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ABSTRACT 

 

This PhD thesis presents a theoretical and experimental investigation using active control 

to attenuate the vibration responses associated with coupled plate structures. Three plate 

structures were examined, which corresponded to an L, T and X shaped plate. The plate 

theory used to determine the dynamic and controlled responses of the coupled plate 

structures is presented for a generic structure consisting of four finite plates joined together 

at right angles in a X-shape. The theory for active vibration control of the coupled plate 

using single and multiple control actuators and error sensors is also presented for both 

dependent and independent control. 

 

The use of multiple actuators and error sensors in various arrangements to attenuate the 

response of various coupled plate structures is demonstrated. The number and location of 

the control forces and error sensors are varied, and their effects on the control performance 

are compared. In addition, the effect of the control forces driven dependently and 

independently was investigated. For active control at discrete resonance frequencies, the 

global response of the structure was observed. Experiments were conducted in order to 

validate theoretical results on the active control of the global response at a low resonance 

frequency. The results showed excellent correlation, validating the effectiveness of the 

active control application. 

 

An energy method to predict the vibrational response and its transmission between coupled 

structures in the medium to high frequency ranges is Statistical Energy Analysis (SEA). In 
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this thesis, SEA is used to model several built-up structures and estimate their vibrational 

response using energy flow relationships. Energy levels of the L, T, X-shaped plates, and a 

7-plate structure, predicted from the exact analytical waveguide model are compared with 

those of conventional SEA models. A hybrid approach between the two techniques is also 

presented. The hybrid method uses the analytical waveguide method to estimate the input 

power and coupling loss factors used in the conventional SEA equations. The energy levels 

in individual plate subsystems using the exact analytical method, SEA, and the hybrid 

technique are compared. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW  

 

 

1.1 Introduction 

 

Structural vibration control is an important concern in engineering industries such as the 

automotive, aerospace and maritime industries, and in refineries and manufacturing 

plant. The basic idea of vibration control is to reduce or modify the vibration of a 

mechanical system. Reducing vibration can lead to a lowering of noise and dynamic 

stress of a system. Dynamic stress can lead to problems such as fatigue or failure of the 

structure or machine, energy dissipation, reduced reliability, and poor performance. 

Vibrations in simple structures such as beams and plates can travel as flexural, 

extensional or torsional waves, or combinations thereof. These waves transfer energy to 

other components of the system coupled to the structure. This may result in an 

undesirable system response or structure-borne sound radiation. Simple beam, plate and 

shell type structures are common components in many engineering systems such as ship 

hulls, building structures, aeroplanes, machine casing and various other mechanical 

equipment. In the aerospace industry, the reduction of structure-borne interior cabin 

noise allows for greater passenger comfort, and can be achieved by reducing the 

vibrations along the aircraft panelling, which is predominantly made up of thin curved 

plates. In the case of maritime vessels, the propulsion system and on-board machinery 

such as the diesel engines and gearboxes, generate substantial vibrations, which are then 

transmitted through the ship’s hull. These vibrations may result in structural fatigue, 

damage to onboard equipment, and significant noise radiation. The characteristics of the 
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vibration transmission and active vibration control can be studied by investigating 

coupled plate structures. 

 

This PhD thesis presents a theoretical and experimental investigation using active 

control to attenuate the responses associated with coupled plate structures. The use of 

multiple actuators and error sensors in various arrangements to attenuate the response of 

various coupled plate structures is demonstrated. The number and location of the 

control forces and error sensors are varied, and their effects on the control performance 

are compared. In addition, the effect of the control forces driven dependently and 

independently was investigated. For active control at discrete resonance frequencies, the 

global response of the structure was observed. Experiments were conducted in order to 

validate theoretical results on the active control of the global response at a low 

resonance frequency. Numerical results of the vibration levels obtained from the exact 

analytical waveguide method were compared with those of the conventional statistical 

energy analysis (SEA) model. A hybrid approach between the two methods is also 

introduced. 

 

1.2 Research Overview 

 

Chapter 1 presents a literature review on the dynamic response and active control of 

various engineering structures. Material from the literature relating to various 

experimental configurations used for active control and optimisation techniques for the 

control force and error sensor numbers and locations is also presented. Chapter 1 also 

gives a brief overview of statistical energy analysis and its importance in vibration 

control.   
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Chapter 2 presents the theory for the dynamic and controlled response of a variety of 

coupled plate structures subject to point force excitation. The theory is presented for a 

generic structure consisting of four finite plates joined together at right angles in a 

cross-shape. Active control of plate structures using single and multiple control 

actuators and error sensors is also presented for independent and dependent control.  

 

Chapter 3 presents an experimental study of the dynamic response and active control of 

the thin rectangular coupled plates as described in Chapter 2. This chapter initially deals 

with the basic principles of a feedforward active control arrangement. The experimental 

procedure including rig and apparatus used are also detailed.  

 

Chapter 4 presents the results from the computational modelling of the plate structures 

using the theory introduced in Chapter 2. Matlab programs are used to determine the 

response of the structures subject to a point force excitation and for various active 

control arrangements. Analytical results are compared to experimentally obtained 

results. 

 

Chapter 5 outlines the basic principles of statistical energy analysis (SEA). A hybrid 

approach incorporating the waveguide method and SEA techniques is also introduced. 

 

Finally, Chapter 6 is a summary of the work presented in this thesis. The scope for 

future work in this field of study is also discussed. 
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1.3 Literature Review 

 

A vast amount of work has been carried out in the analysis of structure vibration as well 

as methods of attenuating the vibrational response and radiated noise. Literature ranging 

from 1936 to the present day has been reviewed. The dynamic response of thin plates 

under free and forced vibration, and for various boundary conditions is well 

documented in several texts [1-4] and will not be covered further in this literature 

review. The literature review has been separated into three sections with the first part 

dealing with the dynamic response of coupled plates. The second part deals with the 

active control of various engineering structures, including a review on various active 

control experiments and optimisation of the control force and error sensor numbers and 

locations. The final section gives an overview of the use of SEA to estimate the energy 

levels in coupled structures. This technique provides a simple model to analyse the mid 

to high frequency vibrational response of a structure.   

 

1.3.1 Wave propagation in plate structures 

 

In the past few decades, considerable attention has been given to the study of wave 

propagation through coupled plate structures in an L, T or cross configuration as they 

are commonly found in ship hulls and buildings [5-14]. Budrin and Nikiforov [5] 

investigated the transmission of flexural and extensional waves normally incident to the 

corner junction in T and cross-shaped plates. The energy reflection and transmission 

coefficients, and the frequency response for the coupled plates were determined. It was 

shown that as the frequency is increased, the extensional reflection coefficient 

decreased. Therefore, the amount of energy transmitted through the joint as flexural and 
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extensional waves increased. Boisson et al. [6] investigated the energy transmission in a 

finite L-shaped plate structure. The effect of thickness ratio, surface areas, damping, 

type and position of excitation parameters on the energy transmission were investigated. 

It was found that the energy transmission changed considerably depending on these 

parameters. Cremer et al. [7] used an analytical wave propagation approach to analyse 

the incident to transmitted energy ratio through the junction of an infinite L-shaped 

plate. Using continuity equations for bending, longitudinal and shearing affects at the 

corner junction, wave transmission and reflection coefficients were obtained. Langley 

and Heron [8] used the propagating elastic waves to investigate waves that were 

partially reflected and transmitted at structural discontinuities such as plate junctions 

and stiffeners. By determining the transmission coefficients at the structural joints, they 

were able to obtain the coupling loss factors for an SEA model. 

 

Kim et al. [9] used a modal analysis method to investigate the bending wave 

transmission in inter-connected rectangular plates in the mid to high frequency ranges. 

The global system was separated into individual plates, which were coupled together by 

continuity of the kinematic parameters and equilibrium of the kinetic parameters. The 

transmission of bending waves in multi-connected plates in the mid or high frequency 

ranges were studied by using deterministic methods such as modal and mobility 

analyses. In a further study, Kim et al. [10] analytically investigated the effect of in-

plane modes on structure-borne noise propagation in ship structures. Using the 

boundary conditions, continuity equations and taking into account the bending, shearing 

and longitudinal effects at the corner junction, the wave amplitudes were determined.  
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Cuschieri and McCollum [11] presented a model for the coupling of thick plates in an 

L-shape using Mindlin theory, which includes the effect of rotary inertia and shear 

deformation. Flexural, in-plane longitudinal and in-plane shear vibration were 

considered, and results up to 100 kHz were presented. Farag and Pan [12] presented a 

mathematical model to predict the dynamic response and power flow at the coupling 

edge of two finite plates joined together at an arbitrary angle. The coupling at the joint 

edge considered bending, shear and in-plane longitudinal vibration. The flexural mode 

shapes and resonance frequencies for rectangular plate panels with one free edge and 

the other edges simply supported were derived. The forced flexural response due to 

point force and moment excitations were expressed in the form of modal receptance 

functions.  

  

1.3.2 Active vibration control 

  

While vibrations occur in the low to high frequency ranges, the low range frequencies 

are the most difficult to attenuate. Structural vibration may be attenuated using either 

passive or active vibration control techniques. The use of passive control techniques 

involves modifying the physical characteristics such as stiffness, mass or damping. The 

use of passive elements such as rubber isolators is not practical in the low frequency 

range in many systems such as in maritime vessels, where size and mass constraints are 

important. Hence, active control techniques may be a more effective means of vibration 

attenuation.  

 

Active vibrational control is a technique that electronically generates an additional 

vibrational field to cancel the unwanted vibration. A typical active control system is a 
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combination of three fundamental components, corresponding to actuators and sensors 

coupled by a controller. In contrast to passive vibration control, active vibration control 

systems require external assistance such as a power supply. Although the basic concepts 

of active control and the use of superposition to attenuate vibration levels have been 

known for sometime [15], it has only recently been applied in practical applications. 

This is primarily due to immense advances in microprocessor and transducer 

technology. 

  

The concept of active control was initiated and patented by Lueg [15]. His invention 

was used to attenuate the noise produced in an air duct by a driving fan. Lueg proposed 

that by using the principle of superposition, a sound signal might be nullified by 

introducing an identical secondary sound signal 180 degrees out of phase. It was shown 

that the source of the sound may be detected and then converted into an electrical 

signal. This signal was then fed into a loud speaker to produce an anti-phase signal that 

cancelled the original sound. 

 

Redman-White et al. [16] presented experimental work on active methods of reducing 

the magnitude of the vibrational power flow associated with the propagation of flexural 

waves in elastic structures. The experimental results demonstrated that two closely 

spaced piezoelectric (PZT) actuators used as the secondary force inputs can be used to 

absorb the energy associated with the propagation of flexural waves in a uniform thin 

beam. The PZT actuators can be bonded directly to the structural surface or in some 

cases actually embedded in the material. Crawley and de Luis [17], Bailey and Hubbard 

[18], and Fanson and Chen [19] have all investigated vibration control with the use of 

piezoelectric actuators. 
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Active control has been successfully used both theoretically and experimentally to 

reduce vibration transmission and sound radiation from a thin panel [20,21]. The sound 

transmission through and radiation from the vibrating structure was controlled by the 

application of active forces applied directly to the structure. This approach is known as 

active structural acoustic control (ASAC). It was shown that using only one or two 

point forces reduced the vibration levels over a wide range of test frequencies. 

 

Wang et al. [22] compared the effect of piezoelectric and point force control actuators 

on the attenuation of noise transmission in a simply supported plate. The control force 

was applied using both point force actuators and piezoelectric patches separately. The 

results show that a reduction of sound transmission through the plate is dependent on 

the size, number, and position of piezoelectric or point force actuators. The results also 

indicated that the point force control arrangement produced higher attenuation levels. 

However, it was shown that the patches have significantly more potential in the noise 

control field due to their low weight and low cost. Lee and Chen [23] investigated 

active control techniques on a plate clamped at the edges and excited by an external 

force at a resonant frequency. Two PZTs were used as the actuators, and an FIR filter 

LMS algorithm was selected for the control set-up. The results demonstrated that more 

error sensors should be used at different positions on the plate to obtain better control 

effectiveness. Park and Baz [24] investigated the fundamentals of active vibration 

control of plates theoretically and experimentally using the active constrained layer 

damping (ACLD) method. Particular emphasis was placed on controlling the first two 

bending modes of vibration in plates. These were treated fully with ACLD methods, 

using proportional and derivative control laws. Finite element models were developed 

to describe the dynamics of the ACLD. These models were validated by experiments at 
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various operating conditions. The results indicated the potential of the ACLD as a 

highly effective means for damping structural vibrations.  

 

Clark and Fuller [25] experimentally studied the active structural control of sound 

radiation using a vibrating simply supported test plate mounted in a rigid steel frame. 

The simply supported boundary conditions were achieved by attaching thin shim spring 

steel to the boundaries of the plate via a sealing compound and setscrews. The shims 

were then mounted to the rigid steel frame that restricted out of plane motion at the 

boundaries, but still allowed the plate to bend relatively freely. A signal generator was 

used to create a harmonic disturbance and the signal was amplified to drive the 

electrodynamic shaker, which in turn drove the plate. Two identical plates were 

constructed for testing. The number and position of the actuators were changed for each 

case to highlight the effect on distributed control. The experimental tests included both 

on and off resonance disturbance. The following important results were obtained from 

the experimental study: 

1. increasing the number of control piezoelectric actuators will only slightly 

improve sound attenuation for on resonance cases; 

2. for off resonance cases, improvements in sound attenuation were observed when 

increasing the number of control piezoelectric actuators; 

3. the location at which the control actuators were placed on the plate affected the 

sound attenuation. 

Similar work carried out by Guigou et al. [26] using a semi-infinite beam with a 

clamped edge confirmed that the attenuation is dependent on the actuator position rather 

than actuator type.  
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Elliott and Billet [27] investigated both analytical and experimental broadband active 

control of flexural waves propagating along a beam. A simple practical arrangement 

consisting of a single error sensor (an accelerometer) whose signal output was used to 

drive a single secondary force via a feedforward controller. The experiments were 

performed on a steel beam, where each end of the beam was placed in a sand box to 

make the beam anechoic above 200Hz. Attenuations in the bending wave amplitudes of 

between 10 and 30dB were measured in the experiments over a frequency range from 

100Hz to 600Hz. Clark et al. [28] also experimentally investigated active control of 

multiple wave types in a semi-infinite beam. Active control of two flexural waves and 

one extensional wave in a thick beam was achieved using a multichannel adaptive LMS 

algorithm implemented in a digital signal processor. It was found that to successfully 

control multiple wave types in a structure, error sensors and actuators capable of 

observing and controlling independent wave types are required.   

