2	Physiography	30
2.1.3	Climate	30
2.1.4	Geology	32
2.1.5	Geomorphology	33
2.1.6	Soils	35

2.1.7	Vegetation	37
2.1.8	8 Road properties and traffic volumes	38
2.1.9	2 Land uses within the project area	41
2.2	Sample collection and labelling	42
2.3	Bedrock samples	43
2.3.1	Rationale	43
2.3.2	2 Collection methods	44
2.3.3	Sample processing	44
2.3.4	Chemical analyses	44
2.4	Road and stream sediments	44
2.4.1	Sampling	44
2.4.2	2 Sample processing	46
2.4.3	Sieving	48
2	4.3.1 Road sediments	48
2.	4.3.2 Stream sediments	49
2.4.4	Mineralogical analyses and SEM observations	49
2.4.5	Extraction techniques	49
2	4.5.1 Sequential extraction	49
2	4.5.2 Citrate-dithionite extraction	50
2	4.5.3 DTPA and EDTA extractions	51
2.4.6	Laboratory experiments	52
2	4.6.1 Column leach experiments	52
2.	4.6.2 Ponding experiments	53
2.	4.6.3 Preparation of the column leachates and pond decant samples	54
2.4.7	Chemical analyses	54
2	4.7.1 Solid samples	54
2.	4.7.2 Laboratory leachates, pond decant samples and extracts	55
2.4.8	B Pb isotope analyses	55
2.5	Road runoff, rainwater and stream waters	56
2.5.1	Sampling	56
2.5.2	2 Sample processing and chemical analyses	58
2.6	Tyre rubber ponding experiment	58
2.7	Roadside grasses and soils	59
2.7.1	Collection of grass samples for formal identification	59
2.7.2	2 Sampling	59
2.7.3	Sample processing	61
2.7.4	DTPA extractions of soils	61
2.7.5	Greenhouse trial	62

2.7.6	Che	mical analyses	_ 62
2.8	Reme	diation laboratory experiments	_63
2.8.1	Exp	eriment design and procedure	_ 63
2.8.2	Pern	neability experiments	_ 64
2.8.3	Che	mical analyses	_ 64
2.9	Qualit	y assurance	_65
2.9.1	Ana	lysis of blanks	_ 65
2.9.2	Prec	ision	_ 65
2.9.3	Acc	uracy	_ 66
2.9.4	Dete	ection limits	_ 67
2.10	Statist	ical methods	_69
Chapter .	37	Traffic-derived metals within road sediments	_ 70
3.1	Introd	luction	_70
3.2	Metho	ods of analysis	_72
3.3	Result	.s	_73
3.3.1	Tota	I heavy metal and PGE concentrations in road sediments	_ 73
3.3.2	Dist	ribution of heavy metals in size fractions of road sediments	_ 77
3.	3.2.1	Particle-size distribution of the road sediments	_ 77
3.	3.2.2	Particle-size distribution of heavy metals within the road sediments	_ 78
3.	3.2.3	Relative masses of heavy metals in various particle-size fractions	_ 82
3.3.3	PGE	e particle-size distribution in road sediments	_ 85
3.	3.3.1	Relative masses of PGEs in various particle-size fractions	_ 86
3.3.4	Min	eralogy and major element geochemistry of road sediments	_ 87
3.3.5	Extr	actions	_ 91
3.	3.5.1	Sequential extraction of metals	_ 91
3.	3.5.2	Partial extraction of oxide/oxyhydroxide hosted metals	_ 93
3.4	Discus	sion	_94
3.4.1	Tota	I heavy metal and PGE concentrations in road sediments	_ 94
3.	4.1.1	Comparison with other studies	_ 94
3.	4.1.2	Comparison with background values	_ 96
3.	4.1.3	Metal enrichment in local streams	_ 97
3.4.2	Vari	ations in heavy metal and PGE concentrations within the road sediments	_ 99
3.	4.2.1	Effect of traffic density on metal concentrations in road sediments	_ 99
3.	4.2.2	Control of road design and topography on road sediment Zn and Ni values	102
3.	4.2.3	Impact of rainfall on metal concentrations in road sediments	103
3.	4.2.4	Temporal trends in road sediment metal concentrations	105
3.4.3	Part	icle-size distribution of Pb and PGEs in road sediments	106

3.4.4	Particle-size distribution of Zn in road sediments	107
3.4.5	Particle-size distribution of Ni in road sediments	109
3.4.6	Heavy metal and PGE hosting by road sediments	110
3.4	I.6.1 Sequential and partial extractions	111
3.4	I.6.2 Correlations	115
3.5	Conclusions	118
Chapter 4	Metal mobility in road runoff waters	120
4.1	Introduction	120
4.2	Methods of analysis	123
4.3	Results	124
4.3.1	Chemical parameters of background rainwater	124
4.3.2	Chemical parameters of road runoff waters	125
4.3.3	Aqueous metal concentrations in road runoff waters	125
4.3.4	Laboratory experiments	129
4.3	8.4.1 Column leach experiments	129
4.3	B.4.2 Ponding experiments	136
4.3	3.4.3 Tyre ponding experiment	143
4.4	Discussion	146
4.4.1	Road runoff waters	146
4.4	I.1.1 General concentration trends	146
4.4	1.1.2 'Dissolved' metal values in road runoff waters	149
4.4	L1.3 Dilution effect on metal concentrations in road runoff waters	150
4.4	A.1.4 Significance of pH in road runoff waters	153
4.4	I.1.5 Significance of EC in road runoff water samples	157
4.4.2	Laboratory experiments	158
4.4	1.2.1 Column leach experiments	158
4.4	1.2.2 Ponding experiments	101
4.4	1.2.5 Tyre rubber ponding experiments	103
4.5	Conclusions	164
Chapter S	5 Heavy metal and PGE concentrations in stream sediments	s: Pb
isotopes a	and PGE enrichment as indicators of traffic contamination	166
5.1	Introduction	166
5.2	Methods of analysis	168
5.3	Results	169
5.3.1	General characteristics of the stream and estuarine sediments	169

