North of the Cape and South of the Fly: The Archaeology of Settlement and Subsistence on the Murray Islands, Eastern Torres Strait

Thesis submitted by
Melissa Jane Carter B.A. (Hons)

September 2004

for the degree of Doctor of Philosophy in the School of Anthropology, Archaeology and Sociology, James Cook University
Front cover: view of Waier (left) and Dauar (right) looking southwest from Mer
STATEMENT OF ACCESS

I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and;

I do not wish to place any further restriction of access to this work.

___________________ ______________
Signature Date
STATEMENT OF SOURCES

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

__________________ ____________
Signature Date
This thesis is dedicated to the memory of my Grandad, Arthur Richard Carter (1914 – 2004)

Thankyou for a childhood filled with flowers and veggie gardens and a lifetime of so many wonderful memories
Abstract

This dissertation describes analyses and contextualises the results of archaeological investigations carried out between 1998 and 2000 on Mer and Dauar in Torres Strait. Along with Waier these small volcanic islands are commonly known as the Murray Islands, and form the most eastern group of the formation of islands scattered between northeastern Australia and southern Papua New Guinea. Unlike the research into human occupation and subsistence in Australia and New Guinea, the archaeology of the Torres Strait Islands is by contrast a relatively recent academic pursuit. Over the last 30 years various researchers have postulated the timing of first human occupation of Torres Strait, the development of maritime and horticultural subsistence systems and the emergence of ethnohistorically documented trade networks. A lack of archaeological data, however, has prevented informed consideration of these issues.

This dissertation presents the results of the first systematic archaeological excavations undertaken in the Eastern Torres Strait, and includes the first detailed radiocarbon chronological sequence for the Murray Islands and for the Torres Strait more generally. The excavations on Dauar revealed extensive archaeological deposits of marine subsistence remains, and previously unrecorded material culture of Torres Strait; most notably, several sherds of earthenware pottery. These artefacts have provided new opportunities for investigating the traditional trade and exchange networks between the Torres Strait Islands and New Guinea that existed at the time of European contact.

The Murray Islands data illustrates the existence of a maritime subsistence base from the time of first human occupation now securely dated to almost 3000 years BP. Although plant macrofossils where absent during the excavations, evidence for horticultural subsistence on Dauar was identified through the extraction and identification of plant phytoliths and starch grains from excavated sediment samples. In combination with the radiocarbon site chronologies and changes to sediment deposition rates and assemblage densities, it is concluded that these results indicate the onset of widespread clearance and horticultural
activities on the island from at least 2000 years BP, providing the earliest date for the emergence of horticulture so far established in Torres Strait.

Dated to between 2000 and 700 years BP, the excavated pottery from Dauar suggests the possibility of sustained linkages between the peoples of the Eastern Torres Strait and New Guinea. Ethnohistoric records suggest southward trade into the Eastern Torres Strait was dominated by southwestern coastal Papuan communities, and particularly by groups of the Fly Estuary. Surprisingly, mineralogical analysis of selected pottery sherds from the Murray Islands revealed the presence of sand tempers sourced to the metamorphic and volcanic lithology of the Eastern New Guinea Highlands. More accurately, these results are concluded to portray linkages between the Torres Strait and the adjacent southern Papuan lowlands through which more discrete movements and transactions with interior areas occurred along key riverways that connected the hinterland to the coast.

The timing of human occupation of Torres Strait, the development of subsistence systems and the relationships that islanders had with the peoples of northern Australia and the western Pacific have only started to be explored archaeologically. It is concluded from the combined ethnohistorical and field archaeological evidence that settlement and subsistence in Torres Strait is a product of late-Holocene human expansions and cultural intensification previously documented for the adjacent mainlands and the broader western Pacific region. This research confirms that the archaeology of Torres Strait must be interpreted within the broader cultural, chronological and geographical context in which it is centrally located.
Acknowledgments

