Is student achievement really immutable?

A study of cognitive development and student achievement in

an Oregon school district

Thesis submitted

by

Lorna Christine ENDLER BSc(Hons), PGCE, MEd(Hons)

in September 2004

for the degree of Doctor of Philosophy

in the School of Education

James Cook University
STATEMENT OF ACCESS

I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and:

I do not wish to place any further restriction on access to this work.

Signature Date
STATEMENT OF SOURCES - ELECTRONIC COPY

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library is an accurate copy of the print thesis submitted, within limits of the technology available.

__ ________________
Signature Date
STATEMENT OF SOURCES

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education.

Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references given.

_________________________ _________________________
Signature Date
STATEMENT ON ETHICS

DECLARATION

The data for this thesis were collected as part of the regular operations of the Molalla River School District, Oregon, USA. Ethical considerations concerning the project therefore rest properly in the hands of the administrators of the Molalla River School District. The data were subsequently provided to me by the Director of Instruction of the Molalla River School District, and further analyses have been stored as anonymous records.

Signature: ___________________________ Date: ___________________________
IRA grants from James Cook University provided funding for travel in 2000 and 2001 to Portland, Oregon, from my home in California for seminar presentations and data collection. I was also awarded a JCU Completion Scholarship in September 2003. There was no other financial support for the study. Further contributions by others to this work are acknowledged overleaf.
ACKNOWLEDGMENTS

I am grateful to a number of people who have provided assistance with this work. Most importantly, I would like to thank my supervisor, Dr. Trevor Bond, for his wise and ever positive comments, and his unfailing encouragement. Thanks are also due to the Administrators of the Molalla River School District, in particular to Dr. Sandra Pellens the Director of Instruction, for allowing me to access the data analyzed in this study, and to Eric Bigler, late of Clackamas ESD, for sending me the data files over the period of the study. Joe Zenisek, of Molalla River High School, and Sallie Niggs, of Molalla River Middle School were invaluable school contacts. Lastly, I would like to thank my husband, John, for miscellaneous advice, and for his endless patience and good humour.
ABSTRACT

In the educational climate of the USA, where many question the possibility of effecting genuine change in national achievement outcomes, the Scientific Thinking Enhancement Project (STEP) was delivered to three cohorts of students from 1999 to 2002 in Molalla, Oregon. At the start, the mean age of Cohorts A, B, and C was 11+, 12+, and 13+ years. The purpose of my study was to investigate whether the STEP had enhanced these students’ cognitive development and school achievement. The STEP incorporated strategies from a British intervention that had been shown to have a substantial effect on children’s cognitive development and school achievement. Different test instruments were employed from those used in the British intervention, and the results of all tests were Rasch scaled. Cognitive change was estimated using Bond’s Logical Operations Test, with pre-intervention performance profiles serving as cross-sectional controls. Statistical analyses revealed some enhancement of cognitive development compared with controls, with cognitive gains across the spectrum of starting level, irrespective of starting age and level of parent education. Statistically significant overall cognitive gains were found for Cohorts B (0.27 SDs) and C (0.55 SDs). Data from state-mandated tests in Mathematics revealed significant overall gains against controls for Cohorts A (0.51 SDs) and B (0.19 SDs). Cohort B students also made late-onset significant gains over peers who missed the STEP in 8th grade (BLOT 1.01 SDs and Mathematics 1.09 SDs). Cohort B females showed a significant overall gain in state Reading & Literature tests. There were no significant achievement gains against populations from non-project schools. A teacher survey showed general satisfaction with the STEP, but also revealed misconceptions about the intervention. Given that these teachers received little professional development, and did not deliver the entire intervention program, it is not surprising that the STEP did not yield results as strong as the original projects in the UK.
TABLE OF CONTENTS

Statement of access ii
Statement of sources iii, iv
Statement on ethics v
Statement on the contribution of others vi
Acknowledgments vii
Abstract viii
Table of contents ix
List of Tables xiii
List of Figures xviii

Chapter 1: Is student achievement really immutable?