5.3.2	Total heavy metal and PGE concentrations in stream sediments	17
5.3.3	Sediment Pb isotope geochemistry	
5.3	B.3.1 Pb isotopic ratios	174
5.4	Discussion	179
5.4.1	Total metal concentration data	179
5.4.2	Pb isotopic ratios of the sediments	182
5.4	L2.1 Samples analysed at CDU	182
5.4	A.2.2 Samples analysed at ANSTO	182
5.4	.2.3 Summary of Pb isotopic ratios in the sediments	184
5.4.3	Potential sources for metal enrichment in the sediments	184
5.4	.3.1 Natural sources	184
5.4	.3.2 Sewage discharge	18
5.4	.3.3 Fertilisers	18
5.4	.3.4 Motor vehicles	18
5.4.4	Limitations in the use of Pb isotopes as tracers of traffic contamination	18
5.5	Conclusions	19
	· · · · · · · · · · · · · · · · · · ·	
Chapter 6	Metal bioavailability in roadside soils and sediments	19.
6.1	Introduction	19
6.2	Methods of analysis	19
6.3	Results	19
6.3.1	Topsoils	19
6.3.2	Grass specimens	19
6.3.3	DTPA extractions	19
6.3.4	Greenhouse experiment	20
6.3	G.4.1 Grass specimens	20
6.3	6.4.2 Metal extractability in the road sediments	20
6.4	Discussion	20
6.4.1	Heavy metal and PGE contamination of roadside topsoils	20
6.4.2	Metal levels in stem tissue of <i>M. repens</i>	20
6.4.3	Metal levels in root tissue of <i>M. repens</i>	20
6.4.4	DTPA as a bioavailable marker: strengths and limitations	21
6.4.5	Implications of analysis of roadside <i>M. repens</i> samples	21
6.4.6	The greenhouse experiment	21
6.5	Conclusions	21
Chanter 7	Remediation of road runoff waters	
	Tenculation of road ranoff waters	210
7.1	Introduction	218

7.2	Treatment options: a technical review	220
7.2.1	Pollutants in road runoff waters	220
7.2.2	Existing remediation technologies	221
7.2.3	Commercially-available remediation devices	224
7.3	Selection methodology for the Kuranda Range Road Upgrade	225
7.3.1	Proposed road upgrade	225
7.3.2	Planning framework for remediation measures	226
7.3.3	Road runoff water quality objectives	227
7.3.4	Criteria in developing treatment processes	228
7.3	B.4.1 Step 1 – Determining the treatment objectives	228
7.3	3.4.2 Step 2 – Developing a 'treatment train'	230
7.3	B.4.3 Step 3 – Identifying the site's characteristics	231
7.3	B.4.4 Step 4 – Short-listing potential treatment options	234
7.3	B.4.5 Step 5 – Comparing the treatment options	236
7.3	B.4.6 Step 6 – Finalising the design for the treatment system	238
7.3.5	Recommendations and considerations for the finalised treatment measures	240
7.4	Laboratory experiments	240
7.4.1	Zeolite experiment	240
7.4.2	Mushroom compost experiment	242
7.4.3	Bentonite experiment	244
7.4.4	pH values and permeability measurements	245
7.5	Discussion	246
7.5.1	Summary of the properties of the adsorptive materials	246
7.5.2	The adsorption experiments	247
7.5.3	Significance of pH and permeability of adsorptive materials	251
7.5.4	Recommendations for future work	254
7.6	Conclusions	254
Chapter &	8 Summary and Conclusions	256
8.1	Summary of research	256
8.1.1	Revisiting the research question	256
8.1.2	Metal accumulation in road sediments	256
8.1.3	Metal mobility in road runoff waters	258
8.1.4	The dispersal of metals into streams intersected by roads	259
8.1.5	The bioavailability of metals in roadside corridors	260
8.1.6	The remediation of road runoff waters	261
8.1.7	Answering the research question	262
8.2	Implications of research	262

8.3	Limitations and recommendations for future research	265
Referen	<i>ces</i>	267
Append	ix A – Sample ID and locations	284
Append	ix B – Sample data spreadsheet	298
Append	ix C – Laboratory extraction procedures	319
Append	ix D – Quality control	324
Append	ix E - Identification of grasses by the Queensland Herbarium	330
Append	ix F – Traffic count data	334
Append	ix G – SEM/EDS and XRD results	339