The Murray Islands Archaeological Project would not have eventuated without the support of the Meriam community, members of the Mer Island Community Council, the Mer Gedkem Le, the Council of Elders and the families who consented to excavation on their lands. People that deserve special esso include Chairman Ron Day, Lloyd Maza and Sam Wailu. The Passi family provided friendship and a home for me in 1998. For allowing the work at Sokoli I am extremely thankful to Andrew Passi. Esi Tapim and Walter Cowley consented to the work at Kurkur Weid and Pitkik on Mer. On Dauar life was made much easier by staying at Ormi, for which I extend much appreciation to traditional landowners George and Alan Kaddy. Sunny Passi provided assistance in the field in 1998, whom I also thank for his friendship, sense of humor and envious intelligence. Del Passi offered advice and suggestions on all manner of things, for which I am extremely grateful. Aris Kaddy provided assistance in the field and on the water in 2000, without whom my boating skills (or lack there of) would have left us high and dry more than just the once (sorry Aris, had to mention ‘the beaching incident’). To all the kids (especially Phil, Joey and Richard), thanks for fun and games on the beach and for providing some memorable light hearted moments.

Doug Bird and Rebecca Bliege Bird (University of Maine) were largely responsible for conceiving the project and allowed me the opportunity to work on the beautiful Murray Islands. Your knowledge of the islands and all things ‘Meriam’ is as inspiring as it is remarkable. Peter Veth (Australian Institute of Aboriginal and Torres Strait Islander Studies) (AIATSIS) also played a key role organising my involvement in the project, for which I am thankful. Fieldwork was generously funded by a variety of grants from AIATSIS, National Science Foundation and Wenner-Gren Foundation awarded to Doug Bird and Rebecca Bliege-Bird, and a Small ARC awarded to Peter Veth. Grants awarded to the author from the Doctoral Merit Research Scheme at James Cook University (JCU), the Waikato Radiocarbon Dating Fund and AIATSIS also contributed to this research.
Peter Veth, Ian Lilley (University of Queensland) and David Roe (JCU) supervised this research, and have collectively provided valuable comments and insights, for which I thank them. The School of Anthropology, Archaeology and Sociology provided excellent office and laboratory facilities throughout the duration of this research.

A variety of experts contributed to the technical and scientific detail included in this thesis: Kay Dancey from Cartography at RSPAS, ANU, Jeff Johnson (Ichthyology) and Steve Van Dyke (Vertebrates) from the Queensland Museum, Phil Macguire, Northern Petrographics, Dr Mike Rubenac from Earth Sciences at JCU, Emeritus Professor William Dickinson from the Geology Department at University of Arizona, and Jeff Par from the Centre for Geoarcheology and Palaeoenvironmental Research, Southern Cross University. For your respective expertise and knowledge I sincerely thank you.

Garrick Hitchcock provided a place to stay on route to Mer and some good references from the bountiful literary source that is the TSRA. Heartfelt thanks go to those who assisted in fieldwork including Doug Bird, Rebecca Bliege Bird, Peter Veth, Tony Barham, Sue O’Connor, Jane Harrington, Ewen McPhee and Steve Beck. Laboratory work was made considerably less tedious by assistance and good conversation from Jennifer Richardson and Eleanor Thomas. Tony Barham is also acknowledged for his practical and intellectual contributions to the project. I extend special thanks to Dr Bruno David and Dr Ian McNiven (Monash University) for their collegiality and good grace during the course of this research.

Thank you to my family; Mum, Dad, Ben and Jim, for their support and encouragement during my PhD and during my years at university in general. Yvonne, Stuart, Therese, Jean and Larissa have also offered many kind words of motivation and reassurance. A special thanks also goes to Stanley (“Boogie”) and George (“Scrumple”), whose purrs have provided comfort and a constant reminder of life beyond a PhD. And finally to my husband Marty, whose unwavering love, encouragement and inspiration is embedded in this thesis – thank you for putting up with the tears, tantrums and everything in between.
Table of Contents

Abstract vi
Acknowledgments viii
Contents x
List of Tables xiv
List of Figures xv
List of Plates xvii

Chapter 1: Introduction to the Thesis 1

Objectives and Aims 2
Study Area Overview 3
Research Context 5
Fieldwork Details and Limitations 7
Thesis Structure 8

