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Abstract

The unsteady natural convection cooling of fluid with Pr < 1 in
a vertical cylinder with an imposed lower temperature on verti-
cal sidewalls is dominated by three distinct stages of develop-
ment, i.e. the boundary-layer development stage adjacent to the
sidewall, the stratification stage, and the cooling-down stage,
respectively. Various scaling laws to describe the unsteady flow
behavior at these respective stages are developed with scaling
analysis and are verified and quantified by direct numerical sim-
ulation with selected values of the aspect ratio of the cylinder
A, the Rayleigh number Ra, and the Prandtl number Pr in the
ranges of 1/3 ≤ A ≤ 3, 106 ≤ Ra ≤ 1010, and 0.01 ≤ Pr ≤ 0.5.

Introduction

Cooling/heating a body of fluid in an enclosure via natural con-
vection with an imposed temperature difference or heat flux on
the enclosure boundary is widely encountered in nature and in
engineering settings, and the understanding of its transient flow
behavior is of fundamental interest and practical importance. In
the past decades, extensive experimental, numerical, and analyt-
ical studies have been conducted on this issue, although mainly
on the more specific case of a rectangular cavity with differen-
tially heated sidewalls (see, e.g. [1, 2]).

Patterson and Imberger [3] used a scaling analysis in their pio-
neering investigation of the transient behavior that occurs when
the opposing two vertical sidewalls of a two-dimensional rect-
angular cavity are impulsively heated and cooled by an equal
amount. They devised a classification of the flow development
through several transient flow regimes to one of three steady-
state types of flow based on the relative values of Ra, Pr, and A.
This Patterson-Imberger flow model has since occupied the cen-
ter stage of research into understanding natural convection flow
in cavities, and numerous investigations subsequently focused
on diverse aspects of the model (see, e.g. [4, 5, 6, 7]).

The majority of the past studies have focused on fluids with
Pr ≥ 1 owing to their relevance in theoretical and practical
applications. Natural convection flows with Pr < 1 are very
important as well, in such applications as the Earth’s liquid
core convection, crystal growth in semiconductors, melting pro-
cesses, etc., not to mention those using air and other gases as
the working medium. However, studies on unsteady natural
convection flows of fluids with Pr � 1 resulting from heat-
ing/cooling vertical boundaries, together with studies on the ef-
fect of Pr variation, are scarce. This scarcity, together with the
apparently incomplete understanding of Pr ≤ 1 flows, motivates
the current study.

Scaling Analysis

Under consideration is the flow behavior of cooling a quiescent
isothermal Newtonian fluid with Pr < 1 in a vertical cylinder
by unsteady natural convection due to an imposed fixed lower
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Figure 1: A sketch of the physical system considered and the
computational domain used for numerical simulations.

temperature on the vertical sidewalls. The cylinder has a height
of H and a radius of R0, as sketched in Fig. 1. It is assumed that
the fluid cooling is the result of the imposed fixed temperature
Tw on the vertical sidewalls while all the remaining boundaries
are adiabatic and all boundaries are non-slip, and the fluid in
the cylinder is initially at rest and at a uniform temperature T0
(T0 > Tw). It is also assumed that the flows are laminar.

The governing equations of motion are the Navier-Stokes equa-
tions with the Boussinesq approximation for buoyancy, which
together with the temperature transport equation can be written
in the following two-dimensional form,
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where U and V are the radial (R-direction) and vertical (Z-
direction) velocity components, t is the time, P is the pressure,
T is the temperature, g is the acceleration due to gravity, β, ν
and κ are the thermal expansion coefficient, kinematic viscosity
and thermal diffusivity of the fluid, respectively. The gravity
acts in the negative Z-direction.

The flow considered here is dominated by three distinct stages
of development, i.e. the boundary-layer development stage, the
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Figure 2: Numerically simulated temperature contours at the
stages of the boundary-layer development (top row), the strati-
fication (middle row), and the cooling-down (bottom row), re-
spectively, for Ra = 108, A = 1, and Pr = 0.1.

stratification stage, and the cooling-down stage, respectively, as
illustrated in Fig. 2, where numerically simulated temperature
contours are shown for the three stages for the specific case of
Ra = 108, Pr = 0.1 and A = 1, where Ra, Pr and A are defined
as

Ra =
gβ(T0 −Tw)H3

νκ
, Pr =

ν
κ

, A =
H
R0

.

In this case the boundary-layer development is seen in the tem-
perature contours adjacent to the righthand, cooled, wall, with
the boundary-layer development completed by around τ = 10,
where τ is the dimensionless time, made dimensionless by
H2/(κRa1/2). The cooled fluid ejected by the boundary layer
acts to fill and stratify the domain, seen in the stratification
stage, from τ = 20 to 80. Finally the stratification is gradually
reduced in the cooling-down stage of the flow, for τ > 170. In
this section, scaling relations will be developed for the relevant
parameters characterizing the flow behavior at these respective
stages of flow development.

