Structural and Metamorphic Evolution of the Robertson River Metamorphics with Pressure-Temperature-Deformation-Time (P-T-D-t) Path

VOLUME II

Thesis submitted by Mustafa Cihan (Bsc, Msc, at METU in Turkey) In October 2004

For the degree of Doctor of Philosophy in the School of Earth Sciences, James Cook University Townsville, Australia

Contents of Volume II

Table of Contents	ii
List of Figures and Tables	iii-v
Section A	A1-A19
Section B	B1-B19
Section C	C1-C28
Section D	D1-D25

Appendix A

JCU thesis collection numbers for rock samples

Appendix B

Bulk rock compositions used in Section C

Appendix C

Microprobe analyses used in Section C

Appendix D

Mineral end member calculations for samples used in Sections C & D

Appendix E

NCMnKFMASH data file for THERMOCALC used in Sections C & D

Appendix F

Microprobe set-up for monazite analysis used in Section D

Appendix G

Monazite trace element results for age calculations used in Section D

List of Figures and Tables

Section A

Figure 1. Sketch showing P and N sections A1
Figure 2. Location maps of major regional geological features A2
Figure 3. Sketches of the oriented rock sample marked and cut into a horizontal slab and multiple-vertical thin sections
Figure 4. Photographs and line diagrams of garnet porphyroblasts A4
Table 1. A list of FIA measurements A6
Figure 5. Rose diagrams of FIA trends A7
Table 2. Test of null hypothesis A8
Table 3. X ² test of independence of the null hypothesis A9
Figure 6. Compositional maps of a garnet porphyroblast A10
Figure 7. Photographs of the same garnet porphyroblast in Fig. 6 A11
Figure 8. Photograph and a line diagram showing a staurolite (st) porphyroblast containing two garnet (grt) porphyroblasts
Figure 9. Photographs of garnet porphyroblasts from N and P sections A13
Figure 10. Photograph of a staurolite porphyroblast overgrowing differentiated crenulation cleavage
Figure 11. Photograph and a line diagram showing two staurolite porphyroblasts
Figure 12. Steorenet projections of the FIA1-4 showing the effect of rotation around the mean trend of the next FIA in the succession
Figure 13. Simplified sketch showing the growth of a porphyroblast A17

Figure 14. Sketches showing the effect of reactivation	A18
Figure 15. 3D sketch of a porphyroblast having inclusions	A19

Section B

Figure 1. Location map showing the major regional geological features B1
Figure 2. Detailed geological map of the study areaB2
Figure 3. A structural map of bedding (S ₀) orientations and form-line trendsB3
Figure 4. Photomicrograph and a line diagram from a vertical thin section shows garnet wrapped by a staurolite porphyroblast
Figure 5. Photomicrograph and a line diagram from a vertical thin section shows a staurolite porphyroblast and effect of reactivationB5
Figure 6. A structural map of the $S_{1/2}$ dominant foliation and interpreted $S_{1/2}$ form-lines
Figure 7. Photomicrograph and a line diagram from a vertical thin section shows a garnet porphyroblast with a complex inclusion pattern
Figure 8. Photomicrograph and a line diagram from a vertical thin section shows a garnet porphyroblast with staircase inclusion trails
Figure 9. A structural map of S_3 and interpreted form-linesB9
Figure 10. A photo showing NE-SW trending foldsB10
Figure 11. Photomicrograph taken from a vertical thin section that shows garnet partially surrounded by a staurolite porphyroblast
Figure 12. A simplified cross-section taken along a line A-A` in Fig. 2 B12
Figure 13. Photomicrograph and a line diagram from a vertical thin section showing a garnet porphyroblast with spiral inclusion trails

Figure 14. Photomicrograph from a vertical thin section shows a staurolite porphyroblast preserving a differentiated crenulation cleavage	
Figure 15. A map showing the distributions of FIAs in the study areaB15	
Table 1. A list of FIA measurements B16	
Figure 16. Rose diagrams showing the orientations of FIAsB17	
Figure 17. A sketch cross-section across the folds including both the anticline and syncline	
Figure 18. A sketch figure showing the stages of porphyroblast growth and the effect of deformation partitioning	•

