
Access to this file is available from:

http://eprints.jcu.edu.au/11438
Innovation and Capacity in Fisheries: Value-Adding and the Emergence of the Live Reef Fish Trade as part of the Great Barrier Reef Reef Line Fishery

Thesis submitted by
Geoffrey James Muldoon
BEc University of Tasmania, Grad Dip App Ec., University of Queensland

In February 2009

for the degree of Doctor of Philosophy
in the School of Environmental and Earth Sciences
James Cook University
STATEMENT OF SOURCES

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived and published or unpublished work of others has been acknowledged in the text and a list of references given.

_____________________________ _______________________
Geoffrey Muldoon Date
I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and;

Beyond this I do not wish to place any further restriction on access to this work

Geoffrey Muldoon

Date
ACKNOWLEDGEMENTS

The word that epitomises the journey that has been this thesis is patience. It has been doled out in droves by all persons who have played a role in its completion. In the course of its production, I have moved between part-time and full-time employment and lived a life. All the while those individuals most crucial in the process have remained steadfast in their determination to see me achieve this milestone. To coin a well used phrase; *they have acted above and beyond the call of duty.*

My sincerest thanks go to Professor Bruce Mapstone, who became my principal supervisor part way through my candidature. To Bruce, who took on this role at a time when my thesis was stagnating and I was floundering in a sea of self doubt, I owe an enormous debt of gratitude. On a practical level, I also thank Bruce’s for access to his comprehensive data sets and for his statistical and fisheries advice. My sincere thanks also go to Associate Professor Owen Stanley for his valuable advice on academic matters and economics. I am also grateful to my earlier supervisors, Leanne Fernandes and Campbell Davies, for the opportunities they afforded in allowing me to undertake a PhD and develop a topic of great interest and significance beyond this research.

I acknowledge the Cooperative Research Centre for the Great Barrier Reef World Heritage Area for their scholarship and field research funding contribution and The research for this thesis would not have been possible without the support and cooperation of stakeholders in the reef line fishery. I am grateful to all the vessel owners and skippers and processors and buyers who made time in their busy schedules to provide detailed and often confidential information, crucial to my research. The hospitality afforded me by so many in this industry made frequent visits to their homeports a pleasure. In particular I would like to thank Terry Must, Bill Weekes, Les and Julie Pollard, Ray Ellis, Maurie and Val Ahchay, Robin Stewart, David and Graeme Caracciolo, Lance Peterson of Goodview Trading and Tony Walton of AquaCairns.
My thanks also to Mark Elmer of the then QFS for his support in dealing with the bureaucracy within DPI and for facilitating my data needs and to Jim Higgs, Danny Brooks and Kate Yeomans for their prompt responses to my queries and data requests.

There are an enormous number of people who have made contribution along the way, as editors, proof readers, mentor, counsellors, champions and defenders and most of all friends. I thank you all for the part you have played in seeing this thesis through to its conclusion.

To my mother who has rejoiced in my accomplishments, I thank you for your undying support and love. To my father, who has had an indelible influence on my life and who in his own way set on me on this academic path but who unfortunately did not live to see this day; this thesis is dedicated to your memory.

Finally, I thank Ann-Maree for the incredible patience she has shown throughout. When I set out on this journey so many years ago, she and I had just met. In the course of nearly a decade we have become man and wife, made a home and started a family. Through this all she been my greatest supporter and my biggest critic and without her in my life this achievement would not have meant so much.
ABSTRACT

According to the Food and Agriculture Organisation approximately 70% of the world’s fisheries are fully or overfished. One approach posited to address economic and biological sustainability goals is to value-add existing target species. The emergence of new ‘high value-added’ products in expanding markets, however, can have unique implications for the management of fisheries resources. Understanding the relationship between investment and effort, and investment and profits is regarded as essential to effective fisheries management, as most fishery problems are partially the result of over-investment in excess fishing capacity. Moreover, economic incentives for increasing capital investment in such industries are compounded by the presence of a) latent effort and b) under-utilisation of existing capacity. Lastly, participation in the value-adding process may require the take-up of new technology. Most research into technological change and innovation adoption in fisheries is confined to innovations that enhance productive capacity of the fishing vessel, not product form or quality.