 

Pan and Hansen [29] analytically investigated the feedforward active control of 

harmonic vibratory power transmission along a semi-infinite plate of finite width. One 

end of the plate was free while the other end was terminated anechoically. The 

remaining two sides were simply supported. Primary and control driving force 

configurations incorporating multiple sources were arranged in a line across the plate, 

and single sources were arranged at various locations. The reduction in power 

transmission from a simple harmonic primary excitation was in excess of 15 dB for a 

single point control force. This reduction was dependent on positioning of the control 

force. The active control system’s performance decreased rapidly as the control force 

was moved from the optimum location. Vibratory power transmission reductions in 
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excess of 50 dB over a wide frequency range were achieved when three or more 

independently driven control forces in a row across the plate were used.  

 

Kessissoglou [30] analytically investigated the use of active control of an L-shaped 

plate to attenuate the flexural energy transmitted from one plate to the other. The 

flexural wave coefficients were determined using the boundary conditions, and 

continuity equations at the driving force location and corner junction. Bending and 

longitudinal effects were taken into account at the corner junction. It was shown that the 

control performance was dependent on the excitation frequency when the error sensor 

and the control force were arbitrarily located. When both error sensor and control force 

were optimally located with respect to the simply supported plate edges, the control 

performance was maximized and independent of the excitation frequency.   

  

Active control techniques were used by Young and Hansen [31,32] on stiffened plates 

and cylindrical shells. The equations of motion were solved for each structure to 

determine the vibration response of the structure to a range of force and moment 

excitations. The number of control sources and error sensors required for optimal 

vibration reduction was calculated for the plate and cylinder cases. The vibrations in the 

stiffened beams, plates and cylinders were actively controlled using stack actuators 

placed between the flange of a stiffener and the structure surface and accelerometer 

error sensors.  

 

Sergent and Duhamel [33] demonstrated that the optimisation of the placement of 

secondary sources and error sensors can enhance the efficiency of active vibration 

control, and may be achieved using the cost function known as the “minimax” criterion. 
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The criterion is based on the minimisation of the largest squared pressures at a number 

of distributed points and is adapted to find the most suitable placement of sources and 

sensors. Other researchers to use numerical optimisation techniques include Liu and 

Onoda [34]. The optimal sensor/actuator problem was addressed in the framework of 

integrated control structure design. Perez and Devasia [35] optimised several cost 

functions on vibration reduction by tuning the position and size of a collocated 

piezoelectric sensor bonded on the structure. Jemai et al. [36] used the independent 

modal strategy control (IMSC) for active structural control. The structure under 

consideration consisted of three shaped plates, which were soldered together, and the 

distributed sensors and actuators were PZT ceramics. Numerical methods were used to 

optimise shape and location of the sensors and actuators on the structure, and to 

minimise the effect on unwanted modes. Experimental results were obtained and the 

vibration reduction was compared to the results obtained from a finite element analysis. 

The authors listed in this paragraph all employ a model based control design method to 

obtain the optimal error sensor and actuator placement. Hiramoto et al. [37] considered 

an optimal sensor/actuator placement problem for flexural structures. They showed that 

several gradient-based algorithms might be used to formulate the optimal placement 

problem with significantly less computational complexity than the modal-based method 

previously mentioned.  

 

In numerous active control laboratory experiments a digital signal processor (DSP) 

hosted by a personnel computer controls the system. Signals from the error sensors are 

transferred to the DSP board. The controller processes this information and produces a 

control signal that is fed to the control actuators. These signals are commonly calculated 

based in a filtered-X adaptive LMS algorithm. Elliott et al. [38] explain this algorithm 
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and its use for active vibration and noise control in detail. The steepest gradient descent 

method employed by the algorithm minimises the least mean square of the error signals 

by converging on the set of optimal weighting coefficients for the adaptive filters. Clark 

and Fuller [25] have also implemented this control algorithm for noise control from 

plates. For resonance cases, it was found that only marginal improvement was achieved 

by increasing the number of control forces. For off-resonance conditions, an increase in 

the number of control actuators resulted in a significant improvement in sound 

attenuation. 

 

As outlined in the previous paragraphs, active control has received an enormous amount 

of research attention in the last decade. Initially it appeared very promising as a novel 

control technique for attenuation of vibration and its transmission, and radiation as 

noise. However, there are still enormous problems associated with its practical 

application due to environmental uncertainties, stability issues, lack of robustness, 

complexity with the electronics and transducers, cost of application and also high 

maintenance costs. These problems however are being addressed with the developments 

in transducers, namely inertial and reactive actuators [39,40]. 

 

1.3.3 Statistical energy analysis  

 

There is an enormous quantity of literature on statistical energy analysis (SEA), as 

demonstrated in References 41 to 60. This section aims to give a brief overview on the 

literature available and the basic principles behind SEA. SEA provides a simple 

framework to analyse high frequency structural noise and vibration in complex built up 

structures. The modelling procedure uses energy flow relationships between various 
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coupled subsystems, such as plates, beams, stiffeners and acoustic spaces within the 

system. SEA is most commonly used in the high frequency regions where a 

deterministic or exact analysis of the vibration is not practical due to the high number of 

resonant modes. 

 

SEA applies an energy balance principle to the system, where the system is made up 

from coupled subsystems [41,42]. In SEA, a complex structure is divided into a number 

of component subsystems, each corresponding to a certain wave type, and exchanging 

energy with others through coupling characterised by coupling loss factors. The energy 

flow into a system (input power), the energy flow out of a system (dissipated power), 

the energy flow between subsystems (coupling power) and the energy within the 

subsystem are all considered. The power and energies are averaged over time, space 

and frequency, and greater accuracy is obtained with a greater population of modes 

[42].  

 

Tratch [43] applied SEA to study vibration transmissions in multi-plate structures. The 

study included identification of the sub-systems, determination of the various SEA 

parameters and employing the power balance equation to estimate energy ratios of each 

subsystem. Analytical expressions were also formulated to determine the average 

transmission coefficients between up to four plates coupled at a common joint. The 

predicted flexural energy levels were compared with those obtained from experimental 

testing with good results.  

 

Generally, SEA is only accurate when there is weak coupling between the subsystems. 

Many deterministic studies have been conducted to determine the degree of validity of 
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this statement [44-46]. The deterministic methods were carried out on simple structures 

such as beams or rods coupled by springs and coupled plates. Exact energy flow 

relationships between two hinged beams coupled by springs were calculated by Davies 

[44]. Remington and Manning [45] investigated the effect of increasing coupling spring 

stiffness on the energy flow between two axially vibrating rods connected end to end. 

 

For the SEA model to be successful, various parameters must be accurately estimated. 

These parameters are the modal density, damping loss factors and coupling loss factors. 

The determination of the coupling loss factor is a central and difficult problem for SEA 

models [47]. A popular method to obtain the SEA parameters is FEM [48-53]. Hynnä et 

al. [51] presents a method to predict the structure-borne sound transmission in a large 

welded ship structure using SEA and FEM. Employing FEM substantially reduced the 

modelling work. Fredö [52] also employed a finite element method combined with a 

statistical energy analysis-like flow balance method to derive the power transmission 

between two thin plates. Other methods to obtain the SEA parameters include the 

empirical formulations [54]. Yan et al. [55] calculated the direct coupling loss factors 

between several test plates in the mid frequency range using an impedance approach.  

 

Luzzato and Ortola [56] showed significant energy flow paths between subsystems 

using coupling loss factors so that the most energetic subsystems may be isolated. 

Possible paths of energy flow between two subsystems were identified and assigned 

transmission coefficients, comprised from the coupling and internal loss factors of the 

subsystems, to gauge their importance in energy transfer. 
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A wave approach was used by Webster and Mace [57] in the statistical energy analysis 

of a system comprised of two edge-coupled, simply supported rectangular plates. An 

ensemble of plate systems is defined, and analytical expressions are found for the 

ensemble average input and coupling powers that result from “rain-on-the-roof” 

excitation of one of the plates. The energy balance equations used in SEA are briefly 

described in their work accompanied by details of the plate system and wave 

component model. The exact coupling loss factor, found by a wave approach based on 

ensemble average coupling power and subsystem energies, was determined. It was 

found that this estimate of the coupling loss factor tends to be higher than the actual 

coupling loss factor in most cases of practical interest, except when the coupling is 

weak. Another hybrid modelling strategy was employed by Lande et al. [58] to predict 

the SEA energy levels in a beam-plate structure. The SEA power input to the plate 

subsystem was calculated by adding a power absorbing plate impedance matrix to the 

regular beam network impedance matrix in the FEM formulation. 

 

Mace and Rosenberg [59] considered a system comprising two edge-coupled plates. 

Theoretical predictions of the coupling power and coupling loss factors using SEA were 

made. These results were then compared to numerical estimates of the frequency 

average powers and coupling loss factors found from FE models over the whole system. 

A wide variety of plate shapes were investigated as well as different levels of damping. 

It was demonstrated that the response is independent of the shape of the plates if the 

damping is large enough. When the damping is smaller, the plate’s response was found 

to depend more on its geometry and the coupling power is considerably less than that 

predicted by SEA. 
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Langley and Shorter [60] present a general methodology for calculating the wave 

transmission coefficients and coupling loss factors between components that are 

coupled together at a point. Examples for infinite plates and semi-infinite beam 

components were presented and it was found that the coupling loss factors satisfy 

reciprocity.  

 

1.4 Contribution to Research 

 

Much work has been conducted in the field of active control on single beam and plate 

structures. In contrast, very little work has been conducted on the vibrational response 

and its control in complex structures. This thesis aims to contribute to the dynamic 

response characteristics in coupled plate structures, typically found in a ship hull. The 

main theme of this thesis is to use active control techniques to attenuate the vibrational 

responses in L, T and X-shaped plates. Travelling wave solutions are used to describe 

the bending wave motion in the plates. A further section of this thesis investigates an 

approach to predict the vibration transmission in a complex built up plate structure in 

the mid frequency range. To achieve this, a hybrid approach between the analytical 

travelling wave method used in the main theme of the thesis, and an energy approach 

known as Statistical Energy Analysis is developed.  
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CHAPTER 2 

ANALYTICAL MODELLING OF THE DYNAMIC RESPONSE AND 

ACTIVE CONTROL OF CONNECTED PLATES 

 

 

2.1 Introduction 

 

This chapter outlines the plate theory used to determine the dynamic and controlled 

response of a coupled plate structure. The theory is presented for a generic structure 

consisting of four finite plates joined together at right angles in an X-shape. The plate 

material is assumed to be homogenous and isotropic. The theory for active vibration 

control of the coupled plate using single and multiple control actuators and error sensors is 

presented for both independent and dependent control.  

 

2.2 Plate Theory  

 

The geometry of the plates and the alignment of the co-ordinate system are shown in 

Figure 2.1. For mathematical simplicity, all four plates are simply supported along edges 

0=y  and yLy =  and are free at the other ends corresponding to xii Lx =  for i  = 1 to 4. 

The junction of the four plates coincides with 0=ix . 
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Figure 2.1. Finite X-shaped plate under point force excitation, showing the five regions 

of the coupled structure, the boundary conditions and the sign convention. 

 

As the plate is simply supported along 0=y  and yL , a modal solution is used to describe 

the structural response in the −y direction. Due to the free edges, a travelling wave 

solution is used to describe the displacement in the −x direction. A point force excitation 

of amplitude pF  was applied on plate 1 at ),( pp yx  to model the external disturbance. The 

forcing function can be described by the Dirac delta function: 

 

tj
ppp eyyxxFtyxF ωδδ )()(),,( −−= .                         (2.1)  

 

The plate flexural displacements are governed by the classical equation of motion [4]: 
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the plate flexural rigidity, where E  is Young’s Modulus, v  is Poisson’s ratio, ρ  is the 

density, and h  is the plate thickness. Since the plate displacement is time harmonic with 

radian frequency ω , the time dependent factor tje ω  can be omitted in the proceeding 

analysis. 

 

The X-shaped plate can be separated into five sections, as shown in Figure 2.1. Note that 

on plate 1, the primary displacement ),( 11 yxwp  is separated into two components 

),( 11 yxw Ip  for ( 11 xp Lxx ≤≤ ) and ),( 11 yxw IIp  for ( pxx ≤≤ 10 ) due to the external driving 

force. The plate primary flexural displacement in the various sections can be described by: 
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where p
iA  and p

iB  are coefficients of the propagating waves, and p
iC  and p

iD  are 

coefficients of the near-field decay waves. 22
ypx kkk −=  is the propagating wave number 

in the −x direction, and 22
ypn kkk +=  is the wave number in the −x direction for the 

decay waves. 4
1

)( Dhk p ρω=  is the plate bending wave number. yy Lmk π=  is the 



 

 21

wave number in the −y direction due to the simply supported boundary conditions, where 

=m 1 , 2, 3,…, ∞ is the mode number. For plates of the same material properties, lengths 

and thicknesses, the various structural wave numbers are the same for each plate. For a T-

shaped structure, plate 4 and ),( 44 yxwp  are eliminated, and similarly, for an L-shaped 

plate, plates 3 and 4, and therefore ),( 33 yxwp  and ),( 44 yxwp  are not required. 

 

It is evident that if the structural response is to be calculated for the L, T and X plate 

configuration then 12, 16 and 20 unknown constants must be evaluated respectively. These 

can be found using boundary equations at the free edges, and the continuity equations at the 

driving force location and junction of the plates. At the free edges corresponding to 

xii Lx = , the bending moment and net vertical shear force are zero [2]. The net vertical 

shear force and bending moment are respectively given by: 

 

( ) 










∂∂

∂
−+

∂

∂
−= 2

3

3

3

2
yx

w
v

x

w
DQ

i

pi

i

pi
xi                                (2.4) 

                      

.2

2

2

2












∂

∂
+

∂

∂
−=

y
w

v
x

w
DM pi

i

pi
xi                                                  (2.5) 

 

At the driving force location of ( pp yx , ), four coupling equations are used to describe the 

continuity of the plate response under forced excitation [27]. The continuity relationships 
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correspond to the continuity of the plate displacement, slope, moment and shear force. 

These are respectively given by:  

 

IIpIp ww 11 =                                (2.6) 
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The boundary conditions at the structural junction of the coupled plates corresponding to 

)0,0(),( =ii zx  must also satisfy continuity of plate displacement, slope, moment and shear 

force. Using the sign convention outlined in Figure 2.1, equations (2.10) and (2.11) 

correspond to the continuity of the plate displacement while equation (2.12) corresponds to 

the continuity of the slope at the junction. Equations (2.13) to (2.15) describe the 

equilibrium of forces and moments at the junction.  