Section C

Figure 1. Location map showing major regional geological featuresC1
Figure 2. Detailed geological map of the study areaC2
Figure 3. Photomicrographs showing common textural relationshipsC3
Figure 4. Sketches of the oriented rock sample marked and cut into a horizontal slab, and multiple-vertical thin sections
Table 1. Major element compositions of rock samplesC6
Figure 5. a) A structural map shows the distribution of the deformations in the matrix (S_1-S_4)
Figure 6. Rose diagrams showing the orientations of FIAsC8
Figure 7. Calculated P-T pseudosections for mc39, mc55, mc81, mc157C9
Figure 8. Compositional maps (Mn, Ca, Fe, Mg) of a garnet porphyroblast from a sample mc152C11
Table 2. Garnet chemistry data from each sample analysedC12

Figure 9. Compositional maps (Mn, Ca, Fe, Mg) of a garnet porphyroblast from a sample mc39C14
Table 3. Staurolite chemistry data from each sample analysedC15
Table 4. Phyllosilicate chemistry data from each sample analysedC16
Figure 10. Compositional maps (Mn, Ca, Fe, Mg) of a garnet porphyroblast from a sample mc55C19
Table 5. Plagioclase chemistry data from each sample analysedC20
Figure 11. Compositional maps (Mn, Ca, Fe, Mg) of a garnet porphyroblast from a sample mc81C22
Figure 12. Compositional maps (Mn, Ca, Fe, Mg) of a garnet porphyroblast from a sample mc157C23
Figure 13. The representative pseudosections for mc39 and mc81C24
Figure 14. The pseudosections showing the P-T estimation of garnet porphyroblast growthC25
Figure 15. The pseudosections showing the intersections of X_{Mn} , X_{Ca} , X_{Fe} and X_{Ca} , X_{An} isopleths
Table 6. Average P-T calculations C27
Figure 16. Derivation of complete P-T pathC28

Section D

Figure 1. Location map showing major regional geological features	
Figure 2. Detailed geology map of the study areaD2	
Figure 3. Sketches of the oriented rock sample marked and cut into a horizonta slab, and multiple-vertical thin sectionsD3	ıl
Figure 4. Photomicrographs showing the structural features and their interpretations	
, and the second s	vi

Table 1. List of FIA data D5
Figure 5. Rose diagrams showing the orientations of FIAs D6
Table 2. Bulk rock compositions of the rock samplesD7
Figure 6. Compositional zoning profiles $(X_{Mn}, X_{Ca}, X_{Mg}, X_{Fe} \text{ and } X_{Fe/(Fe+Mg)})$ of garnet porphyroblasts
Figure 7. Pseudosection displaying the mineral stability fields D9
Table 3. Average P-T estimations
Table 4. Trace element analyses and their calculated ages D11
Figure 8. Backscatter images show the monazite grains and also their locations from sample mc152 D15
Figure 9. Weighted average plot of 9 individual monazite ages with 2σ errors for rock sample mc152 D16
Figure 10. Backscatter images show the monazite grains and also their locations from sample mc135 D17
Figure 11. Weighted average plot of 6 individual monazite ages with 2σ errors for rock sample mc135 D18
Figure 12. Backscatter electron images show the monazite grains and also their locations from sample mc137 D19
Figure 13. Weighted average plot of 7 individual monazite ages with 2σ errors for rock sample mc137 D20
Figure 14. Backscatter images show the monazite grains and also their locations from sample mc133 D21
Figure 15. Weighted average plot of 5 individual monazite ages with 2σ errors for rock sample mc133 D22
Figure 16. Weighted average plot of 27 individual monazite ages with 2σ errors from all rock samples

024
)25

SECTION -A-

THE DRAWBACKS OF SECTIONING ROCKS RELATIVE TO FABRIC ORIENTATIONS IN THE MATRIX: A CASE STUDY FROM THE ROBERTSON RIVER METAMORPHICS (NORTHERN QUEENSLAND, AUSTRALIA)

