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Abstract. Patterns in the commonness and rarity of species are a fundamental
characteristic of ecological assemblages; however, testing between alternative models for
such patterns remains an important challenge. Conventional approaches to fitting or testing
species abundance models often assume that species, not individuals, are the units that are
sampled and that species’ abundances are independent of one another. Here we test three
different models (the Poisson lognormal, the negative binomial, and the neutral, ‘‘zero-sum
multinomial’’ [ZSM]) against species abundance distributions of Indo-Pacific corals and reef
fishes. We derive and apply several alternative bootstrap analyses of model fit, each of which
makes different assumptions about how species abundance data are sampled, and we assess
the extent to which tests of model fit are sensitive to such assumptions. For all models,
goodness of fit is remarkably consistent, regardless of whether one assumes that species or
individuals are the units that are sampled or whether or not one assumes that species’
abundances are statistically independent of one another. However, goodness-of-fit estimates
are approximately twice as precise and detect lack of model fit more frequently, when based on
sampling of individuals, rather than species. Bootstrap analyses indicate that the Poisson
lognormal distribution exhibits substantially better fit to species abundance patterns,
consistent with model selection analyses. In particular, heterogeneity in species abundances
(many rare and few highly abundant species) is too great to be captured by the ZSM model or
the negative binomial model and is best explained by models that predict species abundance
patterns that are much closer, but not identical, to the lognormal distribution. More broadly,
our bootstrap analyses suggest that estimates of model fit are likely to be robust to
assumptions about the statistical interdependence of species abundances, but that tests of
model fit are more powerful when they assume sampling of individuals, rather than species.
Such individual-based tests therefore may be able to identify lack of model fit where previous
tests have been inconclusive.

Key words: biodiversity; coral reefs; macroecology; neutral theory; parametric bootstrap; species
abundance distributions.

INTRODUCTION

The pattern of commonness and rarity of species is a

fundamental attribute of all ecological communities

(Magurran 2004). Consequently, such patterns are

particularly informative for comparing different com-

munities and for testing the predictions of general

models of community structure. At the same time,

species abundance distributions contain more informa-

tion than many other measures of biodiversity (e.g.,

species counts or evenness metrics), because they

incorporate information about species richness, the

distribution of rarity, and in some cases the number of

unobserved species in a community (McGill et al. 2007).

Although species abundance patterns have engaged

ecologists since early in the 20th century (Motomura

1932, Fisher et al. 1943), recently there has been a

resurgence of interest in such patterns, as well as in their

potential ecological causes. Several alternative models

of species abundance have been proposed (see McGill et

al. [2007] for an extensive review). Each of these

proposed distributions has, in turn, been linked to, or

explicitly derived from, one or more ecological mech-

anism, including niche partitioning (May 1975, Tokeshi

1999), demographic stochasticity (Hubbell 2001, Volkov

et al. 2007), environmental stochasticity (May 1975), or

some combination thereof (e.g., Engen and Lande

1996a, b, Tilman 2004). For this reason, testing the

extent to which alternative species abundance models

characterize patterns in the commonness and rarity of

species has become increasingly viewed as an important

part of assessing the role of different ecological

processes in determining community structure (McGill

et al. 2007).

There are several challenges associated with testing

species abundance models. All such models seek to
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explain the same, well-documented patterns (i.e., large