The Great Barrier Reef reef-line fishery (RLF) is a multi-species fishery that has traditionally marketed its catch as either frozen fillets, frozen whole or whole chilled fish. Since 1994, some species of coral reef fish have been kept alive for export, with the expectation of increased returns per unit of effort. The development of this live reef fish fishery (LRFF) has coincided with reported increases in catch and effort and a recognition that considerable latent effort exists within the fishery that may mobilise.

This research is an attempt to draw together related but previously unconnected themes of value-adding, innovation and adoption, investment, capacity and latent effort into a coherent framework to explore; the link between value-adding opportunities and profit maximising behaviour; constraints to adoption of and investment in value-adding innovations; profitability, efficiency and capacity comparisons between users and non-users of value-adding innovations and capacity implications of value-adding innovations where latent effort exists. This thesis has three primary research objectives:

1) To examine the financial and economic motivations for participating in the LRFF as a component of the commercial RLF and for the re-allocation of fishing effort on a spatial and temporal scale;
2) To identify the economic and non-economic factors dictating the adoption of requisite technology for participating in the LRFF; and

3) To analyse fishing capacity outcomes for the live and frozen commercial RLF sectors and explore the implications arising from the emergent LRFF for the management of a commercial RLF with a heterogeneous fleet structure.

A survey of fishers endorsed to remove reef fish by line was conducted and a response rate of 60% was achieved. The operation and profitability profiles and investment behaviour of both live and non-live operations was compared across spatial scales.

The data showed high take up of live fishing technology by the existing ‘active’ fleet with more than 80% of all vessels in the sample converting to live operations between 1994 and 2000. Live catch as a proportion of total catch increased in all sections of the Great Barrier Reef Marine Park over the period of this study. The average cost of entry into the LRFF ranged from $24,440 for those converting existing vessels to $438,875 for those with no history in the RLF for whom entry necessitated the purchase of a vessel and license suggesting considerable barriers to entry for some intending participants. In general, fishers responded positively to economic incentives as evidenced by their switching between marketing frozen/fresh and live fish, with a slight time lag. Moreover, fishers with a longer history in the LRFF responded with less alacrity to downward movement in prices, suggesting a better understanding of comparative costs and revenue structure of their fishing firm over time.

In terms of financial and operational characteristics, live operations differed significantly from frozen operations. Live operations were more highly capitalised than frozen operations and while incurring per unit higher costs, live operations generated higher gross and net revenues and were more economically efficient than frozen operations. Lastly live operations differed significantly from frozen operations at a micro-operational level (trip length, number of trips) but not in terms of aggregate annual days fished. The superior financial and economic returns offered from marketing product alive as opposed to frozen, provides the necessary incentive to take-up of live technology although barriers to entry faced by those wishing to enter the LRFF vary according to existing capital and their history of participation in the RLF.
Comparatively high returns to capital, relative to other smaller-scale Australian fisheries, suggest incentives do exist for the entry of first time fishing operations.

Determinants of adoption or non-adoption of live technology were separated into personal and attitudinal characteristics, and perceived attributes of the innovation. The adoption sequence was examined in two parts; firstly, what influenced the decision to proceed and subsequently what determined the investment decision, or the scale to which live technology was incorporated into the vessel. For non-adopters, their decision was examined using the same conventional investment determinants; expected income, expected costs and existing capital. Firm size (i.e. vessel length) and expected income are the principal determinants in the decision of operators to convert to live or remain as frozen operators during both the decision-making stage and, in the case of adopters, following the commitment to innovate. Moreover, expected income and existing capital were more important determinants of the adopter’s decision to undertake investment than it was for non-adopters to reject it. Expected costs exerted a minimal influence for both adopters’ and non-adopters’. For adopters it is speculated that anticipated higher incomes prevailed over the influence of costs while for non-adopters this low importance reflects recognition of the financial barriers to adoption posed by limited capital stocks. Over time, as uncertainty declines in respect of technological capability, observable benefits become more obvious and the gap between expected income and investment risk closes, adoption of live technology may be may become more endemic, thereby accelerating the mobilisation of latent effort. This will have implications for managing the fishery to counter against over-capacity in the fishing fleet.