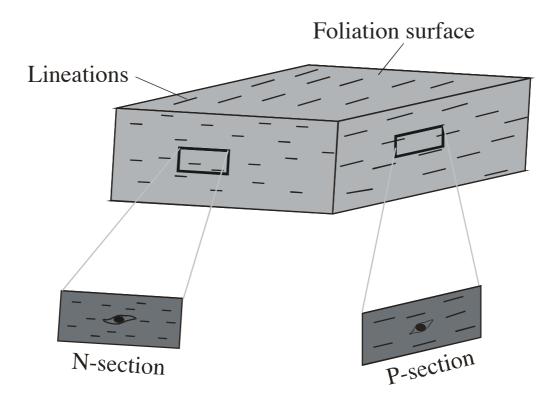
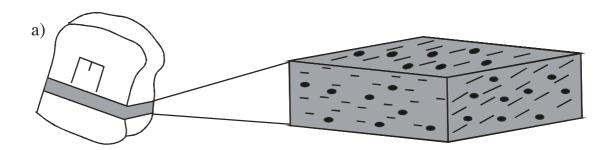


Figure 1. Sketch showing a P section (perpendicular to foliation plane and parallel to lineation) and an N section (perpendicular to foliation and lineation).


7923000

THIS IMAGE HAS BEEN REMOVED DUE TO COPYRIGHT RESTRICTIONS

7908000 0760000

Figure 2. Location map showing major regional geological features and the area in which detailed work done outlined by a box.

0

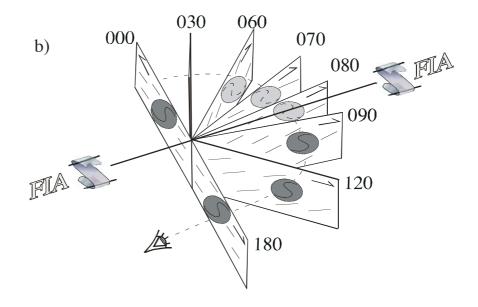
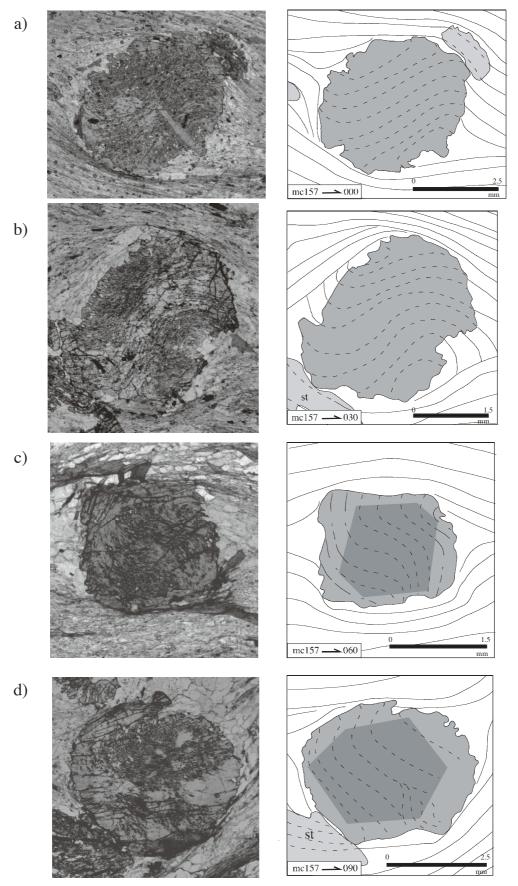
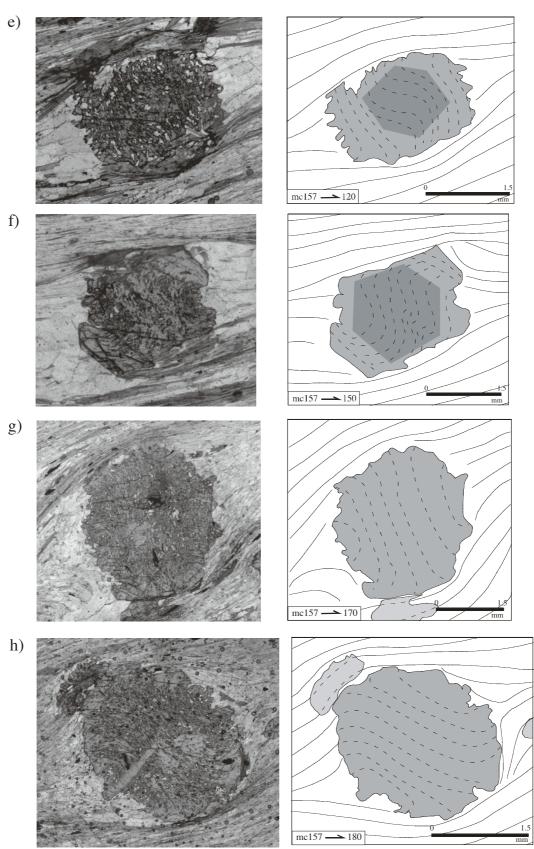