Goals and specific research questions 10
Chapter organization 12

Chapter 2: Cognitive developmental theory

Piaget's genetic epistemology 18
Vygotsky's social construction of reasoning 23
Feuerstein’s Instrumental Enrichment program 25
Research with retarded persons 27
The theory base of CASE 27
Measurement of cognitive development 31
Rasch analysis 35
Chapter 3: CASE research

Research that informed the original CASE project 43
A history of CASE in the United Kingdom 47
CASE in Pakistan 50
CASE in Denmark 53
CASE in Finland 54
CASE in Malawi 55
CASE in Australia 56

Chapter 4: Method

Background information 60
Participants and setting 62
Intervention 66
A typical CASE lesson plan 70
Instruments 72
Student achievement data 73
Data management 76
Controls 77
Analysis 81
Qualitative methods 83

Chapter 5: The cognitive development of STEP students

Rasch analysis of the 1999 BLOT data 84
Rasch analysis of the 2000, 2001, and 2002 BLOT data 89
Master data file 90
The Molalla River control 91
STEP students tested on a minimum of two occasions 92
STEP students tested on more than two occasions 101
Results of male and female students 107
Results of students who experienced only part of the STEP intervention 117
Analysis by stage of cognitive development 123

Chapter 6: Student achievement

Master data file 127
Mathematics achievement of STEP students 128
Mathematics results for students who experienced only part of the STEP intervention 140
Reading & Literature achievement of STEP students 144
Comparisons with students from Redwood and Sequoia School Districts 159
Relationship between cognitive development and student achievement 167

Chapter 7: What new skills did STEP students acquire?

Individual vignettes 172
Marty 172
Rose 175
Vicky 177
Arthur 179
Ron 181
Discussion 184
Chapter 8: The STEP Teacher Questionnaire

Results of the survey 186
Discussion 196

Chapter 9: Conclusions

Summary of results 200
Research goals 202
Implications of the study 216
Recommendations 221
Significance 223

References 225

Appendices:

1: CASE lesson 27: Floating and Sinking
2: STEP teacher questionnaire
LIST OF TABLES

Table 2.1 The theory base of the CASE project 29
Table 2.2 BLOT content 33
Table 2.3 BLOT thresholds and Piagetian levels 34
Table 3.1 Comparison of various CASE studies 51
Table 4.1 Educational attainment of the adult Molalla population 63
Table 4.2 The BLOT testing schedule 64
Table 4.3 Number of students in Cohorts A, B, and C 66
Table 4.4 CASE activities 68
Table 4.5 CASE activities taught in the Molalla River School District 1999-2002 69
Table 4.6 The typical CASE lesson plan 70
Table 4.7 Oregon score reporting categories 75
Table 4.8 OSS benchmarks 75
Table 4.9 Student profile 77
Table 4.10 Ethnicity 79
Table 4.11 Level of parent education 79
Table 4.12 Threshold values for Effect Size d 82
Table 5.1 Item estimate statistics (BLOT 1999) 84
Table 5.2 Ability estimate statistics of four under-fitting students (BLOT 1999) 88
Table 5.3 Ability estimate statistics (BLOT 1999, 2000, 2001, 2002) 90
Table 5.4 Mean ability estimates of Molalla River students (BLOT 1999) 91
Table 5.5 Mean ability estimates of control and STEP students (BLOT 99-02) 93
Table 5.6 Mean change in BLOT ability estimates of control sample 96
Table 5.7 Mean change in BLOT ability estimates of STEP cohorts

Table 5.8 Comparison of the mean change in BLOT ability estimate between control and STEP students

Table 5.9 Relative means of the annual change in BLOT ability estimate

Table 5.10 Mean BLOT ability estimates of STEP students tested on three occasions

Table 5.11 Mean BLOT ability estimates of STEP students tested on all occasions

Table 5.12 Mean change in BLOT ability estimate between control and STEP students tested on all occasions

