Is student achievement really immutable?

A study of cognitive development and student achievement in

an Oregon school district

Thesis submitted

by

Lorna Christine ENDLER BSc(Hons), PGCE, MEd(Hons)

in September 2004

for the degree of Doctor of Philosophy

in the School of Education

James Cook University

STATEMENT OF ACCESS

I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and:

I do not wish to place any further restriction on access to this work.

Signature

STATEMENT OF SOURCES - ELECTRONIC COPY

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library is an accurate copy of the print thesis submitted, within limits of the technology available.

Signature

STATEMENT OF SOURCES

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references given.

Signature

STATEMENT ON ETHICS

DECLARATION

The data for this thesis were collected as part of the regular operations of the Molalla River School District, Oregon, USA. Ethical considerations concerning the project therefore rest properly in the hands of the administrators of the Molalla River School District. The data were subsequently provided to me by the Director of Instruction of the Molalla River School District, and further analyses have been stored as anonymous records.

Signature:

STATEMENT ON THE CONTRIBUTION OF OTHERS INCLUDING FINANCIAL AND EDITORIAL HELP

IRA grants from James Cook University provided funding for travel in 2000 and 2001 to Portland, Oregon, from my home in California for seminar presentations and data collection. I was also awarded a JCU Completion Scholarship in September 2003. There was no other financial support for the study. Further contributions by others to this work are acknowledged overleaf.

ACKNOWLEDGMENTS

I am grateful to a number of people who have provided assistance with this work. Most importantly, I would like to thank my supervisor, Dr. Trevor Bond, for his wise and ever positive comments, and his unfailing encouragement. Thanks are also due to the Administrators of the Molalla River School District, in particular to Dr. Sandra Pellens the Director of Instruction, for allowing me to access the data analyzed in this study, and to Eric Bigler, late of Clackamas ESD, for sending me the data files over the period of the study. Joe Zenisek, of Molalla River High School, and Sallie Niggs, of Molalla River Middle School were invaluable school contacts. Lastly, I would like to thank my husband, John, for miscellaneous advice, and for his endless patience and good humour.

ABSTRACT

In the educational climate of the USA, where many question the possibility of effecting genuine change in national achievement outcomes, the Scientific Thinking Enhancement Project (STEP) was delivered to three cohorts of students from 1999 to 2002 in Molalla, Oregon. At the start, the mean age of Cohorts A, B, and C was 11+, 12+, and 13+ years. The purpose of my study was to investigate whether the STEP had enhanced these students' cognitive development and school achievement. The STEP incorporated strategies from a British intervention that had been shown to have a substantial effect on children's cognitive development and school achievement. Different test instruments were employed from those used in the British intervention, and the results of all tests were Rasch scaled. Cognitive change was estimated using Bond's Logical Operations Test, with pre-intervention performance profiles serving as cross-sectional controls. Statistical analyses revealed some enhancement of cognitive development compared with controls, with cognitive gains across the spectrum of starting level, irrespective of starting age and level of parent education. Statistically significant overall cognitive gains were found for Cohorts B (0.27 SDs) and C (0.55 SDs). Data from state-mandated tests in Mathematics revealed significant overall gains against controls for Cohorts A (0.51 SDs) and B (0.19 SDs). Cohort B students also made late-onset significant gains over peers who missed the STEP in 8th grade (BLOT 1.01 SDs and Mathematics 1.09 SDs). Cohort B females showed a significant overall gain in state Reading & Literature tests. There were no significant achievement gains against populations from non-project schools. A teacher survey showed general satisfaction with the STEP, but also revealed misconceptions about the intervention. Given that these teachers received little professional development, and did not deliver the entire intervention program, it is not surprising that the STEP did not yield results as strong as the original projects in the UK.

TABLE OF CONTENTS

Statement of access	ii
Statement of sources	iii, iv
Statement on ethics	V
Statement on the contribution of others	vi
Acknowledgments	vii
Abstract	viii
Table of contents	ix
List of Tables	xiii
List of Figures	xviii
Chapter 1: Is student achievement really immutable?	
Goals and specific research questions	10
Chapter organization	12
Chapter 2: Cognitive developmental theory	
Piaget's genetic epistemology	18
Vygotsky's social construction of reasoning	23
Feuerstein's Instrumental Enrichment program	25
Research with retarded persons	27
The theory base of CASE	27

Measurement of cognitive development31Rasch analysis35

Chapter 3: CASE research

Research that informed the original CASE project	43
A history of CASE in the United Kingdom	47
CASE in Pakistan	50
CASE in Denmark	53
CASE in Finland	54
CASE in Malawi	55
CASE in Australia	56

Chapter 4: Method

Background information	60
Participants and setting	62
Intervention	66
A typical CASE lesson plan	70
Instruments	72
Student achievement data	73
Data management	76
Controls	77
Analysis	81
Qualitative methods	83

Chapter 5: The cognitive development of STEP students

Rasch analysis of the 1999 BLOT data	84
Rasch analysis of the 2000, 2001, and 2002 BLOT data	89
Master data file	90

The Molalla River control	91
STEP students tested on a minimum of two occasions	92
STEP students tested on more than two occasions	101
Results of male and female students	107
Results of students who experienced only part of the STEP intervention	117
Analysis by stage of cognitive development	123

Chapter 6: Student achievement

Master data file	127		
Mathematics achievement of STEP students			
Mathematics results for students who experienced only part of the STEP			
intervention	140		
Reading & Literature achievement of STEP students	144		
Comparisons with students from Redwood and Sequoia School Districts	159		
Relationship between cognitive development and student achievement	167		

Chapter 7: What new skills did STEP students acquire?