Figure 3. Sketches of the oriented rock sample marked and cut into a horizontal slab (a) and multiple-vertical thin sections (b). FIA is the foliation intersection/inflection axis preserved within porphyroblasts.

Figure 4. Photographs and line diagrams (a-g) of garnet porphyroblasts taken from vertical thin sections in different orientations around compass. Shaded areas at the core of the porphyroblasts in c, d, e and f represents early growth of these and can only be observed in these orientations.


THE DRAWBACKS OF SECTIONING ROCKS RELATIVE TO FABRIC ORIENTATIONS

M. CIHAN

A4

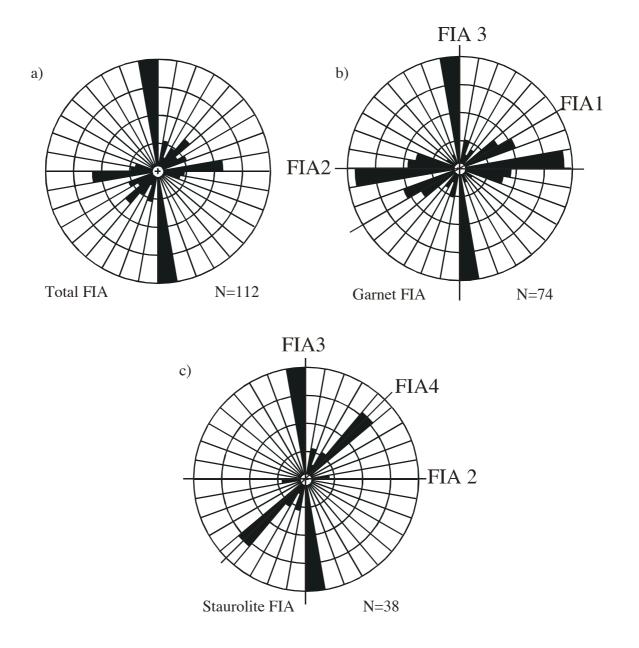
THE DRAWBACKS OF SECTIONING ROCKS RELATIVE TO FABRIC ORIENTATIONS

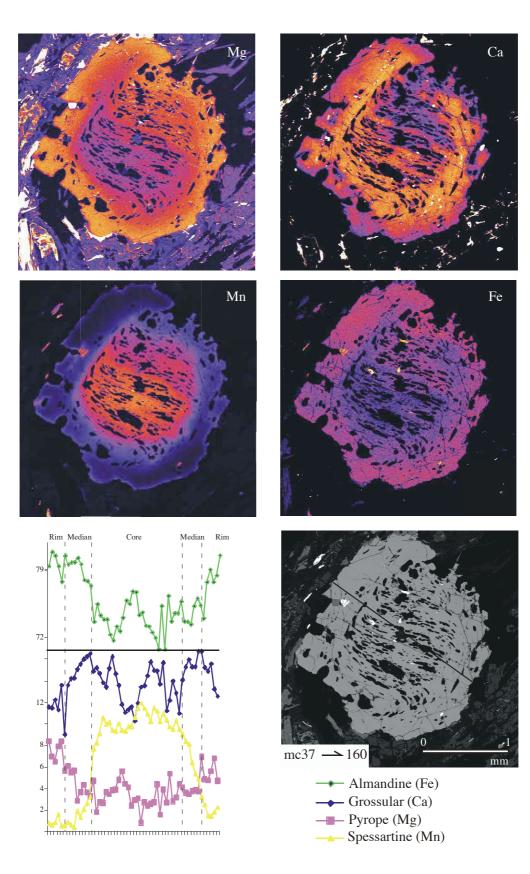
M. CIHAN

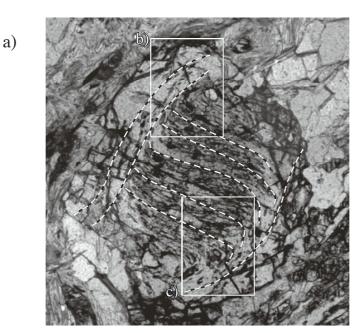
Sample	Ga	rnet	Stau	ralite
Number	Core	Rim	Core	Rim
mc1.1	105		175	
mc1.2	105			
mc103	35			
mc105	85	175		
mc108	95			
mc110	155			
mc12	85		175	
mc121	35			
mc13	175			
mc130	55		175	
mc132A	85		15	
mc132B	65		175	
mc133	175		45	
mc134	145		25	
mc135	125			
mc137	85		175	
mc14.1	25		175	
mc14.2	95		15	
mc140	65		85	
mc15	5			
mc151	85			
mc152	65	85	175	35
mc153	95			
mc154	55		4.55	15
mc157	175		175	45
mc158	175		45	
mc159	15		45	
mc160 mc17	75 95	175	45 15	
	95 105	175	15	
mc2 mc20	105		85	
mc20 mc21			85	
mc21 mc22			85 175	
mc23	95		175	
mc24	105			
mc24.1	85	175		
mc25	105	175		
mc26	175			
mc27	175			
mc28	175			
mc3	125			
mc30	85		45	
mc31	155		175	
mc32	55		45	
mc33	115		_0	
	0			

Sample	Garnet		Stauralite	
Number	Core	Rim	Core	Rim
mc34	25			
mc35.1	35		35	
mc35.2	90			
mc36	65	85		
mc37	85	175	45	
mc38	55			
mc39	65	85	25	
mc49	65	175		
mc5	55	15	175	45
mc55	85		15	45
mc58	65			
mc6	95		35	
mc65	65			
mc66	85			
mc68	105		175	