Chapter 2: The Torres Strait Cultural Complex 11

The Environmental Setting 11
Pleistocene Separation and Holocene Emergence 11
Environmental Overviews: Southern New Guinea, Torres Strait and Cape York Peninsula 13
The Torres Strait Seascape 22
The Cultural Setting 28
Cape York and Western Torres Strait 29
The Insular Island Core of Torres Strait 37
The New Guinea Coast 50
Discussion 58
Conclusions 62

Chapter 3: The Archaeology of Settlement and Subsistence in Torres Strait 65

The Archaeology of Torres Strait: A Prelude to Research 65
The Timing of Human Occupation 67
Summary 71
The Marine and Horticultural Subsistence Economies 72
The Evidence for Horticulture 74
The Evidence for Marine Subsistence 77
Summary 78
Archaeological Evidence for Trade and Linkages 79
Summary 83
Chapter 4: Natural and Cultural Background to the Murray Islands

The Natural Setting
- Mer
- Dauar
- Waier

Flora and Fauna

The Cultural Setting
- People and Demography
- Language and Oral Tradition
- Trade and Material Culture
- Social Organisation and Subsistence
- Terrestrial Subsistence: Faunal and Floral Resources
- Horticultural Methods
- Maritime Subsistence: Resources and Methods
- Contemporary Meriam Intertidal Marine Resource Gathering

Conclusions

Chapter 5: Results of Fieldwork on Mer and Dauar

The Murray Islands Archaeological Project
- Archaeological Survey
- Excavation and Analytical Methods
- Kurkur Weid Rockshelter
- Pitkik
- Sokoli
- Ormi

Discussion
- Chronology of Site Formation and Occupation
- Chronology of Subsistence and Change

Conclusions

Chapter 6: Marine Subsistence

Field Sorting Procedures
- Laboratory Methods and Sampling
 - Shell Analysis
- Concentration of Shell
- Sokoli
- Ormi
- Kurkur Weid
- Pitkik
- Summary
- Shell Species Distributions
| Sokoli | 204 |
| Ormi | 205 |
| Kurkur Weid | 206 |
| Pitkik | 206 |
| Summary | 207 |
| Shell Species Sizes | 209 |
| Sokoli | 210 |
| Ormi | 211 |
| Summary | 211 |
| Shell Fracturing | 212 |
| Sorting and Identification of Vertebrate Remains | 215 |
| Sokoli | 216 |
| Ormi | 221 |
| Kurkur Weid | 226 |
| Pitkik | 229 |
| Summary | 231 |
| Conclusions | 233 |

Chapter 7: Horticultural Subsistence 236

Horticulture in Torres Strait: Antiquity and Nature of Evidence 236
Phytoliths and Starch Grains as Evidence for Horticulture 238
The Archaeological Samples: Methodology, Analysis and Results 239
Sokoli	241
Ormi	246
Discussion	248
Conclusions	250

Chapter 8: The Material Culture Assemblage 254

Kurkur Weid	255
Stone Abrader (SA1)	255
Modified Coral (MC1, MC2 and MC3)	255
Metal	256
Textiles	256
Pitkik	257
Ground Shell (GS1)	257
Sokoli	258
Stone Debitage	258
Modified Coral (MC4 and MC5)	260
Coral Abrader (CA1)	261
Ground Shell (GS2)	261
Trochus Rings (TR1 and TR2)	261
Incised Bone (IB1 and IB2)	262
Pottery (SOK1)	263
Ormi	266
Stone Debitage	266
Modified Stone (MS1 and MS2)	268
Ground Shell (GS3 and GS4)	268
Metal 269
Pottery (ORM1 – ORM23) 269
Zomar – A Surface Pottery Find (MER1/MER2) 272
Discussion 272
 Chronological Trends 273
 Evidence for Subsistence 273
 Evidence for Trade and Exchange 274
 Evidence for Site Function 276
Conclusions 277