Table 5.13 Mean ability estimates of male and female students (BLOT 99, 00, 01, and 02)

Table 5.14 Mean change in BLOT ability estimate between female control and STEP students

Table 5.15 Mean change in BLOT ability estimates between male control and STEP students

Table 5.16 Relative means of annual change in BLOT ability estimate of male and female STEP students

Table 5.17 Mean BLOT ability estimates of students in Cohort A who began STEP in 7th grade

Table 5.18 Mean BLOT ability estimates of students in Cohort B who missed STEP in 8th grade

Table 5.19 Thresholds for Rasch ability estimates, BLOT raw scores and Piagetian levels
Table 5.20 Estimated cognitive levels of the control students
Table 5.21 Estimated cognitive levels of STEP students in May 2002
Table 5.22 Estimated cognitive levels of the control and STEP students (05/02)
Table 6.1 Mean Mathematics OSS of control profile (1999)
Table 6.2 Mean Mathematics OSS of STEP students (99, 00, 01, 02)
Table 6.3 Mean difference in Mathematics OSS of the control profile
Table 6.4 Mean change in Mathematics OSS of STEP students (99 to 02)
Table 6.5 Mean change in Mathematics OSS of control and STEP students
Table 6.6 Mean Mathematics OSS of male and female students
Table 6.7 Mean change in Mathematics OSS of female control and STEP students
Table 6.8 Mean change in Mathematics OSS of male control andSTEP students
Table 6.9 Mean Mathematics OSS of Cohort A students who began STEP in 7th grade
Table 6.10 Mean Mathematics OSS of Cohort B students who missed STEP in 8th grade
Table 6.11 Mean Reading & Literature OSS of control profile
Table 6.12 Mean Reading & Literature OSS of STEP students
Table 6.13 Mean difference in Reading & Literature OSS of the control profile
Table 6.14 Mean change in Reading & Literature OSS of STEP students (99-02)
Table 6.15 Mean change in Reading & Literature OSS of control and STEP students
Table 6.16 Mean Reading & Literature OSS of male and female students
Table 6.17 Mean change in Reading & Literature OSS between female control and STEP students 152
Table 6.18 Mean change in Reading & Literature OSS between male control and STEP students 154
Table 6.19 Mean Reading & Literature OSS of Cohort A students who began STEP in 7th grade 157
Table 6.20 Mean Reading & Literature OSS of Cohort B students who missed STEP in 8th grade 157
Table 6.21 Mean Mathematics OSS of STEP students and peers in Redwood and Sequoia School Districts 160
Table 6.22 Mean change in Mathematics OSS of STEP students and peers in Redwood and Sequoia School Districts 162
Table 6.23 Mean Reading & Literature OSS of STEP students and peers in Redwood and Sequoia School Districts 163
Table 6.24 Mean change in Reading & Literature OSS of STEP students and peers in Redwood and Sequoia School Districts 165
Table 6.25 Mean Science OSS of STEP students and peers in Redwood and Sequoia School Districts 166
Table 6.26 Correlation between cognitive development and school achievement 168
Table 7.1 BLOT scale 170
Table 7.2 Cognitive development profile of Marty 173
Table 7.3 Cognitive development profile of Rose 175
Table 7.4 Cognitive development profile of Vicky 177
Table 7.5 Cognitive development profile of Arthur 179
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 7.6</td>
<td>Cognitive development profile of Ron</td>
<td>182</td>
</tr>
<tr>
<td>Table 8.1</td>
<td>STEP teachers</td>
<td>186</td>
</tr>
<tr>
<td>Table 8.2</td>
<td>Results of questions 4 - 7</td>
