To Rhona, Hannah, Douglas, Alice, Kathleen and Euan for being a great family, and especially to Fiona for her support during this and many other projects (LK)

To Indrani and Ishani (AB)
Problem Solving in
Endocrinology and Metabolism

Lee Kennedy
James Cook University, Queensland, Australia

Ansu Basu
City Hospital, Birmingham, UK
Contents

Abbreviations vii

SECTION 01 Thyroid 1
1 Graves’ disease 1
2 Hyperthyroidism — multinodular goitre 6
3 Thyroid nodule 11
4 Sick euthyroid syndrome 16
5 Amiodarone and the thyroid 21
6 Subclinical hypothyroidism 27
7 Thyroid function in early pregnancy 31
8 Post-partum thyroid disturbance 35
9 Thyrotoxic crisis 39
10 Thyroid eye disease 43

SECTION 02 Adrenal 49
11 Addison’s disease 49
12 Autoimmune polyglandular syndromes 54
13 The incidental adrenal nodule 59
14 Cushing’s syndrome 63
15 Congenital adrenal hyperplasia 68

SECTION 03 Pituitary 75
16 Acromegaly 75
17 Prolactinoma 80
18 Non-functioning pituitary adenoma 85
19 Hypopituitarism: investigation and treatment 90

SECTION 04 Reproductive 95
20 Primary amenorrhoea 95
21 Secondary amenorrhoea 99
22 Polycystic ovarian syndrome — subfertility 104
23 Premature ovarian failure 108
24 Hirsutism 113
25 Erectile dysfunction 119
26 Male hypogonadism 125
SECTION 05 Growth 131
27 Delayed puberty 131
28 Gynaecomastia 136
29 Turner’s syndrome 142
30 Klinefelter’s syndrome 147

SECTION 06 Calcium 153
31 Primary hyperparathyroidism 153
32 Hypocalcaemia 158

SECTION 07 Hypertension 163
33 Hypertension — is it endocrine? 163
34 Phaeochromocytoma 169
35 Conn’s syndrome 174

SECTION 08 Electrolytes 179
36 Hyponatraemia 179
37 Hypokalaemia 185
38 Hypomagnesaemia 190
39 Diabetes insipidus 194
40 Spontaneous hypoglycaemia 200

SECTION 09 Therapeutic 205
41 Corticosteroid and mineralocorticoid replacement 205
42 Neutropaenia on carbimazole 210
43 Lithium 214
44 Calcium and vitamin D 219
45 Oestrogen and progesterone 223
46 Thyroid hormone replacement 228

Index 233
Abbreviations

17-OHP 17-hydroxyprogesterone
ACTH adrenocorticotropic hormone
ADH antidiuretic hormone
AECA anti-endothelial cell antibodies
AIDS acquired immune deficiency syndrome
AIT amiodarone-induced thyrotoxicosis
AITD autoimmune thyroid disease
ALD adenoleukodystrophy
AMI acute myocardial infarction
AMP adenosine monophosphate
ANCA antineutrophil cytoplasmic antibody
anti-TPO antithyroid peroxidase
APA aldosterone-producing adenoma
APS autoimmune polyendocrine deficiency syndromes
autoimmune polyglandular syndromes
adrenergic postprandial syndrome
AQP2 aquaporin-2
ARR ratio of plasma aldosterone to plasma renin
ATP adenosine triphosphate
AVP arginine vasopressin
BAH bilateral adrenal hyperplasia
BMD bone mineral density
BMI body mass index
BMR basal metabolic rate
CAH congenital adrenal hyperplasia
CBZ carbimazole
CC clomiphene citrate
CEE conjugated equine oestrogen
CI confidence interval
CRH corticotrophin-releasing hormone
CT computed tomography
CTLA-4 cytotoxic T lymphocyte antigen
DA dopamine agonist
DDAVP 1-desamino-8-d-arginine vasopressin
DHEA dehydro-3-epiandrosterone
DHEAS DHEA sulphate
DI deiodinase
DIT diiodothyronine
DITPA 3, 5-diiodothyropropionic acid
DOC deoxycorticosterone
DST dexamethasone suppression test
ECG electrocardiogram
ED erectile dysfunction
EDTA ethylenediaminetetraacetic acid
EPHESUS Eplerenone Neurohormonal Efficacy and Survival Study
FAI free androgen index
FNAC fine needle aspiration cytology
FSH follicle-stimulating hormone
GFR glomerular filtration rate
GH growth hormone
GLP glucagon-like peptide
GMP guanosine monophosphate
GnRH gonadotrophin-releasing hormone
GTP guanosine triphosphate
hCG human chorionic gonadotrophin
HIV human immunodeficiency virus
HIF human leucocyte antigen
HPA hypothalamic–pituitary–adrenal axis
HRT hormone replacement therapy
HU Hounsfield Unit
ICSI intracytoplasmic sperm injection
IGF insulin-like growth factor
IPSS inferior petrosal sinus sampling
ITU intensive therapy unit
JNC7 Joint National Committee 7
LH luteinizing hormone
LOD laparoscopic ovarian drilling
MDT multidisciplinary team
MEN multiple endocrine neoplasia
MIBG 123I-metaiodobenzylguanidine
MIVAT minimally invasive video-assisted thyroidectomy
Abbreviations