List of figures

Figure 1-1: Transect locations: a) the edge of the Kuranda Range Road, upper section; b) the edge of
the Kuranda Range Road, middle section (from Diprose 1999); and c) the edge of the Bruce
Highway in Cairns (from Williams 2000). Scales of the transect lengths are exaggerated 15
Figure 1-2: Total heavy metal concentrations in topsoils from: a) the edge of the Kuranda Range
Road, upper section; b) the edge of the Kuranda Range Road, middle section (from Diprose
1999); and c) the edge of the Bruce Highway in Cairns (from Williams 2000). Note, HF-
HNO3-HClO4 digestion followed by HCl leach used for total analysis in both studies 16
Figure 1-3: ²⁰⁸ Pb/ ²⁰⁴ Pb versus ²⁰⁶ Pb/ ²⁰⁴ Pb isotopic ratios for roadside topsoils adjacent to the Kuranda
Range Road from Diprose (1999). The Broken Hill signature, growth curve and mixing lines
are from Gulson et al. (1981). \bigcirc = background sample
Figure 2-1: Location of the WTWHA (Bentrupperbaumer 2005)
Figure 2-2: a) Aerial photograph of the project location showing major roads studied (Google Earth
2005) b) Physiography of the project area (modified from Department of Defence 1989) 26
Figure 2-3: 3-D image of the proposed upgrade route of the Kuranda Range Road, indicating the
steepness of the road (Searle 2004)
Figure 2-4: Aerial photograph of the urban and rural landscape at the base of the Kuranda Range
Road
Figure 2-5: View of the Macalister Range with the route of the Kuranda Range Road sketched in
(Queensland Department of Main Roads 2004b)
Figure 2-6: Superimposition of the Kuranda Range Road winding through WTWHA-listed rainforest
(Queensland Department of Main Roads 2004b)
Figure 2-7: View of the existing Kuranda Range Road crossing with Streets Creek
Figure 2-8: Photograph of studied roundabouts on the Captain Cook Highway
Figure 2-9: Average monthly rainfall for the Cairns area (BOM 2005b)
Figure 2-10: Average maximum and minimum monthly temperatures for the Cairns area (BOM
2005c)
Figure 2-11: Local geology of the project area (modified from Bain and Draper 1997)
Figure 2-12: Geomorphology of the project area (modified from Nott 2003)
Figure 2-13: Soil series encountered in the project area (modified from Murtha et al. 1996)
Figure 2-14: Photograph of the road surface of the Kuranda Range Road, along with a concrete
drainage structure
Figure 2-15: Photograph of the surface of the Captain Cook Highway roundabouts. A drainage
structure common to the roundabouts is shown in the centre of the image
Figure 2-16: Major land uses within the project area
Figure 2-17: Examples of sample ID used in this thesis
Figure 2-18: Road sediment and background stream sediment sample location plan (AMG
coordinates are given in Appendix A)

Figure 2-19: Gutter from which road sediment samples KR21 and KR30 were collected, Kuranda
Range Road. Refer to Appendix A for sample ID details
Figure 2-20: Gutter on roundabout on the Captain Cook Highway from which road sediment samples
CR1, CR8 and CR12 were acquired. Refer to Appendix A for sample ID details
Figure 2-21: Set-up of the column stand for the column leach experiments
Figure 2-22: Road runoff water and stream water sample locations
Figure 2-23: Locations of grass and soil samples (# indicates location (ii) where sample was
collected more than 5 m from the road edge as well as immediately adjacent to road edge) 60
Figure 2-24: Photograph of the stem portion of a <i>M. repens</i> specimen, indicating distinctive red/pink
colour of flowers (Carr 2005)
Figure 3-1: Median heavy metal and PGE concentrations in road sediments collected from the
project area over three discrete time intervals. For the samples collected from the Kuranda
Range Road: $n = 6$ for Oct 02, $n = 9$ for Nov 03 and Aug 04*. For the samples collected from
the Captain Cook Highway roundabouts: $n = 4$ for Oct 02 and Nov 03, $n = 3$ for Aug 04. *For
Pd and Pt in Kuranda Range Road sediment samples, $n = 3$ in Aug 04
Figure 3-2: Particle-size distribution profiles for two composite road sediment samples from: a) the
Kuranda Range Road (KCR _M 1) (October 2002); and b) the Captain Cook Highway
roundabouts (CRC_M1) (October 2002). Refer to Chapter 2 – Section 2.4.3 for composite
sample details. ID for composite samples are given in Appendix A
Figure 3-3: Heavy metal concentrations in various particle-size fractions of road sediments from: a)
the Kuranda Range Road (KRC_M1); and b) the Captain Cook Highway roundabouts (CRC_M1)
(October 2002). Refer to Chapter 2 – Section 2.4.3 for sieve fraction sample details. ID for
sieved road sediment samples are given in Appendix A and the data are presented in Appendix
B
Figure 3-4: Heavy metal concentrations in various particle-size fractions of road sediments from: a)
the Kuranda Range Road (KCR _M 2); and b) the Captain Cook Highway roundabouts (KCR _M 2)
(November 2003). Refer to Chapter 2 – Section 2.4.3 for sieve fraction sample details. ID for
sieved road sediment samples are given in Appendix A and the data are presented in Appendix
B
Figure 3-5: Relative masses of heavy metals within various particle-size fractions of sediments from:
a) the Kuranda Range Road (KRC_M1); and b) Captain Cook Highway roundabouts (CRC_M1)
(October 2002) * In 100 g of sediment
Figure 3-6: Relative masses of heavy metals within various particle-size fractions in road sediments
from: a) the Kuranda Range Road (KCR _M 2); and b) the Captain Cook Highway roundabouts
(CRC _M 2) (November 2003) * <i>In 100 g of sediment</i>
Figure 3-7: Particle-size distribution profiles for road sediments from: a) the Kuranda Range Road
(KRC _M 3); and b) the Captain Cook Highway roundabouts (CRC _M 3) (August 2004). Refer to
Chapter 2 – Section 2.4.3 for composite sample details. ID for composite road sediment
samples are given in Appendix A

Figure 3-8: PGE concentrations within various particle-size fractions in road sediments from: a) the Kuranda Range Road (KRC_M3); and b) the Captain Cook Highway roundabouts (CRC_M3) (August 2004). Refer to Chapter 2 – Section 2.4.3 for sieve fraction sample details. ID for sieved road sediment samples are given in Appendix A and the data are presented in Appendix B.

