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*A set of re-usable ontologies has been developed as separate components within a Knowledge 

Representation (KR) system, to generically model a reef system.  The ontology design, ranging from light to 

heavyweight, aims to leverage from the scalable characteristics of Semantic technologies to allow for 

flexibility when posing domain and locality specific hypotheses, such as predicting coral bleaching.  The 

Semantic Reef project is an eco-informatics application designed to test ecological hypotheses to derive 

information about environmental systems.  The intention is to develop an automated data processing, 

problem-solving and knowledge discovery system that will assist in developing our understanding and 

management of coral reef ecosystems.  

Remote environmental monitoring (including sensor networks) is being widely developed and used for 

collecting real-time data across widely distributed locations.  As the volume of raw data increases, it is 

envisaged that bottlenecks will develop in the data analysis phases because current data processing 

procedures still involve manual manipulation and will soon become unfeasible to manage.  Ontologies 

provide a new approach and methodology for modulating this data overflow whilst also improving our 

ability to extract knowledge from the data collected.   
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INTRODUCTION 

Eco-informatics is an emerging branch of e-Research whereby new IT techniques and infrastructure are 

being developed to give ecologists far greater scope for problem solving at otherwise impossible scales and with 

data sets of a size not previously available.  With the predicted impact of climate change, and other 

environmental issues, these new cross-discipline tools are becoming crucial. 

Modern data gathering methods have seen the emergence of highly connected and efficient scientific 

instruments that produce vast quantities of data, sometimes referred to as a “data deluge” (Hey and Trefethen, 

2003).  In the earth and marine sciences, environmental sensor networks are being deployed to gather data in 

real-time, across widely distributed areas, for applications such as environmental and seismic monitoring.  The 

Integrated Marine Observing System (IMOS) - Great Barrier Reef Oceans Observing System (GBROOS) is one 

such infrastructure that uses sensor networks to remotely monitor chosen sites on the Great Barrier Reef (GBR) 

(IMOS, 2008).  When fully implemented, it is expected GBROOS and similar sensor network deployments, will 

produce vast amounts of real-time streaming data from a variety of domain specific sensors, including 

meteorological, chemical and biological.  This incalculable amount of sensed data is necessary in order to 

produce the new information needed to answer complex questions and expand knowledge that is vital for 

environmental management.   

The Semantic Reef project is an application of eco-informatics where collaborations between disparate 

disciplines and expertise have been effectively combined.  This project aims to streamline the data analysis of 

remotely sensed data from the Great Barrier Reef.  A primary goal is to balance the inevitable growth in sensed 

data streams with the capacity of individual researchers to benefit from the volume of data available.  Currently 

the platform combines emerging Semantic Web and scientific workflow technologies to access and infer 

information from unconnected datasets.  On completion, the Semantic Reef model will produce a tool for 

hypothesis-driven research and problem-solving methods, allowing for more efficient investigation methods of 

disparate data streams.  Ultimately, through coupling the disparate data to the ecological and environmental 

ontologies described herein, for querying and deriving inferences, may provide alerting for unusual domain-

specific events.   

One objective of the Semantic Reef is to improve the capacity to generate timely warnings of environmental 

conditions that are conducive to coral bleaching.  A hierarchy of re-usable light-weight to heavy-weight domain 

ontologies and usable application ontologies has been developed to present marine scientists, from around the 

globe, tools to test hypotheses and probabilities through enlisting a semantic “richness on demand” 
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FIGURE 1  Identifying any coral reef – Semantic building blocks (Davey et al., 2008).  

environment.  The level of granularity required, or the depth of the analysis, is flexible, scalable by design, and 

independent of location, reef type or standing stock.  The design purposefully separates the functionality and 

relationships, which are emulated in the integrated logic systems.  In particular it separates the Description 

Logics (DL) and Propositional logics from the instance data that make up a reef ecosystem.  Thus, the 

modularity permits changes of minor and major entities, within the model, to be made trivially, effectively 

supporting future propositions, queries and even changes in the relationships themselves. 

In this paper the domain specific problems relating to reef ecosystems are described with particular attention 

to coral bleaching.  The methodologies specific descriptions and justifications employed to create the hierarchy 

of ontologies that makeup the knowledge base and detailed exemplar applications are presented.  In conclusion, 

key lessons learned and their implication for future and related work is considered. 

THE CORAL REEF DOMAIN  

Globally, marine ecosystems face many pressures from both natural and human-induced stresses, and 

managing these threats requires major scientific insight and management coordination on a global scale.  Figure 

1 depicts a domain expert’s perspective of the core semantic constituents required to make up any arbitrary coral 

reef (Davey et al., 2008).   

According to the Australian Institute for Marine Science (AIMS), threats to Australia’s coral reefs fall into 

three categories (AIMS, 2007):  
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 natural stresses that they have evolved to cope with for millions of years;  

 direct anthropogenic pressures, including sediment and nutrient pollution from land run-offs, over-

exploitation and damaging fishing practices, engineering and modification of shorelines; and 

 global climate change or variability. 

Through studying the manifestations of global climate change in coral reefs, such as increased coral 

bleaching and coral disease, it has become clear that many threats are closely linked and may exacerbate each 

other (AIMS, 2008). 

The Great Barrier Reef (GBR) is the largest continuous coral reef ecosystem in the world and is a large 

contributor to Australia’s economy through fishing and tourism activities.  Covering an area of approximately 

348,000 square kilometres, and spanning ~2300 kilometres of Australia’s north eastern coast, the GBR is 

sometimes referred to as the single largest organism in the world; although in reality it is made up of many 

billions of tiny coral formations (GBRMPA, 2006).  There are a number of major reef management and research 

facilities located in close proximity to the GBR.  This proximity has allowed the authors convenient access to 

domain expertise when creating a use-case for trialling the Semantic Reef system.  Furthermore, the outcome of 

a particular test, for example forecasting a coral bleaching event or a crown-of-thorns outbreak, provides 

material that can be directly assimilated as a useful tool for supporting management decisions on the GBR. 