mc7	15		45	
mc71	85			
mc8	175		175	
mc81	175	15	45	
mc84	65		45	
mc87	55			
mc9	175		175	

Table 1. A list of FIA measurements for each sample from core and rim of garnet and staurolite porphyroblasts.




Figure 5. Rose diagrams of total FIA trends (a), garnet FIAs (b) and staurolite FIAs (c).


Table 2. Test of null hypothesis that the FIAs measured in rock samples are a sample of a random population using Watson's U² test statistic for grouped data. The result (0.526) exceeds the U² value (0.268) at the 0.01 level of significance, suggesting the null hypothesis can be rejected and that the population is not random (FIA trends were initially doubled to convert them from axial to directional data; modulo 360°).

10° groupings	j group	n _j	S_{j}	$(\mathbf{S}_j)^2$	U^2_{grouped}
			$(np_j = 3.642)$ (p=10/360)		
360°-009°	1	0	-2.889	8.346	
010°-019°	2	1	-4.778	22.827	
020°	3	0	-7.667	58.778	
030°	4	8	-2.556	6.531	
040°	5	0	-5.444	29.642	
050°	6	4	-4.333	18.778	
060°	7	0	-7.222	52.160	
070°	8	7	-3.111	9.679	
080°	9	0	-6.000	36.000	
090°	10	11	2.111	4.457	
100°	11	0	-0.778	0.605	
110°	12	6	2.333	5.444	
120°	13	0	-0.556	0.309	
130°	14	8	4.556	20.753	
140°	15	0	1.667	2.778	
150°	16	1	-0.222	0.049	
160°	17	0	-3.111	9.679	
170°	18	17	11.000	121.000	
180°	19	1	9.111	83.012	
190°	20	6	12.222	149.383	
200°	21	0	9.333	87.111	
210°	22	6	12.444	154.864	
220°	23	0	9.556	91.309	
230°	24	1	7.667	58.778	
240°	25	0	4.778	22.827	
250°	26	2	3.889	15.123	
260°	27	0	1.000	1.000	
270°	28	0	-1.889	3.568	
280°	29	0	-4.778	22.827	
290°	30	1	-6.667	44.444	
300°	31	0	-9.556	91.309	
310°	32	2	-10.444	109.086	
320°	33	0	-13.333	177.778	
330°	34	1	-15.222	231.716	
340°	35	0	-18.111	328.012	
350°-359°	36	29	8.000	64.000	
	TOTAL	112	-29.000	2143.963	0.526

