THE ROLE OF PODOVIRUS-LIKE BACTERIOPHAGE IN THE VIRULENCE OF *VIBRIO HARVEYI* STRAIN 47666-1

Thesis submitted by NANCY BUSICO- SALCEDO, DVM July, 2004

For the Degree of Master in Tropical Veterinary Science in the Australian Institute of Tropical Veterinary and Animal Science at James Cook University, Australia

STATEMENT OF ACCESS TO THIS THESIS

I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and, by microfilm or other photographic means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement:

"In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper written acknowledgement for any instance which I have obtained from it."

Nancy Busico-Salcedo July 2004

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from published work of others has been acknowledged and a list of references is given.

Nancy Busico-Salcedo July 2004

ACKNOWLEDGMENTS

This piece of work would not be realised without the contribution of the following persons to whom the author is greatly indebted:

Foremost to my supervisor, A/Prof. Leigh Owens, for the support, assistance and brilliant ideas shared throughout my study, and for the patience in checking my paper;

My warmest thanks to James Munro, for the invaluable assistance and patience of my being so inquisitive and for giving me a hand throughout the period of my research;

To all faculty and technicians of the Department of Microbiology and Immunology, School of Biomedical Sciences for the encouragement and help;

To the administrative staff for being so accommodating and responsive to my academic needs;

To the Aquapath friends namely Semuel Littik, Coco Soetrisno, Rusaini, Kerry Claydon, Kjersti Krabsestsve, Laurence Liessman and Miranda for the enthusiasm and camaraderie;

To all postgraduate students in this school namely Jenny Elliman, Aulia Abdullah, Jodie Barnes, Keryn Cresswell, Tri Tuan Duong, Andrew Greenhill, Numaya Gurung, Ramon Layton, Sabina Shakya, Samjhana Kapli, Ganesh Rai, Hai Vu Phan, Jennifer Scott and Thuy for the smiles and shared advises;

To the Filipino postgrads: Beth, Elma, Melgie, Joy, Alan, Raffy, Luvy, Jojo, Jerome, Fina, Rene, Relyn, Rodel and Santiago, for sharing the laughters and tears;

To the AusAID Australian Development Scholarship for providing this education;

The most important part of my life, my husband Willy and kids: Angelique Alyzza and Carl John, who showed tremendous love, care, inspiration, support, emotional and spiritual needs;

To my beloved parents, Napoleon and Sylvia Busico and my brothers: Fernan, Bob and Rey; and my parents-in law, Guillermo and Catalina Salcedo for the inspiration and love;

And above all, to our most Almighty God, for the wonderful life and for everything.

To all of you, this piece of work is sincerely dedicated.

NANCY B. SALCEDO

ABSTRACT

Two studies were conducted to demonstrate the transfer of virulence between the strains infected with phage VHPL and the same strains uninfected with the phage. The first study was to determine if a bacteriophage isolated from the more virulent strain (47666-1) would show the same virulence effects as bacteriophage VHML. The second study was to develop polyclonal and monoclonal antibodies specific to the toxic protein subunits of *V. harveyi* 47666-1. These antibodies were then used to detect this specific exotoxin from the previously naïve strains of *V. harveyi* infected with the phage VHPL.

SDS-PAGE analysis showed an up regulation and production of extracellular proteins in previously naïve *V. harveyi* strains receiving this phage compared with uninfected strains. Haemolysin assays indicated a significant increase (P<0.001) in both halo of clearing and colony diameter in bacteriophage-infected strains of *V. harveyi* compared to the same individual strains uninfected with the phage. However, siderophore production was not significant as all of the inducible strains did not respond positively on Chrome Azurol-S (CAS) agar. Chitin degradation, on the other hand, resulted in significantly greater zones of clearing (P<0.001) in strains infected with bacteriophage from *V. harveyi* 47666-1 than the same strains receiving no phage. In bath challenge assay, the results indicated that as a group, there was a significant difference in mortality rate among strains infected with bacteriophage from *V. harveyi* 47666-1 (F=82.824, DF=9,40, P<0.001) than strains of *V. harveyi* without the bacteriophage.

