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Summary. In this paper, a two-dimensional analytic series solution for groundwater flow
with a free water table condition is derived and demonstrated on a two-layer unconfined
aquifer with complex (i.e., natural) stratigraphy. The vertical side and bottom boundaries
of the model domain are impermeable, and the water table is a free-boundary condition
governed by both Dirichlet and Neumann conditions. Unlike previous investigations, the
problem is complicated by the possible intersection of the water table with interfaces
between different materials. This challenge can be overcome by intelligently revising
the analytic series solution approach previously developed by the authors. The series
coefficients are calculated through a least-squares method which minimizes errors. Tests
cases are used to demonstrate the effects of both system geometry and lower aquifer
conductivity upon the shape of the water table surface.

1 INTRODUCTION

The following paper addresses an amendment to the two-dimensional series solution
techniques of Wong and Craig1 whereby the water table surface is treated using a free-
boundary condition (FBC) subject to a specified recharge/discharge distribution. This
solution method is used to determine the influence of two factors upon the geometry of
water table in a two-layer unconfined aquifer: the conductivity contrast between the layers
and the geometry of the base.
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2 BACKGROUND

The earliest appearance of an analytical series solution for groundwater flow is the
one-layer system model of Tóth2, where the topographic surface is used as the driver
of regional flow in a two-dimensional rectangular region with no-flow conditions along
the sides and bottom of the modeled domain. This solution was extended to an aquifer
with uniform layers of different isotropic hydraulic conductivities and an arbitrary topo-
graphic surface by Freeze and Witherspoon3, though the solution was still restricted to a
rectangular geometry. Recent advances in analytical series solution approaches by Read
and others4, 5, 6, 7, 8, 9 have relaxed previous restrictions on geometry through the use of a
least-squares (LS) approach. This least-squares series solution method has been applied
to single-layer aquifer systems with variable elevation at the top and bottom boundaries,
and later amended to handle a FBC subject to vertical recharge7. A similar LS approach
has been developed by Craig10 to address the effects of an arbitrary number of multiple
parallel or syncline layers and anisotropic layer properties. The recent model by Wong
and Craig1 extends the series solution approach to the problem of groundwater flow in
a multi-layer aquifer with complex geometry, where each of the layer interfaces may be
described by arbitrary functions.

While the method of Wong and Craig1 was successfully applied to multi-layer aquifers
with relatively complex geometry, the approach was still constrained by the assumption
of a fixed water table, assumed to be known a priori. Here, this oversight is corrected
through the use of an iterative algorithm used to identify the location of the water table
when subjected to a specified recharge/discharge distribution in space. The algorithm is
similar to that of Gill and Read 7, but here used to investigate the behavior of the FBC
in multilayer systems.

3 PROBLEM STATEMENT

For simplicity, the stratified aquifer is subdivided into only two layers, indexed down-
ward from m = 1 to m = 2, each with uniform conductivity, km, as shown in Fig.1.
The top layer is bounded by the curve z1(x) above and z2(x) below, where here the term
unconformity is used to refer to the interface between two layers of differing hydraulic
properties. The second layer is bounded by curves z2(x) and zb(x). The bottom (zb(x))
and sides of the aquifer (x = 0 and x = L) are impermeable and the top of the aquifer,
z1(x), is subject to the free boundary condition.

With the exception of the FBC, the problem posed is precisely that of Wong and Craig
1, and the solution may be expressed in terms of a potential function Φm = h/km in
each layer. From Darcy’s law and a mass balance on water, each potential function must
satisfy the Laplace equation:

∇2Φm = 0 for m=1,2 (1)
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Figure 1: Layout of the general problem. Here, 2 contiguous layers are separated by the unconformities
z2(x), with zb(x) corresponding to the bottom no-flow boundary and z1(x) corresponding to the top free
boundary. Each layer has a unique value of hydraulic conductivity, km.

A normal head gradient of zero is imposed both on the sides and bottom of the domain:

∂Φ2

∂η
(x, zb) = 0

∂Φm

∂x
(0, z) =

∂Φm

∂x
(L, z) = 0 for m=1,2 (2)

where L is the domain length and η is the direction normal to the bottom boundary.
The final boundary condition imposed is a mixed Dirichlet-Neumann condition along the
water table, assumed not to intersect the ground surface:

∂Φ1(x, z1)

∂η
= R(x) (3a)

Φ1(x, z1(x)) = k1z1(x) (3b)

where R(x) is the specified recharge/discharge distribution. For both of these conditions
to be met, the surface location z1(x) must be identified, the primary goal of the algorithm
described in this paper. Note that the solution to the above partial differential equation
with these boundary conditions is not unique, so the head is here fixed to a specified value
at the intersection of the water table and the left boundary. Also, for global water mass
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balance to be conserved without introducing singular behavior at the point of fixed head,
the net recharge through the water table is here required to be zero.

The flow solution is assumed to be in the form of a series solution, obtained through
the method of separation of variables:

Φm(x, z) =
N∑
n=0

cos(ωnx)(amn e
ωnz + bmn e

−ωnz) (4)

where N is the number of terms in the series, and amn and bmn are the series coefficients
associated with the mth layer. Solution of this form satisfy the governing equation (Eq.
1) by definition and satisfy the side no-flow conditions by choosing ωn = nπ

L
for all n.