Data Envelopment Analysis (DEA) was used to compare the efficiency and capacity of live and frozen operations within the RLF fleet. Two efficiency measures calculated using DEA; technical (TE) and revenue efficiency (RE); showed interesting contrasts. Frozen operations were overall more technically efficient than live operations; but these positions were reversed in terms of revenue efficiency. Only 28% of frozen operations had a TE score of less than 0.95 as compared to 63% of live operations. In contrast, 78% of frozen operations had an RE score of less than 0.5 as compared with only 13% of live operations. In terms of capacity measures, frozen operations exhibited a higher degree of capacity utilisation than live operations while a greater number of live operations could increase their variable inputs in order to operate closer to full capacity.
Both efficiency and capacity results highlight that frozen operations have lesser capital endowments and that live operations are poorly utilising their combined freezer and live capacity to increase overall catches. Based on the entire licensed fleet mobilising into the live fishery over time, and irrespective of catch constraints from additional effort, the estimated harvesting capacity of the fleet for coral trout is approximately 2,400 tons higher than current catch levels.

For fisheries where latent effort exists, emerging pecuniary incentives can result in that fishery exhibiting common property characteristics. Any potential rent gains from value-adding of existing target species may be eroded by an influx of effort, leading to overcapacity. In fisheries characterised heterogeneity in effort, capacity reduction programs will need to not only target removal of ‘effective’ (active) effort but also of latent or less active licences that may, in the space created by fewer active vessels’, increase their individual effort. Economic efficiency measures are deemed more appropriate to guide capacity reduction in heterogeneous fleets, such as the RLF.
LIST OF ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>Allocative Efficiency</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>AQIS</td>
<td>Australian Quarantine Inspection Service</td>
</tr>
<tr>
<td>CRS</td>
<td>Constant Returns to Scale</td>
</tr>
<tr>
<td>CU</td>
<td>Capacity Utilisation</td>
</tr>
<tr>
<td>DEA</td>
<td>Data Envelopment Analysis</td>
</tr>
<tr>
<td>DPI & F</td>
<td>Department of Primary Industries and Fisheries</td>
</tr>
<tr>
<td>ELF</td>
<td>Effects of Line Fishing</td>
</tr>
<tr>
<td>GBR</td>
<td>Great Barrier Reef</td>
</tr>
<tr>
<td>GBRMP</td>
<td>Great Barrier Reef Marine Park</td>
</tr>
<tr>
<td>GBRMPA</td>
<td>Great Barrier Reef Marine Park Authority</td>
</tr>
<tr>
<td>GFI</td>
<td>Goodness of Fit Indices</td>
</tr>
<tr>
<td>HKCSD / CSD</td>
<td>Hong Kong Census and Statistics Department</td>
</tr>
<tr>
<td>HKAFCD / AFCD</td>
<td>Hong Kong Agricultural, Fisheries and Conservation Department</td>
</tr>
<tr>
<td>IMA</td>
<td>International Marinelife Alliance</td>
</tr>
<tr>
<td>ITQ</td>
<td>Individual Transferable Quota</td>
</tr>
<tr>
<td>LRFF</td>
<td>Live Reef Fish Fishery</td>
</tr>
<tr>
<td>LRFF</td>
<td>Live Reef Food Fish Trade</td>
</tr>
<tr>
<td>LTV</td>
<td>Live Transport Vessel</td>
</tr>
<tr>
<td>LWE</td>
<td>Live Weight Equivalent</td>
</tr>
<tr>
<td>CPUE</td>
<td>Catch Per Unit Effort</td>
</tr>
<tr>
<td>MPA</td>
<td>Marine protected areas</td>
</tr>
<tr>
<td>MEY</td>
<td>Maximum Economic Yield</td>
</tr>
<tr>
<td>DPI&F</td>
<td>Department of Primary Industries and Fisheries (Queensland)</td>
</tr>
<tr>
<td>QFMA</td>
<td>Queensland Fisheries Management Authority</td>
</tr>
<tr>
<td>QFS</td>
<td>Queensland Fisheries Service</td>
</tr>
<tr>
<td>RE</td>
<td>Revenue Efficiency</td>
</tr>
<tr>
<td>RLF</td>
<td>Reef Line Fishery</td>
</tr>
<tr>
<td>PCP</td>
<td>Price Conversion-for-Product</td>
</tr>
<tr>
<td>RTE</td>
<td>Red-throat Emperor</td>
</tr>
<tr>
<td>RMSR</td>
<td>Root Mean Square Residual</td>
</tr>
<tr>
<td>TACC</td>
<td>Total Allowable Commercial Catch</td>
</tr>
<tr>
<td>TE</td>
<td>Technical Efficiency</td>
</tr>
<tr>
<td>TNC</td>
<td>The Nature Conservancy</td>
</tr>
<tr>
<td>VRS</td>
<td>Variable Returns to Scale</td>
</tr>
<tr>
<td>WWF</td>
<td>World Wildlife Fund</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