 

4321 uwuw pIIp −===−             (2.10) 
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4321 pp wuwu ==−=−                               (2.11) 
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04321 =+−− xxxx NQNQ                                    (2.13) 

 

04321 =−−+ xxxx QNQN                                             (2.14) 

 

04321 =+++ xxxx MMMM                        (2.15) 

 

Note that at the junction of the plates, xiQ and xiM  in plate 1 are functions of IIpw 1 . iu  is 

the in-plane longitudinal displacement in the −x direction. The in-plane longitudinal 

force xiN can be written in terms of iu  using the impedance formula Lxii hcjNu ωρ−=  

[7], where for each plate, iu  is acting in the opposite direction to xiN . Lc  is the 

longitudinal wave speed and is given by )1( 2vEcL −= ρ . For the L and T-shaped 

structures, the boundary conditions are obtained by eliminating components associated 

with the removed plates.  

 

Using the boundary and continuity conditions, and the general solutions for the plate 

displacements described by equation (2.3), a matrix equation is obtained of the form 
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][]][[ pFX =pα . The coefficient matrix ][X  and the force matrix [ pF ] for the cross-shaped 

plate are given by equations (2.16) and (2.17) respectively.   

 

[ X ] [ ]TPPPPPPPPPPPPP
II

P
II

P
II

P
II

P
I

P
I

P
I

P
I DCBADCBADCBADCBADCBA 44443333222211111111=      (2.16) 
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A solution for the unknown coefficients of column vector [ X ] may be obtained by 

][][][ 1
pFX −= pα .  For the L, T and X-shaped plates, [ pα ] corresponds to a 1212× , 1616×  

and 2020×  matrix respectively. The [ pα ] matrices associated with the L, T and X-shaped 

plates are given in Appendices A, B and C respectively. In the [ pα ] matrix, LL ck ω=  is 

the longitudinal wave number.  

 

For the active control modelling, it is more convenient to describe the plate flexural 

displacements in terms of the product of the external force amplitude and a transfer 

function [27]. Hence, the primary plate flexural displacement in the various sections can 

also be described by ),(),( yxGFyxw ppp = . ),( yxGp  is the primary transfer function and 

is given by: 
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where i  = 1 to 2 for an L-shaped plate, i  = 1 to 3 for a T-shaped plate, and i  = 1 to 4 for a 

cross-shaped plate. As the forcing matrix [ pF ] has one non-zero element only, the inverse 

transpose matrix [ pα ] T−  can be expressed using a single column of the matrix [ pα ]. For 

the X-shaped plate, [ pα ] T
n
−

12,  corresponds to the twelfth column of the inverse matrix 

[ pα ] T−  where n  = 1 to 20 corresponds to the number of rows.  For the X-shaped plate, 

[ p
iE ] is described as:  

 

[ p
IE1 ] = [ 00000000000000001111 xkxkxjkxjk nnxx eeee −− ] T    11 xp Lxx ≤≤          (2.19) 

 

[ p
IIE1 ] = [ 0000000000000000 1111 xkxkxjkxjk nnxx eeee −− ] T     pxx ≤≤ 10         (2.20) 

 

[ pE2 ] = [ 0000000000000000 2222 xkxkxjkxjk nnxx eeee −− ] T      220 xLx ≤≤        (2.21) 

 

[ pE3 ] = [ 0000000000000000 3333 xkxkxjkxjk nnxx eeee −− ] T     330 xLx ≤≤         (2.22) 

 

[ pE4 ] = [ 44440000000000000000 xkxkxjkxjk nnxx eeee −− ] T   440 xLx ≤≤ .          (2.23) 
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2.3 Active Control 

 

A secondary point force of amplitude sF  is applied at a position on plate 1 corresponding 

to ),( ss yx . The secondary flexural displacement can also be described by both a travelling 

wave solution in the −x direction and a modal solution in the −y direction. In the active 

control case, the general solution for the secondary displacement is given by 

),(),( yxGFyxw sss = , where sG  is of a similar form to pG , except [ pα ], [ p
iE ] and py  are 

replaced with [ sα ], [ s
iE ] and sy  respectively. sG  is now a summation over all modes 'm . 

The total flexural displacement is obtained by adding the plate displacement induced by the 

primary force and the secondary flexural waves generated by the control source: 

 

),(),(),( yxwyxwyxw sptot += .                                  (2.24) 

 

A cost function is developed so that the total squared plate displacement due to the primary 

and control inputs at an error sensor location ),( ee yx  is minimised. The controller 

implemented is based on a feedforward LMS algorithm [61]. It is expressed as a quadratic 

function in terms of the complex control force amplitude: 

 

pppspssstottot FCFFBFFBFFAFww ∏Π∏∏ +++= ******)(                                 (2.25) 

 

where the asterisk * denotes the complex conjugate, and ssGGA *=∏ , psGGB *=∏  and 

ppGGC *=∏ . The optimal control force amplitude that results in the minimisation of the 
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cost function is determined by setting the partial derivatives of the cost function with 

respect to the real and imaginary parts of the control force to zero. That is, 0)( *

=
∂

∂

reals

tottot

F
ww  

and 0)( *

=
∂

∂

imags

tottot

F
ww . The optimal control force can then be obtained as: 

 

∏

∏−=+=
A
B

FFjFF pimagsrealsopts .                        (2.26) 

 

The expression given in equation (2.26) remains the same for the various control 

configurations using either a single control force, or multiple dependently driven control 

forces. In the case of multiple dependently driven control forces, the control forces are 

driven in phase and with the same complex amplitude sF . However, the quadratic terms 

∏A , ∏B  and ∏C  change depending on the number of control forces and error sensors, and 

are given for several different control configurations in the proceeding sections. 

 

2.3.1 Active control using a single control force and multiple error sensors 

 

When multiple error sensors are considered, the total squared plate displacement is 

minimised at all error sensor locations simultaneously:                    
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where 1=e  to n  represents the number of error sensors. The cost function terms in 

equation (2.25) now become: 
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2.3.2 Active control using multiple control forces driven dependently and a single 

 error sensor 

 

For multiple dependently driven control forces, there is still only one optimal complex 

control force amplitude sF  to be determined. The total plate displacement due to the 

primary and control forces at the error sensor location is given by: 
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sjG  represents the secondary transfer function for the thj  control force, where 1=j  to N  

represents the number of control forces. The cost function terms in equation (2.25) now 

become: 
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).,(),(*
eepeep yxGyxGC =∏                             (2.34) 

 

2.3.3 Active control using multiple control forces driven dependently and multiple 

 error sensors 

 

When multiple dependently driven control forces and multiple error sensors are used for 

the active control, the cost function to be minimised is the total squared plate displacement 

due to all forces at all the error sensor locations simultaneously: 
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where n  is the number of error sensors and N  is the number of control forces. The 

quadratic function terms in the cost function in equation (2.25) become: 
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2.3.4 Active control using multiple control forces driven independently and a 

 single error sensor 

 

Using a control configuration consisting of independently driven control forces, the total 

displacement at the error sensor location ),( ee yx  is given by the sum of the displacements 

due to the primary force and the secondary forces: 
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where sjF  are the complex control force amplitudes to be optimised. In the case of two 

independently driven control forces, there are two control force amplitudes, corresponding 

to 1sF  and 2sF  to be optimised. To find the optimal control force amplitudes, the partial 

derivatives of the total squared plate displacement with respect to the real and imaginary 

parts of the control forces are set to zero as described in section 2.3, resulting in: 
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Combining the real and imaginary components of the control forces in equations (2.40) to 

(2.43) results in: 
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Equations (2.44) and (2.45) may be rearranged into matrix form to obtain the set of optimal 

independently driven control forces: 
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For N  independently driven control forces, the optimal control force amplitudes can be 

obtained by: 
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2.3.5 Active control using multiple control forces driven independently and  multiple          

            error sensors 

  

When multiple error sensors and multiple independently driven control forces are used, the 

total plate displacement at the error sensor locations becomes: 

 



 

 33

( )∑ ∑ ∑∑
= = ==









+=








+=

n

e

n

e

N

j
eesjsjeepp

N

j
eeseeptot yxGFyxGFyxwyxww

1 1 11
),(,),(),(       (2.48) 

 

where n  is the number of error sensors and N  is the number of independently driven 

control forces. Following the procedure in the preceding section, the optimal control force 

amplitudes can be obtained by:  
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2.4 Kinetic Energy 

 

The total kinetic energy of the coupled plates can be used to compare the difference in 

attenuation levels for the various error sensor and control force arrangements. Global 

attenuation of the plate structures can be assessed by examining the difference between the 

primary and controlled kinetic energy levels. The kinetic energy for each plate can be 

written as: 

 

2

2
1 vMEk =                    (2.50)
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where M is the mass of each individual plate and wjwv ω== &  is the velocity. The total 

kinetic energy of the system is required to determine the attenuation levels achieved for 

each control set up. The time-averaged vibrational kinetic energy for a single resonance 

frequency can be written as [61]: 

 

( )    [ ][ 
4

2
H

k
ME X]Xωω =              (2.51) 

 

where  ][X   is the coefficient matrix of the plate displacement, and the superscript H  

denotes the complex conjugate and transpose. The total kinetic energy of the system is 

found by adding the kinetic energies of each of the plates together. 
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CHAPTER 3 

EXPERIMENTAL SET-UP  

 

 

3.1 Introduction 

 

Chapter 3 is an experimental study of the dynamic response and active control of the 

thin rectangular coupled plates presented in Chapter 2. This chapter initially deals with 

the basic principles of a feedforward active control arrangement. Details of the 

experimental set up, including construction of the test rig and the equipment used, are 

described.  

 

3.2 Basic Principles of Active Control 

 

Figure 3.1 is a schematic of a typical feedforward active control system used to reduce 

the vibrational levels of a plate. In a feedforward control application, a reference signal 

that is used to drive the primary shaker is fed into the controller. The error signal 

detected by an accelerometer is also fed into the controller. The primary signal is 

filtered using a device adapted to minimise a cost function. This filtered signal is then 

used to drive a control shaker, which generates secondary waves in the structure such 

that the total response or cost function at the error sensor location is minimised.   
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Figure 3.1. Schematic diagram of an active control system used for active vibration 

control of a plate. 

 

3.3 Description of the Experimental Rig and Equipment  

 

An experimental test rig consisting of two aluminium plates connected at a right angle 

in an L-shape was constructed. This rig was then converted to a T-shaped plate by 

welding a third plate to the L-shaped plate. Photos of the L and T shaped plate test rigs 

are shown in Figures 3.2 and 3.3 respectively. The plate structures were formed by 

welding together 600mm ×  500mm plates along a common 500mm edge. Each plate 

had a thickness of 2mm. The boundary conditions of the plates were constructed to 

simulate simply supported conditions on two parallel sides. The plate ends parallel to 

the L and T junctions were free.  
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Figure 3.2. Experimental set-up with primary and control shakers attached to the L-

shaped plate. 

 

 

 

Figure 3.3. Experimental set-up with primary and control shakers attached to the T-

shaped plate. 
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The simply supported boundary conditions were achieved by screwing the edges of the 

plate to Z-sections at regular intervals of 25mm. The Z-sections needed to be flexible 

and were constructed of 0.8mm thick aluminium. The lower flange edges of the Z-

sections were clamped between concrete blocks. This construction has been previously 

shown to approximate simply supported boundary conditions, as the Z-sections are stiff 

for in-plane vibration, but are sufficiently flexible for rotation [62]. Figure 3.4 shows 

the Z-section attached to the top of the panel by screws and the bottom flange clamped 

between the concrete blocks.  

 

 

 

Figure 3.4. Z-section used to simulate the simply-supported boundary conditions. 

 

The primary disturbance shaker and the control shaker, both LDS Type V203 mini 

shakers, were positioned on plate 1 so that only flexural vibration in the plate was 

generated. The shakers were mounted vertically over the plate as shown in Figures 3.2 

and 3.3. The second control shaker for the multiple control force experiments was 

mounted on a stand and placed under plate 1. The stand allowed for the force to be 
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applied vertically. The stand and shaker mounting are shown in Figure 3.5. The error 

sensors used in the experiments were 2 gram Brüel & Kjær Type 4375 accelerometers. 

The minimal weight ensured that the effect of mass loading incurred by the 

accelerometer could be neglected. The accelerometer was attached to the plate using 

specially formulated beeswax.    

 

 

 

Figure 3.5. Stand and mounting for the second control force for the multiple control 

force experiments. 

 

3.4 Description of the Active Controller 

 

An EZ-ANC active controller was used in the experiments [63]. The EZ-ANC is an 

adaptive feedforward active control system that uses an algorithm based on a filtered-X 

version of the adaptive least-mean-square (LMS) algorithm. Figure 3.6 displays a block 
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diagram of the adaptive feedforward control system. It can be seen that a measure of the 

system output is used to adjust the control system to provide maximum attenuation.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6.  Block diagram of the adaptive feedforward control system. 

 

The controller is menu driven and the user interface enables easy modifications of the 

system parameters. The parameters used in the EZ-ANC controller are presented and 

adjusted through a software package. Through this menu modifications to the EZ-ANC 

system and the adaptive algorithm can be changed to increase the efficiency of the 

control performance. The adaptive algorithm is the part of the active control system that 

modifies the weights of the digital filters such that the attenuation of the unwanted 

vibrational disturbance is maximised.  

 

Table 3.1 shows a complete list of the type and model of the equipment used in the 

experiments. 

 

 

  

System  

Adaptive Filter  

Error   
Signal   

Reference  

Secondary  
Source  

Primary Disturbance Source  



 

 41

Table 3.1 Experimental equipment. 