As described by Wong and Craig1, the coefficients amn and bmn can be calculated to satisfy
the head and flow continuity conditions across the unconformity and no-flow conditions
along the bottom of the modeled domain (Eq. 2). In addition, the Dirichlet condition
can here be replaced by the Neumann condition of Eq. (3). For any given guess of z1(x),
here denoted with the superscript r, the series solution coefficients are obtained through
minimizing the sum of square errors (SSE) in the continuity and boundary conditions
along all of the interfaces at a set of NC control points per interface. This task merely
involves the solution of a linear system of equations. The complete system of equations
can be found in Wong and Craig1, with the lone revision of the Neumann boundary
condition, such that the SSE from the top boundary becomes:

SSE1 =
NC∑
i=0

(∂Φ

∂η

∣∣∣
(xi,z1(xi))

−R(xi)
)2

(5)

4 ITERATIVE ALGORITHM

With the solution approach for any fixed guess of water table elevation zr1(x) in hand,
an iterative algorithm must used to intelligently update the elevation of the water table.
Following Gill and Read 7, the initial guess for the water table is uniform. The updated
water table is found by solving for the coefficients as discussed above, then setting the
new surface elevation at all of the control points equal to the head along the water table
at the same x location, i.e.,

zr+1
1 (xi) =

Φ1(xi, z
r
1(xi))

k1

(6)

Where Φ1 is calculated using Eq. (4) with the most recent coefficient values. Note that
the water table need not be explicitly represented by a continuous function; it is sufficient
to store only the locations of the control points along the water table surface. Tangents
to this surface, as needed for the proper calculation of the system of linear algebraic
equations for the next iteration, are calculated using the continuous form of the solution
in terms of discharge potential, which is analytically calculable, i.e.,

∂zr+1
1

∂x


xi

=
1

k1

∂Φ1(xi, z
r
1(xi))

∂x
(7)
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The water table process is repeatedly updated in this manner until the Dirichlet condition
of Eq. (3) is met to an acceptable degree, here considered to be the case when the error in
water table elevation (eloc) is below some user-specified tolerance. This error is calculated
as:

eloc =

√√√√NC∑
i=0

(
z1(xi)−

Φ1(xi, z1(xi))

k1

)2

(8)

5 ANALYSIS

5.1 Example 1: Various flow nets with different recharge distributions

The groundwater flow solutions are first varied under different arbitrary stratigraphy
and recharge distribution functions to illustrate the convergence properties of the algo-
rithm. As shown in Figure 2, the recharge functions are either linear or a combination
of trigonometric functions. The conductivities in each scenario are k1=1 md−1 and k2=5
md−1. The convergence for each of these cases is shown in Figure 3; rapid log-linear
convergence is seen in all cases, but varies with problem geometry.

(a) R(x) = 0.002 cos( 3πx
L

) (b) R(x) = −0.0002( 2x
L
− 1) (c) R(x) =

0.001−3 cos( 2πx
L

) sin( 4πx
L

)

Figure 2: Different recharge functions (top) applied to a 2-layer aquifer system with flow net (bottom).
Hydraulic conductivity for each layer is k1=1 md−1 and k2=5 md−1.

5.2 Example 2: Impact of hydraulic conductivity ratio

As a second example, the hydraulic conductivity ratio is varied (k1/k2=1/5, 1/10, and
1/50) while other characteristics of the aquifer remain the same. As shown in Figure 4,
although the flow distributions are similar in all scenarios, the water table becomes flatter
as the conductivity ratio (and effective hydraulic conductivity of the entire aquifer sys-
tem) is decreased. This is consistent with mounding behavior seen in lower-conductivity
single-layer unconfined systems, whereby an increase in hydraulic conductivity reduces
the steady-state water table gradient.
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Figure 3: Convergence of the algorithm for the test cases shown in figure ??

(a) k1/k2 = 1/5 (b) k1/k2 = 1/10 (c) k1/k2 = 1/50

Figure 4: Different water table elevation in a 2-layer aquifer system with R(x) =
0.002 cos(3πx/L) sin(3πx/L).

5.3 Example 3: Impact of arbitrary bottom boundary geometry

In the third example (shown in Figure 5), the aquifer system has a non-uniform bottom
boundary and the conductivity ratio between the two layers is fixed at 1 : 5. As listed in
Table 1, the absolute value of both head and flow errors are on the magnitude of 10−5m
and 10−5 md−1, respectively. One interesting feature of these solutions is that the water
table dips sharply where there is both extraction (i.e., R(x) < 0) and a shallow aquifer
base, as can be seen in Figures 5(a), 5(c), and (to a lesser extent) 5(e).

6 CONCLUSIONS

The results of the simulations run with series solution method show that three con-
trolling factors: the recharge distribution, the conductivity ratio, and the elevation of
a bottom boundary, all have certain degree of influence on the free water table. The
iterative algorithm developed here was shown to be quite efficient and accurate; conver-
gence was log-linear and errors were on the order of 10−5 m . Future extensions include
mixed boundary conditions where the water table (still treated using the free boundary
condition) can intersect both the unconformities and topographic surface.
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(a) z3 = 3.5 cos(πx
L

+ π)− 10 (b) z3 = −13.5 (c) z3 = −3.5 cos(πx
L

+ π)− 10

(d) z3 = −1 cos( 2πx
L

)− 9 (e) z3 = −2 cos( 2πx
L

)− 8

(f) z3 = 1 cos( 2πx
L

)− 11 (g) z3 = 2 cos( 2πx
L

)− 12

Figure 5: Groundwater flow distribution due to various bottom boundary, with R(x) =
0.001 cos(2πx/L) sin(4πx/L), and k1=1 md−1 and k2=5 md−1.
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