DECLARATION i
STATEMENT OF ACCESS ... ii
ACKNOWLEDGEMENTS ... iii
ABSTRACT .. v
LIST OF ACRONYMS AND ABBREVIATIONS ix

CHAPTER 1 .. 1

1.1 INTRODUCTION ... 1
1.2 MANAGING FOR BIOLOGICAL, SOCIAL AND ECONOMIC GOALS 1
1.3 CAPACITY AND EXCESS CAPACITY ... 3
1.4 LATENT EFFORT AND TECHNOLOGY ... 6
1.5 OVERCAPACITY AND CORAL REEF FISHERIES 9
1.6 THE QUEENSLAND DEMERSAL REEF LINE FISHING INDUSTRY 11
 1.6.1 The Great Barrier Reef and the Reef Line Fishery 11
 1.6.2 Management of the Reef Line Fishery ... 14
1.7 TECHNOLOGY, CAPACITY AND LATENT EFFORT IN THE GBR REEF-LINE FISHERY ... 16
1.8 THESIS OUTLINE ... 18

CHAPTER 2 .. 20

2.1 INTRODUCTION ... 20
2.2 FLEET CAPACITY AND INVESTMENT IN MANAGEMENT CONTEXT 20
2.3 TECHNOLOGICAL CHANGE AND INNOVATION ADOPTION 22
 2.3.1 Technological Change and Innovation Adoption in Fisheries 25
 2.3.2 Investment Decisions in Fisheries ... 29
2.4 FISHING CAPACITY AND LATENT EFFORT 31
2.5 MANAGEMENT OF THE GBR REEF-LINE FISHERY IN THE CONTEXT OF INVESTMENT AND CAPACITY .. 36
2.6 SUMMARY .. 41

CHAPTER 3 ... 42

3.1 INTRODUCTION ... 42
3.2 SURVEY DESCRIPTION ... 43
 3.2.1 Survey Response and Interview Program 45
 3.2.2 Interview Questionnaire Development ... 48
 3.2.3 Questionnaire Components ... 50
 3.2.4 Interview Administration and Data Analyses 50
3.3 SUMMARY .. 52
6.3.1 Capital Structure.. 111
6.3.1.1 Primary Vessel... 111
6.3.1.2 Tender Vessels ... 112
6.3.1.3 Ownership Details ... 113
6.3.2 Capital Values... 114
6.3.3 Financial and Economic Performance Indicators ... 116
6.3.3.1 Costs and Revenues... 116
6.3.3.2 Productivity and Efficiency ... 119
6.3.4 Operational Characteristics .. 122
6.3.4.1 Trip Length and Port Turnaround Time ... 122
6.3.4.2 Trip Length Determinants ... 124
6.3.4.3 Number of Trips and Total Days Fished ... 125
6.3.4.4 Port Operations .. 128
6.4 DISCUSSION.. 130
6.5 SUMMARY .. 137