Chapter 9: Pottery Analysis: Implications for Trade and Exchange
285

Pottery in Archaeology 285
The Murray Islands Pottery Sherds: Description, Analysis and Results 287
 Sherds ORM1, ORM2 and ORM3 288
 Sherds MER1/MER2 288
 Methods and Methodology of Analyses 290
 Results and Hypotheses 290
Discussion 300
 Pottery in the New Guinea Highlands 300
 Southern New Guinea Pottery and Coastal Hinterland Trade 304
Conclusions 307

Chapter 10: Occupation, Subsistence and Trade on the Murray Islands in
a Regional Context 309

The Timing of Human Occupation 309
The Marine and Horticultural Economies 314
 Sites, Stratigraphies and Chronologies 314
 Marine Fauna: Evidence for Subsistence Change 316
 Marine Vertebrates: Turtle as Evidence for Social Complexity 318
 Variability in Archaeological Shell: The Validity of Ethnographic Data 320
 Terrestrial Fauna: Implications for the Introduction of Species 322
 Horticulture: Evidence of Emergence 326
 Horticulture within Torres Strait 327
Material Culture and Trade and Exchange 328
 Shell Artefacts 329
 Stone Artefacts 331
 Bone Artefacts 335
 Coral Artefacts 336
 Pottery 337
Conclusions: Development of a Late-Holocene Cultural Complex 341
Recommendations and Directions for Future Research 344

References Cited 347
Appendices (short titles)

Appendix A: Contemporary and alternative names of Torres Strait Islands 391

Appendix B: Data for sediment accumulation rates 393

Appendix C: Molluscan shell recoveries 395

Appendix D: Size tables for commonly-occurring shell species 477

Appendix E: Size graphs for commonly-occurring shell species 482

Appendix F: Faunal tables for vertebrate remains from Sokoli 488

Appendix G: Faunal tables for vertebrate remains from Ormi 491

Appendix H: Faunal tables for vertebrate remains from Kurkur Weid 494

Appendix I: Faunal tables for vertebrate remains from Pitkik 497

Appendix K: Photos of mineral inclusions in Murray Islands pottery sherds 511

Tables (short titles)

Table 3.1: Selected subsistence-related CSDP sites 73

Table 5.1: Kurkur Weid Stratigraphic Unit descriptions 150
Table 5.2: Kurkur Weid midden assemblage, weight and density 152
Table 5.3: Pitkik midden assemblage, weight and density 152
Table 5.4: Radiocarbon dates for archaeological contexts from Mer and Dauar 153

Table 5.5: Pitkik Stratigraphic Unit descriptions 157
Table 5.6: Sokoli Stratigraphic Unit descriptions 164
Table 5.7: Sokoli midden assemblage, weight and density 167
Table 5.8: Ormi Stratigraphic Unit descriptions 174
Table 5.9: Ormi midden assemblage, weight and density 177

Table 6.1: Shell weight, density and MNI data for all sites 190
Table 6.2: Commonly occurring mollusc species habitat list 197
Table 6.3: Number and average number of mollusc species for all sites 198
Table 6.4: Sokoli most commonly occurring mollusc species 200
Table 6.5: Ormi most commonly occurring mollusc species 201
Table 6.6: Kurkur Weid most commonly occurring mollusc species 202
Table 6.7: Pitkik most commonly occurring mollusc species 203
Table 6.8: Distribution of shells with diagnostic process fracturing 214
Table 6.9: Sokoli vertebrate assemblage 217
Table 6.10: Ormi vertebrate assemblage 217
Table 6.11: Kurkur Weid vertebrate assemblage 227
Table 6.12: Pitkik vertebrate assemblage 227

Table 7.1: Sokoli absolute counts for phytolith types, starch grains and carbonised particles 243
Table 7.2: Ormi absolute counts for phytolith types, starch grains and carbonised particles 247

Table 8.1: Kurkur Weid material culture assemblage 255
Table 8.2: Sokoli material culture assemblage 259
Table 8.3: Sokoli distribution of stone debitage 259
Table 8.4: Ormi material culture assemblage 266
Table 8.5: Ormi distribution of stone debitage 267
Table 8.6: Ormi distribution of pottery sherd types 270