Individual vignettes	172
Marty	172
Rose	175
Vicky	177
Arthur	179
Ron	181
Discussion	184

Chapter 8: The STEP Teacher Questionnaire

Results of the survey	186
Discussion	196

Chapter 9: Conclusions

Summary of results	200
Research goals	202
Implications of the study	216
Recommendations	221
Significance	223

References 225

Appendices:

1:	CASE	lesson 27:	Floating	and Sinking
----	------	------------	----------	-------------

2: STEP teacher questionnaire

LIST OF TABLES

Table 2.1	The theory base of the CASE project	29
Table 2.2	BLOT content	33
Table 2.3	BLOT thresholds and Piagetian levels	34
Table 3.1	Comparison of various CASE studies	51
Table 4.1	Educational attainment of the adult Molalla population	63
Table 4.2	The BLOT testing schedule	64
Table 4.3	Number of students in Cohorts A, B, and C	66
Table 4.4	CASE activities	68
Table 4.5	CASE activities taught in the Molalla River School District 1999-200	269
Table 4.6	The typical CASE lesson plan	70
Table 4.7	Oregon score reporting categories	75
Table 4.8	OSS benchmarks	75
Table 4.9	Student profile	77
Table 4.10	Ethnicity	79
Table 4.11	Level of parent education	79
Table 4.12	Threshold values for Effect Size d	82
Table 5.1	Item estimate statistics (BLOT 1999)	84
Table 5.2	Ability estimate statistics of four under-fitting students (BLOT 1999)	88
Table 5.3	Ability estimate statistics (BLOT 1999, 2000, 2001, 2002)	90
Table 5.4	Mean ability estimates of Molalla River students (BLOT 1999)	91
Table 5.5	Mean ability estimates of control and STEP students (BLOT 99-02)	93
Table 5.6	Mean change in BLOT ability estimates of control sample	96

Table 5.7	Mean change in BLOT ability estimates of STEP cohorts	96
Table 5.8	Comparison of the mean change in BLOT ability estimate between	
	control and STEP students	98
Table 5.9	Relative means of the annual change in BLOT ability estimate	100
Table 5.10	Mean BLOT ability estimates of STEP students tested on three	
	occasions	101
Table 5.11	Mean BLOT ability estimates of STEP students tested on all	
	occasions	103
Table 5.12	Mean change in BLOT ability estimate between control and STEP	
	students tested on all occasions	105
Table 5.13	Mean ability estimates of male and female students (BLOT 99, 00,	
	01, and 02)	111
Table 5.14	Mean change in BLOT ability estimate between female control and	
	STEP students	112
Table 5.15	Mean change in BLOT ability estimates between male control and	
	STEP students	114
Table 5.16	Relative means of annual change in BLOT ability estimate of	
	male and female STEP students	117
Table 5.17	Mean BLOT ability estimates of students in Cohort A who began	
	STEP in 7th grade	119
Table 5.18	Mean BLOT ability estimates of students in Cohort B who missed S	TEP
	in 8th grade	119
Table 5.19	Thresholds for Rasch ability estimates, BLOT raw scores and	
	Piagetian levels	123

Table 5.20	Estimated cognitive levels of the control	124
Table 5.21	Estimated cognitive levels of STEP students in May 2002	125
Table 5.22	Estimated cognitive levels of the control and STEP students $(05/02)$	125
Table 6.1	Mean Mathematics OSS of control profile (1999)	129
Table 6.2	Mean Mathematics OSS of STEP students (99, 00, 01, 02)	129
Table 6.3	Mean difference in Mathematics OSS of the control profile	132
Table 6.4	Mean change in Mathematics OSS of STEP students (99 to 02)	132
Table 6.5	Mean change in Mathematics OSS of control and STEP students	133
Table 6.6	Mean Mathematics OSS of male and female students	136
Table 6.7	Mean change in Mathematics OSS of female control and STEP	
	students	138
Table 6.8	Mean change in Mathematics OSS of male control and STEP	
	students	139
Table 6.9	Mean Mathematics OSS of Cohort A students who began STEP	
	in 7th grade	141
Table 6.10	Mean Mathematics OSS of Cohort B students who missed STEP	
	in 8th grade	143
Table 6.11	Mean Reading & Literature OSS of control profile	144
Table 6.12	Mean Reading & Literature OSS of STEP students	145
Table 6.13	Mean difference in Reading & Literature OSS of the control profile	148
Table 6.14	Mean change in Reading & Literature OSS of STEP students (99-02))148
Table 6.15	Mean change in Reading & Literature OSS of control and STEP	
	students	149
Table 6.16	Mean Reading & Literature OSS of male and female students	151