CHAPTER 7 .. 139

7.1 INTRODUCTION.. 139
7.2 THEORETICAL ASPECTS OF INNOVATION ADOPTION AND DIFFUSION 140
7.2.1 Characteristics and Attitudes of the Firm .. 140
7.2.2 Perceived Attributes to Innovations .. 143
7.2.3 Innovation and Investment .. 144
7.2.4 Innovation Adoption within the GBR Reef-Line Fishery 145
7.3 METHODS.. 146
7.3.1 Data Collection and Model Considerations ... 147
7.3.2 Logit Model .. 148
7.3.3 Factor Analysis .. 153
7.3.3.1 Factor Model Development ... 154
7.4 RESULTS.. 157
7.4.1 Logit Model .. 157
7.4.2 Factor Analyses .. 160
7.4.2.1 Adoption Decision ... 160
7.4.2.2 Adoption Implementation – Non-Adoption Decision 162
7.5 DISCUSSION.. 166
7.6 SUMMARY .. 175

CHAPTER 8 .. 177

8.1 INTRODUCTION.. 177
8.2 THEORETICAL CONSIDERATIONS... 179
8.2.1 Capacity and capacity utilisation .. 179
8.2.2 Technical Efficiency ... 182
8.2.3 Revenue Efficiency .. 183
LIST OF FIGURES

FIGURE 1-1: MAP OF THE GREAT BARRIER REEF SHOWING BOUNDARIES OF THE MARINE PARK12
FIGURE 3.3-1: SAMPLING OUTCOME FOR IN-SCOPE LICENCE HOLDERS IN THE REEF-LINE FISHERY48
FIGURE 4-1: ENTRY YEAR OF COUNTRIES PARTICIPATING IN THE LIVE FISH EXPORT TRADE55
FIGURE 4-2: MEAN MONTHLY WHOLESALE FISH PRICES ($HK/KG) FOR THE FIVE PRINCIPAL SPECIES
exported live from Australia from January 1997 to December 2001 ..60
FIGURE 4-3: RECORDED IMPORTS INTO HONG KONG FROM MAJOR SOURCE COUNTRIES OF WILDCAUGHT LIVE REEF FISH FOR THE YEARS 1997 TO 2001 ...62
FIGURE 4-4: REGIONAL VARIATIONS IN ANNUAL LANDINGS OF (LIVE) CORAL TROUT AS A
PROPORTION OF TOTAL ANNUAL CATCH OF CORAL TROUT FOR YEARS 1994 TO 200166
FIGURE 4-5: LANDINGS OF LIVE CORAL TROUT AND TOTAL CATCH OF CORAL TROUT, IN TONNES,
FROM ALL REGIONS WITHIN THE GBRMP FOR THE YEARS 1992 TO 2001 ..67
FIGURE 5-1: FISHING FIRMS SHORT-RUN AND LONG-RUN SUPPLY RESPONSE TO CHANGES IN PRICES
OF SUBSTITUTE PRODUCTS IN THE MARKETS ARE SHOWN FOR (A) FROZEN AND (B) LIVE FISH82
FIGURE 5-2: COMPARISON OF WHOLESALE BEACH PRICE FOR LIVE TROUT OF LESS THAN 1.5KG IN
WEIGHT AND FROZEN CORAL TROUT OF LESS THAN AND GREATER THAN 1.5KG IN WEIGHT
FOR THE PERIOD JANUARY 1ST, 1996 TO DECEMBER 30TH, 2000 ..88
FIGURE 5-3: ADOPTION OF LIVE CAPTURE AND STORAGE CAPABILITY AMONG SAMPLED FISHERS
BETWEEN 1994 AND 1999 INCLUSIVE ...89
FIGURE 5-4: SUMMARY OF MODES OF OPERATIONS’ ENTRY INTO LIVE FISHING BY CONVERSION
TYPE ..90
FIGURE 5-5: EFFORT ALLOCATED TOWARD THE CAPTURE AND SALE OF LIVE CORAL TROUT,
MEASURED AS THE PROPORTION OF ALL VESSELS WHO TARGETED LIVE PRODUCT IN THAT
MONTH FROM JULY 1997 TO DECEMBER 1999 ..93
FIGURE 5-6: MEAN PROPORTION OF MONTHS FISHED LIVE BETWEEN JULY 1997 AND DECEMBER
1999 BY YEAR OF ENTRY FOR ALL LIVE OPERATIONS ..94
FIGURE 5-7: MEAN ANNUAL CATCH OF LIVE AS A PROPORTION OF TOTAL CATCH OF CORAL TROUT
FOR THE YEARS 1994 TO 1999 ..95
FIGURE 5-8: AVERAGE ANNUAL MARKET VALUE OF L2 (2 OR MORE TENDER VESSELS) LICENCES
FOR 2, 3 AND 4 DORY LICENCES PACKAGES FROM 1990 TO 1999 ..98
FIGURE 6-1: MEAN BUSINESS VALUES ($ '000) BY BUSINESS COMPONENT BY OPERATION TYPE115
FIGURE 6-2: RELATIONSHIP BETWEEN OWNER ESTIMATE OF PRIMARY VESSEL VALUE ($ ‘000) AND LENGTH OF PRIMARY VESSEL ..116