3 groups			using 5 rather than 3 groups		
actual	garnet	staurolite	actual	garnet	staurolite
127°-020°	24	18	180°-030°	7	6
021°-50°	5	17	031°-070°	17	15
051°-126°	45	3	071°-120°	29	3
			121°-160°	5	0
			161°-179°	16	14
	74	38		74	38
$X^{2} =$	55.2003		X ² =	37.2494	
d.f. = 2	$X_{0.05}^2 = 5.99$		d.f. = 4	$X_{0.05}^2 = 9.49$	
P =	6.2228E-12		P =	1.6003E-07	
			• '		

Table 3. X² test of independence of the null hypothesis that the distribution of the variables (FIA trends) is from the same population. Test results are assessed at the 0.05 level of significance. The outcome of the test suggests that garnet and staurolite FIAs differ significantly from each other. Figure 6. Compositional maps (Mg, Ca, Mn, Fe) of a garnet porphyroblast from sample mc37.

b)

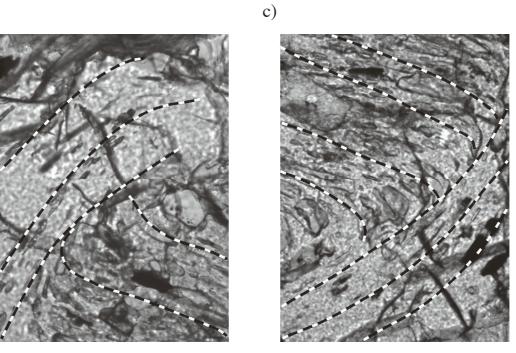


Figure 7. Photograph of the same garnet porphyroblast in Fig. 6 containing sigmoidal type inclusion trails (a). Close-up views show flat lying inclusions truncated sharply by the rim inclusions (b, c). Boxes A and B show the positions of the close-up views.

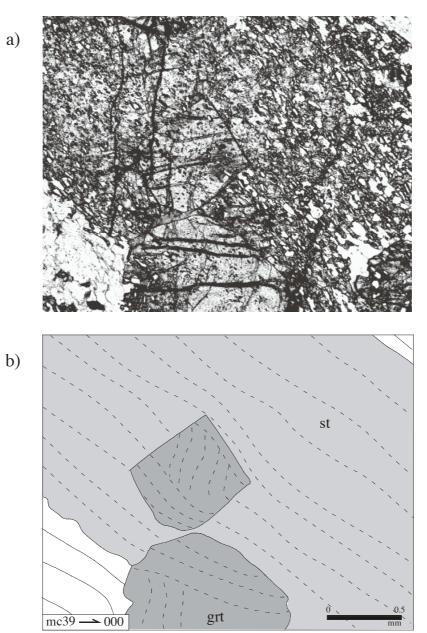
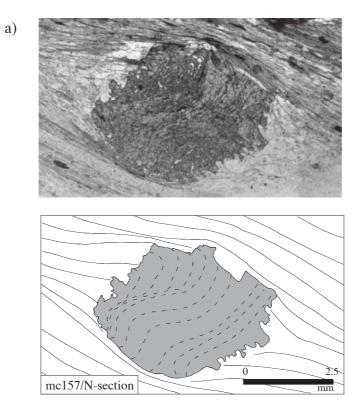
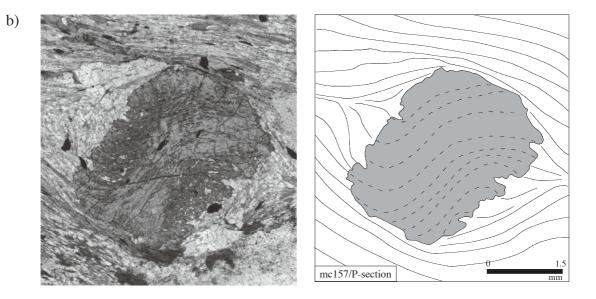




Figure 8. Photograph and a line diagram showing a staurolite (st) porphyroblast containing two garnet (grt) porphyroblasts. The inclusion trails within staurolite porphyroblasts are continuous with the matrix and rim inclusions, whereas the ones in the core of garnet porphyroblasts are truncated.

