The cognitive, perceptual, social, environmental, and developmental factors associated with child language ability

Thesis submitted by
Katrina Ann LINES BPsych (Hons) Qld
in December 2003

for the degree of Doctor of Philosophy
in the School of Psychology
James Cook University
STATEMENT OF ACCESS

I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and; I do not wish to place any further restriction on access to this work.

_________________________ ________________
Signature Date
STATEMENT OF SOURCES

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

_____________________________ _________________
Signature Date
STATEMENT OF SOURCES

ELECTRONIC COPY

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library is an accurate copy of the print thesis submitted, within the limits of the technology available.

_________________________ ______________
Signature Date
DECLARATION ON ETHICS AND THE CONTRIBUTION OF OTHERS

The research presented and reported in this thesis was conducted within the guidelines for research ethics outlined in the *National Statement on Ethics Conduct in Research Involving Humans* (1999), the *Joint NHMRC/AVCC Statements and Guidelines on Research Practice* (2001), and the *James Cook University Statement and Guidelines on Research Practice* (2001). The proposed research methodology received clearance from the James Cook University Experimentation Ethics Review Committee (approval number H1144).

The research presented and reported in this thesis was designed by the author (under supervision). The data was collected by the author with the aid of three research assistants, who were remunerated for their services. The data was analysed by the author. The sources of funding for the research were the School of Psychology James Cook University, two *Doctoral Merit Research Grants* from James Cook University, and the author.

__ ____________________________
Signature Date
ACKNOWLEDGEMENTS

In any undertaking of size there are people whose contribution is invaluable to its successful resolution, and this research and thesis are no exception. Firstly, I would like to extend my heartfelt gratitude to my supervisor Dr. David Cottrell for his excellent guidance, assistance, support, encouragement and holiday tips during this project. I know that the PhD ‘experience’ can be stressful for many people, but thanks to David I have survived mostly unscathed, although I can’t vouch for those around me.

I would also like to thank Education Queensland, in particular the principals, teachers, students and parents at Hambledon, White Rock, Balaclava, Edge Hill, Bentley Park, Whitfield, Freshwater, Redlynch and Trinity Beach State Schools. Without the willing participation of all of these people, this research could not have been conducted. To the 162 children from these schools who happily (in most cases) underwent the testing, thank you for reminding me that research is about the people involved and not about the numbers generated.

The data collection phase of this research took place over a whole school year and would not have been possible without the help of three research assistants. To Ulrike Darch, David Manners and Avril Reynolds, thank you for your professionalism, adaptability, cheerfulness and sense of fun in working with so many children over such a long period of time, in so many different schools.

No research undertaking occurs without material support and encouragement, for which I would like to thank the staff of the School of Psychology, James Cook University. I would also like to thank my colleagues and co-candidates Donna Goodman and Denise Dillon for their support and welcome
constructive criticism, but most especially for the provision of wonderful coffee conversations when I was procrastinating.

Finally, it is difficult to express how much I appreciate my partner, children, parents and friends for never doubting I would achieve this, especially when I had doubts. I dedicate this thesis to Maxine, Imogen and Jordan, three wonderful and special people.
ABSTRACT