FIGURE 6-3: ESTIMATES OF AVERAGE GROSS AND NET REVENUES PER DORY DAY, POOLED ACROSS YEARS. ..117

FIGURE 6-4: MEAN VALUE PER DORY/DAY FOR FINANCIAL PERFORMANCE INDICATORS; A) ANNUAL VARIABLE COSTS, B) ANNUAL GROSS REVENUE AND C) ANNUAL NET REVENUE BY OPERATION TYPES (FROZEN AND LIVE) FOR THE YEARS 1996-97, 1997-98 AND 1998-99. ..118

FIGURE 6-5: MEAN VALUE PER DORY/DAY FOR FINANCIAL PERFORMANCE INDICATORS A) ANNUAL FIXED COSTS, B) ANNUAL VARIABLE COSTS, C) ANNUAL GROSS REVENUE, D) ANNUAL NET REVENUE AND E) ADJUSTED ANNUAL NET REVENUE BY OPERATION TYPES ...121

FIGURE 6-6: AVERAGE TIME IN DAYS FOR A) LENGTH OF FISHING TRIP AND B) TURNAROUND TIME IN PORT BETWEEN FISHING TRIPS BY REGION AND OPERATION TYPE ..123

FIGURE 6-7: TRIP LENGTH DETERMINANT RESPONSE BY OPERATION TYPE AND FOR OPERATION TYPE BY REGION..124

FIGURE 6-9: MEAN NUMBER OF DAYS FISHED BY PRIMARY VESSELS PER CALENDAR YEAR BY REGION FOR OPERATION TYPE FOR THE YEARS 1996, 1997 AND 1998 ...128

FIGURE 6-10: AVERAGE NUMBER OF PORTS UTILISED PER CALENDAR YEAR BY YEAR AND BY OPERATION TYPE ..129

FIGURE 7-1: FACTOR LOADING MEAN FOR EACH OF THREE (3) LATENT FACTORS (INCOME, COSTS, CAPITAL) HYPOTHESISED TO INFLUENCE INNOVATION-INVESTMENT DECISION ..166

FIGURE 8-1: OUTPUT-ORIENTED TECHNICAL EFFICIENCY ...183

FIGURE 8-2: OUTPUT-ORIENTED TECHNICAL AND ALLOCATIVE EFFICIENCY ..184

FIGURE 8-3: DISTRIBUTION OF EFFICIENCY SCORES FOR FROZEN AND LIVE OPERATIONS WITHIN THE REEF-LINE FISHERY FOR (A) TECHNICAL EFFICIENCY, (B) REVENUE EFFICIENCY AND (C) ALLOCATIVE EFFICIENCY ..198