<td>187</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Tanner’s learning-development spectrum</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic diagram of the patterns that emerge from a Rasch analysis</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison of demographics for Molalla River, Sequoia and Redwood school districts</td>
<td>80</td>
</tr>
<tr>
<td>5.1</td>
<td>Item estimates (thresholds) in input order</td>
<td>85</td>
</tr>
<tr>
<td>5.2</td>
<td>BLOT 1999 item-person map</td>
<td>87</td>
</tr>
<tr>
<td>5.3</td>
<td>Mean BLOT ability estimates of control profile</td>
<td>94</td>
</tr>
<tr>
<td>5.4</td>
<td>Mean BLOT ability estimates of STEP cohorts</td>
<td>94</td>
</tr>
<tr>
<td>5.5</td>
<td>Level of parent education and change in BLOT ability estimate</td>
<td>99</td>
</tr>
<tr>
<td>5.6</td>
<td>Starting ability and change in BLOT ability estimate</td>
<td>99</td>
</tr>
<tr>
<td>5.7</td>
<td>Starting age and change in BLOT ability estimate</td>
<td>99</td>
</tr>
<tr>
<td>5.8</td>
<td>Cognitive development profiles</td>
<td>102</td>
</tr>
<tr>
<td>5.9</td>
<td>BLOT ability estimates of students tested on all occasions</td>
<td>106</td>
</tr>
<tr>
<td>5.10</td>
<td>Annual change in BLOT ability estimate</td>
<td>108</td>
</tr>
<tr>
<td>5.11</td>
<td>Male and female control students</td>
<td>113</td>
</tr>
<tr>
<td>5.12</td>
<td>Male and female STEP students</td>
<td>113</td>
</tr>
<tr>
<td>5.13</td>
<td>Mean BLOT ability estimates of male and female students</td>
<td>115</td>
</tr>
<tr>
<td>5.14</td>
<td>Peers of Cohort A who missed STEP in 6th grade</td>
<td>118</td>
</tr>
<tr>
<td>5.15</td>
<td>Students in Cohort B who missed STEP in 8th grade</td>
<td>118</td>
</tr>
<tr>
<td>5.16</td>
<td>Cognitive development profiles of subgroups of Cohort B</td>
<td>122</td>
</tr>
<tr>
<td>5.17</td>
<td>Estimated cognitive levels of the control</td>
<td>126</td>
</tr>
<tr>
<td>5.18</td>
<td>Estimated cognitive levels of control (09/99) and STEP (05/02)</td>
<td>126</td>
</tr>
</tbody>
</table>
Figure 6.1 Mean Mathematics OSS of control and STEP students 130
Figure 6.2 Level of parent education and change in Mathematics OSS 135
Figure 6.3 Starting ability and change in Mathematics OSS 135
Figure 6.4 Starting age and change in Mathematics OSS 135
Figure 6.5 Mean Mathematics OSS of male and female control and STEP students 137
Figure 6.6 Mean Mathematics OSS of male and female students in STEP cohorts 140
Figure 6.7 Mean Mathematics OSS of peers of Cohort A who missed STEP in 6th grade 142
Figure 6.8 Mean Mathematics OSS of Cohort B students who missed STEP in 7th grade 142
Figure 6.9 Mean Reading & Literature OSS of control and STEP students 146
Figure 6.10 Level of parent education and change in Reading & Literature OSS 150
Figure 6.11 Starting ability and change in Reading & Literature OSS 150
Figure 6.12 Starting age and change in Reading & Literature OSS 150
Figure 6.13 Mean Reading & Literature OSS of male and female control and STEP students 153
Figure 6.14 Mean Reading & Literature OSS of male and female students in each STEP cohort 155
Figure 6.15 Mean Reading & Literature OSS of peers of Cohort A who missed STEP in 6th grade 158
Figure 6.16 Mean Reading & Literature OSS of Cohort B students who missed STEP in 7th grade 158
Figure 6.17 Mean Mathematics OSS of the STEP cohorts and their peers in Redwood and Sequoia School Districts

Figure 6.18 Mean Reading & Literature OSS of the STEP cohorts and their peers in Redwood and Sequoia School Districts

Figure 7.1 Profile of Marty

Figure 7.2 Profile of Rose

Figure 7.3 Profile of Vicky

Figure 7.4 Profile of Arthur

Figure 7.5 Profile of Ron