Child language ability has been associated with cognitive, perceptual and social/developmental factors including auditory temporal processing, processing speed, cognitive capacity and verbal working memory. These factors have largely been identified through research on children with language impairments. In particular, specific language impairment (SLI) has been viewed as a unique opportunity to study the factors of importance in language development free from potentially confounding factors like intelligence, and social, physical and environmental effects (Leonard, 1998). The main aim of this research was to investigate whether the cognitive, perceptual and social/developmental factors identified in previous research really are important for normal language development as a whole, as the majority of research undertaken has not included children across the full range of normal language ability. In addition, the relationships between language, nonverbal intelligence and social, environmental and developmental factors are not usually considered in research on SLI due to the strict diagnostic criteria. However, these factors are hypothesised to have importance for language ability as a whole and have the potential for relationships with one another. Some task based questions were also examined. These included an investigation of McDonald and Christiansen’s (2002) contention that verbal working memory tasks are merely special types of language processing tasks, and predictions arising from Baddeley’s (1986) model of working memory. Participants included 158 seven to nine year old children who were administered a battery of language, nonverbal IQ and purpose-made tasks. The children’s parents were administered an interview that included their years of education and occupation, and language and
physical risk factors for the child. Not surprisingly, results from correlational analyses indicate that most variables are significantly related to language ability. The strongest relationships for language ability were with nonverbal IQ, nonword repetition and the language developmental risk index. As was expected from the correlations, the mean differences between groups with low, average and high language ability reflect linear relationships. However, when the variance from nonverbal IQ or the language developmental risk index was removed from the analyses (via ANCOVA), no results remained significant. This indicates complex relationships between cognitive, perceptual and developmental factors, which were confirmed in the analysis of structural equation models. The best fitting model represented the hypothesis that cognitive capacity would predict language ability and was domain-specific as predicted by Baddeley’s theory of working memory. A model reversing the relationship between language and verbal working memory testing McDonald and Christiansen’s argument indicated that language ability has a significant effect on all study variables, and an almost perfectly collinear relationship with verbal working memory. The results of the study indicate that: a) multivariate research and analysis approaches are necessary to elucidate the complex predictors of language ability as univariate and quasi-experimental methods do not identify the underlying interrelationships, b) some verbal working memory tasks appear to be measuring language processing as argued by MacDonald and Christiansen, c) it may be impossible to remove the effects of language from experimental tasks, thus requiring novel means of quantifying these effects, and d) that classifying SLI as a distinct disorder may be erroneous as 13% of this non-clinical sample met all criteria for a diagnosis of SLI.
TABLE OF CONTENTS

Title Page i
Statement of Access ii
Statement of Sources - Declaration iii
Statement of Sources – Electronic Copy iv
Declaration on Ethics and the Contribution of Others v
Acknowledgements vi
Abstract viii
Table of Contents x
List of Tables xiii
List of Figures xv

Chapter 1: Introduction and Review of Literature 1
 1.1 Description of Specific Language Impairment 5
 1.2 The Criteria for a Diagnosis of SLI 6
 1.3 The Aetiology of Specific Language Impairment 8
 1.4 Temporal Processing Deficiency 9
 1.5 Deficits in Information Processing Speed 12
 1.6 Disorders of Working Memory/Cognitive Capacity 17
 1.6.1 Baddeley’s Working Memory Model 18
 1.6.2 Connectionist Models of Language and Memory 21
 1.6.3 Cognitive Capacity and Relational Complexity 28
 1.7 Social, Developmental and Environmental Influences 31
 1.8 The Present Research 36
 1.9 Significance of the Present Research 44

Chapter 2: Methods 46
 2.1 Sampling Methodology 46
 2.2 Rate of Return of Consent Forms 51
 2.3 Eligibility for Participation and Exclusionary Criteria 53
 2.4 Power Analyses 54
 2.5 Description of Child Participants 54
 2.6 Matched Sub-Sample Characteristics 59
2.7 Description of Adult Participants 61
2.8 Materials 62
 2.8.1 Language Ability 64
 2.8.2 Nonverbal Intelligence 64
 2.8.3 Global Processing Speed 65
 RAN Task 65
 Arrow Task 65
 Word & Figure Memory Scanning Tasks 67
 2.8.4 Cognitive Capacity and Working Memory 70
 Nonword Repetition Task 70
 The Memory Span Task 71
 Cognitive Capacity Tasks 78
 2.8.5 Auditory Temporal Processing 82
 2.8.6 Social, Environmental and Developmental Factors 84
2.9 General Procedure 88

Chapter 3: Correlational Relationships between Study Variables 92
 3.1 Hypotheses 92
 3.2 Design and Data Screening 93
 3.3 Whole Sample Relationships 94
 3.4 Matched Sub-Sample Relationships 98
 3.5 Correlational Results and Implications for Study Hypotheses 102
 3.6 Discussion of Correlational Findings 104