Figure 9. Photographs of garnet porphyroblasts from N (a) and P (b) sections. In both sections the inclusion trails are continuous into the strain shadows and superficially appear to be continuous with the matrix foliation.

A13

Figure 10. Photograph of a staurolite porphyroblast overgrowing differentiated crenulation cleavage, whose trails are continuous with the matrix foliation.

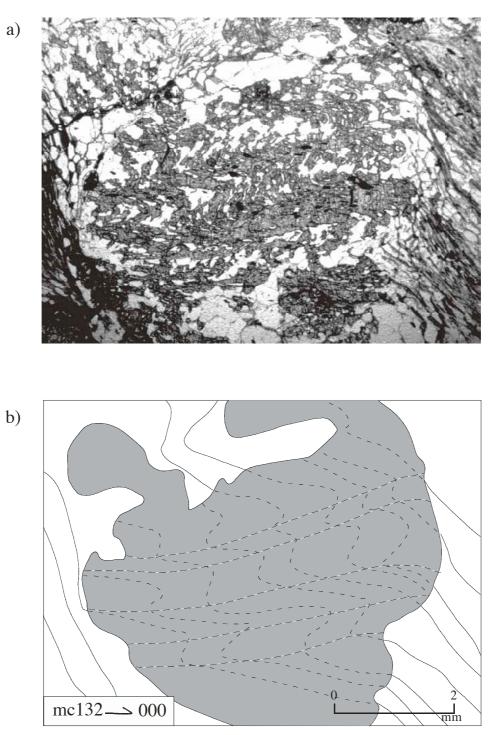


Figure 11. Photograph and a line diagram showing two staurolite porphyroblasts, which have grown adjacent to one another with sigmoidal type inclusions, which are continuous with the matrix (a). The porphyroblasts preserve between them a steep crenulation cleavage (thick vertical dash lines on a line diagram), in which clockwise (sinistral) shear sense was acting (b). This steep foliation has been destroyed in the matrix by reactivation. The shear senses, operating during development of the crenulation cleavage and during reactivation are shown with barbed arrows.



Figure 12. Steorenet projections of the FIA1-4 showing the effect of rotation around the mean trend of the next FIA in the succession. In (a), rotation effect of FIA1 around E-W axis; FIA2, shown with darker shaded area. FIA1 trend would lie in that shaded area in any orientation with gentle plunges, if they were rotated around FIA2. Apart from that the rotation of both FIA1 and FIA2 are shown around FIA3 as well. They would lie in the range shown by shaded areas in northern and southern quadrants, if they were again rotated. In (b) the rotation of FIA1-3 is shown around FIA4 axis. If they were rotated, FIA1 would lie in darker shaded area, and FIA2 and FIA3 would lie in any orientation in NE-SW quadrants.