The collection of oceanographic and marine data is a complex and expensive process requiring significant 

scientific and technical infrastructure.  In addition the decisions about where and when to collect data are also 

problematic.  Accordingly it is important best use is made of all data collected and that the data is made 

available for subsequent reuse. 

It is important to note that coral reef studies are highly disciplinary and significant data reuse occurs in the 

literature. Similarly, the range of problems currently facing coral reefs is necessitating the use of larger multi-

disciplinary data sets and knowledge building in the search for solutions.  Many of the most influential papers in 

coral reef science of the past few years have been “synthesis” papers aggregating long-term observations into 

new hypotheses and conclusions.  One well known example of this new class of science would be the recent 

Inter-governmental Panel on Climate Change reports (IPCC) (IPCC, 2007). 

The Coral Bleaching Phenomena  

The impact of climate change on the GBR threatens this iconic wonder - climate change induced warming 

of ocean temperatures is a major contributor to the coral bleaching phenomena (Hughes et al., 2003).  Corals 

live in a symbiotic relationship with single-celled algae called zooxanthellae that live within the coral’s tissue at 
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FIGURE 2  The Semantic Reef workflow concept. 

very high densities.  Coral bleaching results from a stress condition in coral that induces a breakdown of the 

symbiotic relationship between coral and zooxanthellae. 

The long-term survival of both organisms is reliant on this symbiosis.  The zooxanthellae reside in the coral 

animal’s tissue and in exchange they provide energy-rich sugars via photosynthesis, and some nutrients which 

augment other potential food sources for the coral.  Also, the photosynthetic pigments from the algae give corals 

their brilliant colours.  Reef corals have a distinct thermal range for growth and survival such that they become 

stressed and may die when this is exceeded.  When water temperatures exceed the upper thermal tolerance value 

for a species in a given habitat it can lead to stress, which causes the coral to expel the zooxanthellae leaving the 

white skeleton of the coral exposed, giving it the bleached white appearance.  Bleaching is potentially fatal 

depending on the duration of the stress and the occurrence of other simultaneous influences such as light 

intensity, nutrients, sediments and pollutants (Hughes et al., 2003). 

BACKGROUND – THE SEMANTIC REEF PROJECT 

The Semantic Reef Project is a platform designed as a hypothesis tool for research on reef eco-systems 

(Myers, Atkinson, and Lavery, 2007).  This Knowledge Representation (KR) system employs Semantic Web 

methodologies and scientific workflow tools to access a range of datasets for automated processing (Figure 2).  

The data is routed through the workflow and mapped to the ontologies contained in the knowledge base for 

querying and/or hypothesis testing.  Ultimately, this system will assist in the automated synthesis and analysis of 
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autonomously collected streams of data, for example, the volumes of data being produced by remote observing 

instruments.  Our initial trials have involved first validating and then demonstrating the system.   

To test and validate the Semantic Reef system, datasets were needed along with a well researched topic.  

The coral bleaching problem was an appropriate test case to ground-truth the architecture, as the datasets 

relevant to the historic findings, and observations by experts in the field, were readily available.  The validation 

entailed a reverse-hypothesis methodology that ground-truthed the knowledge base against known historic 

events, specifically, the 1998 and 2002 mass bleaching occurrences.  Data sets used in the prior research were 

imported to the knowledge base to hind-cast coral bleaching events using common bleaching indices, fashioned 

as inference rules or queries, to be compared to the actual historic outcomes (Myers, Atkinson, and Maynard, 

2007).  Then, expanding on the validation process, current data was used to predict a potential bleaching event. 

The Semantic Web Component 

Semantic Web technologies allow for a flexible scalable environment to model worldly concepts in a way 

that is “understandable” to the machine (Antoniou and van Harmelen, 2004).  Ontologies are the foundation of 

these technologies, and within the context of this paper, are descriptions to represent both abstract and specific 

concepts.  Each domain's vocabulary and the terms that describe the entities within (and the relationships they 

have with each other), are defined using axioms and restrictions that constrain the interpretation for use by the 

computer, making the concept machine-processable (Guarino, 1997).   

Once data and information are interpretable by a machine Semantic technologies enable the machine to 

make intelligent decisions, based on conclusions derived through logic systems such as Description Logics (DL) 

and inference rules (Antoniou and van Harmelen, 2004).   

DL’s are sets of logical statements to describe relationships and parameters of a concept.  They can be used 

to reason over classes and individuals to infer equivalencies, assumptions and subsumptions; for instance, 

between the reef communities standing stocks (e.g., Acropora from one database is equivalent to Staghorn coral 

in another).  The DL reasoning engines used in this project are †Pellet, ‡Racer PRO and §FaCT++ as 

implemented through the Protégé ontology editors (Protégé, 2009).   

An environment that supports suppositions is enabled with utilities such as the Semantic Web Rules 

Language (SWRL) and the SWRL query language (SQWRL pronounced “squirrel”).  SWRL manages inference 

                                                        

† http://clarkparsia.com/pellet/ 
‡ http://www.racer-systems.com 
§ http://owl.man.ac.uk/factplusplus/ 



7 

using horn-like rules, which is a subset of predicate logic (first-order logic), and is orthogonal to description 

logic.  The SWRL rules can define the hypotheses posed by marine researchers, as many hypotheses can be 

fashioned in the syllogistic format of a Horn clause.  The SWRL rules are passed to the **Jess inference engine 

for inferring over the ontology instances, directly or using the “SWRL to Jess bridge” component of Protégé 

(O'Connor et al., 2005).   