MMAS Massachusetts Male Aging Study
MMI methimazole
MNG multinodular goitre
MORE Multiple Outcomes of Raloxifene Evaluation
MRI magnetic resonance imaging
NAION non-arteritic ischaemic optic neuropathy
NANC non-adrenergic non cholinergic [neurones]
NEFA non-esterified fatty acid
NHANES National Health and Nutrition Examination Study
NS non-significant
oGTT oral glucose tolerance test
OR odds ratio
PADAM partial androgen deficiency in ageing men
PCOS polycystic ovarian syndrome
PDE-5 phosphodiesterase-5 inhibitor
PKA protein kinase A
POF premature ovarian failure
PPAR-γ peroxisome proliferator-activated receptor-γ
PPTD post-partum thyroid disturbance
PSV peak systolic velocity
PTH parathyroid hormone
PTHrP parathyroid-related protein
PTU propylthiouracil
RALES Randomised Aldactone Evaluation Study
RR relative risk
SAGH subclinical autonomous glucocorticoid hypersecretion
SAME Syndrome of apparent mineralocorticoid excess
SCA silent corticotroph adenomas
SCC side chain cleavage
SERM selective oestrogen receptor modulator
SERPINA serine protease inhibitor superfamily member A7
SES sick euthyroid syndrome
SHBG sex hormone-binding globulin
SIADH syndrome of inappropriate ADH secretion
SMR standard mortality ratio
SPECT single photon emission computed tomography
SST Short synacthen test
T3 triiodothyronine
T4 thyroxine
TBG thyroxine-binding globulin
TBI traumatic brain injury
TBI TSH receptor antibodies (TSH binding inhibitory immunoglobulins)
TED thyroid eye disease
TNF tumour necrosis factor
TPO thyroid peroxidase
TRAB TSH receptor antibody
TRH thyrotrophin-releasing hormone
TSH thyroid-stimulating hormone
TTR transthyretin
UFC urine free cortisol
VLCFA very low chain fatty acids
VMA vanillylmandelic acid
WHI Women’s Health Initiative
Case History

A previously fit 32-year-old woman notices tremor and heat intolerance. She has lost one and a half stones (9.5 kg) in weight over the past 6 months. You note signs of hyperthyroidism and a diffuse goitre. Her mother is treated for hypothyroidism. The patient smokes 20 cigarettes per day. She and her husband want to start a family in the foreseeable future.

How should she be investigated?
Does she require a thyroid scan?
What is the preferred first line of treatment?
If she has a child, how likely is the child to be affected by Graves' disease?
Background

Thyrotoxicosis occurs in 2% of women and 0.2% of men. In younger people, Graves’ disease is by far the commonest diagnosis, with peak onset at 20–40 years. Treatment is with drugs, radioactive iodine or surgery. Thionamide drugs are generally the first line of therapy in young women.1,2 They have been used for over 50 years. They are safe and well tolerated. Up to 10% of patients experience mild side effects including urticaria, skin rash, joint pain, altered taste and nausea. These do not usually necessitate stopping the drug. The most serious side effect is agranulocytosis which occurs in less than 0.4%. Patients should always be warned to report skin rash, sore throat or any other untoward side effect, and this warning should be recorded in their notes. If side effects are reported, full blood count and differential should be requested urgently and consideration should be given to stopping the drug.