Type of equipment Name Type 

Accelerometer Miniature Accelerometer Brüel & Kjær Type 4375 

Signal Analyser Dual Channel Signal Analyser  Brüel & Kjær Type 2034 

Active Controller EZ-ANC Active controller Beta 1.13 

Personal Computer Dell Laptop Inspiron 

Shakers Mini Shaker LDS Type V203 

Signal conditioning 

amplifier 
The NEXUS™ Conditioning Amplifier Brüel & Kjær Type 2692 

Wax Beeswax Brüel & Kjær YJ-0216 

 

 

3.5 Experimental Procedure 

 

The experimental analysis consisted of an active control investigation of the rectangular 

plate structures. The primary shaker was driven by the Brüel & Kjær dual channel 

signal analyser source, to generate random noise over a specified frequency range. The 

shaker was placed on plate 1 at a fixed location (in metres) of ( pp yx , ) = (0.371, 0.19), 

which resulted in simultaneous excitation of all the structural modes. The response was 

measured by an accelerometer, and the signal sent to the signal analyser via a charge 

conditioning amplifier. From the frequency response function of the plate, the natural 

frequencies could be obtained by zooming in on the peaks. By driving the plate at one 

of its resonance frequencies, the corresponding operational deflection at this frequency 

could be obtained. It was assumed that excitation at a single frequency predominantly 

excites a single mode, and that the forced response or operational deflection at this 
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frequency represents a single mode. This was achieved by driving the primary shaker 

using the Variable Sine output in the signal generator. The response of the plate was 

measured by using a mapping accelerometer. Acceleration measurements were taken at 

50-mm intervals in both x- and y-directions. This mesh allowed for an adequate number 

of points to be used to obtain an accurate surface plot. Figure 3.7 depicts a schematic 

diagram of the typical experimental apparatus layout for the uncontrolled experiments. 

 

 

 

Figure 3.7. Set-up for the experiments performed with only the primary excitation. 

 

In the active control experiments, the primary shaker remained at its fixed location of 

( pp yx , ) = (0.371, 0.19). The position of the secondary shaker varied depending on 

which control arrangement was being investigated. The signal generated by the signal 

analyzer, which was used to drive the primary shaker, was also fed into the active 

controller. This input served as a reference signal. An error sensor position was chosen 

at a location where the plate vibration was to be minimised. An error signal from the 
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reference accelerometer was fed into the controller. The output signal from the 

controller was used to drive the secondary shaker. A second “mapping” accelerometer 

was then used to map the vibration levels of the plate. Accelerometer readings were 

taken when the active controller was switched off (uncontrolled response) and on 

(controlled response). Measurements were taken at 50-mm intervals in the y-direction 

and 50-mm intervals in the x-direction to obtain an accurate surface plot.  

 

 

 

 

 

Figure 3.8. Set-up for the active control experiments. 

 

The active control experiment work involved investigating the effect of changing the 

number and location of the error sensors and secondary forces on the active control 

performance. During the active control experiments, it was noted that the algorithm 

stability decreased as the number of control forces and error sensors increased. This in 

turn decreased the speed of convergence of the system. The system stability and 
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convergence speed was adjusted by changing the convergence coefficient. The 

following rules were used in order to choose the optimum value of the convergence 

coefficient [63]: 

 The initial value was small (approximately 100), and gradually increased so that 

the system did not overload automatically. 

 For lower frequency reference signals, the convergence coefficient was less than 

for the same control set-up with a higher frequency reference signal. 

 If any gains in the system were increased, the convergence coefficient value was 

decreased. 

 If the number of control forces or error sensors was increased, the value of the 

convergence coefficient was decreased. 

 If the distance between sources and error sensors was increased, the value of the 

convergence coefficient was decreased. 

 

For each active control arrangement that was experimentally investigated, the system 

parameters were adjusted to allow for the optimal control performance for that 

particular set-up. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

 

4.1     Introduction 

 

Chapter 4 presents the analytical and experimental results obtained for the primary 

dynamic response and active control of the joined plate structures. Controlled results are 

initially presented for active control of the coupled plates using a single control force and 

a single error sensor. Multiple actuators and error sensors in various arrangements are 

then used to attenuate the response of the plate structures. The number and location of the 

control forces and error sensors were investigated, and their effects on the control 

performance were compared. In addition, the effect of the control forces driven 

dependently and independently was investigated. Both analytical and experimental results 

are presented for active control of the entire plate response at a low resonance frequency. 

 

A valid comparison of the results for the various control arrangements can only be made 

if the conditions of the theoretical models accurately reflect those in the physical 

apparatus. The material parameters of aluminium used in the modelling are density ρ  = 

2700kg/m3, Young’s modulus E = 7.1 x 1010N/m2 and Poisson’s ratio v = 0.3. Hysteretic 

damping in the structure was included by using a complex Young’s modulus )1( ηjE + , 

where η=0.001 is the structural loss factor. The same dimensions were used as for the 

experiments, corresponding to mm600=xL , mm500=yL  and mm2=h . In each 
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control case, the primary shaker was placed on plate 1 at a fixed location (in metres) of 

( pp yx , ) = (0.371, 0.19), which resulted in simultaneous excitation of all the structural 

modes. When one control force was used, it was always positioned in line with the 

primary force in the −x direction on plate 1, and in a symmetrical arrangement along the 

plate width, at ( 11, ss yx ) = (0.371, 0.31). Results are presented in terms of acceleration 

levels (in dB). The acceleration was converted to dB using 2)/(log10 refa aaL = , where 

26 m/s10−=refa  is the internationally accepted reference value [42]. The primary 

acceleration distributions in each control case are measured at a location ( 11 , ee yx ) = 

(0.23, 0.19) on plate 2 which results in simultaneous measurement of all the structural 

modes. 

 

4.2     L-Shaped Plate Results 

 

Figure 4.1 shows a frequency response plot obtained analytically for the primary and 

controlled acceleration distributions for a frequency range up to 400Hz, for the L-shaped 

plate when a single error sensor was placed on plate 2 at ( 11, ee yx ) = (0.23, 0.25) (dotted 

line), or at ( 11, ee yx ) = (0.36, 0.4) (dashed line). The solid line shows the response for an 

accelerometer location on plate 2 of ( 11 , ee yx ) = (0.23, 0.19), and a primary force location 

on plate 1 of ( pp yx , ) = (0.371, 0.19).  When the error sensor is placed on plate 2 at the 

first control set-up corresponding to ( 11, ee yx ) = (0.23, 0.25), it can be seen that the control 

performance achieved is relatively uniform over the frequency range. This is due to the 

symmetry of the primary and control force locations with respect to the simply supported 
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boundary conditions, and the location of the error sensor at the midway point along the 

width of the plate. The control performance deteriorates when the error sensor is shifted 

from the midway point of 25.02/ == ye Ly m, as shown by the controlled results when 

the error sensor was moved to ( 11, ee yx ) = (0.36, 0.4). The corresponding optimum control 

force amplitudes for the two control arrangements in Figure 4.1 are presented in Figure 

4.2. Under the symmetrical control arrangement, the control force amplitude is always 

unity. When the control arrangement is not symmetrical with respect to the primary force 

location, the optimal control force amplitude varies with frequency.  
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Figure 4.1. Primary (solid line) and controlled frequency responses for the L-shaped 

plate for an error sensor located on plate 2 at ),( 11 ee yx = (0.23, 0.25) 

(dotted line), or ),( 11 ee yx = (0.36, 0.4) (dashed line). 
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Figure 4.2. Optimal control force amplitude using a single control force located at 

( 11 , ss yx ) = (0.371, 0.31) on plate 1 and a single error sensor located on 

plate 2 at ),( 11 ee yx = (0.23, 0.25) (solid line), or ),( 11 ee yx = (0.36, 0.4) 

(dotted line). 

 

Figure 4.3 again shows the primary and controlled acceleration distributions for a 

frequency range up to 400Hz for the L-shaped plate. The dashed line shows the 

controlled response when a single error sensor was placed on plate 2 at ( 11, ee yx ) = (0.23, 

0.19). The dotted line shows the controlled response when two error sensors were placed 

on plate 2 at ( 11, ee yx ) = (0.23, 0.19) and ( 22 , ee yx ) = (0.23, 0.31). The results indicate that 

control performance deteriorates when one control force and multiple error sensors are 

used. This is due to the fact that the single control force has to divide its efforts between 

the two error signals such that the total squared plate displacement at each error sensor 

location is minimised. The same trend will be shown for the T and X-shaped plates.  
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Figure 4.3. Primary (solid line) and controlled frequency response for the L-shaped 

plate using primary and control forces located at ),( pp yx = (0.371, 0.19) 

and ),( 11 ss yx = (0.371, 0.31) respectively, and for an error sensor located 

on plate 2 at ),( 11 ee yx = (0.23, 0.19) (dashed line) and two error sensors 

located on plate 2 at ),( 11 ee yx = (0.23, 0.19) and ),( 22 ee yx = (0.23, 0.31) 

(dotted line). 

 

Figure 4.4 presents the primary and controlled acceleration distributions for two error 

sensors positioned on plate 2 at ( 11, ee yx ) = (0.28, 0.32), ( 22 , ee yx ) = (0.32, 0.45), (dotted 

line), and ( 11, ee yx ) = (0.23, 0.25), ( 22 , ee yx ) = (0.28, 0.25) (dashed line). The results show 

that aligning the error sensors at the midway point along the width of the plate 
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corresponding to 25.02/ == ye Ly m produces a better control performance than when 

the error sensors were randomly placed on the plate, and is attributed to the symmetry of 

the control application.  
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Figure 4.4.  Primary (solid line) and controlled frequency responses for the L-shaped 

plate using two error sensors located on plate 2 at ( 11, ee yx ) = (0.28, 0.32)  

( 22 , ee yx ) = (0.32, 0.45), (dotted line), and ( 11, ee yx ) = (0.23, 0.25), 

( 22 , ee yx ) = (0.28, 0.25) (dashed line). 

 

In order to investigate the effect of active control on the global response of the coupled 

plates, several modes of vibration were examined. For the L-shaped structure, the 

uncontrolled and controlled responses for two resonance frequencies were investigated. 

The analytical vibrational responses were examined at resonance frequencies of 
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202.95Hz and 224.89Hz. At 224.89Hz the uncontrolled response has only one nodal line 

running along the x −direction at the midway point in the y −direction ( 25.0=y m) 

(Figure 4.5). This corresponds to mode (4,2) of each plate.  

 

 

 

Figure 4.5. Contour plot of the uncontrolled response at 224.89Hz (analytical). 

 

Figures 4.6 and 4.7 respectively show the controlled response using a single control force 

when the error sensor was located on the nodal line at )25.0,3.0(),( 11 =ee yx  on plate 2, 

and at an anti-nodal location of )125.0,3.0(),( 11 =ee yx  on plate 2. Figure 4.6 shows that 

when the error sensor was positioned on a nodal line, attenuation is achieved mainly 

along the nodal line at y = 0.25m , which corresponds to the midway location in the 

−y direction. The significant attenuation at y = 0.25m  is attributed to the symmetrical 

arrangement of the primary and control application. When the error sensor was located on 

an anti-nodal position of )125.0,3.0(),( 11 =ee yx , global attenuation of around 40dB is 

achieved (Figure 4.7).  
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Figure 4.6. Contour plot of the controlled response at 224.89Hz using a single control 

force at ),( 11 ss yx = (0.371, 0.31) and an error sensor located on plate 2 at 

),( 11 ee yx  = (0.3, 0.25). 

 

 

 
Figure 4.7. Contour plot of the controlled response at 224.89Hz using a single control 

force at ),( 11 ss yx = (0.371, 0.31) and an error sensor located on plate 2 at 

),( 11 ee yx  = (0.3, 0.125). 
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Active control experiments were carried out on the L-shaped plate to verify the results of 

the global response obtained analytically. Figure 4.8 shows the uncontrolled contour plot 

for a resonance frequency of 221.63Hz. This corresponds to mode (4,2) of each plate. 

The same control arrangements were used in the experiments as for the analytical 

investigation. Figures 4.9 and 4.10 show the controlled responses obtained 

experimentally at the natural frequency of 221.63Hz, for the fixed control force location, 

and an error sensor located on the nodal line at )25.0,3.0(),( 11 =ee yx  on plate 2 (Figure 

4.9), and at an anti-nodal location of )125.0,3.0(),( 11 =ee yx  on plate 2 (Figure 4.10). As 

expected, better attenuation levels were achieved for the anti-nodal control set-up.  

 

 

 
 

Figure 4.8. Experimental contour plot of the uncontrolled response at 221.63Hz. 
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Figure 4.9. Experimental contour plot of the controlled response at 221.63Hz f using a 

single force at ),( 11 ss yx = (0.371, 0.31) and an error sensor located on 

plate 2 at ),( 11 ee yx = (0.3, 0.25). 

 

 

 
Figure 4.10. Experimental contour plot of the controlled response at 221.63Hz using a 

single force at ),( 11 ss yx = (0.371, 0.31) and an error sensor located on 

plate 2 at ),( 11 ee yx = (0.3, 0.125). 
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At 202.95Hz, the uncontrolled response obtained analytically has two nodal lines running 

along the x −direction (Figure 4.11). This corresponds to mode (2,3) of each plate. 

Figure 4.12 shows the controlled response at the resonance frequency of 202.95Hz when 

the error sensor was positioned on plate 1 at )25.0,2.0(),( 11 =ee yx . This corresponds to 

an anti-nodal location and is also midway between and downstream of the primary and 

control actuators. Figure 4.12 shows that global attenuation in both plates is achieved, 

with up to 45dB attenuation at the anti-nodal locations. Similar attenuation levels were 

achieved when the error sensor was positioned at any x − location on plates 1 and 2, and 

25.0=ey . That is, the control performance is independent of the x − location for an error 

sensor at the midway point in the −y direction of 25.0=ey . The optimal control 

performance is attributed to the symmetrical arrangement of the control force and the 

error sensor with respect to the primary force location. At error sensor locations away 

from 25.0=ey , the control performance was shown to deteriorate. When the error sensor 

was located at the intersection of a nodal point in both the −x  and −y directions, for 

example, at )34.0,425.0(),( 11 =ee yx , no attenuation of the primary response was 

achieved.  
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Figure 4.11. Contour plot of the uncontrolled response at 202.95Hz (analytical). 

 

 

 

 

 
Figure 4.12. Contour plot of the controlled response at 202.95Hz using a single force at 

),( 11 ss yx = (0.371, 0.31) and an error sensor located on plate 1 at ),( 11 ee yx  

= (0.2, 0.25). 
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Figures 4.13 and 4.14 show the contour plots of the attenuation levels using two control 

forces located on plate 1 which are driven dependently and independently respectively, at 

locations of ( 11, ss yx ) = (0.371, 0.25) and ( 22 , ss yx ) = (0.371, 0.31), and two error sensors 

positioned on plate 2 at ),( 11 ee yx  = (0.3, 0.25) and ( 22 , ee yx ) = (0.4, 0.25). In each case, 

global attenuation was achieved, however the independently driven control forces 

achieved significantly better overall attenuation levels than the dependently driven 

control forces. The dependently driven control forces are equivalent to a single 

distributed control force, and hence the performance is expected to be less than that of a 

system with two independently driven control forces. 