Polyclonal (PAbs) and monoclonal (MAbs) antibodies to the specific toxic subunits 45 and 55 kDa of *V. harveyi* 47666-1 were produced and used to detect specific toxic subunits from previously naïve strains of *V. harveyi* challenged with the phage. In western blot assay, PAbs produced only one specific toxin subunit having molecular weight of approximately 55kD in strains 30, 12 and 20 while no bands where obtained from strain 643. Two MAbs (3A1-9 and 5A2-1) were characterised and both detected toxic protein subunits in all naïve strains of *V. harveyi* infected with

the phage. However, cross reactions were observed in naïve strains 30, 12 and 20 uninfected with the phage.

In conclusion, the presence of bacteriophage VHPL from *V. harveyi* 47666-1 probably enhanced the virulence using assays with four naïve strains of *V. harveyi* as a model. There was significant up-regulation of proteins based on SDS-PAGE, up-regulation of haemolysins, chitinases and greater mortality to larvae of *P. monodon*. It is therefore suggested that the presence of this bacteriophage may either partly or fully confers virulence to *V. harveyi* strain 47666-1.

TABLE OF CONTENTS

STA	TEMEN	NT OF ACCESS TO THIS THESIS	ii
DEC	CLARAT	TION	ii
ACF	KNOWL	EDGMENTS	iii
ABS	TRACT	•	v
TAB	BLE OF	CONTENTS	vii
LIST	Г OF FI	GURES	xiii
LIST	Г ОГ ТА	BLES	xvii
LIST	Г OF AB	BREVIATIONS	xix
CHA	APTER 1	GENERAL INTRODUCTION	1
CHA	APTER 2	2 REVIEW OF LITERATURE	5
2.1	Class	ification and identification of Vibrio harveyi	5
	2.1.1	History of classification	5
	2.1.2	Identification of V. harveyi	6
2.2	Bacte	rial luminescent disease	9
	2.2.1	Epizootics	9
	2.2.2	Sources of V. harveyi	11
	2.2.3	Luminous vibriosis	12
	2.2.4	Contributing factors to luminous vibriosis	13
2.3	Contr	col of luminous vibriosis	14
	2.3.1	Reducing the bacterial load	14
	2.3.2	Antibiotics	15
	2.3.3	Probiotics	16
	2.3.4	Bacteriophage therapy	18

2.4 Virulence factors of *V. harveyi*

	2.4.1	Siderophores	19
	2.4.2	Chitinases	20
	2.4.3	Role of plasmids in virulence and antibiotic resistance	21
	2.4.4	Bacteriocins	22
	2.4.5	<i>N</i> -(β -hydroxybutyryl) homoserine lactone: a possible role for	
		bioluminescence	23
	2.4.6	Exotoxins and other exoenzymes	25
	2.4.7	Bacteriophages	26
2.5	Conclu	usion	28
СНАР	TER 3	GENERAL MATERIALS AND METHODS	30
3.1	Source	e of Isolates of Vibrio harveyi	30

3.2	Storage and Propagation of Stock Isolates of Vibrio harveyi	30
3.3	Spectrophotometric Analysis and Estimation of Vibrio harveyi	
	Cell Density	31

CHAPTER 4	CHANGES TO VIBRIO HARVEYI STRAINS	
	EXPERIMENTALLY INFECTED WITH	
	BACTERIOPHAGE FROM 47666-1	32

4.1	Intro	duction	32
4.2	Mate	rials and Methods	33
	4.2.1	Bacterial isolates and growth conditions	33
	4.2.2	Bacteriophage extraction and concentration	34
	4.2.3	Infecting the phage from Vibrio harveyi 47666-1 to naïve	
		bacteria	34