Figure 3-15: Relationship between Zn concentrations and C_{org} in road sediments from: a) the Kuranda Range Road; and b) the Captain Cook Highway roundabouts (November 2003).... 108

- Figure 4-1: Aqueous Cd, Cu, Pb, Ni, Zn, Al, Fe and Ca concentrations in successive column leachates of Kuranda Range Road sediments. Column leachates 1 through to 10 are arranged in order from left to right on the x-axis. Refer to Chapter 2 Section 2.4.6.1 for sample preparation details. Appendix A presents sample ID and the data are given in Appendix B. 132

Figure 4-3: a) pH; b) dissolved oxygen (mg/L); and c) Eh (mV) for column leachates, Kuranda
Range Road sediments. Refer to Chapter 2 – Section 2.4.6.1 for sample preparation details.
Appendix A presents sample ID and the data are given in Appendix B
Figure 4-4: Time taken (minutes) for leachate volumes to pass through sediments in the column
containing Kuranda Range Road sediments
Figure 4-5: Aqueous Cd, Cu, Pb, Ni, Zn, Al, Fe and Ca concentrations in successive column
leachates of Captain Cook Highway roundabout sediments. Column leachates 1 through to 10
are arranged in order from left to right on the x-axis. Refer to Chapter 2 – Section 2.4.6.1 for
sample preparation details. Appendix A presents sample ID and the data are given in Appendix
B
Figure 4-6: Cumulative proportion of metals liberated into column leachates, Captain Cook Highway
roundabout sediments: a) in filtered leachates; and b) in unfiltered leachates
Figure 4-7: a) pH; b) dissolved oxygen (mg/L); and c) Eh (mV) for column leachates, Captain Cook
Highway roundabout sediments. Refer to Chapter 2 – Section 2.4.6.1 for sample preparation
details. Appendix A presents sample ID and the data are given in Appendix B 135
Figure 4-8: Time taken (minutes) for leachate volumes to pass through sediments in the column
containing Captain Cook Highway roundabout sediments
Figure 4-9: Aqueous Cd, Cu, Pb, Ni, Zn, Al, Fe and Ca concentrations in successive pond decant
water samples, Kuranda Range Road sediments. Sample intervals are plotted on the x-axis.
Refer to Chapter 2 – Section 2.4.6.2 for sample preparation details. Appendix A presents
sample ID and the data are given in Appendix B
Figure 4-10: Cumulative proportions of metals liberated into pond decant waters, Kuranda Range
Road sediments: a) in filtered waters; and b) in unfiltered waters
Figure 4-11: a) pH; b) dissolved oxygen (mg/L); and c) Eh (mV) for pond decant waters, Kuranda
Range Road sediments. Refer to Chapter 2 – Section 2.4.6.2 for sample preparation details.
Appendix A presents sample ID and the data are given in Appendix B
Figure 4-12: Aqueous Cd, Cu, Pb, Ni, Zn, Al, Fe and Ca concentrations in successive pond decant
water samples, Captain Cook Highway roundabout sediments. Sample intervals are plotted on
the x-axis. Refer to Chapter 2 – Section 2.4.6.2 for sample preparation details. Appendix A
presents sample ID and the data are given in Appendix B
Figure 4-13: Cumulative proportions of metals liberated into pond decant waters, Captain Cook
Highway roundabout sediments: a) in filtered waters; and b) in unfiltered waters
Figure 4-14: a) pH; b) dissolved oxygen (mg/L); and c) Eh (mV) for pond decant waters, Captain
Cook Highway roundabout sediments. Refer to Chapter 2 – Section 2.4.6.2 for sample
preparation details. Appendix A presents sample ID and the data are given in Appendix B. 142
Figure 4-15: Aqueous metal concentrations in filtered pond decant waters: a) ponded with car tyre
shreds; and b) ponded with truck tyre shreds. Refer to Chapter 2 – Section 2.6 for sample
preparation details. Appendix A presents sample ID and the data are given in Appendix B. 144
Figure 4-16: pH in: a) water ponded with car tyre shreds; and b) water ponded with truck tyre shreds.