 

 
 

Figure 4.13. Contour plot of the controlled response at 202.95Hz using two 

dependently driven control forces at ),( 11 ss yx = (0.371, 0.31), ),( 22 ss yx = 

(0.371, 0.25) and two error sensors located on plate 2 at ),( 11 ee yx = (0.3, 

0.25) and ( 22 , ee yx ) = (0.4, 0.25). 
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Figure 4.14. Contour plot of the controlled response at 202.95Hz using two 

independently driven control forces at ),( 11 ss yx = (0.371, 0.31), 

),( 22 ss yx = (0.371, 0.25) and two error sensors located on plate 2 at 

),( 11 ee yx = (0.3, 0.25) and ( 22 , ee yx ) = (0.4, 0.25). 

 

Experiments were conducted to confirm the results of the global response obtained 

analytically, by examining the primary response with two nodal lines running along the 

x −direction, at a resonance frequency of 191.25Hz. This corresponds to mode (1,3) of 

each plate as shown in Figure 4.15.  
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Figure 4.15. Experimental contour plot of the uncontrolled response at 191.25Hz. 

 

Figure 4.16 shows the controlled responses obtained experimentally at the resonance 

frequency of 191.25Hz using a single control force and a single error sensor optimally 

located at the midway point along the width of the plate at ( 11, ee yx ) = (0.2, 0.25) on plate 

1. Global attenuation of approximately 15dB was experienced over the entire L-shaped 

plate surface. Figure 4.17 shows the contour plot of the controlled response at 191.25Hz 

for one control force at ),( 11 ss yx = (0.371, 0.31) and two error sensors located on plate 2 

at ),( 11 ee yx  = (0.3, 0.25) and ( 22, ee yx ) = (0.4, 0.25). The control performance 

deteriorates when a single control force and multiple error sensors are used. This is again 

due to the fact that the single control force has to divide its efforts between the two error 

signals such that the acceleration at each error sensor location is minimised.   
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Figure 4.16. Contour plot of the controlled response at 191.25Hz using a single force at 

),( 11 ss yx = (0.371, 0.31) and an error sensor located on plate 1 at ),( 11 ee yx  

= (0.2, 0.25). 

 

 
Figure 4.17. Contour plot of the controlled response at 191.25Hz using a single force at 

),( 11 ss yx = (0.371, 0.31) and two error sensors located on plate 1 plate 2 at 

),( 11 ee yx  = (0.3, 0.25) and ( 22, ee yx ) = (0.4, 0.25). 

 

Figures 4.18 and 4.19 respectively show the experimental contour plot of the controlled 

response at 191.25Hz, for two dependently and two independently driven control forces 
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at ),( 11 ss yx = (0.371, 0.25), ),( 22 ss yx = (0.371, 0.31), and two error sensors positioned on 

plate 2 at ),( 11 ee yx = (0.3, 0.25), ( 22 , ee yx ) = (0.4, 0.25). Global attenuation of the L-

shaped plate is achieved in both cases, although slightly better overall attenuation levels 

are achieved using independently driven control forces than the dependently driven 

control forces.  

 

 
Figure 4.18. Contour plot of the controlled response at 191.25Hz using two 

dependently driven control forces at ),( 11 ss yx = (0.371, 0.31), ),( 22 ss yx = 

(0.371, 0.25) and two error sensors located on plate 2 at ),( 11 ee yx = (0.3, 

0.25) and ( 22, ee yx ) = (0.4, 0.25). 
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Figure 4.19. Contour plot of the controlled response at 191.25Hz using two 

independently driven control forces at ),( 11 ss yx = (0.371, 0.31), 

),( 22 ss yx = (0.371, 0.25) and two error sensors located on plate 2 at 

),( 11 ee yx = (0.3, 0.25) and ( 22, ee yx ) = (0.4, 0.25). 

 

4.3      T-Shaped Plate Results 

 

The following section presents the analytical and experimental results for the T-shaped 

plate. Very similar trends to the L-shaped plate control results can be observed for the T-

shaped plate control results. 

 

Figure 4.20 presents the primary and controlled acceleration distributions for a frequency 

range up to 400Hz for the T-shaped plate,  using a single control force, and a single error 

sensor on plate 2 at ( 11, ee yx ) = (0.23, 0.25) (dotted line), or at ( 11, ee yx ) = (0.36, 0.4) 

(dashed line). In the first control set-up corresponding to ( 11, ee yx ) = (0.23, 0.25), it can be 
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shown that the control performance achieved is relatively uniform over the frequency 

range.  
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Figure 4.20. Primary (solid line) and controlled frequency responses for the T-shaped 

plate using primary and control forces located at ),( pp yx = (0.371, 0.19) 

and ),( 11 ss yx = (0.371, 0.31) respectively, for an error sensor located on 

plate 2 at ),( 11 ee yx = (0.23, 0.25) (dotted line), or ),( 11 ee yx = (0.36, 0.4) 

(dashed line). 

 

This control performance is attributed to the symmetry of the control force and error 

sensor locations with respect to the primary force location. The control performance 
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deteriorates when the error sensor is shifted from the midway point along the width of the 

plate at 25.02/ == ye Ly m. Under the symmetrical control arrangement, the control 

force amplitude is always unity. These control results are also confirmed when the error 

sensor was placed at a midway point of ey = 0.25m on plates 1 and 3. When the control 

arrangement is not symmetrical with respect to the primary force location, the control 

force amplitude fluctuates with frequency, and the control performance deteriorates.  

 

Figure 4.21 compares the primary and controlled acceleration distributions for a 

frequency range up to 400Hz for the T-shaped plate when a single error sensor was 

placed on plate 2 at ( 11, ee yx ) = (0.23, 0.19) (dashed line), and two error sensors were 

placed on plate 2 at ( 11, ee yx ) = (0.23, 0.19) and ( 22, ee yx ) = (0.23, 0.31) (dotted line). It 

can be seen that that the control performance deteriorates when one control force and 

multiple error sensors are used. This is due to the fact that the single control force has to 

divide its efforts between the two error signals such that the total squared plate 

displacement at each error sensor location is minimised.  
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Figure 4.21. Primary (solid line) and controlled frequency response for the T-shaped 

plate using primary and control forces located at ),( pp yx = (0.371, 0.19) 

and ),( 11 ss yx = (0.371, 0.31) respectively, and for an error sensor located 

on plate 2 at ),( 11 ee yx = (0.23, 0.19) (dashed line) and two error sensors 

located on plate 2 at ),( 11 ee yx = (0.23, 0.19) and ),( 22 ee yx = (0.23, 0.31) 

(dotted line). 

 

The effect of the error sensor locations was initially investigated using two dependently 

driven control forces to simultaneously minimise the response at two error sensors. 

Figure 4.22 presents the primary and controlled acceleration distributions for a frequency 

range up to 400Hz for the T-shaped plate. The two control forces are fixed on plate 1 at 



 66

the same −x location as the primary force at ( 11, ss yx ) = (0.371, 0.25) and ( 22, ss yx ) = 

(0.371, 0.31). Two error sensors positioned on plate 2 at ( 11, ee yx ) = (0.23, 0.19), 

( 22 , ee yx ) = (0.23, 0.31) are compared with the sensors located at ( 11, ee yx ) = (0.23, 0.25), 

( 22 , ee yx ) = (0.28, 0.25). The results show that aligning the error sensors at the midway 

point along the width of the plate corresponding to 25.02/ == ye Ly m produces better 

attenuation levels than when the error sensors are moved away from the midway point. 

This is attributed to the relatively symmetrical arrangement of the locations of the control 

forces and error sensors with respect to the primary force location.  
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Figure 4.22.  Primary (solid line) and controlled frequency responses for the T-shaped 

plate using two dependently driven control forces and two error sensors 

located on plate 2 at ( 11, ee yx ) = (0.23, 0.19), ( 22 , ee yx ) = (0.23, 0.31) 

(dotted line), and ( 11, ee yx ) = (0.23, 0.25), ( 22 , ee yx ) = (0.28, 0.25) (dashed 

line). 
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The corresponding optimum control force amplitudes are presented in Figure 4.23 for the 

two combinations. Large control force amplitudes are required at various discrete 

resonance frequencies when the error sensors were not positioned midway along the 

width of the plate. When the error sensors are located at the midway point, the control 

force amplitude for two dependently driven control forces is fairly constant at 0.5. Hence, 

each control force is being driven at around half the amplitude of the primary force, and 

is also being driven at around half the amplitude of the optimal control force using the 

symmetrical control arrangement consisting of a single control force and a single error 

sensor, as presented in the first control set-up in Figure 4.20. 
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Figure 4.23. Optimal control force amplitude using two dependently driven control 

forces and two error sensors located on plate 2 at ( 11, ee yx ) = (0.23, 0.19), 

( 22 , ee yx ) = (0.23, 0.31) (dotted line), and ( 11, ee yx ) = (0.23, 0.25), 

( 22 , ee yx ) = (0.28, 0.25) (solid line). 
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The effect of the control force locations was then investigated for two fixed error sensors 

located on plate 2 at ( 11, ee yx ) = (0.23, 0.19), ( 22 , ee yx ) = (0.23, 0.31). Two dependently 

driven control forces located on plate 1 in line with the primary force along the 

−x direction at ( 11, ss yx ) = (0.371, 0.25), ( 22 , ss yx ) = (0.371, 0.31), were compared with 

two arbitrarily located forces at ( 11, ss yx ) = (0.17, 0.4), ( 22 , ss yx ) = (0.45, 0.29). Figure 

4.24 shows that changing the control force locations has very little effect on the control 

performance. This result was also observed using two independently driven control 

forces. Hence, the use of two control forces to minimise the response at two error sensor 

locations will result in global attenuation of the primary frequency response.  
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Figure 4.24.  Primary (solid line) and controlled frequency responses for the T-shaped 

plate using two dependently driven control forces located on plate 1 at 

( 11, ss yx ) = (0.371, 0.25), ( 22 , ss yx ) = (0.371, 0.31) (dashed line), and 

( 11, ss yx ) = (0.17, 0.4), ( 22 , ss yx ) = (0.45, 0.29) (dotted line). 
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The effect of varying the number of dependently driven control forces was then 

investigated for fixed error sensor positions. Further investigation shows that the use of 

three control forces and two error sensors produced no significant improvement in the 

control performance when compared to the two-control force, two-error sensor 

arrangement. Slightly higher attenuation levels can be achieved using a control set-up 

consisting of three control forces and three error sensors compared to using two control 

forces and two error sensors.  

 

Figures 4.25 and 4.26 compare the performance for two control forces driven 

dependently and independently. In Figure 4.25, the control application is relatively 

symmetrical with respect to the primary force location, with the control forces located in-

line with the primary force on plate 1 at ( 11, ss yx ) = (0.371, 0.25) and ( 22, ss yx ) = (0.371, 

0.31), and the error sensors are located at the midway point along the width of plate 2 at 

( 11, ee yx ) = (0.23, 0.25), ( 22 , ee yx ) = (0.28, 0.25).  
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Figure 4.25.  Primary (solid line) and controlled frequency responses for the T-shaped 

plate using two dependently (dotted line) and two independently (dashed 

line) driven control forces located at ( 11, ss yx ) = (0.371, 0.25) and 

( 22, ss yx ) = (0.371, 0.31) and two error sensors located on plate 2 at 

( 11, ee yx ) = (0.23, 0.25), ( 22 , ee yx ) = (0.28, 0.25). 

 

In Figure 4.26, the control forces and error sensors are arbitrarily located, with the control 

forces located in line with the primary force on plate 1 at ( 11, ss yx ) = (0.17, 0.4) and 

( 22, ss yx ) = (0.45, 0.29), and the error sensors located on plates 2 and 3 respectively at 

( 11, ee yx ) = (0.17, 0.19) and ( 22, ee yx ) = (0.36, 0.4). With the relatively symmetrical 

control arrangement (Figure 4.25), the attenuation levels achieved are very similar using 

dependently or independently driven control forces. However, for any arbitrary control 

arrangement as shown in Figure 4.26, the independently driven control force arrangement 
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produces significantly better attenuation levels than the dependently driven control set-

up.  
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Figure 4.26.  Primary (solid line) and controlled frequency responses for the T-shaped 

plate using two dependently (dotted line) and two independently (dashed 

line) driven control forces located at ( 11, ss yx ) = (0.17, 0.4) and ( 22, ss yx ) = 

(0.45, 0.29), and two error sensors located on plates 2 and 3 at 

respectively ( 11, ee yx ) = (0.17, 0.19) and ( 22, ee yx ) = (0.36, 0.4). 

 

To investigate the effect of active control on the global response of the T-shaped plate, a 

low resonance frequency of 90Hz was examined. This is the fourth natural frequency of 

the T-shaped plate, and corresponds to mode (3,1) of each plate. Various combinations of 

control force and error sensor arrangements were used, and their effect on control 
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performance was observed. Figure 4.27 shows that the uncontrolled response for the 

resonance frequency of 90Hz has no nodal lines running along the −x direction.  

 

 

 
 

 

Figure 4.27. Contour plot of the uncontrolled response at 90Hz (analytical). 

 

Figures 4.28 and 4.29 show the controlled responses for the resonance frequency of 90Hz 

for two different control configurations, each consisting of one error sensor and one 

control force. In both cases, the control force was placed in-line along the −x direction 

with the primary force at ( 11, ss yx ) = (0.371, 0.31), and is also in a symmetrical 

arrangement with respect to the simply supported boundary conditions. Figure 4.28 

shows that global attenuation was achieved when the error sensor was placed on plate 2 at 

( 11, ee yx ) = (0.23, 0.25), which corresponds to the midway point along the width of the T-

shaped plate. This symmetrical control arrangement with respect to the simply supported 

boundary conditions produces the best control results for the one control force, one error 

sensor application. Figure 4.29 displays the controlled response when the error sensor 
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was randomly placed on plate 2 at ( 22 , ee yx ) = (0.43, 0.375). Global attenuation is still 

achieved, however the control performance deteriorates once the error sensor is moved 

away from the symmetrical arrangement of ey  = 0.25 corresponding to the midway point 

along the plate width. 

  

 

Figure 4.28. Contour plot of the controlled response at 90Hz for one control force at 

),( 11 ss yx = (0.371, 0.31) and an error sensor located on plate 2 at ),( 11 ee yx  

= (0.23, 0.25). 
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Figure 4.29. Contour plot of the controlled response at 90Hz for one control force at 

),( 11 ss yx = (0.371, 0.31) and an error sensor located on plate 2 at ),( 11 ee yx  

= (0.43, 0.375). 