SQWRL queries are used when there is a need for aggregation or selecting and counting functionality.  

SWRL only supports monotonic rules and therefore cannot be used to modify information in an ontology, such 

as, removing a value or updating a current value (commonly required for aggregation).  If a SWRL rule 

modifies the current axioms already defined in an ontology, non-monotonicity would ensue (O'Connor et al., 

2007).  Aggregation operators are problematic as they are not DL-safe constructs, so they cannot be used as 

antecedents in SWRL rules.  SQWRL is a query language that operates over OWL forms and is based on the 

notion of DL-safe rules (Motik et al., 2005).   

The Web Ontology Language (OWL), which is the W3C’s recommended specification (McGuinness and 

van Harmelen, 2004), has three different varieties: OWL Lite, OWL DL and OWL Full, each providing 

different levels of logical expressiveness.  All inferences available in an OWL-Lite or OWL DL ontology can be 

computed using the reasoning engine because the logical semantics of OWL DL (and Lite, which is a subset of 

DL) are based on DL.  In contrast, ontologies in OWL Full are not decidable, and have insufficient application 

reasoning support available.  Therefore, the ontology design within this project was maintained in OWL DL or 

Owl Lite to maximise the reasoning and inference functions of the logic systems.  

The Scientific Work Flow Component 

To date there have been few examples of semantic knowledge bases being connected to streaming data 

services  This is a consequence of the software implementations and not intrinsic to this model.  For this purpose 

the Kepler/Ptolemy workflow engine was employed to access streaming data services and populate the KR 

system (Atkinson et al., 2007).  Scientific workflow technologies and tools, such as the Kepler system used 

here, are adaptive software programs to capture complex analyses in a flow of which the data is taken through 

one analytical step after another (Altintas et al., 2004).  In the Kepler system each of these workflow steps are 

represented by an “actor”.  The workflow actors provide access to the continually expanding amount of 

                                                        

** http://herzberg.ca.sandia.gov/jess/ 
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geographically distributed data repositories, computing resources, and workflow libraries and also compute 

menial operations such as determining averages or data manipulation prior to populating the knowledge base.  

ONTOLOGIES TO REPRESENT ANY REEF ECOSYSTEM 

The Importance of the Open World Assumption 

Semantic technologies support the Open World Assumption (OWA), which allows for added flexibility to 

model concepts that can conceivably change, such as an ecosystem.  The OWA means what cannot be proven to 

be true is not automatically false, it assumes that the knowledge of the world is incomplete (Horrocks et al., 

2003).  Therefore, what is not stated is considered unknown, rather than wrong; it simply assumes the extra 

information needed has not, as yet, been added to the knowledge base (Rector et al., 2004).   

Science, in general, moves forward by maintaining an OWA, that is, nothing is false until explicitly proven 

thus.  Traditional data base implementations such as relational data bases are required to maintain a closed 

world assumption, that is, everything that is known about the world exists within the boundaries of the data 

base.  This creates a mismatch between the researchers need to remain open to new discoveries and the current 

technological capabilities for flexibility and scalability (Page, 2008).  When there is a change in relationships 

within a conceptual world due to a new discovery or fact, which is quite feasible in a marine biology domain, 

modifications to these relationships can be easily accomplished in OWL ontologies, as they are designed with 

an OWA.   

In the marine biology domain there is a great need for multi-scalability.  As the relationships within an 

ecosystem can change depending on research findings and/or defeasible current knowledge, the capacity for 

flexible modifications in lieu of new developments is very important.  The OWA allows for a certain degree of 

flexibility when applying queries across domains where not all is explicitly proven knowledge.  An OWA is 

considered implicit, that is, every tuple not explicitly contained in the ontology is implicitly assumed to 

represent a fact that is unknown, rather than false. 

The Design Methodology 

Concepts can be modelled through ontologies in a variety of ways and varying degrees of granularity.  The 

most common types of ontologies are the general or common ontologies, top-level or upper-level ontologies, 

domain ontologies, task ontologies, domain-task ontologies, method ontologies and application ontologies all 

serving different functions.  The type of ontology to build is determined purely by the extensibility and 

expressiveness required, in conjunction with what information or knowledge the ontology is designed to 
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FIGURE 3  The hierarchical ontology design – from light-weight to heavy-weight. 

produce.  The more complex the ontology, the more prone it is to inconsistencies and the higher the restriction 

on flexibility and reusability independent of applications (Gomez-Perez et al., 2004).  

The Semantic Reef knowledge base consists of a hierarchy of ontologies, from light-weight through to 

heavy-weight, in a modular design that is developed to describe coral reef ecosystems (Figure 3).  There are 

numerous published ontology engineering methodologies available to assist in the representation of knowledge.  

The choice of methodology or combination of methodologies is dependent on the purpose of the knowledge 

base (Gomez-Perez et al., 2004; Corcho et al., 2003).  The aim of the Semantic Reef ontological architecture 

was to maximise re-usability and usability simultaneously through the separation of concept definitions, 

instance data and rules.   

A hybrid of design methodologies was adopted to create the knowledge base.  The main elements include 

the seven step knowledge engineering methodology (Noy and McGuinness, 2001), Uschold and King’s (1995) 

three strategies to indentify concepts and the Developing Ontology-Grounded Methods and Applications 

(DOGMA) approach (Jarrar and Meersman, 2008).  The first and second are a generic set of guidelines to 

construct ontologies of any concept and were used for the intra-ontological development.  The third offers a 

strategy that focuses on ontology reusability verses ontology usability and was adopted for the inter-ontological 

development process employed here.   
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The Intra-Ontology Development Methodology 

The seven step ontology development guideline is a methodology for creating ontologies based on 

declarative knowledge representation systems (Noy and McGuinness, 2001).  The systematic steps begin with 

the declaration of the scope and domain vocabulary and finish with the creation of classes, properties, property 

restrictions and instances.  As the individual ontologies were developed from the functional coral reef model in 

Figure 1, the steps in this method allowed for collaboration with domain experts.  