xix

experiment. Refer to Chapter 2 – Section 2.6 for sample preparation details. Appendix A
presents sample ID and the data are given in Appendix B 145
Figure 4-17: Eh (mV) in: a) water ponded with car tyre shreds; and b) water ponded with truck tyre
shreds. *Start refers to sample of distilled water analysed prior to the commencement of the
experiment. Refer to Chapter 2 – Section 2.6 for sample preparation details. Appendix A
presents sample ID and the data are given in Appendix B 145
Figure 4-18: The 'first flush' model for contaminant concentrations in road runoff waters (modified
from Sansalone and Buchberger 1997)
Figure 4-19: Schematic diagram of: a) static equilibrium leading to 'first flush' effect; and b) kinetic
dissolution resulting in the absence of a 'first flush' effect for aqueous metal concentrations. 159
Figure 5-1: Studied sections of the Avondale Creek catchment system
Figure 5-2: Cumulative distribution of particle sizes in a) the <75 μ m fraction and b) in the <2 μ m
fraction of the various sediment types. Refer to Appendix A for sample ID details 170
Figure 5-3: Total heavy metal and PGE concentrations in stream sediments (<75 μ m) from various
sections of the Avondale Creek catchment. Sample location details were shown in Chapter 2 -
Section 2.4.1. Sample ID details are presented in Appendix A and data are given in Appendix
В
Figure 5-4: $^{207}Pb/^{206}Pb$ vs. $^{208}Pb/^{206}Pb$ ratios for sediments (<75 μ m) collected from the Avondale
Creek catchment, analysed by CDU. Growth Curve, Broken Hill signature from Gulson et al.
(1981). For the road sediment, $n = 3$; estuarine sediment, $n = 2$; stream sediment collected
upstream of the 1^{st} road crossing, $n = 3$; stream sediment taken downstream of the 1^{st} road
crossing, $n = 7$. Sample processing was described in Chapter 2 – Section 2.4.8. Sample ID
details are presented in Appendix A and data are given in Appendix B 175
Figure 5-5: 207 Pb/ 206 Pb vs. 208 Pb/ 206 Pb ratios for sediments (<75 μ m) collected from the Avondale
Creek catchment, analysed by ANSTO. Growth Curve, Broken Hill signature from Gulson et
al. (1981). For the road sediment, $n = 3$; estuarine sediment, $n = 2$; stream sediment collected
upstream of the 1^{st} road crossing, $n = 3$; stream sediment taken downstream of the 1^{st} road
crossing, $n = 7$. Sample processing described in Chapter 2 – Section 2.4.8. Sample ID;
Appendix A, data; Appendix B
Figure 5-6: ${}^{208}\text{Pb}/{}^{204}\text{Pb}$ vs. ${}^{206}\text{Pb}/{}^{204}\text{Pb}$ ratios for sediments (<75 µm) collected from Avondale Creek,
analysed by ANSTO. Growth Curve, Broken Hill signature from Gulson et al. (1981). For the
road sediment, $n = 3$; estuarine sediment, $n = 2$; stream sediment collected upstream of the 1 st
road crossing, $n = 3$; stream sediment taken downstream of the 1 st road crossing, $n = 7$. Sample
processing described in Chapter 2 – Section 2.4.8. Sample ID; Appendix A, data; Appendix B.
Figure 5-7: Total Pb concentrations in stream sediment (<75 μ m) from background locations
(upstream of all roads) to the mangrove estuary. Sediments analysed by CDU. Sample
processing was described in Chapter 2 - Section 2.4.8. Sample ID details are presented in
Appendix A and data are given in Appendix B 177

Figure 5-8: a) ^{207/206} Pb vs. total Pb; and b) ^{208/206} Pb vs. total Pb in stream and estuarine sediment, <	75
μ m, analysed by CDU. Sample processing was described in Chapter 2 – Section 2.4.8. Samp	ole
ID details are presented in Appendix A and data are given in Appendix B	178

- Figure 6-1: DTPA-extractable vs. EDTA-extractable metal concentrations in road sediments from the Kuranda Range Road and the Captain Cook Highway roundabouts. n = 10. Refer to Chapter 2 Section 2.4.5.3 for sediment bioavailable extraction procedures. Appendix A presents sample ID descriptions for the extracts and the data for individual samples are given in Appendix B.

- Figure 7-3: Key factors in the design of a sustainable urban drainage system (from Ellis et al. 2004).

Figure 7-5: A common bridge structure on the Kuranda Range Road Upgrade (over Avondale Creek), showing the close proximity of the drainage point and the receiving catchment waters

List of tables

Table 1-1: Average crustal abundances of metals studied in the project (¹ from Berkman 1995, ² from
Smith and Huyck 2004). The average concentrations of the metals in various rock types are
also shown (from Faure 1991). All values are in mg/kg. NV = no value given
Table 1-2: Average concentrations of metals in soils (¹ from Berkman 1995, ² from Smith and Huyck
2004). All results are presented in mg/kg
Table 1-3: Summary of studies which have examined total metal concentrations in road sediments. 6
Table 1-4: Summary of investigations into labile fractions of metals hosted by road sediments7
Table 1-5: Summary of investigations researching metal concentrations in road runoff waters9
Table 1-6: Summary of research into metal distributions in roadside soils (<25 m from the road
edge)
Table 1-7: Synthesis of research into bioavailability of metals in roadside soils. 12
Table 1-8: Summary of experimental studies into bioavailability of PGEs. 13
Table 1-9: Heavy metals in roadside topsoils compared with background topsoils on the Kuranda
Range (from Diprose, 1999)
Table 2-1: Properties of topsoils (to 10 cm bgs) in soil series encountered in the project area (from
Murtha et al. 1996). * Sum of acidic and basic ions
Table 2-2: Various statistics for the Kuranda Range Road (Cherry 2005)
Table 2-3: Descriptors for sample ID used in this thesis. 43
Table 2-4: Design of the remediation experiments. 64
Table 2-5: Percentage of RPDs in the "acceptable" range for solid and liquid samples
Table 2-6: Laboratory reported heavy metal concentrations for standard reference sample GXR-3
compared with compilation values
Table 2-7: Detection limits for solid samples. Wt % = 10g/kg. 68
Table 2-8: Detection limits for liquid samples. 69
Table 3-1: Heavy metal and PGE concentrations in road sediments collected from the project area
from October 2002 to August 2004; background stream sediment metal concentrations are
included (all <2 mm fraction). Kuranda Range Road sediments n = 30*. Captain Cook
Highway roundabout sediments $n = 11$. Avondale Creek stream sediments $n = 6^*$. Streets
Creek stream sediments $n = 8^*$. Refer to Chapter 2 – Section 2.4.1 for sediment sample
collection details. Sediment sample ID descriptions are presented in Appendix A and the data
for individual samples are included in Appendix B75
Table 3-2: Enrichment factors for median metal values in road sediments relative to background
stream sediments
Table 3-3: Major element geochemistry of the road sediments. * = median values. Refer to Chapter
2 - Section 2.4.7.1 for sample analytical details. Appendix A presents sample ID and the data
are given in Appendix B

