Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery

Diaz-Pulido, Guillermo, McCook, Laurence, Dove, Sophie, Berkelmans, Ray, Roff, George, Kline, David I., Weeks, Scarla, Evans, Richard D., Williamson, David H., and Hoegh-Guldberg, Ove (2009) Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery. PLoS ONE, 4 (4). - .

[img]
Preview
PDF (Published Version)
Download (656Kb)
View at Publisher Website: http://dx.doi.org/10.1371/journal.pone.0...

Abstract

Background: Coral reefs around the world are experiencing large-scale degradation, largely due to global climate change, overfishing, diseases and eutrophication. Climate change models suggest increasing frequency and severity of warming-induced coral bleaching events, with consequent increases in coral mortality and algal overgrowth. Critically, the recovery of damaged reefs will depend on the reversibility of seaweed blooms, generally considered to depend on grazing of the seaweed, and replenishment of corals by larvae that successfully recruit to damaged reefs. These processes usually take years to decades to bring a reef back to coral dominance.

Methodology/Principal Findings: In 2006, mass bleaching of corals on inshore reefs of the Great Barrier Reef caused high coral mortality. Here we show that this coral mortality was followed by an unprecedented bloom of a single species of unpalatable seaweed (Lobophora variegata), colonizing dead coral skeletons, but that corals on these reefs recovered dramatically, in less than a year. Unexpectedly, this rapid reversal did not involve reestablishment of corals by recruitment of coral larvae, as often assumed, but depended on several ecological mechanisms previously underestimated.

Conclusions/Significance: These mechanisms of ecological recovery included rapid regeneration rates of remnant coral tissue, very high competitive ability of the corals allowing them to out-compete the seaweed, a natural seasonal decline in the particular species of dominant seaweed, and an effective marine protected area system. Our study provides a key example of the doom and boom of a highly resilient reef, and new insights into the variability and mechanisms of reef resilience under rapid climate change.

Item ID: 9672
Item Type: Article (Refereed Research - C1)
Additional Information:

Copyright: © 2009 Diaz-Pulido et al. "This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited."

ISSN: 1932-6203
Date Deposited: 01 Apr 2010 04:27
FoR Codes: 05 ENVIRONMENTAL SCIENCES > 0501 Ecological Applications > 050101 Ecological Impacts of Climate Change @ 50%
06 BIOLOGICAL SCIENCES > 0602 Ecology > 060205 Marine and Estuarine Ecology (incl Marine Ichthyology) @ 50%
SEO Codes: 96 ENVIRONMENT > 9603 Climate and Climate Change > 960305 Ecosystem Adaptation to Climate Change @ 100%
Citation Count from Scopus Scopus 63
Downloads: Total: 29
Last 12 Months: 2
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page