The class hierarchies of the individual ontologies were developed using both middle-out and top-down 

approaches.  The three strategies for identifying the main concepts in an ontology are: The top-down approach, 

which identifies concepts from the most generalised to the most specific; the bottom-up approach, which is the 

opposite (i.e., most concrete to the most abstract); and the middle-out approach, where the most relevant concept 

is identified first and then generalized and specialized (Uschold and King, 1995; Uschold and Gruninger, 1996).   

The approach chosen to model the separate ontologies was dependant on the domain knowledge and the 

complexity of the reef ecosystem concept.  For example, a top-down approach was taken when developing the 

“reef” plant and animal taxonomy because cataloguing from kingdom to species in both scientific and common 

names affords a natural rising.  Other ontologies were designed using the middle-out approach, for instance, the 

“Human Influence” ontology, where the biological, chemical or physical influence could be declared and 

systematically specialised (type, frequency and intensity) and generalised (deliberate or accidental).   

The Inter-Ontology Development Methodology 

The DOGMA strategic approach was adopted for the inter-ontology development.  DOGMA is a 

methodological ontology engineering framework that divides an ontology into two specific axiomatization 

concepts: domain and application axiomatizations (Jarrar and Meersman, 2008).  The domain axiomatization is 

concerned with characterizing the respective meaning of the domain vocabulary; in contrast, the application 

axiomatization is concerned with how the vocabularies are to be used.  Specifically, the more emphasis put on 

application perspectives the higher the usability and the more emphasis on independence from application 

requirements the higher the reusability.   

The philosophy of the DOGMA methodology was adaptable to the goals of the Semantic Reef ontology 

base.  According to the DOGMA approach, the separation of the domain knowledge from the application or 

domain tasks would maximise reuse and usability.  Therefore, the ontologies within the Semantic Reef 

architecture are imported from the lowest layers upwards with two distinct levels: the reusable domain 

ontologies and the usable domain task and method ontologies (Figure 3).   
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The implementation of the DOGMA philosophy effectively separated the domain (reusable) ontologies (i.e., 

the coral reef ontology) from the higher application (usable) domain-task ontologies (i.e., the specific reef 

hypotheses) (Figure 3).  The reusable components of the ontology base consist of the “Coral Reef” generic 

ontology, which imports all lower ontologies and maintains OWL DL axioms for richer relational descriptions 

that are indicative of any coral reef.  A domain-task ontology (e.g., GBR.owl, Moorea.owl, Bahamas.owl, etc) 

would import the “Coral Reef” ontology and be populated with instance data pertinent to the specific reef 

system and hypothesis.  For example, posing questions of the sensor data fed from the GBROOS Davies Reef 

weather station on the GBR or the Coral Reef Environmental Observatory Network (CREON) group conducting 

research in the French Polynesians.  The elements and classes of the generic “Coral Reef” domain ontology 

would be the same for either location; however, the instance data and rules of the application ontologies, at the 

usable level of the hierarchy, would differ (i.e., the “GBR” and “Moorea Island” application ontologies, 

respectively).   

The resulting hierarchical formation of the knowledge base is a bottom-up physical architecture (Figure 3), 

not to be confused with Uschold and King’s (1995) strategy for design.  The physical flow consists of the lower 

light-weight ontologies being imported to the more complex DL ontologies and then the task-specific 

application ontologies employ the reusable coral reef ontology base beneath.  Where finally, finely detailed 

inference rules can be written to the system, as propositions, to infer conclusions about a specific issue on a 

particular reef, regardless of location (e.g., a coral bleaching watch on the GBR or coral spawning events on the 

Moorea Island reefs).  

The Ontologies  

The reuse of existing ontologies was considered and applied where appropriate.  Initially, the strategy here 

was to structure the Semantic Reef knowledge base on the model supplied by the domain experts (Davey et al., 

2008).  The functional coral reef model (Figure 1) was utilized as semantic “building blocks” when applying the 

methodological steps to build the intra and inter-ontology framework.  To date the temporal ontology developed 

at Stanford University for use in the SWRL rules is implemented (O'Connor et al., 2006) and the future 

development of the ontology knowledge base will incorporate other common ontologies for integration to the 

system.   

Currently, the individuals of the knowledge base are temporal instances of a reef, with quantifiable data 

asserted for that moment in time and place.  Therefore, data-type properties are the appropriate choice in 

expressing the quantifiable values of the environmental elements (e.g., SST, pH, etc).  Many pre-existing 
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ontologies were not suitable for usage at this stage of the development.  For example, the common ontologies 

investigated to describe quantifiable concepts such as units of measurement express the variety of units as 

individuals and not data-type properties (NASA, 2009; SEEK, 2009).   

The Light-Weight Ontologies  

The base level “reef” ontology is designed for maximum reusability.  It describes a taxonomy written in 

OWL-Lite that lists the plant and animal vocabulary of the coral reef domain in both scientific and common 

names.  The only constraints used in this ontology are the equivalency and subclass axioms, which explicitly 

state the equality relationship and taxonomic hierarchy between the phylum and family names with the common 

names.  Adding in the structured scientific names and the common names is required for flexibility when using 

disparate datasets to populate the knowledge base with standing stock.  That is, accessing prewritten species 

databases that are listed in different perspectives (i.e., common names versus phylum, etc.) will be 

inconsequential, as the reasoning engine will subsume instances to multiple superclasses.  For example, 

“Scaridae” in one database, such as the CSIRO Data Centre (CSIRO, 2008) might be “parrotfish” in another, 

where upon classification, the instances will belong to both classes automatically.  The end users perspectives, 

needs and knowledge of the domain, and the types of queries and inferences required, could be vastly different 

or unknown, at this time, therefore it is important to bridge disparate schemas.  