numbers of rare species and progressively decreasing

numbers of more abundant species), and thus they tend

to make very similar predictions. The ability to

discriminate between the fit of such similar predictions

is exacerbated by the fact that conventional goodness-

of-fit tests typically have very low power to identify lack

of model fit. Consequently, tests of species abundance

models are frequently ambiguous, sensitive to how data

are represented (Gray et al. 2006), or sensitive to which

goodness-of-fit criterion is used (e.g., McGill 2003,

Volkov et al. 2003). Goodness-of-fit tests often fail to

rule out several alternative species abundance models

(McGill et al. 2007), and comparative measures of

model fit often yield conflicting or inconclusive results

(e.g., McGill 2003, Volkov et al. 2003, Etienne and Olff

2005). Such tests often implicitly assume that species are

the units that are sampled, when in reality individuals

are sampled: for instance, in chi-squared tests comparing

observed and fitted species abundance distributions, the

sample size is considered to be the number of species,

regardless of how many individuals have been sampled

(e.g., McGill 2003, Volkov et al. 2003). In addition, most

fits of species abundance models to data implicitly

assume that species’ abundances are statistically inde-

pendent of one another (e.g., Pielou 1977), when in

reality there will be some statistical interdependence (the

abundances of all species must sum to the total number

of individuals sampled). Indeed, the validity of param-

eter estimates and model comparisons based on the

independence assumption has been strongly questioned

(Etienne and Olff 2004, Etienne and Alonso 2005).

Consequently, an improved understanding of the

processes that shape patterns of commonness and rarity

requires developing methods of testing alternative

species abundance models that are more powerful and

that better reflect real sampling processes.

In this study, we develop two new approaches to

testing the goodness of fit of species abundance models,

and we apply those approaches, alongside more

established methods, to quantify the fit of three

alternative species abundance models to patterns of

commonness and rarity in Indo-Pacific tropical reef

corals and fishes. The new approaches treat individuals,

rather than species, as the units that are sampled in

ecological surveys and make different assumptions

about the statistical independence of species’ abun-

dances. We compare the results of those tests with

approaches that treat species as the sampling units (as

conventional tests assume) and with conventional model

selection. In addition to assessing model fit for the data

as a whole, we exploit spatial replication in the data to

compare observed site-to-site variability in model fit

with that expected due to stochastic sampling effects

alone. We also use spatial replication to identify

systematic biases in each species abundance model, to

estimate the magnitude of those biases, and to determine

whether these biases depend upon the assumptions

about the units of sampling. These analyses provide an

assessment of species abundance patterns on Indo-

Pacific coral reefs that is much more rigorous and

comprehensive than any previously conducted. They

also make possible an assessment of the potential biases

induced by the assumptions typically made in the

analysis of species abundances in general and identify

methods of assessing model fit that are robust to

violations of those assumptions.

We focus on three species abundance models: an

analytical version of the ‘‘zero-sum multinomial’’

distribution predicted by Hubbell’s (2001) formulation

of neutral theory (Etienne and Alonso 2005); the

negative binomial distribution, which is predicted by

several models (Fisher et al. 1943, Engen and Lande

1996b, Volkov et al. 2007); and the Poisson lognormal

distribution, which is also predicted by several species

abundance models (May 1975, Engen and Lande

1996a). Each of these models has been proposed to

provide good fit to abundance distributions on coral

reefs (Hubbell 1997, Connolly et al. 2005, Volkov et al.

2007). Also, for all of these models, it is possible to

devise bootstrap analyses that treat species as the units

that are sampled (as traditional statistical approaches

do), as well as alternative bootstrap analyses that

explicitly characterize the sampling of individuals from

an underlying species abundance distribution.

METHODS

Sampling design

We quantified numerical abundances of scleractinian

coral colonies and fishes from the family Labridae (i.e.,

wrasses and parrotfishes) at sites distributed along a

10 000-km transect across the Pacific Ocean. The

sampling design was hierarchical, with three habitat

types (crest, flat, and slope) sampled at three spatial

scales (regions, islands within regions, and sites within

islands). For corals, each site consisted of 10 10-m line-

intercept transects, along which all colonies were

counted and identified to species. Four sites from each

habitat type were established on each island, and three

islands were sampled within each of five regions

(Indonesia, Papua New Guinea, Solomon Islands,

American Samoa, and French Polynesia). For fishes,

sites consisted of 20-minute belt transects. The sampling

design was otherwise identical to that for corals, except

that Micronesia replaced the Solomon Islands (civil

unrest prevented sampling in the Solomons), and two

islands (rather than three) were established in each

region. (See Connolly et al. [2005] for further details of

the protocol.)