	4.2.4	Detecting infection of bacteriophage in the previously naïve	
		bacteria	34
	4.2.5	Preparation of cell-free supernatant	35
	4.2.6	Concentration of the supernatant	35
	4.2.7	Analysis of CFSE protein profiles by SDS-PAGE	36
	4.2.8	SDS Poly-acrylamide gel electrophoresis (SDS-PAGE)	36
	4.2.9	Protein estimation	37
	4.2.10	Haemolysis production for the strains infected with the phage	
		from Vibrio harveyi 47666-1	37
	4.2.11	Screening of Vibrio harveyi strains for siderophore production	37
	4.2	2.11.1 Preparation of chrome azurol S (CAS) agar plates	37
	4.2	2.11.2 Inoculation of CAS agar plates	37
	4.2	2.11.3 Detection of siderophore production	38
	4.2.12	Chitin degradation assay for the strains infected with the phage	
		from Vibrio harveyi strain 47666-1	38
	4.2.13	Challenge of <i>P. monodon</i> larvae	38
	4.2.14	Statistical analysis	38
4.3	Result	ts	39
	4.3.1	Phage infection to naïve strains of V. harveyi	39
	4.3.2	Detection of bacteriophage infection in previously naïve host	
		by SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE)	44
	4.3.3	Haemolysin production results	45
	4.3.4	Siderophore production results	51
	4.3.5	Chitin degradation assay results	52
	4.3.6	Bath challenge of larvae of <i>P. monodon</i> with bacterial strains	
		643, 30, 12 and 20 with and without the phage	54
4.4	Discus	ssion	56

CHAPTER 5PRODUCTION OF POLYCLONAL AND
MONOCLONAL ANTIBODIES FROM VIBRIO
HARVEYI STRAIN 47666-1

5.1 Introduction

61

5.2	Mater	rials and Methods	62
	5.2.1	Identifying toxic protein subunits from V. harveyi strain 47666-1	62
	5.2.2	Obtaining and isolating toxic protein subunits from V. harveyi	
		strain 47666-1	63
	5.2.3	Animal ethics approval	63
	5.2.4	Production of polyclonal antibodies (PAbs) in chickens	63
	5.2	2.4.1 Immunisation of chickens	63
	5.2	2.4.2 ELISA	64
		5.2.4.2.1 Preparation of CFSE antigen	64
		5.2.4.2.2 Optimisation	64
		5.2.4.2.3 General procedure	65
	5.2.5	Production of monoclonal antibodies (MAbs) in Balb/c mice	66
		2.5.1 Immunisation schedule	66
	5.2	2.5.2 Culture of myeloma cells	66
		2.5.3 Cell count	67
	5.2	2.5.4 Preparation of spleen cells	67
	5.2	2.5.5 Fusion protocol	68
	5.2	2.5.6 Screening for antibody production	68
	5.2	2.5.7 Cloning of monoclones	69
	5.2	2.5.8 Isotyping of MAbs	69
	5.2	2.5.9 Western blotting	70
	5.2.6	Cryopreservation of cell lines	71
		2.6.1 Freezing cultured cells	71
		2.6.2 Thawing cells out	71
	5.4	2.0.2 Thawing cons out	/ 1

	5.3.1	Optimisation of indirect ELISA	72
	5.3.2	Polyclonal antibodies from chickens on a western blot	73
	5.3.3	Screening for antibody production from monoclones	74
	5.3.4	Isotyping of monoclonal antibodies	75
	5.3.5	Monoclonal antibodies from mice on a western blot	75
5.4	Discu	ssion	79
CHAI	PTER 6	6 GENERAL DISCUSSION	83
BIBL	IOGRA	АРНУ	87
APPE	NDICI	ES	101
APPE	NDIX	1	101
Media	for bac	eterial culture	101
	1.1	PYSS broth	101
	1.2	PYSS agar	101
	1.3	Blood agar plates (dual layer agar)	101
APPE	NDIX	2	102
Prepar	ration of	f chrome azurol S (CAS) agar	102
	2.1	Preparation of iron depleted 10% casamino acids solution	102
		2.1.1 The extraction of iron	102
		2.1.2 Removal of 8-hydroxyquinolone from the aqueous phase	102
		2.1.3 Removal of chloroform from the aqueous phase	103
		2.1.4 Removal of particulate matter from the aqueous phase	103
	2.2	Chrome azurol S (CAS) solution	103
	2.3	Fe Cl ₃ solution, 1mM	103