Organisations exist where the primary focus is the standardization of data and metadata produced in marine 

research.  A seminal example is the Marine Metadata Interoperability (MMI) project, which is an NSF funded 

initiative that aims to “promote the exchange, integration and use of marine data through enhanced data 

publishing, discovery, documentation and accessibility” (Stocks et al., 2009).  The MMI lays a foundation, via a 

comprehensive set of guides, for scientists and data managers to follow when creating metadata.  The MMI site 

hosts a list of accessible controlled vocabularies pertaining to biological taxonomies concepts and there are e-

Science endeavours to defragment the biological taxonomies that are currently spread both online and through 

ink-on-paper publications (Page, 2006; Clark et al., 2009).  Currently there are millions of biological names 

indexed by the ††Universal Biological Indexer and Organiser (uBio), for example, over 1,140,000 in the 

Animalia Kingdom alone.  In ‡‡Fishbase, a global information system about fish, there are 31,100 species and 

276,100 common names logged.  A non-comprehensive list of species was declared to form the controlled 

                                                        

†† http://www.ubio.org 
‡‡ http://www.fishbase.org 
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vocabulary as a sample of the available taxonomies.  To date there are 360 classes of scientific and common 

names, which is extendable with simple additions to the KB. 

The three main quantifiable environment elements are the temperature regime, water chemistry and light 

quanta.  To describe factors that are significant to these environmental regimes requires only simple data-type 

properties (i.e., integer, floats, strings, etc) that state, for example, Sea Surface Temperature (SST), humidity 

percentile, pH level, among others.  The elements are defined in the informal OWL Lite ontologies in order for 

the Kepler workflow to populate with historic or real time data, for instance, SST taken from the §§GBROOS 

sensors or salinity from the Australian Bureau of Meteorology’s ***BLUElink, at a given timestamp.  

The Heavy-Weight Ontologies 

To describe the intricate, multi-scale relations involved in a coral reef ecosystem, such as human influences 

or the trophic layers, OWL-DL was used.  There are many principles within the Semantic technology standards 

that must be adhered to in order to employ all of the complex logic levels available within the languages and 

current tools.  For example, if an ontology is to remain straightforward, for reasons of reusability, without the 

added complexity of the logic systems, it is prudent to maintain a light-weight or informal ontology (i.e., written 

using RDF or OWL-Lite).  However, due to the limitations in expressiveness available at this knowledge 

representation level, the reasoning capacity of the classifiers is diminished.  Richer descriptions of concepts, 

using axiomisations and quantifications, is made available in DL and used by the classifiers to automate the 

inferred subsumption of classes and/or instances. 

The “Human Influence” ontology illustrates one such complex ontology.  The development of an ontology 

to describe human influences on coral reefs was not a trivial task, especially when designing to maximise 

scalability and flexibility for future unknown queries, propositions or additions.  Coral reefs can be affected by a 

variety of human influences, which can be categorised as biological, physical or chemical.  The “Human 

Influence” ontology was fashioned as a matrix consisting of occurrences and the levels of severity for each of 

these influence types.  The main factors of each influence type are intensity, frequency and extent, which were 

expressed so each instance could be categorised and subsumed to a degree of extent from minimal to maximal 

severity.   

                                                        

§§ http://www.imos.org.au/nodes/great-barrier-reef-observing-system.html 
*** http://www.bom.gov.au/bluelink/ 
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14 

 

Specifically, the “Intensity”, “Frequency” and “Influence_Type” classes of the “Human Influence” ontology 

were created as enumerated classes.  Where “Intensity” and “Frequency” were filled with individuals from low 

to high, and the “Influence_Type” class was filled with predefined individuals of biological, physical and 

chemical.  Subsequently, the minimal to maximal affects were created as subclasses of “Influence_Extent”, 

where class axioms of necessary and necessary and sufficient conditions were explicitly stated to allow for the 

automated reasoning (refer Table 1).  For example, to belong to the class “Chemical_Biological_Affect_Bad”, a 

subclass of “Maximal_Affect” the conditions state: 

Chemical_Biological_Affect_Bad ⊑  

hasHumanInfluence  Biological_Influence 

hasHumanInfluence  Chemical_Influence 

hasHumanInfluence  (Biological_Influence ⊔ Chemical_Influence) 
hasInfluenceType ∋ Biological 
hasInfluenceType ∋ Chemical 
hasFrequencyOf ∋ High_Frequency 
HasIntensityOf ∋ High_Intensity 

On populating the Influence class with instances, properties such as “hasIntensityOf” and 

“hasFrequencyOf” are filled, dependant on the pre-processing triggers from the Kepler workflow (e.g., a highly 

frequent value can be determined as the data is presented in real-time).  Therefore, following classification by 

the reasoning engine, all influence instances (such as a dredging, scientific experiment, pollution, flumes, etc) 

will be automatically categorised to the severity of the affect. 

Knowledge Base Statistics 

Currently the Semantic Reef KB is comprised of the reusable domain ontology (Coral Reef) and domain-

task ontology for the GBR (Coral Reef GBR) and the current statistics for these ontologies is depicted in Table 1.  