Table 9.1: Summary of pottery sherds microprobe data 291
Table 9.2: Summary of mineralogy of pottery sherd tempers 295

Figures (short titles)

Figure 1.1: Map of Torres Strait showing four main island groups and study area 2
Figure 1.2: Map of Study Area 4

Figure 2.1: Map of New Guinea and Northern Australia showing palaeogeography of the Sahul continent 12
Figure 2.2: Map of Torres Strait showing contemporary island names and language divisions 16
Figure 2.3: Map of Torres Strait reef morphology 24
Figure 2.4: Map of the distribution of double-outrigger canoes 35
Figure 2.5: Village on Nagi Island 39
Figure 2.6: Shell pendants, cone shell arm ring, cone shell pendant 40
Figure 2.7: Stone headed clubs 41
Figure 2.8: Dugong platform on Mer 44
Figure 2.9: Ceremonial kwod site 48
Figure 2.10: Patterns of customary exchange 49
Figure 2.11: Southern New Guinea showing language groups and places referred to in text 51
Figure 2.12: Kiwai coconut huskers 54
Figure 2.13: Kiwai fish scoop 57
Figure 3.1: Map of southern New Guinea 86

Figure 4.1: Map of Mer Island showing place names 97
Figure 4.2: Map of Dauar Island and Waier Island showing place names 100
Figure 4.3: Village life on Erub 108
Figure 4.4: ‘A native canoe meeting strangers off the Murray Islands’ 111
Figure 4.5: Map of Mer showing clan divisions and fish traps 113
Figure 4.6: Fishing scene on Mer Island 126
Figure 4.7: Schematic representation of reef intertidal zone showing distribution of key shell species 12

Figure 5.1: Map of Murray Islands showing location of excavation sites 143
Figure 5.2: Kurkur Weid rockshelter profile, floor plan and site plan showing location of Pitkik 148
Figure 5.3: Kurkur Weid excavation stratigraphic profile 149
Figure 5.4: Kurkur Weid rate of sediment accumulation 154
Figure 5.5: Pitkik excavation stratigraphic profile 156
Figure 5.6: Pitkik rate of sediment accumulation 158
Figure 5.7: Sokoli site plan 162
Figure 5.8: Sokoli excavation stratigraphic profile 163
Figure 5.9: Sokoli rate of sediment accumulation 168
Figure 5.10: Sokoli radiocarbon age-depth curve 169
Figure 5.11: Ormi site plan 171
Figure 5.12: Ormi excavation stratigraphic profile 173
Figure 5.13: Ormi radiocarbon age-depth curve 169
Figure 5.14: Ormi rate of sediment accumulation 178

Figure 6.1: Sokoli rate of shell accumulation 191
Figure 6.2: Ormi rate of shell accumulation 191
Figure 6.3: Kurkur Weid rate of shell accumulation 192
Figure 6.4: Pitkik rate of shell accumulation 192
Figure 6.5: Sokoli proportions of vertebrate remains 218
Figure 6.6: Sokoli distribution of vertebrate remains 218
Figure 6.7: Sokoli rate of vertebrate accumulation 219
Figure 6.8: Sokoli rate of fish bone accumulation 219
Figure 6.9: Sokoli rate of turtle bone accumulation 220
Figure 6.10: Ormi proportions of vertebrate remains 222
Figure 6.11: Ormi distribution of vertebrate remains 223
Figure 6.12: Ormi rate of vertebrate accumulation 223
Figure 6.13: Ormi rate of fish bone accumulation 224
Figure 6.14: Ormi rate of turtle bone accumulation 224
Figure 6.15: Kurkur Weid proportions of vertebrate remains 228
Figure 6.16: Kurkur Weid distribution of vertebrate remains 228
Figure 6.17: Kurkur Weid rate of vertebrate accumulation 229
Figure 6.18: Pitkik proportions of vertebrate remains 230
Figure 6.19: Pitkik distribution of vertebrate remains 230
Figure 6.20: Pitkik rate of vertebrate accumulation 231
Figure 7.1: Sokoli proportions of phytolith types grouped into family or broad vegetation types 243
Figure 7.2: Ormi proportions of phytolith types grouped into family or broad vegetation types 247