APPENDIX	3	104
Preparation of chitin overlay agar		104
3.1	Chilled stirring acid solution	104
3.2	Chitin overlay medium	104
APPENDIX	4	105
Buffers and	SDS-PAGE reagents	105
4.1	10X Phosphate buffered saline (PBS)	105
4.2	SM buffer	105
4.3	10X TEN/Tween 20 buffer	105
4.4	SDS-PAGE stock solutions and reagents	105
	4.4.1 SDS reducing buffer	105
	4.4.2 1.5 M Tris-HCl buffer, pH 8.8	105
	4.4.3 0.5 M Tris-HCl buffer, pH 6.8	106
	4.4.4 1 M Tris-HCl buffer, pH 6.8	106
	4.4.5 5X SDS running buffer, pH 8.3	106
	4.4.6 12% SDS resolving gel	106
	4.4.7 4% SDS stacking gel	106
	4.4.8 Coomassie07lue stain	107
	4.4.9 Destain solution	107
	4.4.10 10% APS solution	107
	4.4.11 10% Sodium dodecyl sulphate (SDS) solution	107
APPENDIX	5	108
Solutions for Western Blot		108
5.1	Transfer buffer	108
5.2	DAB Substrate Solution	108

LIST OF FIGURES

		Page
Figure 4.1	Optical density changes of <i>V. harveyi</i> strain 47666-1 over time after induction with mitomycin C.	41
Figure 4.2a	Optical density changes of <i>V. harveyi</i> strain 643 infected and uninfected with phage from <i>V. harveyi</i> 47666-1 over time after induction with mitomycin C.	42
Figure 4.2b	Optical density changes of <i>V. harveyi</i> strain 30 infected and uninfected with phage from <i>V. harveyi</i> 47666-1 over time after induction with mitomycin C.	42
Figure 4.2c	Optical density changes of <i>V. harveyi</i> strain 12 infected and uninfected with phage from <i>V. harveyi</i> 47666-1 over time after induction with mitomycin C.	43
Figure 4.2d	Optical density changes of <i>V. harveyi</i> strain 20 infected and uninfected with phage from <i>V. harveyi</i> 47666-1 over time after induction with mitomycin C.	43
Figure 4.3a	Protein profile of <i>V. harveyi</i> strain 643 and 30 (SDS-PAGE 12%, Coomassie blue-stained) showing cell free supernatant extract (CFSE). Note: (*) bacteriophage infected strain, (X) extra protein band (U) up-regulation of protein band.	44
Figure 4.3b	Protein profile of <i>V. harveyi</i> strain 12 and 20 (SDS-PAGE 12%, Coomassie blue-stained) showing cell free supernatant extract (CFSE). Note: (*) bacteriophage infected strain, (X) extra protein band, (U) up-regulation of protein band (D) down-regulation of protein band.	44

- Figure 4.4aHaemolysis production in V. harveyi strain 47666-1 (arrow).45This strain is infected with bacteriophage VHPL, so all colonies
in this picture has phage on it.
- Figure 4.4bVibrio harveyi strain 643 showing up regulation of haemolysin46(arrow) with phage VHPL (top photo) compared to the same strain
without the phage (bottom photo).
- Figure 4.4cVibrio harveyi strain 30 showing up regulation of haemolysis47(arrow) with phage VHPL (top photo) compared to the same strain
without the phage VHPL (bottom photo)
- **Figure 4.4d** These are the photos of *Vibrio harveyi* strain 12 with the phage 48 (top) and without the phage (bottom). An up regulation of haemolysin is evident in the phage-infected strain compared to uninfected strain (arrow).
- Figure 4.4eVibrio harveyi strain 20 with phage (top) and without phage49(bottom) showing haemolysin production (arrow).
- Figure 4.5Mean colony diameter and haemolysin diameter of strains of
V. harveyi with and without the bacteriophage.
Note: (*) bacteriophage-infected strain.50
- Figure 4.6 Mean colony diameter and clear zone diameter of the previously 53 stated strains of *V. harveyi* with and without the bacteriophage.
 Note: (*) bacteriophage-infected strain.
- Figure 4.7Mean mortality and standard error from five replicate flasks55of nauplii of Penaeus monodon, 48 hours after being bath
challenged with strains of V. harveyi. Note: (*) bacteria
with bacteriophage.