TABLE 1 – Current statistics for the reusable and usable ontology base used to demonstrate hypothesis testing on the GBR 

 Named Classes Properties  

Ontology Level Primitive Defined Object Data type Restrictions 

Coral Reef Domain (reusable) 343 92 25 45 171 

Coral Reef GBR Application (usable) 388 92 25 45 351 

       

USE CASE EXAMPLES 

The Validation of the Semantic Reef Architecture using Thermal Stress Indices 

In the late summer (February and March) of 1998 and 2002, two mass bleaching events occurred in the 

GBR and Coral Sea off the coast of Australia.  The historical records of the remotely sensed SST were measured 

by Advanced Very High Resolution Radiometer (AVHRR) from the satellite platforms of the U.S. National 
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Oceanic and Atmospheric Administration (NOAA) (Gleeson and Strong, 1995) and the historic analyses 

conducted using these records were to determine the extent to which bleaching severity could be attributed to 

the different measures of thermal stress.   

The work and studies carried out on these events offered relevant building blocks and information in which 

to populate the ontologies used herein.  In particular, the stress factor most commonly associated with bleaching 

of elevated sea surface temperature (Marshall and Schuttenberg, 2006), so data was acquired through the Great 

Barrier Reef Marine Park Authority (GBRMPA) for use in the initial validation test.   

Two common metrics currently used to forecast possible bleaching events include, among others, the SST 

anomaly (SST+) and Degree Heating Days (DHD) (Berkelmans et al., 2004; Maynard et al., 2008).  Where 

SST+ is calculated as the number of °C above the Long-term Mean Summer Temperature (LMST) for that 

location and a DHD describes the accumulation of thermal stress.  Where one DHD is calculated as one degree 

above the local LMST for one day and two DHDs is either two degrees above the local LMST for one day, or 

one degree above LMST for two days and so forth.   

The validation entailed a reverse-hypothesis method that ground-truthed the outcome of the system against 

actual historical events.  SWRL rules were created to simulate the SST+ metric and infer a bleaching event 

based on the degree of the anomaly.  The SST anomaly ranges from category one to category five depending on 

the number of degrees above LMST.  Therefore, the antecedents of the rules compared the daily average SST 

against the LMST and inferred any temporal instance belong to a class of bleach watch categories.  SQWRL 

queries were required to determine the summer DHDs because aggregation was necessary for this metric to sum 

the summer anomaly values.   

The results from the rules and the queries were compared to the data and research from the 1998 and 2002 

mass bleaching events (Myers, Atkinson, and Maynard, 2007).  The coral reef instances that had been inferred, 

through rules, to belong to a particular categorical bleach alert class, and the outcome of the DHD SQWRL 

queries were matched to the historic events to confirm accuracy.  On completion of this experiment it was found 

that the instances that were expected to be members of the bleach risk classes were in fact correctly allotted.  

For example, the individuals from late January 1998 were sent to the lower risk bleach alert classes, then as the 

temperature intensified through the February period these individuals were inferred to the bleach watch 

categories.  The system can now act as an alternative method for fore-casting bleach alerts based on spatial SST.   



16 

 

 

FIGURE 4  A Kepler workflow for streaming data from Davies Reef sensors into the Knowledge Base 

Predicting a Bleaching Event with Remotely Sensed Data  

The capabilities of the Semantic Reef system are presently being tested to infer a coral bleach warning with 

current SST data.  The data used includes spatial data from NOAA (Gleeson and Strong, 1995) and real time 

SST data being streamed from the Davies Reef, Cleveland Bay and Myrmidon Reef monitoring sites 

(Kininmonth et al., 2004).  The data was available from the weather observing system, which is accessed 

through the AIMS data access portal.  Data quality is checked via the AIMS data centre processes and if there 

are gaps found in the data feed representational data is substituted.  Figure 4 depicts a workflow created to 

stream SST data from AIMS, tag it with a URI, then map the data to the domain specific “GBR” ontology, 

which includes the subclasses of “Sensor Temperature” and “Spatial Temperature” via the imported “Coral 

Reef” ontology.  The workflow actors are then directed to populate the designated reef instances with date/time 

and temperature data-type property values.  

The inference rules from the validation, which are based on the coral bleaching metrics SST+ and DHDs, 

are applied to detect a problematic area.  The rules infer any instances of a particular reef to belong to a 

categorised bleach watch class automatically, dependant on the rise in temperature above average and the 

susceptibility of the coral community to bleaching.  To illustrate a simplified rule, written in SWRL, to assess 

the rising SST and the presence of zooxanthellae in the coral species (i.e., hermatypic), was as follows: 

Coral_Reef:Coral_Reef (?x)  ∧ 
Temperature:hasDailyAverageSSTof(?x, ?meanTemp)  ∧ 

Coral_Reef:hasAverageLongTermSeaSurfaceTemperatureOf(?x, ?LMST)  ∧ 
swrlb:add(?LMSTaboveStart, ?LMST, 0.1)  ∧ 
swrlb:add(?LMSTaboveCeiling, ?LMST, 1)  ∧ 

swrlb:greaterThanOrEqual(?meanTemp, ?LMSTaboveStart)  ∧ 
swrlb:lessThanOrEqual(?meanTemp, ?LMSTaboveCeiling)  ∧ 

Coral_Reef:hasPart(?x, ?partCoral)  ∧ 
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Reef_Stock:Coral(?partCoral)  ∧ 
Trophic:is_Hermatypic(?partCoral, true) 

→ Coral_Reef:Bleachwatch_Cat_1(?x) 

The rules were applied to the recent 2008/2009 summer period and resulted in a bleach watch alert for 

Davies Reef.  Although there were a number of warmer times during that summer period, from the 11th to the 

22nd of February Davies Reef experienced extremely high temperatures and the outcome form the rules derived 

a Category 2 bleaching alert.   