FIGURE 8-4: DISTRIBUTION OF OBSERVED AND UNBIASED CAPACITY UTILISATION SCORES FOR (A) FROZEN OPERATIONS AND (B) LIVE OPERATIONS WITHIN THE REEF-LINE FISHERY ..201

FIGURE 8-5: DISTRIBUTION OF VARIABLE INPUT UTILISATION SCORES FOR FROZEN * AND LIVE OPERATIONS WITHIN THE REEF-LINE FISHERY ...202

FIGURE 8-6: COMMERCIAL REEF-LINE FISHERY ENDORSED OPERATIONS REPORTING CATCH OF CORAL TROUT FOR THE YEARS 1995 TO 2001 BY ACTIVITY GROUPING AND EXPRESSED AS A PROPORTION OF VESSELS REPORTING CATCH OF CORAL TROUT FOR OPERATION EFFORT CLASSES ...206

FIGURE 8-7: COMMERCIAL REEF-LINE FISHERY ENDORSED OPERATIONS REPORTING CATCH OF LIVE CORAL TROUT FOR THE YEARS 1995 TO 2001 BY ACTIVITY GROUP AND EXPRESSED AS A PROPORTION OF VESSELS REPORTING CATCH OF LIVE CORAL TROUT FOR OPERATION EFFORT CLASSES ...207
LIST OF TABLES

Table 1-1: Catch (all species) and effort data for the commercial sector of the reef-line fishery from the Great Barrier Reef Marine Park from 1988 to 2002 .. 15

Table 3-1: Summary of the scoping phase of the survey programs to determine units within survey scope .. 47

Table 4-1: Estimates of annual live fish imports into Hong Kong from 1997 to 2001 57

Table 4-2: Annual mean wholesale prices for live reef fish for consumption in Hong Kong from 1997 to 2001 .. 58

Table 4-3: Mean annual wholesale fish prices (HK/kg) for the five principal species exported live from Australia from 1998 to 2000 ... 59

Table 4-4: Total imports of coral trout into Hong Kong by air by source country for the years 1997 to 2001 .. 63

Table 4-5: Annual exports (kg) of live reef fish from the Great Barrier Reef reef-line fishery between 1995 and 2000 .. 68

Table 5-1: Questions used to describe fisher’s responses to the advent of live fish trade ... 85

Table 5-2: Mean total upgrade costs for existing and new operations 91

Table 5-3: Satisfaction with size (or type) of fishing operation by operator type 91

Table 6-1: Survey questions used to investigate the operational and economic characteristics of frozen and live operations within the GBR reef-line fishery 106

Table 6-2: Physical details of primary vessel by operation type .. 112

Table 6-3: Average number of tender vessels supported by primary vessels by operation type and region .. 113

Table 6-4: Analysis of variance comparing length and horsepower of tenders vessels by operation type and region .. 113

Table 6-5: Comparison of operational details for frozen and live fishing operations 114

Table 6-6: Rate of return to capital with and without license values included in total business value by operation type summed across regions ... 119

Table 6-7: Repeated measures analysis of variance comparing annual fixed and variable costs, gross revenue and net revenue per dory day across financial years 1996-97 to 1998-99 by operation types ... 120

Table 6-8: Analysis of variance comparing the length of fishing trip and turnaround time in port by region and operation type ... 122

Table 6-9: Repeated measures analysis of variance comparing number of trips undertaken and number of days fished during a calendar year by region and operation type ... 127

Table 6-10: Repeated measures analysis of variance comparing number of ports utilised, including the operators home port during a calendar year by region and operation type .. 129
TABLE 7-1: QUESTIONS USED TO DESCRIBE THE PERSONAL CHARACTERISTICS, ATTITUDINAL VARIABLES AND ATTRIBUTES OF THE INNOVATION INFLUENCING THE ADOPTION OR NON-ADOPTION DECISION.. 147