The vertical boundary layer adjacent to the cooled sidewall ex-
periences a start-up stage, followed by a short transitional stage
before reaching a steady-state stage. The parameters character-
izing the flow behavior at this development stage are the ther-
mal boundary-layer thickness ∆T , the maximum vertical veloc-
ity Vm, the time ts for the boundary-layer development to reach
the steady state, and the Nusselt number Nu across the sidewall.

Heat is initially transferred out through the vertical wall from
the fluid by conduction after the initiation of the flow, resulting
in a vertical thermal boundary layer of thickness O(∆T ) adja-
cent to the wall, where at height Z, from Eq. (4), the balance be-
tween the inertial term O([T0 −Tw]/t) and the conductive term
O(κ[T0 −Tw]/∆2

T ) dominates the flow, which gives,

∆T ∼ κ1/2t1/2, (5)

or, in dimensionless form,

δT =
∆T

H
∼ Ra−1/4τ1/2, (6)

in which “∼” means “scales with” and τ = t/(H/V0) is the di-
mensionless time, where V0 = κRa1/2/H is the characteristic
velocity scale. During this start-up stage, the dominant balance
in Eq. (3) for Pr < 1 is that between the inertia force O(Vm/t)
and the buoyant force O(gβ[T0 −Tw]), which gives

Vm ∼ gβ(T0 −Tw)t ∼
Raνκ
H3 t, (7)

or, in dimensionless form,

vm =
Vm

V0
∼ Pr τ, (8)

After the start-up stage, the dominant balance at height Z in
Eq. (4) gradually shifts from that between the inertial term
O([T0 − Tw]/t) and the conductive term O(κ[T0 − Tw]/∆2

T )
to that between the inertial term and the convective term
O(Vm[T0 −Tw]/[H −Z]), until the latter balance becomes fully
dominant and the thermal boundary-layer development then
reaches its steady-state stage. The inertia-convective balance
in Eq. (4) gives
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Using Eqs. (5) and (7), this leads to
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or, in dimensionless form,
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which represents the local time scale for the thermal boundary
layer at height Z to reach the steady state, where z = Z/H is the
dimensionless vertical coordinate.

At time tb, the thermal boundary layer at height Z reaches its
steady-state thickness scale ∆T,b, which, from Eq. (5), is as fol-
lows,
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or, in dimensionless form,
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and the steady-state vertical velocity scale Vm,b at height Z
within this thermal boundary layer is, from Eq. (7), as follows,
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κRa1/2Pr1/2
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or, in dimensionless form,

vm,b =
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V0
∼ [(1− z)Pr]1/2. (15)

The heat transfer across the vertical sidewall is represented by
the following local Nusselt number Nu at height Z,
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Therefore, during the start-up stage,
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Nub ∼
R0

∆T,b
∼

(PrRa)1/4

A(1−Z/H)1/4
∼

1
A

(

PrRa
1− z

)1/4

, (18)

Equations (6), (8), and (17) clearly show that during the start-up
stage, the boundary-layer development on the vertical sidewalls
is independent of z, however, as shown by (13), (15), and (18),
the boundary-layer development and the heat transfer across the
vertical sidewall become z dependent at the steady-state stage of
the boundary-layer development.

Once the boundary layer is fully developed, the fluid in the
cylinder is gradually stratified by the cooled fluid ejected from
the boundary layer, starting from the bottom of the cylinder.
The time ts for the full stratification of the whole fluid in the
cylinder will be at the moment when the volume of the cooled
fluid ejected from the boundary layer is equal to the volume of
the cylinder. The rate of flow of fluid through the boundary
layer is characterized by ∆T,bVm,b, and therefore the time to full
stratification is characterized by
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HR0

κRa1/2
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, (19)

which is in dimensionless form as follows,
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After the full stratification, the fluid in the cylinder is contin-
ually cooled down until the whole body of fluid has the same
temperature as that imposed on the sidewalls. The appropri-
ate parameters to characterize this cooling-down process are the
time t f for the fluid to be fully cooled down, the average fluid
temperature Ta(t) over the whole volume of the cylinder at time
t, and the average Nusselt number on the cooling wall.

As the fluid cooling-down is achieved by maintaining a fixed
temperature Tw on the vertical sidewalls while keeping the top
and bottom boundaries adiabatic, all the heat used to fully cool
down the fluid in the cylinder must pass through the sidewalls,
and then energy conservation in the cylinder requires that,

ρcpVc(T0 −Tw) ∼ t f Ask
(T0 −Tw)

∆T,b
, (21)

where Vc = πR2
0H is the volume of the fluid in the cylinder,

As = 2πR0H is the surface area of the sidewall, k is the thermal
conductivity of fluid, and ∆T,b is the average thermal boundary-
layer thickness which is calculated as follows,
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Therefore, t f has the following scaling relation,
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where κ = k/(ρcp), which is in dimensionless form as follows,
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Figure 3: Numerical results for (a) δT /δT,b plotted against
(τ/τb)

1/2; (b) vm/vm,b plotted against τ/τb; and (c) Nu/Nub

plotted against (τ/τb)
−1/2. solid line, linear fit for the start-up

stage; dashed line, linear fit for the steady-state stage.