Figure 5.1	The checkerboard system used to determine the optimum coating concentration for concentrated CFSE, with consideration for antiserum concentration.	65
Figure 5.2	The determination of the optimum coating concentration of polyclonal antiserum from chicken	72
Figure 5.3	Antibody titre of chicken polyclonal antibodies from the two major toxic protein bands of <i>V. harveyi</i> 47666-1reacting to different strains of <i>V. harveyi</i> . Note (*) bacteriophage-infected.	72
Figure 5.4	Western blot of PAbs responding to <i>V. harveyi</i> 47666-1 and other strains of <i>V. harveyi</i> . Note (*) bacteriophage-infected strain, arrows stand for the specific toxic protein band of 55kDa.	73
Figure 5.5	MAbs 3A7-3, 3E9-3, 3E1-6 and 3A1-9 are specific to the 55 kDa molecular weight toxic protein band whilst MAbs 5A1-7 and 5A2-1 are specific to 45 kDa toxic protein band. PC stands for the positive control for PAbs and NC for the negative control (naïve strain 643)	74
Figure 5.6	Western blot of MAbs from monoclone 3A1-9responding to <i>V. harveyi</i> strain 47666-1 and 643 protein bands. Note (*) bacteriophage-infected strain, arrows stand for the specific toxic protein bands of 55kDa and 45kDa, respectively. X stands for an extra-protein band of 50kDa in uninfected strain 643.	75
Figure 5.7	Western blot of MAbs from monoclone 5A2-1 responding to	76

Figure 3.7 Western blot of MADS from monoclone 3A2-1 responding to strain 47666-1 and 30 protein bands. Note (*) bacteriophage-infected strain, arrows stand for the specific toxic protein bands of 55kDa and 45kDa. X stands for up-regulation of protein band in molecular weight of approximately 45kDa in phage-infected strain.

- Figure 5.8 Western blot of MAbs from monoclone 3A1-9 responding to 77 strain 47666-1 and 12 protein bands. Note (*) bacteriophage-infected strain, arrows stand for the specific toxic protein band of 55kDa. X stands for an extra-protein band of approximately 30 and 10kDa molecular weight.
- Figure 5.9 Western blot of MAbs from monoclone 5A2-1 responding to 77 strain 47666-1 and 20 protein bands. Note (*) bacteriophage-infected strain, arrows stand for the specific toxic protein band of 55kDa, C stands for cleaving of protein bands of molecular weight of approximately 45kDa and 43kDa, A means additional protein band of approximately 50kDa in uninfected strain 20 and X for an extra protein band of 20kDa in phage-infected strain.
- Figure 5.10 Western blot of MAbs from monoclone 5A2-1 responding to 78 strain 47666-1 and 20 protein bands. Note (*) bacteriophage-infected strain, arrows stand for the specific toxic protein band of 55kDa, C stands for cleaving of protein bands of molecular weight of approximately 45kDa and 43kDa, A means additional protein band of approximately 50kDa in uninfected strain 20 and U for an up-regulation of protein band of 20kDa in phage-infected strain.