Table 3-4: Summary of SEM-EDS observations on road sediments from the Kuranda Range Road
and Captain Cook Highway roundabouts. Refer to Chapter 2 – Section 2.4.4 for sample
preparation details. SEM-EDS chemistry for various particles is given in Appendix G
Table 3-5: Comparison of total metal values in road sediments. All values in mg/kg
Table 3-6: Metal concentrations (mg/kg) in rock types encountered in the project area
Table 3-7: Median heavy metal concentrations in road sediments collected from the Kuranda Range
Road in this study, compared with mean concentrations from Diprose (1999) 103
Table 3-8: Average daily proportions of light vehicles versus heavy vehicles on the Kuranda Range
Road and the Captain Cook Highway. Proportions are expressed as percentages of the ADT
(source, Queensland Department of Main Roads 2005)
Table 3-9: Calculated proportions (%) of Cd, Cu, Pb and Zn in road sediments (Harrison et al. 1981;
Fergusson and Ryan 1984; Wang et al. 1998; and this study). The concentrations in all
fractions have been calculated as a percentage of the total sediment metal content
Table 3-10: Correlation coefficient matrix for log-normalised metal concentrations and log-
normalised Corg values in road sediments from the Kuranda Range Road and Captain Cook
Highway roundabouts. For metal vs. metal correlations, $n = 11$. For metal vs. C_{org} correlations
n = 9
Table 4-1: pH and EC values for rainwater samples. Refer to Chapter 2 – Section 2.5 for sample
preparation details. Appendix A presents sample ID and the data are given in Appendix B. 124
Table 4-2: pH and EC values in the studied road runoff water samples. Refer to Chapter 2 – Section
2.5 for sample preparation details. Appendix A presents sample ID and the data are given in
Appendix B125
Table 4-3: Heavy metal chemistry of road runoff waters, Kuranda Range Road (n = 5, February
2003; n = 4, January 2004; n = 9, November 2004). ANZECC Guidelines (2000) for the
Protection of Freshwater Ecosystems (99 % Protection Level) are also included. Refer to
Chapter 2 - Section 2.5 for sample preparation details. Appendix A presents sample ID and the
data are given in Appendix B 127
Table 4-4: Heavy metal chemistry of road runoff waters, Captain Cook Highway roundabouts ($n = 4$,
February 2003; n = 4, January 2004; n = 4, November 2004). ANZECC Guidelines (2000) for
the Protection of Freshwater Ecosystems (99 % Protection Level) are also included. Refer to
Chapter 2 - Section 2.5 for sample preparation details. Appendix A presents sample ID and the
data are given in Appendix B128
Table 4-5: Average monthly rainfall data for the Cairns region over the sampling intervals (BOM
2005a)
Table 4-6: Metal concentrations in road runoff waters, values compiled from the literature 148
Table 4-7: Correlation coefficients between pH values and Cd, Cu, Pb, Ni and Zn concentrations in
filtered road runoff waters collected from the Kuranda Range Road and the Captain Cook
Highway roundabouts in November 2004 ($n = 13$) and January 2004 ($n = 8$). Correlation
coefficients were calculated using log-normalised data

Table 4-8: pH values in road runoff waters at the beginning and end of a number of rainfall events in
Cincinnati, USA (from Sansalone and Buchberger 1997)
Table 4-9: Correlation coefficients between EC values and Cd, Cu, Pb, Ni and Zn concentrations in
filtered road runoff waters collected from the Kuranda Range Road and the Captain Cook
Highway roundabouts in November 2004 ($n = 13$) and January 2004 ($n = 8$). Correlation
coefficients were calculated using log-normalised data
Table 5-1: S _{sulfate} , S _{sulfide} , Total S, C _{org} , MnO and Fe ₂ O ₃ values (wt %) in stream and estuarine
sediments (n = 3). Refer to Appendix A for sample ID details and Appendix B for data 171
Table 5-2: Metal concentrations (mg/kg) in fluvial sediments impacted by urban runoff waters.
Concentrations are presented as mean values. $L^* = Low Trigger values$, $H^* = High Trigger$
values. NE = None established
Table 6-1: Total metal content of topsoil samples adjacent to the Kuranda Range Road, 5 m from the
road edge and from a background site. All concentrations are reported in mg/kg. *For Pd and
Pt, $n = 2$ for the road edge and 5 m locations, $n = 1$ for the background site. Refer to Chapter 2
- Section 2.7 for soil sampling details. Appendix A presents topsoil sample ID descriptions and
the data for individual topsoil samples are given in Appendix B 196
Table 6-2: Total metal content of <i>M. repens</i> samples collected from the project area. Concentrations
in mg/kg are reported relative to the dry weight of each sample. Refer to Chapter 2 - Section
2.7 for grass sampling details. Appendix A presents grass sample ID descriptions and the data
for individual grass samples are given in Appendix B 197
Table 6-3: Root/stem metal value ratios in <i>M. repens</i> samples. Median values were used to calculate
ratios
Table 6-4: DTPA-extractable metal concentrations from topsoils collected: immediately adjacent to
the Kuranda Range Road edge; 5 m from the road edge; and from a background site. The solid
concentrations are expressed in mg/kg. Refer to Chapter 2 - Section 2.7 for soil extraction
details. Appendix A presents extract sample ID descriptions and the data for extract samples
are given in Appendix B. Note the liquid extract values in Appendix B have been multiplied by
a factor of 2 to obtain the solid dry weight values because a 2:1 liquid/solid ratio was used in
the extractions
Table 6-5: Proportions of DTPA-extractable metal values relative to total metal contents in topsoil
samples from: the edge of the Kuranda Range Road ($n = 7$); 5 m from the road edge ($n = 4$);
and from the background site $(n = 5)$. The results are expressed as percentages of the total
individual metal contents. Median values are shown
Table 6-6: Metal concentrations (mg/kg) in <i>M. repens</i> samples grown in the greenhouse experiment.
Concentrations are reported relative to the dry weights of the samples. Refer to Chapter 2 –
Section 2.7 for greenhouse experiment details. Appendix A presents greenhouse sample ID
descriptions and the data for individual samples are given in Appendix B
Table 6-7: Proportions of DTPA and EDTA-extractable metal values relative to total metal contents
in road sediment samples from the Kuranda Range Road $(n = 4)$ and the Captain Cook