Chapter 4: Language Ability Group Comparisons 109
 4.1 Design and Hypotheses 112
 4.2 Description of the Language Ability Groups 113
 4.3 Analysis of Variance Results for Between Group Analyses 113
 4.4 Analysis of Covariance Results for Between Group Analyses 119
 4.5 Analysis of Variance and Covariance Results for Within Group Analyses of the Memory Task 121
 4.6 Discussion of Analyses and Hypotheses 124
LIST OF TABLES

1. Pseudo-Schools, Combined IRSED Score and the Real School Containing the Class that was Sampled from each Pseudo-School 49
2. IRSED, Class Size, Number of Returned Forms and Rate of Return by School 52
3. Demographic, Language and Nonverbal Intelligence Characteristics of Child Participants 55
4. Pearson and Spearman Correlations between Total Language Score, School IRSED, Years of Parental Education and Parental Occupation Code 58
5. Means and Standard Deviations for Low, Average and High Language Ability Groups for Age, Language and Nonverbal IQ 60
6. Demographic Characteristics of Parent/Guardian Participants 61
7. Test and Task Processing Requirements and Associated Latent Variables 63
8. The Structure of the Six Conditions of the Memory Task 72
9. Ranges, Means and Standard Deviations for the Language and Physical Risk Indices for the Whole and Matched Sub-Samples 87
10. The Order of Tests and Tasks Across Participants 90
11. Correlation Matrix for Major Study Variables for $N=158$ Participants 95
12. Correlation Matrix for Major Study Variables for $N=30$ Participants 99
13. Summary of Between Group Analysis of Variance Results for the Cognitive, Perceptual and Social/Developmental Variables 115
14. Summary of Analysis of Covariance Results for Tasks that Indicated Significant Differences in Performance between Language Ability Groups 120
15. The Standardised Parameter Estimates and Reliability Coefficients for Latent Variables in the Measurement Model 147
16. Comparison of Fit Indices for Model Analyses 161
17. The Interview Items used to Create the Language Risk Index 259
18. The Interview Items used to Create the Physical Risk Index 260
19. Mean Index Scores and Standard Deviations for Low, Average and High Language Ability Groups for the Language and Physical Risk Indices 269
20. Means and Standard Deviations of Reaction Time Scores for Low, Average and High Language Ability Groups for Processing Speed Tasks 270
21. Mean Number Correctly Discriminated and Standard Deviations for Low, Average and High Language Ability Groups for the Auditory Repetition Task 270
22. Mean Number Correct and Standard Deviations for Scores of Low, Average and High Language Ability Groups for the Cognitive Capacity Tasks 271
23. Covariance Matrix for all Observed Variables used in the Structural Equation Models 272
24. Correlation Matrix for the Latent Variables in the Structural Equation Models 274
LIST OF FIGURES

1. The arrow task, showing all configurations. 67
2. The ‘yes’ stimuli for the figure memory scanning task. 69
3. The ‘no’ stimuli for the figure memory scanning task. 70
4. Representations of the test windows during the digit span conditions. 75
5. Representations of the test windows during the spatial span conditions. 77
6. Illustrations of the typical screen views in the N-Term task. 79
7. An Illustration of the typical screen view in the Latin Square task. 81
8. The interaction between language ability and number of syllables in the nonword repetition task. 118
9. Correct tone discriminations in the auditory repetition task. 119
10. Mean number of items remembered correctly for type of stimuli in the memory task. 122
11. Mean number remembered correctly for the type of dual task for the memory task. 123
12. The interaction between type of stimulus/response and type of dual task for the memory task. 124
13. The conceptual diagram for the direct effects model. 135
14. The conceptual diagram for the global processing speed hypothesis model. 136
15. The conceptual diagram for the cognitive capacity hypothesis model. 139
16. The conceptual diagram for the effects of language model. 142
17. The direct effects structural model with parameter estimations. 149
18. The global processing speed hypothesis structural model with parameter estimates. 151
19. The cognitive capacity hypothesis structural model with parameter estimates. 154
20. The effects of language structural model with parameter estimates. 156
21. The modified cognitive capacity model - no verbal working memory. 159