Table 6.17	Mean change in Reading & Literature OSS between female control	
	and STEP students	152
Table 6.18	Mean change in Reading & Literature OSS between male control	
	and STEP students	154
Table 6.19	Mean Reading & Literature OSS of Cohort A students who began	
	STEP in 7th grade	157
Table 6.20	Mean Reading & Literature OSS of Cohort B students who missed	
	STEP in 8th grade	157
Table 6.21	Mean Mathematics OSS of STEP students and peers in Redwood	
	and Sequoia School Districts	160
Table 6.22	Mean change in Mathematics OSS of STEP students and peers in	
	Redwood and Sequoia School Districts	162
Table 6.23	Mean Reading & Literature OSS of STEP students and peers in	
	Redwood and Sequoia School Districts	163
Table 6.24	Mean change in Reading & Literature OSS of STEP students and	
	peers in Redwood and Sequoia School Districts	165
Table 6.25	Mean Science OSS of STEP students and peers in Redwood and	
	Sequoia School Districts	166
Table 6.26	Correlation between cognitive development and school achievement	168
Table 7.1	BLOT scale	170
Table 7.2	Cognitive development profile of Marty	173
Table 7.3	Cognitive development profile of Rose	175
Table 7.4	Cognitive development profile of Vicky	177
Table 7.5	Cognitive development profile of Arthur	179

Table 7.6	Cognitive development profile of Ron	182
Table 8.1	STEP teachers	186
Table 8.2	Results of questions 4 - 7	187

LIST OF FIGURES

Figure 2.1	Tanner's learning-development spectrum	16
Figure 2.2	Schematic diagram of the patterns that emerge from a Rasch analysis	40
Figure 4.1	Comparison of demographics for Molalla River, Sequoia and	
	Redwood school districts	80
Figure 5.1	Item estimates (thresholds) in input order	85
Figure 5.2	BLOT 1999 item-person map	87
Figure 5.3	Mean BLOT ability estimates of control profile	94
Figure 5.4	Mean BLOT ability estimates of STEP cohorts	94
Figure 5.5	Level of parent education and change in BLOT ability estimate	99
Figure 5.6	Starting ability and change in BLOT ability estimate	99
Figure 5.7	Starting age and change in BLOT ability estimate	99
Figure 5.8	Cognitive development profiles	102
Figure 5.9	BLOT ability estimates of students tested on all occasions	106
Figure 5.10	Annual change in BLOT ability estimate	108
Figure 5.11	Male and female control students	113
Figure 5.12	Male and female STEP students	113
Figure 5.13	Mean BLOT ability estimates of male and female students	115
Figure 5.14	Peers of Cohort A who missed STEP in 6th grade	118
Figure 5.15	Students in Cohort B who missed STEP in 8th grade	118
Figure 5.16	Cognitive development profiles of subgroups of Cohort B	122
Figure 5.17	Estimated cognitive levels of the control	126
Figure 5.18	Estimated cognitive levels of control (09/99) and STEP (05/02)	126

Figure 6.1	Mean Mathematics OSS of control and STEP students	130
Figure 6.2	Level of parent education and change in Mathematics OSS	135
Figure 6.3	Starting ability and change in Mathematics OSS	135
Figure 6.4	Starting age and change in Mathematics OSS	135
Figure 6.5	Mean Mathematics OSS of male and female control and STEP	
	students	137
Figure 6.6	Mean Mathematics OSS of male and female students in STEP	
	cohorts	140
Figure 6.7	Mean Mathematics OSS of peers of Cohort A who missed STEP	
	in 6th grade	142
Figure 6.8	Mean Mathematics OSS of Cohort B students who missed STEP	
	in 7th grade	142
Figure 6.9	Mean Reading & Literature OSS of control and STEP students	146
Figure 6.10	Level of parent education and change in Reading & Literature OSS	150
Figure 6.11	Starting ability and change in Reading & Literature OSS	150
Figure 6.12	Starting age and change in Reading & Literature OSS	150
Figure 6.13	Mean Reading & Literature OSS of male and female control and	
	STEP students	153
Figure 6.14	Mean Reading & Literature OSS of male and female students	
	in each STEP cohort	155
Figure 6.15	Mean Reading & Literature OSS of peers of Cohort A who missed	
	STEP in 6th grade	158
Figure 6.16	Mean Reading & Literature OSS of Cohort B students who missed	
	STEP in 7th grade	158

Figure 6.17	Mean Mathematics OSS of the STEP cohorts and their peers in	
	Redwood and Sequoia School Districts	161
Figure 6.18	Mean Reading & Literature OSS of the STEP cohorts and their	
	peers in Redwood and Sequoia School Districts	164
Figure 7.1	Profile of Marty	174
Figure 7.2	Profile of Rose	176
Figure 7.3	Profile of Vicky	178
Figure 7.4	Profile of Arthur	180
Figure 7.5	Profile of Ron	183