Highway roundabouts ($n = 4$). The results are expressed as percentages of the total individual
metal contents. Mean values are shown
Table 6-8: Heavy metal and PGE concentrations in roadside topsoils throughout the world
Table 6-9: Metal concentrations in the stem tissue of various roadside plants. Values are presented
relative to dry weight for each species. $P = \text{plant}$, $S = \text{soil.} * \text{denotes that portion of plant}$
analysed has not been specified
Table 6-10: Metal concentrations in the root tissue of various roadside plants. Values are presented
relative to dry weight for each species. $P = \text{plant}$, $S = \text{soil}$
Table 6-11: Soil/plant metal concentration ratios (stem tissue). * denotes that portion of plant
analysed has not been specified
Table 6-12: Soil/plant metal concentration ratios (root tissue)
Table 6-13: Correlation coefficient matrix for DTPA-extractable metal concentrations in roadside
topsoils and grass tissue metal values in M. repens specimens growing on the roadside
substrates. Correlation analyses were performed on log-normalised data. n =7. a) coefficients
given by stem tissue values; and b) data produced from root tissue concentrations
Table 6-14: Correlation coefficient matrix for total metal concentrations in roadside topsoils and
grass tissue metal values in M. repens specimens growing on the roadside substrates.
Correlation analyses were performed on log-normalised data. $n = 7$. a) coefficients given by
stem tissue values; and b) data produced from root tissue concentrations
Table 6-15: Mean metal concentrations in road sediments used in the greenhouse experiment. $n = 4$
for sediment samples from the Kuranda Range Road and the Captain Cook Highway
roundabouts. Median topsoil metal values adjacent to the Kuranda Range Road (n = 7) are
shown for comparison
Table 7-1: Pollutants in road runoff waters and their common grain size (from Melbourne Water
2005)
Table 7-2: List of current primary, secondary and tertiary treatment devices for road runoff waters.
Table 7-3: Key steps in developing and implementing a remediation system for storm and road
runoff waters (from Melbourne Water 2005)
Table 7-4: Threshold values for various pollutants in storm and road runoff waters. *Refers to
Trigger Values for Freshwater Ecosystems, 99 % Protection Level. Australian Standards for
runoff waters are from Wong et al. (2000). NE = none established, NM = not measured. Refer
to Appendix A for ID for 'first flush' road runoff water samples collected in November 2004.
Table 7-5: Reduction factors required for metal values in road runoff waters to meet local
background stream metal values
Table 7-6: Site constraint/treatment option matrix for road and storm water treatment design (from
Ellis et al. 2004)
Table 7-7: Short-list of ASPT remediation devices for the Kuranda Range Road Upgrade
Table 7-8: Costs of the short-listed commercially-available remediation devices

Table 7-9: Proposed 'treatment train' for the Kuranda Range Road Upgrade
Table 7-10: Metal values in control and zeolite-treated leachates. All concentrations are reported in
μg/L
Table 7-11: Metal removal efficiencies (%) for road sediment leachates treated with zeolite 242
Table 7-12: Metal values in control and compost-treated leachates. All concentrations are reported in
μg/L
Table 7-13: Metal removal efficiencies (%) for road sediment leachates treated with compost 244
Table 7-14: Metal values in control and bentonite-treated leachates. All concentrations are reported
in μg/L
Table 7-15: Metal removal efficiencies (%) for road sediment leachates treated with bentonite 245
Table 7-16: pH values of distilled water and control and treated leachates over various time intervals
during the remediation experiments
Table 7-17: Time taken for water to leach through columns containing 50 g of zeolite, compost and
bentonite
Table 7-18: Maximum removal rates (%) for heavy metals from urban stormwaters and simulated
urban runoff waters in laboratory experiments. Where negative values are shown, metal values
in the untreated solution were higher than in the control solution