The outcome of the inferred bleach risk instances coincided with the established coral bleaching alert 

systems.  Specifically, the NOAA Coral Reef Watch's Satellite Bleaching Alert (SBA) system issued a 

bleaching watch alert on the 16 February 2009 (NOAA, 2009) for the same region. 

The advantages of a semantic system extend past the ability to extract specific instances based on asserted 

data properties.  Characteristics of Semantic technologies include capabilities in data integration and 

automatically linking latent connections through reasoning.  When the relationships are known statistical 

inference is efficient and appropriate, however, when the relationships are not all known semantic inference can 

be used to disclose phenomena in the data.  The cumulative mix of contributing factors that makes up the 

tipping point between a healthy reef and a bleached dead reef is just such an unknown relationship.  

An Example as a Hypothesis Tool - Finding the Coral Bleaching Tipping Point 

Coral bleaching is not uniform, it occurs in discreet reefs across the many that comprise the reef systems of 

the world.  Whilst our understanding of the causal factors of bleaching has some limitations, it is widely 

accepted that sea temperatures are clearly involved (Berkelmans, 2009).  Notably however, research is still 

being conducted to determine why some coral species bleach in some areas but not in others, and why some 

corals of the same genera adapt to higher sea surface temperatures (SST) given time (Hughes et al., 2003).  

Ecological hypothesis validation across wide geographic domains is still mostly in development stages.  The 

KR system described here would enable such propositional testing by using SWRL inference rules.  In this case, 

domain task ontologies are introduced, at the highest level of the hierarchy, importing all lower ontologies and 

effectively separating the instance data from the inference rules.  Then, tasks are performed such as queries or 

posing hypotheses, for any reef, with any mix of standing stock composition, hydrodynamics, environmental 

elements or external human influences.  To easily modify or add new relational information to the ontologies is 

an advantage of the Semantic technologies and making changes such as chemical factors like nitrogen levels, 

biological factors such as fresh water flumes or new discoveries as they develop, will enable scientists to 

explore at levels not possible before. 
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The inference rules can be designed to define observational hypotheses that are in syllogistic form.  SWRL 

supports inductive and deductive rules written as Horn clause, which is an appropriate form for most 

quantitative observational hypotheses.  For instance, in exploring the unknown casual effects of a coral 

bleaching event the researcher can declare the factors believed to be responsible for the occurrence as 

antecedents in the rule.  Accordingly, inductive reasoning would then produce a conclusion that could be proven 

or disproved through in situ observation.   

Importantly, the researcher is not required to have a predetermined hypothesis prior to data collection and 

populating the KB.  Rather, the questions can be as flexible and may evolve as new data becomes available or as 

ideas grow and/or epiphanies emerge.  To illustrate, the researcher may initially populate the knowledge base 

with sensed data and scheduled dredging activities, then the following basic inference rule checks for any 

instances that have a higher than average SST, critical salinity level or whether there is a human influence 

involved, which in this example is dredging: 

Coral_Reef:Coral_Reef(?x) ∧ Coral_Reef:hasLatitude (?x, ?Lat) ∧ 
Coral_Reef:hasLongitude (?x, ?Long) ∧ 

Temperature:hasDailyAverageSSTof(?x, ?meanTemp) ∧ 
Coral_Reef:hasAverageLongTermSeaSurfaceTemperatureOf(?x, ?LMST) ∧ 

swrlb:subtract(?anomaly, ?meanTemp, ?LMST) ∧ 
swrlb:greaterThan(?anomaly, 2) ∧ Coral_Reef:hasPart(?x, ?partCoral) ∧ 

Reef_Stock:Coral(?partCoral) ∧ Trophic:is_Hermatypic(?partCoral, true) ∧ 
Coral_Reef:hasSalinityOf (?x, ?Sal)∧ swrlb:greaterThan(?Sal, 42) 

Human_Influence:Dredging(?a) ∧ Influence:hasLongitudeOf(?a, ?HILong) ∧ 
Influence:hasLatitudeOf(?a, ?HILat) ∧ swrlb:equal(?Lat, ?HILat) ^ 

swrlb:equal(?Long, ? HILong) ∧ hasIntensityOf(?a, HIGH) 
→ Coral_Reef:Bleached_Watch(?x) 

Then, new rules or more information can be introduced to enable modifications in the hypotheses.  Simple 

modifications to the antecedents within the rule, such as the SST anomaly, can change the hypothesis and 

disclose other temporal instances for observation.  Also, introducing data to the knowledge base that is 

accessible from disparate sources, via the workflow, can potentially disclose phenomena and correlations in the 

data.  For example, adding data pertaining to a reef system from disconnected sources, such as cloud cover from 

the Bureau of Meteorology, Chlorophyll and PAR levels from AIMS, CO2 levels from NOAA, human 

population from the Australian Bureau of Statistics, etc, the questions posed of the system will disclose specific 

temporal instances to then validate in situ.   

Classifying Coral Reefs by Reef Type  

Representational data and/or defined reef types are used in the different methodologies of marine research 

(IPCC, 2007).  Data representation is a technique used in marine research to apply data from one reef to be 
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indicative of other unmonitored reef systems (Maynard et al., 2008).  The Semantic Reef system can automate 

the linking of reef-type concepts (e.g., by location, community make-up, biomass, etc), using explicit assertions 

and axioms in DL.  In many cases an individual reef would belong to a number of reef types simultaneously and 

this classification can be automatically accomplished through reasoning.  All relevant reefs that fit the specified 

criteria would be automatically inferred to belong to that reef class prior to running the inference rules.   