Figure 8.1: Large pottery sherds (ORM1-ORM3 & SOK1) 283
Figure 8.2: Small pottery sherds from Ormi (ORM 4-ORM23) 283
Figure 8.3: Pottery sherds (MER1/MER2) from Zomar, Mer Island 284

Figure 9.1: Compositional variation in pottery feldspars 292
Figure 9.2: Map showing distribution of late Cenozoic volcanoes throughout western Pacific 293
Figure 9.3: Pyroxenes from the pottery sherds 293
Figure 9.4: Location of major eruptive centres and distribution of volcanic rocks in the New Guinea Highlands 297
Figure 9.5: Map of New Guinea Highlands showing locations of archaeological pottery finds 301
Figure 9.6: Map of trade routes linking Cape York, the Torres Strait Islands and interior regions of New Guinea 305

PLATES (short titles)

Plate 2.1: Location of fossil Porities coral on Dauar Island 25
Plate 4.1: Mer Island 96
Plate 4.2: Waier Island and Dauar Island 99
Plate 4.3: Vegetation change on Mer 103
Plate 5.1: Bedrock grinding grooves 139
Plate 5.2: Basalt boulder grinding grooves 139
Plate 5.3a: Shark engraving 139
Plate 5.3b: Seuriseuri engraving 139
Plate 5.3c: Turtle engraving 139
Plate 5.3d: Canoe(?) engraving 139
Plate 5.4: Stone fish traps on Mer 140
Plate 5.5: Bulldozer clearing land at Zomar, Mer 142
Plate 5.6: Kurkur Weid rockshelter 146
Plate 5.7: Pitkik profile before excavation 156
Plate 5.8: Pitkik profile during excavation 156
Plate 5.9: Location of excavation at Sokoli 160
Plate 5.10: Sokoli beachrock formation 160
Plate 5.11: Sokoli linear mound feature 160
Plate 5.12: Sokoli excavation featuring SU4 165
Plate 5.13: Sokoli excavation showing lower sediment change 165
Plate 5.14: Location of excavation at Ormi 171
Plate 5.15: Ormi excavation showing lower sediment change 175
Plate 6.1: Diagnostic shell processing holes 213
Plate 7.1a: Musaceae phytoliths (Sokoli) 253
Plate 7.1b: Musaceae phytoliths (Ormi) 253
Plate 7.1c: Dioscorea sp. starch grains (Ormi) 253

Plate 8.1: Stone abrader from Kurkur Weid (SA1) 279
Plate 8.2: Coral fishing sinker from Kurkur Weid (MC1) 279
Plate 8.3: Coral fishing sinker(?) from Kurkur Weid (MC2) 279
Plate 8.4: Coral fishing sinkers from Kurkur Weid (MC3) 280
Plate 8.5: Coral fishing sinkers from Sokoli (MC4) 280
Plate 8.6: Coral fishing sinkers from Sokoli (MC5) 280
Plate 8.7: Coral abrader from Sokoli (CA1) 280
Plate 8.8: Shell scraper from Pitkik (GS1) 281
Plate 8.9: Ground shell from Sokoli (GS2) 281
Plate 8.10: Trochus ring fragments from Sokoli (TR1, TR2) and ethnographic trochus ring 281
Plate 8.11: Incised bone artefacts from Sokoli (IB1, IB2) and Ethnographic bone husker 281
Plate 8.12: Pottery sherd from Sokoli (SOK1) 282
Plate 8.13: Stone fishing sinker from Ormi (MS1) 282
Plate 8.14: Stone fishing sinker from Ormi (MS2) 282
Plate 8.15: Ground shell scrapers from Ormi (GS3, GS4) 282

Plate 9.1: Analysed Murray Islands pottery sherds (ORM1, ORM2 and ORM3, MER1/MER2) 289

Plate 10.1: Incised bone artefact (IB1) from Sokoli 336
Plate 10.2: Incised bone artefact from Samoa, Kikori 336