List of equations

$RPD = ([M]_p - [M]_d) / \{([M]_p + [M]_d) / \{([M]_$] _d)/2}x 100	(Equation 2-1)	66
$Rm(g) = [M]_f x f_m / 1000g$ (E	quation 3-1)		82
Mp (%) = ($[M]_L x 2$)/ $[M]_S x 100$ %	(Equation	n 4-1) 1	130
RE % = $100 - ([M]_T/[M]_C \times 100)$	(Equation 7	/-1)	241
$[Zn]_F \ge 10000 L = Zn_{LD}(mg)$	(Equation 8-1))2	263

Glossary

AAC - Advanced Analytical Centre (locations at Cairns and Townsville)

ADD – Antecedent-dry-day (Han et al. 2005)

ADT – Average daily traffic

AHD – Australian Height datum

ANSTO - Australian Nuclear Science and Technology Organisation

ALS - Australian Laboratory Services Pty Ltd

AMG – Australian Map Grid

Background levels – The range in values representing the normal concentration of a given element in a material under investigation, such as rock, soil, plants and water (Gregorich et al. 2002).

bgs - Below ground surface

Biological availability (bioavailability) – The readiness of a chemical compound or element to be taken up by a living organism (Gregorich et al. 2002).

BOM – Bureau of Meteorology

CDU – Charles Darwin University

CEC – Cation exchange capacity

Colloid – Particles smaller than approximately 1 μ m (White 1997).

Complex/ coordination compound – Complexes or coordination compounds generally consist of one or more central atoms or central ions, usually metals, with a number of ions or molecules, called ligands, surrounding them and attached to them (Snoeyink and Jenkins

1980). Complexes may be nonionic, cationic or anionic depending on charges of central ions and ligands (Snoeyink and Jenkins 1980).

Contamination – Refers to circumstances where a substance is present in the environment, but not causing any obvious harm (Alloway and Ayres 1997).

Corg - Organic carbon

CSIRO - Commonwealth Scientific and Industrial Research Organisation

DTPA - Diethylenetriaminepentaacetic acid

Dry season – The months between and including April and October in north Queensland.

EDS – Energy dispersive spectrometry

EDTA – Ethylenediaminetetraacetic acid

First flush – The delivery of a disproportionately large load of constituents during the early stages of the runoff hydrograph (Schueler 1987).

Flocculation – The joining of particles through electrostatic forces or van der Vaals' forces (White 1997).

FNQ – Far North Queensland

GBR – Great Barrier Reef

Heavy metals - Heavy metals are those metals, including transition and non-transition metals, possessing densities greater than 6g/cm³ (Alloway 1995). Relative to the alkali and alkaline metals, heavy metals display high ionisation potentials owing to their strong nuclear charge and, as such, are prone to covalent bonding which leads to the formation of stable complexes and compounds (Parker and Rae 1998). They are commonly classed as potentially toxic to life forms, even in very low concentrations (Siegel 2002). However, Hodson (2004) discourages use of the phrase 'heavy metals' and states that it is a "poor scientific term". This is due to many contradictory definitions for heavy metals, based on density, atomic weight and atomic number (Hodson 2004). Despite the controversy

associated with the term, 'heavy metal' is used in this project to refer to the metals Cd, Cu, Pb, Ni and Zn.

Humic substances – Naturally occurring complexing agents that are degradation-resistant secondary organic materials (Manahan 1993; Alloway 1995).

ICP-AAS - Inductively coupled plasma atomic absorption spectrometry

ICP-AES - Inductively coupled plasma atomic emission spectrometry

ICP-MS - Inductively coupled plasma mass spectrometry

Mobility – The ability of particles and substances to move, either by random motion or under the influence of fields or forces (Queensland Department of Environment 1998).

Organometallic compounds – Compounds in which the organic portion of the anion is bonded to the metal by a carbon-metal bond (Manahan 1993).

Platinum-group elements (PGEs) – Platinum-group elements include Ir, Os, Pd, Pt, Ru and Rh (Cabri 1981). Like the heavy metals, the PGEs display relatively high ionisation potentials relative to the alkali and alkaline earth metals. The PGEs investigated in this project are Pd and Pt.

Pollution – Pollution describes circumstances where toxic effects of contaminants have been observed (Alloway 1995).

Risk – The probability that an adverse effect will occur in a person, group or ecosystem that is exposed to a particular concentration of a hazardous agent (*HRAMCS* 1996) (The Health Risk Assessment and Management of Contaminated Sites).

Roadside corridors/environments – Environments immediately adjacent to roads.

RPD – Relative percent difference

rpm – Revolutions per minute

SEM – Scanning electron microscopy

S_{sulfate} - Sulfate sulfur

 $S_{sulfide}$ – Sulfide sulfur

TEA - Triethanolamine

TIMS – Thermal ionisation mass spectrometry

TOC - Total organic carbon

Topsoils – The 0-10cm soil layer below the Earth's surface. Commonly includes the O, A and B soil horizons which host a mixture of primary and secondary minerals as well as decaying organic matter and degradation-resistant humic compounds (Alloway 1995; Siegel 2002).

Toxicity – The quality or degree of being poisonous or harmful to plant, animal or human life (Queensland Department of Environment 1998).

Treatment train – A number of measures used in sequence to remediate storm and road runoff waters (Melbourne Water 2005).

Wet season – The months between and including November and March in north Queensland.

Wt % – Weight percent

WTWHA – The Wet Tropics World Heritage Area, located adjacent to the North Queensland coastline.

XRD – X-ray diffraction

XRF – X-ray fluorescence