 

Figures 4.30 and 4.31 show the contour plots of the attenuation levels using two 

dependently driven control forces located at ( 11, ss yx ) = (0.371, 0.25) and ( 22, ss yx ) = 

(0.371, 0.31), and two error sensors positioned on plate 2 at ( 11, ee yx ) = (0.23, 0.19) and 

( 22, ee yx ) = (0.23, 0.31) (Figure 4.30), and ( 11, ee yx ) = (0.23, 0.25) and ( 22, ee yx ) = (0.28, 

0.25) (Figure 4.31). In each case, global attenuation was achieved, and the control 

performance is not as dependent on the error sensor locations compared with using a 

single control force and a single error sensor. The improvement in control performance 

by using three control forces and multiple error sensors as opposed to two control forces 

and two error sensors is negligible.  
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Figure 4.30. Contour plot of the controlled response at 90Hz for two dependently 

driven control forces at ),( 11 ss yx = (0.371, 0.31), ),( 22 ss yx = (0.371, 0.25) 

and two error sensors located on plate 2 at ),( 11 ee yx  = (0.23, 0.19) and 

( 22, ee yx ) = (0.23, 0.31). 

 

 
 

 
 

 
 

 

Figure 4.31. Contour plot of the controlled response at 90Hz for two dependently 

driven control forces at ),( 11 ss yx = (0.371, 0.31), ),( 22 ss yx = (0.371, 0.25) 

and two error sensors located on plate 2 at ),( 11 ee yx  = (0.23, 0.25) and 

( 22 , ee yx ) = (0.28, 0.25). 
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Figure 4.32 displays the contour plot of the controlled response for the same control 

arrangement as Figure 4.31, but with the control forces driven independently. Global 

attenuation was also achieved. The independently driven control forces achieved slightly 

better overall attenuation levels than the dependently driven control forces. When the 

control forces and error sensors are arbitrarily located, the attenuation levels using two 

independently driven control forces are significantly greater than those achieved using 

dependently driven control forces. 

 

 
 

 
 

 
 

 

Figure 4.32. Contour plot of the controlled response at 90Hz for two independently 

driven control forces at ),( 11 ss yx = (0.371, 0.31), ),( 22 ss yx = (0.371, 0.25) 

and two error sensors located on plate 2 at ),( 11 ee yx  = (0.23, 0.25) and 

( 22 , ee yx ) = (0.28, 0.25). 
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Active control experiments were conducted to confirm the analytical results. The contour 

plot at a low resonance frequency of 53.13Hz was experimentally obtained (Figure 4.33). 

This is the second natural frequency of the T-shaped plate, and corresponds to mode (2,1) 

of each plate.  

 

Figure 4.33. Experimental contour plot of the uncontrolled response at 53.13Hz. 

 

The same control arrangements were used in the experiments as the control force and 

error sensor combinations used in the analytical investigation. Figures 4.34 and 4.35 

show the controlled responses obtained experimentally at the resonance frequency of 

53.13Hz, for a fixed control force location, and an optimally and arbitrarily located error 

sensor. Figure 4.34 shows that significantly greater attenuation levels are achieved, 

around 15dB globally, under the symmetrical control arrangement with respect to the 

simply supported boundary conditions. This symmetrical control arrangement 

corresponds to the primary and control forces positioned at the same −x location in plate 

1 and in a symmetrical arrangement in the −y direction (between the simply supported 
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parallel edges). The error sensor is located in the far-field of the forces, but midway 

between the forces which corresponds to the midway point along the width of the plate 

( 2/ye Ly = ). The arbitrary error sensor location of (0.43, 0.375) is close to the nodal line 

on plate 2, and the contour plot of the controlled response shows an increase in the 

overall vibration levels of the plate (Figure 4.35).  

 

Figure 4.34. Experimental contour plot of the controlled response at 53.13Hz using a 

single control force at ),( 11 ss yx = (0.371, 0.31) and an error sensor located 

on plate 2 at ),( 11 ee yx  = (0.23, 0.25). 
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Figure 4.35. Contour plot of the controlled response at 53.13Hz for one control force at 

),( 11 ss yx = (0.371, 0.31) and an error sensor located on plate 2 at ),( 11 ee yx  

= (0.43, 0.375). 

 

Figures 4.36 and 4.37 show the contour plot of the controlled response obtained 

experimentally at 53.13Hz, for two dependently driven control forces at ),( 11 ss yx = 

(0.371, 0.25), ),( 22 ss yx = (0.371, 0.31), and two error sensors positioned on plate 2 at 

),( 11 ee yx  = (0.23, 0.19), ( 22 , ee yx ) = (0.23, 0.31) (Figure 4.36) and ( 11, ee yx ) = (0.23, 

0.25), ( 22 , ee yx ) = (0.28, 0.25) (Figure 4.37). Global attenuation of the T-shaped plate is 

achieved in both cases, although better attenuation is achieved when the error sensors are 

located along the anti-nodal line, corresponding to the midway point along the width of 

the plate for this resonance frequency (Figure 4.37). Figure 4.38 shows the contour plot 

of the controlled response for the same control arrangement as Figure 4.37, but with the 

control forces driven independently. Significantly better overall attenuation levels are 

achieved using independently driven control forces than the dependently driven control 

forces. 
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Figure 4.36. Contour plot of the controlled response at 53.13Hz for two dependently 

driven control forces at ),( 11 ss yx = (0.371, 0.25), ),( 22 ss yx = (0.371, 0.31) 

and two error sensors located on plate 2 at ),( 11 ee yx  = (0.23, 0.19) and 

( 22 , ee yx ) = (0.23, 0.31). 

 

 

Figure 4.37. Contour plot of the controlled response at 53.13Hz for two dependently 

driven control forces at ),( 11 ss yx =(0.371, 0.25), ),( 22 ss yx = (0.371, 0.31) 

and two error sensors located on plate 2 at ),( 11 ee yx  = (0.23, 0.25) and 

( 22 , ee yx ) = (0.28, 0.25). 
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Figure 4.38. Contour plot of the controlled response at 53.13Hz for two independently 

driven control forces at ),( 11 ss yx = (0.371, 0.25), ),( 22 ss yx = (0.371, 0.31) 

and two error sensors located on plate 2 at ),( 11 ee yx  = (0.23, 0.25) and 

( 22 , ee yx ) = (0.28, 0.25). 

 

4.4 X-Shaped Plate Results 

 

In this section, only analytical results are presented for the X-shaped plate, and very 

similar control trends to the L and T-shaped plates were obtained for the X-shaped plate. 

 

The effect of the error sensor numbers and locations was initially investigated using a 

single control force and a different number of error sensors. Figure 4.39 presents the 

primary and controlled acceleration distributions for a frequency range up to 400Hz for 

the X-shaped plate. The control force was located on plate 1 at the same −x location as 

the primary force at ( 11, ss yx ) = (0.371, 0.31). The use of a single error sensor located on 
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plate 2 at ( 11, ee yx ) = (0.23, 0.25) was compared with using two error sensors located on 

plate 2 at ),( 11 ee yx = (0.36, 0.4) and ),( 22 ee yx = (0.23, 0.25). Under the symmetrical 

control application using the single control force and error sensor, the control 

performance becomes independent of frequency (dashed line). The control performance 

deteriorates when one control force and multiple error sensors are used. 
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Figure 4.39. Primary (solid line) and controlled frequency responses for the X-shaped 

plate using primary and control forces located at ),( pp yx = (0.371, 0.19) 

and ),( 11 ss yx = (0.371, 0.31) respectively, for an error sensor located on 

plate 2 at ),( 11 ee yx = (0.23, 0.25) (dashed line), or two error sensors 

located on plate 2 at ),( 11 ee yx = (0.36, 0.4) and ),( 22 ee yx = (0.23, 0.25) 

(dotted line). 
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The effect of changing the locations of the control forces was also investigated for the X-

shaped plate configuration. Two fixed error sensors located on plate 2 at ( 11, ee yx ) = 

(0.23, 0.19), ( 22 , ee yx ) = (0.23, 0.31) were used. Figure 4.40 displays the primary and 

controlled acceleration distributions for a frequency range up to 400Hz for the X-shaped 

plate, using two dependently driven control forces located in line with the primary force 

at ( 11, ss yx ) = (0.371, 0.25), ( 22 , ss yx ) = (0.371, 0.31) (dashed line), and two arbitrarily 

located forces at ( 11, ss yx ) = (0.15, 0.42), ( 22 , ss yx ) = (0.35, 0.21) (dotted line). All forces 

were placed on plate 1. Figure 4.40 confirms that using two control forces and two error 

sensors, changing the control force locations has very little effect on the control 

performance.  
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Figure 4.40.  Primary (solid line) and controlled frequency responses for the X-shaped 

plate using two dependently driven control forces located on plate 1 at 
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( 11, ss yx ) = (0.371, 0.25), ( 22 , ss yx ) = (0.371, 0.31) (dashed line), and 

( 11, ss yx ) = (0.15, 0.42), ( 22 , ss yx ) = (0.35, 0.21) (dotted line). 

 

Active control using a single control force and a single error sensor was also analytically 

investigated for two modes of vibration of the X-shaped plate. Figures 4.41 and 4.43 

respectively show contour plots of the uncontrolled responses for two resonance 

frequencies corresponding to 151.99Hz and 203.45Hz. The 151.99Hz contour plot has a 

single nodal line running along the x −direction at the midway point in the y −direction. 

This corresponds to mode (3,2) of each plate. For the 203.45Hz contour plot, there are 

two nodal lines running along the x −direction, and corresponds to mode (2,3) of each 

plate. For the resonance frequency of 151.99Hz, the error sensor was located at an anti-

nodal position on plate 3 at )125.0,38.0(),( 11 =ee yx , and similarly, for 203.45Hz, the 

error sensor was positioned on an anti-nodal line on plate 4 at )25.0,3.0(),( 11 =ee yx . 

The controlled responses for both frequencies are shown in Figures 4.42 and 4.44 

respectively. Figure 4.42 shows that global attenuation levels in all four plates of around 

35dB were achieved. Figure 4.44 also shows that global attenuation in all four plates is 

achieved, with attenuation levels of approximately 50dB obtained at the anti-nodal 

locations. Global attenuation of this magnitude was also reached when the single error 

sensor was placed at anti-nodal locations on the other plates making up the X-shaped 

structure. When the error sensor was moved away from the anti-nodal position, the 

control performance deteriorated.   
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Figure 4.41. Contour plot of the uncontrolled response at 151.99Hz (analytical). 

 

 

 
Figure 4.42. Contour plot of the controlled response at 151.99Hz for one control force 

at ),( 11 ss yx = (0.371, 0.31) and an error sensor located on plate 3 at 

),( 11 ee yx  = (0.38, 0.125). 
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Figure 4.43. Contour plot of the uncontrolled response at 203.45Hz (analytical). 

 

 

 
Figure 4.44. Contour plot of the controlled response at 203.45Hz for one control force 

at ),( 11 ss yx = (0.371, 0.31) and an error sensor located on plate 4 at 

),( 11 ee yx  = (0.3, 0.25). 
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4.5 Kinetic Energy  

 

Another means of determining whether global attenuation of the structure has been 

achieved is to calculate the kinetic energies of the plates. The following tables show the 

total kinetic energy levels of the plates under various control applications obtained 

analytically and experimentally. In each case, the results of the global plate response at a 

single resonance frequency obtained analytically are compared to those of similar 

experimental modeshapes. From the results, it can be seen that global kinetic energy 

levels dropped in all control situations with the best attenuation achieved when 

independent control was implemented. This was the case for the L, T and X shaped plates 

both analytically and experimentally. 

  

Table 4.1. Total kinetic energy levels of the uncontrolled and controlled responses 

for the L-shaped plate for an analytical resonance frequency of 202.95Hz 

and an experimental resonance frequency of 191.25Hz. 

 

Number of 

control forces 

Number of 

error sensors 

Error sensor 

locations  

Kinetic energy 

analytical  

Kinetic energy 

experimental  

Uncontrolled - - 6.53 310 −×  3.81 510 −×  

1 1 (0.2,0.25) 4.55 510 −×  1.67 610 −×  

2 

(Dependent) 

2 (0.3,0.25) 

(0.4,0.25) 

7.32 410 −×  1.43 610 −×  

2 

(Independent) 

2 (0.3,0.25) 

(0.4,0.25) 

9.41 510 −×  9.23 710 −×  
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Table 4.2. Total kinetic energy levels of the uncontrolled and controlled responses 

for the T-shaped plate for an analytical resonance frequency of 90Hz and 

an experimental resonance frequency of 53.13Hz. 

 

Number of 

control forces 

Number of 

error sensors 

Error sensor 

locations  

Kinetic energy 

analytical  

Kinetic energy 

experimental  

Uncontrolled - - 6.02 210 −×  3.29 310 −×  

1 1 (0.23,0.25) 8.37 410 −×  1.06 410 −×  

1 1 (0.43,0.375)  8.25 310 −×  2.81 310 −×  

2 

(Dependent) 

2 (0.23,0.19) 

(0.23,0.31) 

2.31 310 −×  9.89 410 −×  

2 

(Dependent) 

2 (0.23,0.25) 

(0.28,0.25) 

5.12 410 −×  1.66 410 −×  

2 

(Independent) 

2 (0.23,0.25) 

(0.28,0.25) 

2.98 410 −×  2.26 510 −×  
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Table 4.3. Total kinetic energy levels of the uncontrolled and controlled responses 

for the X-shaped plate for an analytical resonance frequency of 151.99Hz. 

 

Number of 

control forces 

Number of 

error sensors 

Error sensor 

locations  

Kinetic energy 

analytical 

Uncontrolled - - 1.82 110 −×  

1 1 (0.38,0.125) 2.02 310 −×  

 

 

Analytical and experimental results have shown that by using two control forces to 

minimise the vibration response at two error sensors, global attenuation of the primary 

frequency response can be achieved, as well as global attenuation of the plate structure at 

a discrete resonance frequency. At arbitrary force and sensor locations, higher attenuation 

levels were achieved using independently driven control forces compared to dependently 

driven control forces. The attenuation achieved for the L, T and X-shaped plates were 

also shown to be strongly dependent on both the error sensor location and resonance 

frequency. It can also be seen that global attenuation can be achieved using a single 

control force and a single error sensor if they are positioned symmetrically with respect to 

the primary force location.   
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CHAPTER 5 

STATISTICAL ENERGY ANALYSIS 

 

 

5.1    Introduction 

 

Another method to predict the vibrational response and its transmission between coupled 

structures is Statistical Energy Analysis (SEA). SEA is generally used for high frequency 

noise and vibration problems, and provides a simple modelling procedure to estimate the 

vibrational response of complex structures using energy flow relationships. At medium to 

high frequencies, many hundreds of modes can be excited and it becomes extremely 

difficult to predict the detailed response of the structure using deterministic methods such 

as finite element modelling. In this chapter, energy levels of the coupled plates predicted 

from the exact analytical waveguide model are compared with those of conventional SEA 

models. A hybrid approach between the two techniques is presented. The hybrid method 

uses the analytical waveguide method to estimate the input power and coupling loss 

factors. The energy levels in a subsystem using the exact analytical method, SEA, and the 

hybrid technique are compared. 