LIST OF TABLES

		Page
Table 2.1	Morphological, physical and nutritional characteristics of <i>V. harveyi</i> (modified from Baumann <i>et al.</i> (1984)as	6
	cited by Munro (2001).	
Table 2.2	Hosts in which <i>V. harveyi</i> has been implicated as a pathogen, and the associated disease (cited in Harris 1998 ^a ,	12
	Vandenberghe 1998 ^b , Diggles 2001 ^c Alcaide <i>et al</i> .2001 ^d).	
Table 3.1		30
	of <i>V. harveyi</i> used in this study.	
Table 4.1	Results of analyses showing strains of test bacteria which have no prophage (Oakey and Owens, 2000) and strains which could	40 he
	infected with the phage from <i>Vibrio harveyi</i> 47666-1 using	
	optical density (OD) as indicator	
Table 4.2	Significant differences (P value) of haemolysin halo diameter	50
	from strains infected and uninfected with bacteriophage.	
	Note: (*) bacteriophage-infected strain.	
Table 4.3		51
	strains infected and uninfected with bacteriophage.	
	Note: (*) bacteriophage-infected strain.	
Table 4.4	Siderophore production, measured by halo ratio (HR) values,	52
	for Vibrio harveyi strains with or without the bacteriophage	
	VHPL calculated after 48 h.	

- Table 4.5Significant differences (P value) of the zone of clearance of chitin 53
from V. harveyi strains infected and uninfected with bacteriophage.
Note: (*) bacteriophage-infected strain.
- **Table 4.6**Significant differences (P value) of colony diameter from54*V.harveyi* strains infected and uninfected with bacteriophage
grown on chitin plates. Note: (*) bacteriophage-infected strain.
- **Table 4.7**Significant differences (P value) of mortality in nauplii of55P. monodon from individual strains compared to other individual
strains. Note: (*) bacteriophage-infected strain.
- Table 5.1A summary table showing protein band sizes stained in79V. harveyi 47666-1, 643, 12 and 20 as recognised by PAbsand MAbs against specific toxin subunits from strain 47666-1.Note: (*) bacteriophage-infected strains. Molecular band sizesAre in kiloDaltons (kDa)
- **Table 6.1**A summary table showing all phenotypic changes in strains of84*V. harveyi* experimentally infected with phage VHPL and
uninfected strains.

LIST OF ABBREVIATIONS

A_{260}	Absorbance at 260 nm
A_{280}	Absorbance at 280 nm
A_{600}	Absorbance at 600 nm
ABTS	2,2'-azino-di-(3-ethylbenzthiazoline-6-sulphonic acid)
ACMM	Australian Collection of Marine Microorganisms
ANOVA	Analysis of variance
APS	Ammonium Persulphate
BDS	Bovine donor serum
BSA	Bovine serum albumin
CAS	Chrome Azurol-S
CFSE	Cell-free supernatant extract
CFU	Colony forming units
DAB	3,3'-diaminobenzidine tetrahydrochloride
DMSO	Dimethyl Sulfoxide
DNA	Deoxyribonucleic acid
EDTA	Ethylenediaminetetra-acetic acid
ELISA	Enzyme linked immunosorbent assay
FBS	Foetal bovine serum
HAT	Hypoxanthine-aminopterin-thymidine
HR	Halo ratio
HRPO	Horseradish peroxidase
HT	Hypoxanthine-thymidine
IP	Intraperitoneal
JCU	James Cook University
kb	Kilobases
kDa	Kilodalton
LD_{50}	Mean lethal dose
LSD	Least significance difference
MAbs	Monoclonal antibodies
mm	Millimeter
MW	Molecular weight

nm	Nanometer
NSW	New South Wales
OD	Optical density
OD_{600}	Optical density at 600nm
OPI	Oxaloacetate-pyruvate-insulin media supplement
PAbs	Polyclonal antibodies
PAGE	Polyacrylamide gel electrophoresis
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
PEG	Polyethylene glycol
PVDF	Polyvinylidene fluoride
PYSS	Peptone, yeast, synthetic sea salt
RNA	Ribonucleic acid
SDS	Sodium-dodecyl-sulphate
TEM	Transmission electron microscopy
TEMED	Tetramethylethylenediamine
VHML	Vibrio harveyi Myovirus-like
VHPL	Vibrio harveyi Podovirus-like