Then, questions can be posed of reef types instead of individual reefs.  For example, a hypothesis to draw 

out instances of reefs types where the environment is similar but the reef type is not or vice versa.  If the 

outcome of this hypothesis is confirmed then the bleaching phenomena could be predicted by the “type” of reef 

and not just environmental factors.  

To date the “Coral Reef” ontology includes relationship axioms and classes that define certain reef types.  

To illustrate, the make-up of a reef type by its community composition and the sensitivity to heat stress can be 

described in the following statements (AIMS, 2008):  

 Type A reef - is a reef with a high percentage of slow growing coral and is therefore thermally tolerant, 

whereas,  

 Type B reef - is a reef with a high percentage of fast growing coral and is therefore thermally sensitive.  

These assumptions can be defined in an ontology as “necessary and sufficient” axioms of a Type A and 

Type B reef (i.e., slow and fast growing reefs, respectively).  The axioms are written as: 

The Boolean data type property “isSlowGrowing” is set to true or false as a preset value for each coral species.  

When instances of coral species are asserted as a part of the community make up of a specific coral reef, as 

described by the community composition information available from GBRMPA and AIMS, the Reasoning 

engine will subsume all coral reefs to belong to the “Fast Growth”, “Medium Growth” or “Slow Growth” 

classes automatically (Figure 5). 

The reef type, by location, relies heavily on the range reasoning function because the proximity boundaries 

are defined by longitude and latitude coordinates of a gridded region in a reef system.  Currently, the “GBR” 

domain ontology defines the reef-types by grid location as classes with asserted “necessary and sufficient” 

Class: ReefType_A Defined 

  SubClassOf: Coral_Reef 

  EquivalentTo: hasPart some (Coral  

    and (isSlowGrowing hasValue true) 

    and (percentageFastCoralCoverage hasValue >30)) 

Class: ReefType_B Defined 

  SubClassOf: Coral_Reef 

  EquivalentTo: hasPart some (Coral  

    and (isSlowGrowing hasValue false)) 

    and (percentageFastCoralCoverage hasValue > 60)) 
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FIGURE 5  Reef types classified by the Pellet Reasoner to belong to the respective “reef type” model – Grid location, 
a fast growth composition and shelf location. 

property restrictions, that is, the longitude and latitude data-type properties (Figure 5).  On reasoning over the 

knowledge base the specific reefs of the GBR are subsumed to different reef-types, which effectively add other 

dimensions when posing questions of the system.  

Development in the emerging OWL standards is extending many functional capabilities for defining 

concepts.  Currently in OWL 1.1 there is no support for advanced data-type restrictions such as testing for a 

range of asserted data-type properties.  In OWL 2.0 this functionality has been added and has been implemented 

in Protégé 4 (Protégé, 2009).  These new developments offer richer descriptions and flexibility in restrictions 

over data–type properties and will add extra functionality, particularly in automating the linkages between reefs 

by type.  

CONCLUSIONS AND FUTURE WORK 

The demand for automatic data analysis and hypothesis testing is emerging in the ecological sciences.  The 

need for autonomy grows increasingly vital as the escalating range of data gathering devices and instruments are 
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deployed.  Presently it is becoming increasingly difficult for individual researchers to deal with the growing 

amount of data available to them and, simultaneously, to be able to extract the key knowledge resources from 

data at a rate consummate with the need of managers.  However, assimilating the mass data being gathered is 

vitally important for the management and research of our reef systems if they are to be resilient to, or even 

survive, the effects of disturbance including climate change.  Coral bleaching is one impact of climate change 

and although the stress factor most commonly associated with bleaching is elevated sea temperature, for which 

there are a variety of instruments deployed to gather this spatially varied data, there are a number of other causal 

factors.  These additional stressors, such as high light intensity, low salinity and pollutants, are known to 

exacerbate coral bleaching, however the information to confirm these findings is limited by the finite historical 

data available (Hughes et al., 2003).  Hence the requirement for real time data in combination with efficient 

processing tools. 

The modular ontology design, depicted in Figure 3, used within the project may assist streamlining the data 

analysis phase.  Here, diverse backgrounds and expertise were combined effectively in a collaboration to answer 

domain-specific and locality-specific hypotheses.  As user driven propositions change due to new findings, 

information or queries, and new data sources become available, the open world nature of Semantic technologies, 

in particular OWL, allows for additions and eliminations, such as new discoveries, to be trivially met.   

The ontologies were created as separate concepts based on the domain experts model in Figure 1.  The 

hierarchical ontology base design was adopted as clearly reefs are highly complex, interdependent ecosystems.  

The use of a single complex ontology would not be simple to create, implement nor maintain and reusability 

would not be feasible as the number of variables and multi-scale relationships in a single ontology would be 

immense.  Instead a modular design, which includes both intra and inter-ontological development 

methodologies, was chosen with the aim to maximise the advantages Semantic Web technologies offer, such as 

flexibility, scalability and rich computer-understandable descriptive languages.   

The Semantic Reef project is a new approach to such data analysis and interpretation.  The project is 

extendable to hypothesise over many issues of concern in environmental monitoring and climate change.  The 

importance of research on these issues is vital given the sustainability and survival of our reef ecosystems are 

indicators to the future of the global ecosystem (IPCC, 2007).  

To achieve these important goals cross-discipline collaborations are imperative.  Eco-informatics 

applications by definition imply the binding of diverse disciplines and there are many hurdles in bridging the 

collective knowledge required.  The obvious solution to overcoming this multi-disciplinary dilemma is adopting 
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and fostering the collaborative research model.  Here, disparate backgrounds and expertise have been combined 

effectively and, in this case, potential end users: the GBRMPA and AIMS were involved.  Notably, the 

development and the ultimate use of systems such as that described here foster collaboration between marine 

scientists and information technologists seeking to solve a common problem. 
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