There are three thionamide drugs—carbimazole (CBZ), methimazole (MMI), and propylthiouracil (PTU). They are similar in their clinical effect. There have been no substantial head-to-head studies comparing them. CBZ is the most commonly used drug in the UK, whereas MMI is used in the USA and in many European countries. PTU is usually used as second line treatment. It has a shorter duration of action and therefore is best given in divided doses. PTU may have free radical scavenging activity, and it is not the drug of first choice before or after radioactive iodine because it may diminish the effectiveness of the latter. Skin rashes may be commoner with MMI—reported rate in trials was 7% for CBZ compared with 12% for MMI.2 PTU is the drug of choice in acute severe thyrotoxicosis as it decreases conversion of T₄ to T₃.

In practice, duration of antithyroid treatment does not appear to be critical. Endocrinologists have all encountered patients who stop taking their drugs after a few months and do not relapse and others who relapse even after prolonged treatment. There is consensus that patients should be treated for at least 6 months, and certainly until serum thyrotropin (TSH) is no longer suppressed and levels of TSH receptor antibodies (TBI) have decreased. Longer treatment may lead to decrease in goitre size, and thus lower risk of relapse. Evidence slightly favours longer than 6 months’ treatment; common practice is between 12 and 18 months, and there is no evidence to favour longer treatment.

Most endocrinologists commence patients on high dose and gradually decrease to maintenance dose according to response. Block and replace regimens were based on the hypothesis that antithyroid drugs had immune-modulating and antioxidant properties, and thus may modify the natural history of the disease. Exposure to higher doses of the drug for longer necessitates concurrent thyroid hormone treatment. The two regimens have been compared in 12 studies involving a total of over 1700 patients. The compliance with follow-up varied in these studies. On an intention-to-treat basis, and with follow-up greater than 2 years, relapse rate is just over 50% with either regimen. Higher dose of drug increases risk of side effects. There was no difference in the incidence of agranulocytosis. However, skin rashes were more common in block and replace studies—10% for block and replace vs. 5% for titration (odds ratio [OR] 2.62; 95% confidence interval [CI] 1.20 to 5.75). More people withdrew because of side effects in the block and replace groups.

Treatment with thyroxine following antithyroid drugs was hypothesized to decrease autoantigen exposure and thus lower relapse rate. Three studies have combined thyroxine and low-dose antithyroid drug after initial stabilization with antithyroid drug. No difference in relapse rate was found. In three further studies, antithyroid drug was followed by
a period of thyroxine treatment. In these studies relapse rate was 31% in the thyroxine-
treated patients and 29% in those treated with placebo (not significant).
Thyrotoxicosis may temporarily worsen after 131I because of a combination of radi-
ation-induced thyroiditis and increased TBII. Severe exacerbation occurs in less than 1%. Antithyroid drugs are frequently used prior to 131I to achieve more rapid symptom con-
trol. There is no real proof that pre-treatment with antithyroid drugs prevents exacerba-
tion of thyrotoxicosis after treatment, but the increase in TBII is less marked, and
exacerbations may thus be less severe. 3 Resumption of antithyroid drugs after radioactive iodine achieves symptom control but does not alter the outcome. 4 Antithyroid drugs are
generally stopped 4–10 days before therapy and resumed 7 days after.

Genetics of Graves’ disease
Graves’ disease results from interaction between genetic and environmental factors. Up to
60% of patients have family history of autoimmune thyroid disease (AITD). About a
third of first-degree relatives will develop, or have developed, AITD, and around half will
be positive for autoantibodies. Concordance rates are higher for monozygotic twins than
for dizygotic twins. Genetic influences are thought to account for up 80% of the suscepti-
bility to Graves’ disease. 5

The human leucocyte antigen (HLA) complex located at chromosome 6p21 has three
classes of antigen:

- **class I**—HLA-A, B and C
- **class II**—HLA DP, DQ and DR
- **class III**—complement, tumour necrosis factor (TNF)-α, heat shock protein-70 and
 other immune regulatory genes.