The decay of the average fluid temperature Ta(t) is expected to
obey an exponential relation[8], that is,

Ta(t)−T0

T0 −Tw
= e− f (Ra,Pr,A)t

−1, (25)

where f (Ra,Pr,A) is some function of Ra, Pr, and A, which is
in dimensionless form as follows

θa(τ) = e−C f A( Pr
Ra )

1/4τ
−1, (26)

where C f is a constant of proportionality which will be deter-
mined below by numerical results.

Numerical results

In this section, the scaling relations obtained above will be val-
idated and quantified by a series of direct numerical simula-
tions with selected values of A, Ra, and Pr in the ranges of
1/3 ≤ A ≤ 3, 106 ≤ Ra ≤ 1010, and 0.01 ≤ Pr ≤ 0.5. A to-
tal of 12 simulation runs have been carried out for this pur-
pose. Specifically, results have been obtained with Ra = 106,
107, 108, 109, and 1010, while keeping A = 1 and Pr = 0.1 un-
changed, to show the dependence of the scaling relations on Ra
(Runs 1-5); the runs with A = 1/3, 1/2, 1, 2, and 3, while keep-
ing Ra = 108 and Pr = 0.1 unchanged, have been carried out to
show the dependence on A (Runs 6-7, 3, and 8-9); and the runs
with Pr = 0.01, 0.05, 0.1, and 0.5, while keeping Ra = 108 and
A = 1 unchanged, have been carried out to show the dependence
on Pr (Runs 10-11, 3, and 12), respectively.

Detailed information about the numerical algorithm, mesh con-
struction, initial and boundary conditions, and numerical accu-
racy tests can be found in [5, 6].
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Figure 4: Numerical results for θa(τ) plotted against (a)
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The numerical results for δT , vm, and Nu at the boundary-layer
development stage are plotted as a ratio with respect to their
steady-state values against the scaled times τ/τb in Fig. 3. The
results for τ/τb < 1 fall onto a straight line, confirming the scal-
ing laws at the start-up stage, while the results for τ/τb ≥ 1
fall onto a horizontal line, confirming the scaling laws at the
steady-state stage. The numerically quantified scaling laws are
therefore as follows,

τb = 2.395

(

1− z
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)1/2

, (27)

δT,b = 4.845

(
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)1/4

, (28)

vm,b = 0.872[(1− z)Pr]1/2, (29)
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A
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)1/4

, (30)
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A
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δT = 3.131Ra−1/4τ1/2, (32)

vm = 0.364Pr τ, (33)

Nu =
0.803

A
Ra1/4τ−1/2, (34)

Nu =
1.018

A
Ra1/4τ−1/2. (35)

The numerical results show that τs can be well approximated by
the following expression

τs =
0.313

A

(

Ra
Pr

)1/4

. (36)

which clearly demonstrate that the scaling law (20) is correct
for the stratification stage.

The numerical results also show that τ f can be well approxi-

mated by the following expression

τ f =
4.031

A

(

Ra
Pr

)1/4

, (37)

where τ f was determined as the time at which θa(τ f ) = −0.99,
which clearly demonstrate that the scaling law (24) is correct
for the cooling-down stage. Therefore, the full expression for
the time decay of θa, Eq. (26), is obtained as

θa(τ) = e−1.142A( Pr
Ra )

1/4τ
−1. (38)

The numerical results presented in Fig. 4 show that all sets of
data fall onto a single curve, indicating that the scaling relation
(26) is correct.

Conclusions

The cooling down behavior of a fluid contained in a vertical
cylinder subjected to isothermal boundary condition on the ver-
tical walls is examined via scaling analysis and direct numerical
simulation. Scaling laws have been obtained for the develop-
ment time and properties of the initial vertical thermal bound-
ary layer, of the stratification time and of the full cooling down
time. The scalings have been obtained for Pr < 1, yielding dif-
ferent relations from those obtained for Pr > 1. For instance
the scaling relations for the time development of the bound-
ary layer, stratification and full cooling down stages are τb ∼

(1 − z)1/2Pr−1/2, τs ∼ Ra1/4Pr−1/4/A, τ f ∼ Ra1/4Pr−1/4/A

respectively for Pr < 1, and τb ∼ (1 − z)1/2, τs ∼ Ra1/4/A,
τ f ∼ Ra1/4/A respectively for Pr > 1 [6]. It is seen that for
Pr > 1 the scaled quantities are independent of Pr, while for
Pr < 1 they show a Pr dependency.
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