TABLE 7-2: PERSONAL AND ATTITUDINAL CHARACTERISTICS INCLUDED IN LOGIT MODEL... 152

TABLE 7-3: FACTOR MODEL 1 – PERCEIVED ATTRIBUTES OF INNOVATION ADOPTION INFLUENCING ADOPTER’S COMMITMENT TO INNOVATE.. 155

TABLE 7-4: FACTOR MODEL 2 – HYPOTHESES FOR FACTOR STRUCTURE FOR THE INVESTMENT/NON-INVESTMENT MODELS WITH INVESTMENT DECISIONS FOR ADOPTERS AND NON-ADOPTERS OF LIVE TECHNOLOGY.. 156

TABLE 7-5: DESCRIPTIVE STATISTICS FOR PERSONAL AND ATTITUDINAL CHARACTERISTICS USED IN LOGIT MODEL FOR LIVE AND NON-LIVE OPERATIONS PARTICIPATING IN THE REEF LINE FISHERY .. 158

TABLE 7-6: MAXIMUM LIKELIHOOD ESTIMATES FOR BINARY LOGISTIC REGRESSION MODEL OF THE PROBABILITY THAT FISHING OPERATIONS WILL ADOPT LIVE TECHNOLOGY, EXCLUDING ALL CORRELATED VARIABLES. .. 159

TABLE 7-7: FACTOR LOADING PATTERNS FOR PERCEIVED ATTRIBUTES OF LIVE TECHNOLOGY BASED ON RESPONSES TO THE IMPORTANCE OF SELECTED VARIABLES IN DETERMINING THE ADOPTION DECISION.. 161

TABLE 7-8: FACTOR LOADING PATTERNS OF (A) INVESTMENT DETERMINANTS FOR VESSEL OWNERS ADOPTING LIVE TECHNOLOGY AND (B) NON-INVESTMENT DETERMINANTS FOR VESSEL OWNERS NOT ADOPTING LIVE TECHNOLOGY. .. 162

TABLE 7-9: SUMMARY STATISTICS FOR PERCEIVED ATTRIBUTES THAT DETERMINE BOTH THE ADOPTION AND NON-ADOPTION OF LIVE TECHNOLOGY .. 165

TABLE 8-1: TESTS FOR NORMALITY OF DISTRIBUTION AND HOMOGENEITY OF VARIANCE FOR TECHNICAL, REVENUE AND EFFICIENCY SCORE OUTPUTS FOR FROZEN AND LIVE VESSELS ... 199

TABLE 8-2: SUMMARY STATISTICS FOR TECHNICAL EFFICIENCY, REVENUE EFFICIENCY AND ALLOCATIVE EFFICIENCY FOR FROZEN AND LIVE OPERATIONS WITHIN THE REEF-LINE FISHERY 199

TABLE 8-3: AVERAGE ANNUAL OBSERVED, TECHNICALLY EFFICIENT AND UNBIASED CAPACITY OUTPUT FOR FROZEN AND LIVE CORAL TROUT BY OPERATION TYPE IN 1999.. 203

TABLE 8-4: MEAN LENGTHS OF PRIMARY VESSELS FOR OPERATION SIZE CLASSES FOR THE SURVEY SAMPLE AND THE COMMERCIAL RLF FLEET AS AT 1999. .. 205

TABLE 8-5: ANALYSIS OF VARIANCE COMPARING PRIMARY VESSEL LENGTH BY EFFORT CLASS AND GROUP .. 205

TABLE 8-6: AVERAGE VESSEL CAPACITY CATCH AND ESTIMATED TOTAL POTENTIAL FLEET CAPACITY CATCH OF FROZEN AND LIVE CORAL TROUT PRODUCT FOR FROZEN AND LIVE OPERATIONS BY OPERATION EFFORT CLASS IN 1999.. 209