Using connectivity metrics in conservation planning – when does habitat quality matter?

Visconti, Piero, and Elkin, Ché (2009) Using connectivity metrics in conservation planning – when does habitat quality matter? Diversity and Distributions, 15 (4). pp. 602-612.

[img] PDF (Published Version)
Restricted to Repository staff only

View at Publisher Website:


Aim: The objective of conservation planning is often to prioritize patches based on their estimated contribution to metapopulation or metacommunity viability. The contribution that an individual patch makes will depend on its intrinsic characteristics, such as habitat quality, as well as its location relative to other patches, its connectivity. Here we systematically evaluate five patch value metrics to determine the importance of including an estimate of habitat quality into the metrics.

Location: We tested the metrics in landscapes designed to represent different degrees of variability in patch quality and different levels of patch aggregation.

Methods: In each landscape, we simulated population dynamics using a spatially explicit, continuous time metapopulation model linked to within patch logistic growth models. We tested five metrics that are used to estimate the contribution that a patch makes to metapopulation viability: two versions of the probability of connectivity index, two versions of patch centrality (a graph theory metric) and the metapopulation capacity metric.

Results: All metrics performed best in environments where patch quality was very variable and high quality patches were aggregated. Metrics that incorporated some measure of patch quality did better in all environments, but did particularly well in environments with high variance of patch quality and spatial aggregation of good quality patches.

Main conclusions: Including an estimate of patch quality significantly increased the ability of a given connectivity metric to rank correctly habitat patches according to their contribution to metapopulation viability. Incorporating patch quality is particularly important in landscapes where habitat quality is highly variable and good quality patches are spatially aggregated. However, caution should be used when applying patch metrics to homogeneous landscapes, even if good estimates of patch quality are available. Our results demonstrate that landscape structure and the degree of variability in patch quality need to be assessed prior to selecting a suitable method for estimating patch value.

Item ID: 10923
Item Type: Article (Research - C1)
ISSN: 1472-4642
Keywords: connectivity; conservation planning; dispersal; graph theory; habitat quality; metapopulation
Date Deposited: 14 May 2010 04:38
FoR Codes: 05 ENVIRONMENTAL SCIENCES > 0501 Ecological Applications > 050104 Landscape Ecology @ 100%
SEO Codes: 96 ENVIRONMENT > 9608 Flora, Fauna and Biodiversity > 960899 Flora, Fauna and Biodiversity of Environments not elsewhere classified @ 100%
Downloads: Total: 4
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page