 

5.2 Basic SEA Theory 

 

SEA predicts the average noise and vibration levels using the distribution and flow of 

vibrational energy through coupled subsystems. Figure 5.1 shows an example set of 
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coupled subsystems that make up an SEA system. The figure shows a mounted motor in a 

room that is sending vibrations through the building. The subsystems include the walls, 

floors and ceiling panels. The structural joints between the walls, floors and ceiling are the 

coupling points.  

 

 

Motor 

Structural joints  

Subsystems

 

 

Figure 5.1. A SEA system showing its coupled subsystems. 

 

The physical sub-systems are typically beams, plates, stiffeners, acoustic spaces, etc, which 

are coupled together to form a system. In SEA, it is also possible to describe a physical 

sub-system as two or more distinct dynamic sub-systems. For example, a plate in bending 

vibration, in-plane longitudinal vibration and in-plane shear motion forms three sub-

systems. 

 

The vibrational behaviour of a system is described in terms of power and energy. Within a 

subsystem, there may be three types of energy flows as shown in Figure 5.2 [41]. inP  is the 

input power to the subsystem, disP  is the energy dissipated from the subsystem, and ijP  is 
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the energy flow from subsystem i  to subsystem j  through the couplings that join 

subsystems i  and j . The energy and power terms are typically averaged over both space 

and frequency. 

 

   

Subsystem i  
  

dis,iP 

ijP  
in,i P 

 

 

Figure 5.2. Energy flow through a subsystem.  

 

From Figure 5.2, it can be seen that a basic power balance can be applied to the subsystem 

i : 

 

ijidisiin PPP += ,, .                (5.1) 

 

For each term shown in equation 5.1, the power P  is given by [43]: 

 

EP ωη=                  (5.2) 

 

where ω  is the radian frequency, η  is the loss factor and E  is the energy stored in the 

subsystem. There may be several different loss factors in an energy balance equation. The 

first one is the internal loss factor, iη , which represents the energy lost by subsystem i  due 
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to internal damping and radiation to the outside environment. The second is the coupling 

loss factor, ijη , which determines the power transmitted from subsystem i  to subsystem j . 

Using the internal and coupling loss factors, equation (5.1) can be written as [43]: 

 

iijiiiin EEP ωηωη +=, .                           (5.3) 

 

In SEA, it is assumed that the couplings between all subsystems are conservative. 

Therefore, any energy flowing out of one subsystem must flow into another. If two 

subsystems do not interact, the coupling loss factor is taken as equal to zero.  

         

5.2.1 Modal density 

 

In order to ensure that a sufficient number of modes of a structural element respond in the 

frequency range of interest, the modal density is examined. The modal density )(ωn  is 

defined as the number of vibrational modes per unit frequency, and is an important 

parameter in SEA. For one and two-dimensional structures, the modal density can 

respectively be written as [41]: 

 

g
D c

ln
π

=−1                                (5.4) 

 

cc
Sn
g

D π
ω

22 =−                             (5.5) 
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where l  is the length of the one-dimensional component, S  is the area of the two-

dimensional component, gc is the group velocity, and c  is the phase velocity ( kc /ω= ). 

For bending vibration in thin plates, the phase velocity is: 

 

4/1









==

h
D

k
c

B
B ρ

ωω .               (5.6) 

 

The group velocity is twice the phase velocity Bg cc 2= . For a thin plate in bending 

vibration, equation (5.5) can be written as [41]: 

 

( )
D
hLL

n yx ρ
π

ω
4

= .                                               (5.7) 

 

It can be seen in equation (5.7) that the modal density for bending vibration of thin plates 

becomes independent of frequency. 

  

5.2.2 Internal loss factor 

 

When materials are deformed, energy is absorbed and dissipated by the material. This is 

accounted for by using a structural loss factor (commonly known as an internal loss factor 

in SEA applications). As shown in the previous section, there are often analytical solutions 

available to calculate the modal density. This is not the case for the internal loss factor. The 

loss factors are usually obtained experimentally by separately measuring the energy 

dissipation in each of the uncoupled elements. The internal loss factor is dependent on 
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frequency, but can be assumed constant when examining frequency ranges between 1 kHz 

and 10 kHz [7]. Internal loss factors for some common materials are given in Table 6.1 of 

reference 42.   

 

5.2.3 Coupling loss factor 

 

The coupling loss factors relate to the transmission of vibrational energy between coupled 

subsystems in a built-up system. The coupling loss factor, ijη , is the parameter used to 

determine the amount of “coupling” between two subsystems i  and j . In SEA 

applications, it is desirable that the subsystems be weakly coupled, which occurs when the 

material loss factor is greater than the coupling loss factor, that is, iij ηη <  or jij ηη <  [64]. 

For weakly coupled subsystems, energy is lost due to dissipation, and the structural loss 

factor dominates [7]. For strongly coupled subsystems, energy is lost due to transmission, 

and hence the coupling loss factor dominates. Analytical expressions are available for 

coupling between structural elements such as line junctions between coupled plates and 

plate-cantilever beam junctions, as well as between structural and acoustic volumes [42]. 

The most widely used method to evaluate the coupling loss factors for systems connected 

along a line is to use the wave transmission approach [57]. Using the wave approach, the 

coupling loss factor ijη  is derived directly from the power transmission coefficient ijτ , 

which is defined as the ratio of the transmitted to incident power at the boundary:  

 

incident

dtransmitte
ij P

P
==

powerIncident 
power dTransmitteτ .                                      (5.8) 
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When calculating the power transmission coefficient using the wave transmission method, 

the subsystems are assumed to be semi-infinite [41]. Therefore, waves impinging on the 

junction of two coupled subsystems i and j are reflected (in subsystem i) and transmitted 

(to subsystem j), but no reflection at the other boundaries of the subsystems away from the 

junction is taken into account. Equations (5.9) to (5.14) are the power transmission 

coefficients for the L, T and X shaped plates for bending waves only [64]. In deriving these 

expressions, it has been assumed that the group velocities in each plate are the same. All 

plates are the same material and σ  is the plate thickness ratio. For plates of the same 

thickness ( 1=σ ), the power transmission coefficients for the L, T and X-shaped plates are 

given by the number on the right hand side in equations (5.9) to (5.14).  

 

L-shaped plate: 

 

( ) 5.02 24545
12 =+=

−− σστ                  (5.9) 

 

T-shaped plate: 

 

222.0
2

2
245

45
12 =








+=

−

− σστ                  (5.10) 

 

( ) 222.05.022 1525
13 =++=

−
σστ               (5.11) 
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X-shaped plate: 

 

( ) 125.05.0 24545
12 =+=

−− σστ               (5.12) 

 

( ) 125.0215.0 1525
13 =++=

−
σστ               (5.13) 

 

( ) 125.05.0 24545
14 =+=

−− σστ               (5.14) 

 

The general expression used to determine the coupling loss factor for two structures joined 

along a line in terms of the power transmission coefficient is given by [7,41]: 

 

i

ijB
ij S

Lc
πω

τ
η

2
=                  (5.15) 

 

where L  is the length of the junction line, ω  is the centre frequency of the band of interest, 

and iS  is the surface area of the subsystem i . The brackets  represent averaged over 

position, as the power transmission coefficient is averaged at all angles of incidence to the 

junction. 

 

The coupling loss factors satisfy the reciprocity relation of jijiji nn ηη =  where in  is the 

modal density of subsystem i . It was shown in equation (5.7) that the modal density for a 

thin plate in bending vibration is independent of the frequency, and is proportional to the 
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surface area S of the plate. Hence, for two coupled plates of the same material parameters, 

the reciprocity relation can be written as jijiji SS ηη =  [43], where iS  and jS  are the surface 

areas of plates i  and j  respectively.   

 

5.2.4 Input power 

 

The input power is an important parameter in SEA calculations. If a point force F  drives a 

system, then the total power supplied to the system is given by [42]: 

 







=
Z

FPin
1Re

2

2

              (5.16) 

 

where Z  represents the impedance of an infinite plate. When the power transmission into a 

plate (in bending vibration) is frequency averaged, it becomes independent of size, shape 

and boundary conditions, and proportional to the real part of the mobility of an infinite 

plate [7]. The mobility is equal to the inverse of the impedance. For a thin isotropic plate, 

the impedance Z  is given by [7]: 

 

ρDZ 8= .                            (5.17) 
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5.3 SEA Modelling of the Coupled Plates 

 

In an SEA model of an L-shaped plate, consisting of two finite plates joined together at 

right angles along a common edge as shown in Figure 2.1, the plate can be separated into 

two physical systems corresponding to plate 1 and plate 2. The input power is injected into 

plate 1 only. The coupling of the SEA subsystems for bending vibration only is shown in 

Figure 5.3. The power balance equations for the system in bending vibration only are given 

in matrix form in equation (5.18).   

 

   

1   
1,inP   

1,disP  2,disP  

21,12P  
2  

 

 

Figure 5.3. SEA power flow for the L-shaped plate in bending vibration only. 
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The energies in each plate, 1E  and 2E  can then be determined by: 
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For coupling between multiple subsystems as in the case of the T and X-shaped plates, the 

SEA power flow equation becomes [42,65]: 

 

( )∑ −+=
j

jjiiijiiiin EEEP ηηωωη,             (5.20) 

 

Using the reciprocity relation, Equation (5.20) can be written as: 
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
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
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j j
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i
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E
S
ESEP ωηωη,              (5.21) 

 

In addition to examining SEA in L, T and X-shaped plates, a built up structure consisting 

of seven plates joined at right angles as shown in Figure (5.4) is examined. The built up 

structure models a section of a ship hull, and the seven plates are connected to form an L-

shaped plate (plates 1 and 2), a X-shaped plate (plates 2 to 5) and a T-shaped plate (plates 

5, 6 and 7). Using equation (5.21), the power balance equations for the system can be 

obtained, where power is injected into subsystem 1 (plate 1) only. 
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Figure 5.4. The built up structure consisting of seven plates joined together to form L, T 

and X-shaped configurations. 

 

5.4 Hybrid Approach between the Waveguide Method and SEA  

 

The hybrid approach involves using the analytical waveguide model introduced in Chapter 

2 to estimate the input power and coupling loss factors used in the SEA equations. A 

simple well-known structure corresponding to an L-shaped plate was initially investigated 

to validate the traditional SEA results. The hybrid method was then used to analyse the T 

and X-shaped plate structures, and finally the seven-plate structure shown in Figure 5.4.  
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The input bending power for the SEA model was calculated by averaging the response over 

all possible excitation locations in the −x  and −y directions. The time-averaged flexural 

input power at a given −x  location is given by [66]: 
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where the asterisk * denotes the complex conjugate, and the brackets  represents 

average over position. xF , xM  and xyM  are the bending shear force, bending moment and 

twisting moment respectively. xM  is given by equation (2.5) whilst xF  and xyM  are 

respectively given by:  
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Note that the net vertical shear force given by equation (2.4) is obtained by 

yMFQ xyxx ∂∂+= / . The simply supported boundary conditions allowed the bending 

power to be averaged in the −y direction by integrating the power equation over the width 

of the plate from 0 to yL . This results in a factor of 1/2 and removes the dependency of the 

input power on the −y location of the applied force. The input power was then averaged 
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across the plate in the −x direction by driving the structure at a range of −x locations and 

then averaging the response.  

 

The coupling loss factor ijη  was determined directly from the power transmission 

coefficient ijτ  and using the assumption of infinite plates. The assumption of the infinite 

boundary conditions was implemented by assuming no reflection from the free plate edges 

at xii Lx = . In the L-shaped plate, the incident bending power was then found using the 

following expression for the propagating flexural displacement (in the negative 1x  

direction) impinging at the coupling junction ( 0=ix ):   

 

∑
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y ykByxw              (5.25) 

  

Similarly, the transmitted bending power in plate 2 was found using the following 

expression for the transmitted propagating flexural waves at the coupling junction ( 0=ix ):   

 

∑
∞

=
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222 sin),(
m

y ykAyxw .                          (5.26) 

  

1B  and 2A  are coefficients of propagating waves in plates 1 and 2 respectively, and have 

been previously determined in Chapter 2. 
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The power transmission coefficient was calculated by the ratio of the transmitted bending 

power to the incident bending power at the junction of the two plates found using equation 

(5.22). The coupling loss factors were then calculated using equation (5.15). Once the input 

power and coupling loss factors were found using the analytical waveguide model, the 

energy levels of each plate were determined. 

 

5.5 Hybrid Results  

  

The energy levels of each plate found using the hybrid approach are compared with those 

obtained from the analytical waveguide method as well as using the conventional SEA 

equations. The hybrid results are averaged over every 100Hz frequency band, and the value 

presented at the centre frequency of each 100Hz band. Three frequency ranges were 

examined corresponding to up to 1 kHz (low frequency range), 5 to 6 kHz (medium 

frequency range), and 10 to 11 kHz (high frequency range). A sufficient number of modes 

were used in the computational modelling to accurately describe the response in the various 

frequency ranges of interest. This was achieved by ensuring that a sufficient number of 

modes was chosen in each frequency range such that all the results converged. The power 

transmission coefficients calculated from the hybrid method are also presented and 

compared with those given in equations (5.9) to (5.14) from reference 64. The results 

presented are for bending motion only in the coupled plates, although it could be expected 

that as the frequency increases, in-plane vibration will begin to have a significant role 

[67,68]. The same material parameters and plate dimensions given in Chapter 4 were used 

in the calculations.  
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5.5.1 L-shaped plate results     

 

Figure 5.5 and 5.6 display the energy levels of plate 1 and plate 2 of the L-shaped structure 

respectively. The energy levels were found using the hybrid approach, the waveguide 

analytical method and SEA techniques for a frequency up to 1 kHz. The results indicate 

that the conventional SEA equations give a poor indication of the mean energy levels at 

low frequencies, and tends to over predict the energy levels by around 5 to 10 dB. It can be 

seen that the hybrid approach gives more accurate results over the entire frequency range. 