This is a highly polymorphic region of the genome, conferring susceptibility to a range
of diseases. HLA-DR3 is the most useful marker. Among patients with Graves’ disease
40–50% are HLA-DR3 positive, compared with 15–30% of the general population.
Recent studies have identified associations with other HLA alleles, most notably
DQA1*0501. HLA is probably important in all ethnic groups, but the precise associations
in non-Caucasians differ from the above. Cytotoxic T lymphocyte antigen-4 (CTLA-4),
located at chromosome 2q33, is a costimulatory molecule involved in interaction
between T lymphocytes and antigen-presenting cells. At least four polymorphisms have
been identified and confer susceptibility to autoimmune endocrine disease. 6 Together,
HLA antigens and CTLA-4 confer around half the susceptibility to Graves’. Other candi-
date genes include immune regulatory genes, such as the vitamin D receptor, TSH recep-
tor and thyroglobulin.

Recent Developments
1. Wang *et al.*7 have shown that the A/G polymorphism at position 40 in exon 1 of
CTLA-4 may be a marker for relapse after antithyroid drug therapy. Early identifica-
tion of patients liable to relapse may allow us to target definitive treatment early.
2. The Nurses’ Health Study8 followed 115 109 women aged 25–42 over 12 years. The
incident diagnosis of Graves’ was 4.6 per 1000. Smoking was a risk factor (hazard ratio
Symptoms of thyrotoxicosis

FT₄, FT₃, and TSH
Anti-TPO, Anti-Tg, TRAB

Diagnostic doubt
Suspicious goitre
Isotope scan*

Graves' diagnosed

Severe hyperthyroidism
Large goitre
High risk (e.g. cardiac failure)

Stabilize with ATD

Definitive treatment:
¹³¹I (severe or high risk)
Surgery (large goitre)

Mild or moderate hyperthyroidism

CBZ 20–60 mg/day
MMI 5–30 mg/day
PTU 100–300 mg/day

Monitor every 4–6 weeks, decrease dose as euthyroidism achieved

Maintenance for (12/12), e.g. CBZ 5 mg OD

Relapse

Definitive treatment (Usually ¹³¹I)

2nd course ATD

Remission

Monitor 3/12 for 1st year then annually

Fig. 1.1 Use of antithyroid drugs. *Scan with technetium-⁹⁹m pertechnetate or iodide. ATD = antithyroid drugs; CBZ = carbimazole; MMI = methimazole; PTU = propylthiouracil; Tg = thyroglobulin; TPO = thyroid peroxidase; TRAB = TSH receptor antibodies.
Obesity was associated with lower risk of Graves’—hazard ratio for individuals with body mass index (BMI) greater than 30 kg/m² was 0.68 (95% CI 0.49 to 0.92).

Colour Doppler sonography may be useful in diagnosis of thyroid disorders. This is a safe, non-invasive technique to assess blood flow in the thyroid arteries. Results correlate highly with thyroid volume and function. In a preliminary study, thyroid blood flow at baseline was highly correlated with outcome after 14 months of antithyroid drug therapy. Relapse could be predicted with a sensitivity of 71% and specificity of 100%.

Conclusions

Initial investigations should include thyroid hormone, TSH and thyroid antibodies, including TBII. Full blood count and liver tests should be requested at baseline and at intervals in patients taking antithyroid drugs (Figure 1.1). Thyroid scanning is not routinely warranted unless there is doubt about the diagnosis. Antithyroid drug treatment is usually the first line treatment. Radioactive iodine has been increasingly used in recent years. There is no evidence of teratogenicity. Obviously, it is absolutely contraindicated during pregnancy and most endocrinologists would avoid its use within 6–12 months of conception. The above patient should not be overly concerned about the implications of the disease for her children although, if female, they will inherit a roughly one in three lifetime chance of developing AITD.

Further Reading