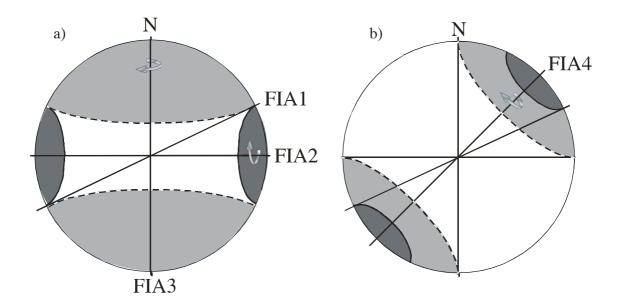
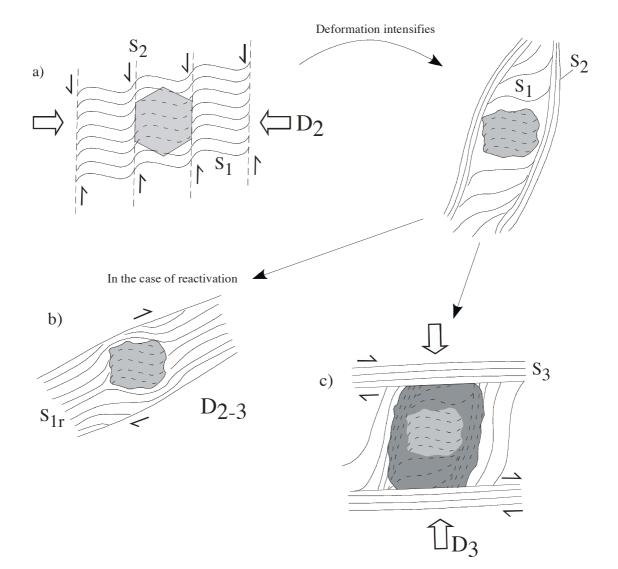
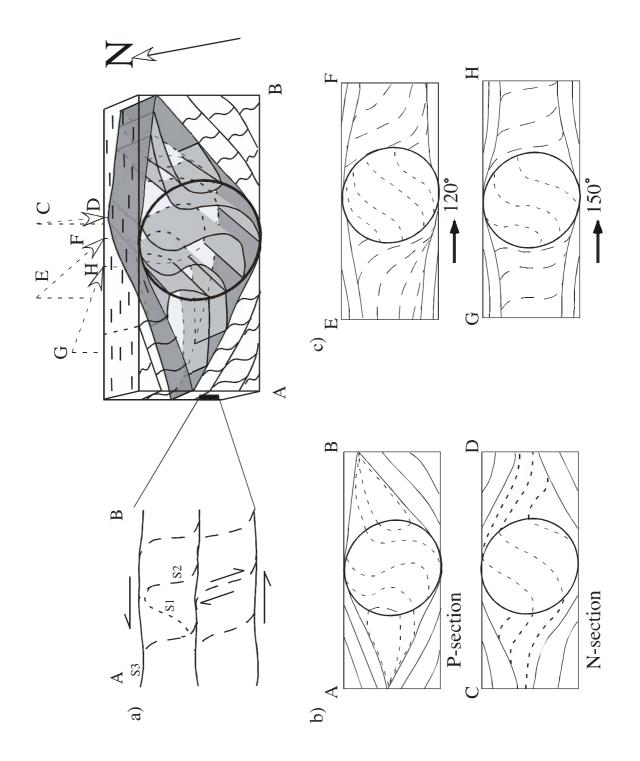


Figure 13. Simplified sketch showing the growth of a porphyroblast. In (a), deformation partitions into progressive shearing and shortening domains as represented by crenulation cleavage and hinge of a crenulation respectively. The first porphyroblast growth occurs on a hinge of crenulation cleavage (progressive shortening domain) at the beginning of D_2 event. In (b), if reactivation occurs, S_1 is decrenulated and rotated towards compositional layering in the matrix (S_{1r}). In (c), deformation repartitions during D_3 , and the growth of rim occurs. The earlier foliation, S_2 or S_{1r} in the case of reactivation, which intensified in the matrix during the late stages of D_2 , is trapped as inclusion trails.




Figure 14. Sketches showing the effect of reactivation (modified from Bell et al., 1986). In (a), anastomosing S_2 foliations formed with synthetic sinistral shear sense parallel to the axial plane of newly developing fold. The inset shows the strain field diagram in which deformation partitions into progressive shearing and shortening domains. In (b), as the deformations continues the fold tightens more and bedding ($S_{0,1}$) reactivates. During this stage, synthetic shear sense acting on S_2 switches to antithetic shear sense along the bedding in a reactivated area in which S_2 is destroyed, and the earlier foliation, S_1 , decrenulates and rotates towards the bedding.

a)

THE IMAGES ON THIS PAGE HAVE BEEN REMOVED DUE TO COPYRIGHT RESTRICTIONS

b)

Figure 15. 3D sketch of a porphyroblast having inclusions that are oblique to and truncated, by the matrix foliation planes, with the detailed view along A-B orientation showing the relationship of S1, S2 and S3 (a). P and N sections cut from 3D block sketch show the continuation of the inclusion trails with matrix. In these sections, inclusions trapped in the strain shadows, especially in the N section, are misinterpreted as S1, but in fact it is S2 (b). However, in multiple-vertical thin sections in 120° and 150° orientations, inclusion trails are truncated by the matrix foliations. S1 is the earliest foliation trapped as inclusion in porphyroblast; S2 is the earlier matrix foliation; S3 is lately formed foliation; Barbed arrows show shear senses; A-B, C-D, E-F, G-H show the positions of sections; N is true north.