Comparing Figures 5.5 and 5.6, there is a slight reduction of energy levels between plate 1 

and plate 2 due to the energy lost through transmission at the structural joint. 

 

  

  

  

 

Figure 5.5. Energy levels in plate 1 of the L-shaped plate using the analytical 

waveguide method (solid line), SEA (dashed line), and the hybrid approach 

(dotted line), for a frequency range from 1 Hz to 1 kHz.   
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Figure 5.6. Energy levels in plate 2 of the L-shaped plate using the analytical 

waveguide method (solid line), SEA (dashed line), and the hybrid approach 

(dotted line), for a frequency range from 1 Hz to 1 kHz.   

 

The energy levels of plates 1 and 2 of the L-shaped plate calculated for a frequency range 

from 5 to 6 kHz are presented in Figures 5.7 and 5.8 respectively. The results again show 

that in this mid-frequency band, SEA over predicts the mean energy levels in both plates 

The figures also show that the energy levels using conventional SEA becomes nearly a 

straight line (constant with frequency) due to a greater population of modes in this 

frequency range. The reduction in energy levels from plate 1 to plate 2 increases as the 

frequency increases. 
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Figure 5.7. Energy levels in plate 1 of the L-shaped plate using the analytical 

waveguide method (solid line), SEA (dashed line), and the hybrid approach 

(dotted line), for a frequency range from 5 to 6 kHz.   

 

 

Figure 5.8. Energy levels in plate 2 of the L-shaped plate using the analytical 

waveguide method (solid line), SEA (dashed line), and the hybrid approach 

(dotted line), for a frequency range from 5 to 6 kHz.   
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Figures 5.9 and 5.10 show the energy levels of plate 1 and plate 2 respectively of the L-

shaped plate, for a frequency range between 10 and 11 kHz. As the frequency increases, it 

appears that the over prediction of the mean energy levels using the conventional SEA 

equations also increases. The hybrid approach produces slightly better results. Previous 

work has shown that neglecting the in-plane modes of vibration, the energy levels can be 

significantly underestimated at higher frequencies [67,68]. If in-plane vibration was 

accounted for, the overall energy levels of the plates would increase at the higher 

frequencies. Therefore the SEA and the hybrid model could be expected to give more 

accurate results at these higher frequencies if the in-plane motion is included. Figures 5.9 

and 5.10 also show that there are no distinct resonance peaks due to the significant modal 

overlap in the high frequency range. In addition, there is significant decrease in the 

variance of the amplitude of the frequency response function at high frequencies. That is, 

the energy levels fluctuate by around 10 dB compared with around 25 to 30 dB in the low 

frequency range. 
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Figure 5.9. Energy levels in plate 1 of the L-shaped plate using the analytical 

waveguide method (solid line), SEA (dashed line), and the hybrid approach 

(dotted line), for a frequency range from 10 to 11 kHz. 

 

 

Figure 5.10. Energy levels in plate 2 of the L-shaped plate using the analytical 

waveguide method (solid line), SEA (dashed line), and the hybrid approach 

(dotted line), for a frequency range from 10 to 11 kHz. 
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Figures 5.11 to 5.13 show a comparison of the power transmission coefficients 12τ , 

calculated using the hybrid approach for the three frequency ranges with those predicted 

using equation (5.9). For an L-shaped structure, where the group velocities in each plate are 

the same, both plates are the same material, and the plate thickness ratio is unity, the 

transmission coefficient predicted by equation (5.9) is 0.5 and is a constant. In each case, it 

can be seen that the power transmission coefficient predicted using the hybrid method is 

slightly higher than the value presented in equation (5.9), although both values for 12τ  are 

in very good agreement for all frequencies over the three frequency ranges. 

 

 

Figure 5.11. The power transmission coefficients 12τ  found using the hybrid approach 

(dotted line), and predicted from equation (5.9) resulting in 5.012 =τ  (solid 

line), for a frequency range from 1 Hz to 1 kHz.  
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Figure 5.12. The power transmission coefficients 12τ  found using the hybrid approach 

(dotted line), and predicted from equation (5.9) resulting in 5.012 =τ  (solid 

line), for a frequency range from 5 kHz to 6 kHz. 

 

Figure 5.13. The power transmission coefficients 12τ  found using the hybrid approach 

(dotted line), and predicted from equation (5.9) resulting in 5.012 =τ  (solid 

line), for a frequency range from 10 kHz to 11 kHz. 
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5.5.2 T-shaped plate results    

 

Figures 5.14 and 5.15 show the energy levels of plate 1 and plate 2 of the T-shaped 

structure respectively for frequencies up to 1 kHz. As shown with the L-shaped plate, the 

hybrid approach gives more accurate results over the entire frequency range. The energy 

levels predicted in each plate using the conventional SEA equations overestimates the 

mean energy levels in the plates.  

 

 

 

Figure 5.14. Energy levels in plate 1 of the T-shaped using the analytical waveguide 

method (solid line), SEA (dashed line), and the hybrid approach (dotted 

line), for a frequency range from 1 Hz to 1 kHz. 
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Figure 5.15. Energy levels in plate 2 of the T-shaped using the analytical waveguide 

method (solid line), SEA (dashed line), and the hybrid approach (dotted 

line), for a frequency range from 1 Hz to 1 kHz. 

 

 

The energy levels of plates 1 and 2 of the T-shaped structure for a frequency range from 10 

to 11 kHz are presented in Figures 5.16 and 5.17 respectively. The results show that in this 

high-frequency band, SEA significantly over predicts the energy levels in both plates by as 

much as 10 dB compared to the exact analytical waveguide method. Whilst the hybrid 

approach also over predicts the energy levels, slightly better results than using the 

conventional SEA equations are obtained. There are no distinct resonance peaks due to the 

significant modal overlap in the high frequency range, and there is a dramatic decrease in 

the variance of the energy levels obtained using the analytical waveguide method as the 

frequency increases.  
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Figure 5.16. Energy levels in plate 1 of the T-shaped using the analytical waveguide 

method (solid line), SEA (dashed line), and the hybrid approach (dotted 

line), for a frequency range from 10 kHz to11 kHz. 

 

 

Figure 5.17. Energy levels in plate 2 of the T-shaped using the analytical waveguide 

method (solid line), SEA (dashed line), and the hybrid approach (dotted 

line), for a frequency range from 10 kHz to 11 kHz 
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Figures 5.18 and 5.19 present the power transmission coefficients calculated using the 

hybrid approach and predicted using equation (5.10), where 222.012 =τ  and is a constant. 

The frequency ranges are from 1 Hz to 1 kHz, and 10 to 11 kHz respectively. Similar to the 

L-shaped plate, the power transmission coefficient predicted using the hybrid method is 

slightly higher than that found using equation (5.10), although both values are in very good 

agreement. 

 

 

Figure 5.18. The power transmission coefficients 12τ  found using the hybrid approach 

(dotted line), and predicted from equation (5.10) resulting in 222.012 =τ  

(solid line), for a frequency range from 1 Hz to 1 kHz. 
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Figure 5.19. The power transmission coefficients 12τ  found using the hybrid approach 

(dotted line), and predicted from equation (5.10) resulting in 222.012 =τ  

(solid line), for a frequency range from 10 kHz to 11 kHz. 

 

5.5.3 X-shaped plate results    

 

Figure 5.20 shows the energy levels of plate 3 of the X-shaped structure, for frequencies up 

to 1 kHz. The conventional SEA equations overestimate the mean energy levels in the plate 

while the hybrid method produces slightly better results over the entire frequency range. 

Figure 5.21 presents the power transmission coefficients calculated using the hybrid 

approach and equation (5.13), where 12τ = 0.125 and is a contant. The power transmission 

coefficient predicted using the hybrid method is slightly higher than that found using 

equation (5.13). 
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Figure 5.20. Energy levels in plate 3 of the X-shaped using the analytical waveguide 

method (solid line), SEA (dashed line), and the hybrid approach (dotted 

line), for a frequency range from 1 Hz to 1 kHz. 

   

 

Figure 5.21. The power transmission coefficients 12τ  found using the hybrid approach 

(dotted line), and predicted from equation (5.13) resulting in 125.012 =τ  

(solid line), for a frequency range from 1 Hz to 1 kHz. 
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5.5.4 7-plate structure results 

 

Figures 5.22 to 5.24 present the energy levels of plates 2, 4 and 7 respectively. The energy 

levels were found using the hybrid approach, the waveguide analytical method and SEA 

techniques for a frequency range up to 1 kHz. The conventional SEA equations give a good 

approximation of the mean energy levels in this low frequency range, whilst the hybrid 

approach appears to underestimate the mean energy levels.  

 

 

Figure 5.22. Energy levels in plate 2 of the 7-plate structure using the analytical 

waveguide method (solid line), SEA (dashed line), and the hybrid approach 

(dotted line), for a frequency range from 1 Hz to 1 kHz. 
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Figure 5.23. Energy levels in plate 4 of the 7-plate structure using the analytical 

waveguide method (solid line), SEA (dashed line), and the hybrid approach 

(dotted line), for a frequency range from 1 Hz to 1 kHz. 

 

 

Figure 5.24. Energy levels in plate 7 of the 7-plate structure using the analytical 

waveguide method (solid line), SEA (dashed line), and the hybrid approach 

(dotted line), for a frequency range from 1 Hz to 1 kHz. 
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The energy levels of plates 2, 4 and 7 of the 7-plate structure for a frequency range from 5 

to 6 kHz are presented in Figures 5.25 to 5.27 respectively. The results again show that in 

this mid frequency range, SEA tends to overestimate the energy levels in the plates. The 

figures also show that the energy levels using conventional SEA becomes nearly a straight 

line due to a greater population of modes at this frequency range. The hybrid approach 

clearly follows the trend of the frequency response function, although it appears to 

underestimate the mean energy levels in the plates.  

 

 

Figure 5.25. Energy levels in plate 2 of the 7-plate structure using the analytical 

waveguide method (solid line), SEA (dashed line), and the hybrid approach 

(dotted line), for a frequency range from 5 kHz to 6 kHz. 
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Figure 5.26. Energy levels in plate 4 of the 7-plate structure using the analytical 

waveguide method (solid line), SEA (dashed line), and the hybrid approach 

(dotted line), for a frequency range from 5 kHz to 6 kHz. 

 

Figure 5.27. Energy levels in plate 7 of the 7-plate structure using the analytical 

waveguide method (solid line), SEA (dashed line), and the hybrid approach 

(dotted line), for a frequency range from 5 kHz to 6 kHz. 
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This chapter presents preliminary results obtained from a hybrid approach in which the 

SEA parameters corresponding to the input power and coupling loss factors were obtained 

from an exact analytical waveguide method. The investigation focussed on finite plates 

joined together at right angles. Although these structures have been extensively studied, the 

intention of this investigation was to initially investigate the accuracy of the hybrid 

approach and the SEA estimates. Further work to validate the mean energy levels using 

conventional SEA equations can be performed in the higher frequency range with the 

inclusion of in-plane vibration. 
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CHAPTER 6 

SUMMARY AND RECOMMENDATIONS 

 

 

6.1 Summary 

 

In this thesis, the vibrational energy transfer between coupled plates is examined for L, T 

and X-shaped plates. An analytical waveguide method is used to model the response of the 

systems. A hybrid technique using the analytical waveguide method and statistical energy 

analysis (SEA) was developed, in order to accurately predict the plate mean energy levels 

at higher frequencies, and to validate the conventional SEA results. The analytical 

waveguide model was used to determine the SEA parameters corresponding to the input 

power and coupling loss factors. L, T and X-shaped plates are examined, as well as a built 

up structure consisting of seven plates. The mean energy levels of the individual plates 

predicted using SEA were compared with those modelled using the hybrid technique. 

Compared with the results from the hybrid approach, the energy levels predicted in each 

plate using the conventional SEA equations appear to overestimate the mean energy levels 

in the plates. At higher frequencies, the results showed that SEA produces more accurate 

results but still tends to overestimate the energy levels. The analytical study also showed 

that the hybrid approximation gave more accurate results over the entire frequency range. 

 

In addition, analysis is performed using the analytical waveguide method to investigate 

active vibration control of low resonance frequencies in the structures. An analytical and 
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experimental investigation of the dynamic response characteristics of a series of 

rectangular plates coupled together at right angles and subject to point force excitation has 

also been conducted. The plate structures investigated included L, T and X-shaped 

configurations. Feedforward active control of the flexural waves in the coupled plates was 

investigated using single and multiple control forces and error sensors. The number and 

location of the control forces and error sensors to actively attenuate the frequency response 

was investigated. In addition, the effect of driving the control forces dependently and 

independently on the control performance was compared. Results indicated that using two 

control forces to minimise the vibrational response at two error sensors, global attenuation 

of the primary frequency response was achieved, as well as global attenuation of the plate 

structure at a discrete resonance frequency. At arbitrary force and sensor locations, higher 

attenuation levels were achieved using independently driven control forces compared to 

dependently driven control forces. Significant attenuation was also achieved when a single 

control force and a single error sensor were placed in a symmetrical arrangement on the 

coupled plates with respect to the primary force location and the simply supported 

boundary conditions. This corresponded to an error sensor location at the midway point 

along the width of the plate. Under this symmetrical control arrangement, the control force 

amplitude was always unity. When the control arrangement was not symmetrical with 

respect to the primary force location, the control force amplitude was found to vary with 

frequency, and the control performance deteriorated. An experimental rig was constructed, 

and the experimental active control results were found to be very consistent to the results 

obtained analytically. The results also indicate that when a practical vibration problem 

arises and a symmetrical one control force one error sensor control set-up is possible, it 
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could be assumed that the control force amplitude would equal to the primary control 

amplitudes at all frequencies. The signal from a primary force gauge could be used to drive 

the control shaker, and therefore a complex controller would not be required. 

 

6.2 Recommendations 

 

The mean energy levels have been calculated using conventional SEA equations and the 

hybrid approach. In addition to the mean energy levels, it would be of interest to 

investigate and compare the variance of the SEA and hybrid predictions. Future work could 

also involve extending the waveguide model, SEA equations and hybrid method to include 

in-plane motion, as in-plane vibration becomes more significant in the high frequency 

range, and at large distances from the source to the receiver through several intervening 

junctions. Future work could also include investigating more irregular structures, and 

experimental verification of the SEA results. 
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