Species abundance models

If the distribution of species abundances in an

assemblage follows a lognormal distribution, then a

random sample from that community follows a Poisson

lognormal distribution:
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(Pielou 1977), where pr is the probability that a species

has abundance r in the sample, k is the Poisson rate

parameter, which follows a lognormal distribution, and

ln(m) and r are the mean and standard deviation of

log(abundance). If, on the other hand, abundances in

the assemblage follow a gamma distribution, then a

random sample from that assemblage follows a negative

binomial distribution (Fisher et al. 1943, Pielou 1977):
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where k and m are the shape and scale parameters,

respectively, of the gamma distribution. For any given

sample of species abundances, estimates of the param-

eters of either the Poisson lognormal distribution or the

negative binomial distribution can be obtained by

finding the values that maximize the log-likelihood for

the so-called ‘‘zero-truncated’’ forms of Eqs. 1 and 2:
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X

r
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where nr is the number of species with abundance r

(Bulmer 1974).

In this study, the zero-sum multinomial (hereafter

ZSM) model is fitted in two different ways. First, the

genealogical approach developed by Etienne (2005) is

applied: this likelihood constrains the total number of

individuals in the sample and thus enforces a strict form

of statistical interdependence of species abundances (if

an individual of one species is encountered on a transect,

the total abundance of the remaining species is reduced

by one). Model fit statistics (e.g., maximum log-

likelihoods) obtained with this approach are not

comparable to those obtained above for the Poisson

lognormal and negative binomial models, because the

latter models assume statistical independence of species

abundances (i.e., the number of individuals sampled

from one species does not constrain the number of

individuals that can be sampled from other species).

Therefore, to obtain fits of the ZSM model in a manner

comparable to the other models, a pseudo-likelihood

was developed, based on the ZSM model’s predicted

species abundance distribution. Under this approach,

the probability that a species has abundance r is

pr ¼
1
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h
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(cf. Etienne and Alonso 2005: Eq. 6), where Sobs is the

number of species in the sample, h is the fundamental

biodiversity number, I ¼ (m/[1 � m])(N � 1), m is the

probability of immigration, and N is the number of

individuals in the sample (Etienne and Alonso 2005).

Estimates of the model parameters h and m can then be

obtained by applying Eq. 3, as for the other two models,

with one modification: Eq. 4 refers only to species

observed in the sample (rather than to all species in the

community, as with Eqs. 1 and 2), so, for this model, p0
¼ 0. Many previous uses of neutral models are based on

fits to expected abundance distributions such as Eq. 4

(e.g., McGill 2003, Alonso and McKane 2004, Dornelas

et al. 2006, Forster and Warton 2007, Volkov et al.

2007), rather than to a likelihood that constrains total

sample size. Therefore, in this study, we explicitly

compare parameter estimates obtained using the two

approaches, and we assess the likely robustness of model

fits to assumptions about the statistical interdependence

of species abundances.

Both forms of the ZSM model likelihood frequently

exhibit two peaks, one of which corresponds to a high

immigration rate (m) and another to a low immigration

rate (Etienne et al. 2006). Because most reef fishes and

corals have larvae that spend days to weeks in the

plankton and because our sites encompass relatively

small areas (a few hundred square meters), the low-

immigration peak is biologically implausible (for our

data, this latter peak generally implied ,1% of recruits

spawned outside the sampling area). Therefore, we

initialized our parameter searches to find the higher

immigration peaks (m . 0.05 in all cases, typically .0.9).

Analyses

Goodness-of-fit statistic.—Our goodness-of-fit statistic

(termed ĉ, following White et al. 2001) is based on model

deviance, which is a likelihood-based measure of lack of

fit (McCullagh and Nelder 1999). Model deviance

measures how far away a model is from fitting the data

perfectly. Specifically, it is twice the difference between

the maximum log-likelihood for the model and the best

possible log-likelihood that could have been attained for

the data. Some level of imperfection in model fit is

expected due to stochastic sampling effects alone. In

other words, the expected deviance for any given model

is not zero, even under the null hypothesis that the

model is correct. The goodness-of-fit statistic ĉ normal-

izes model deviance relative to this expected level (e.g., ĉ
¼ 1.0 means that the model’s lack of fit is equal to what

one would expect, on average, if the model really did

generate the data; ĉ¼ 1.05 means the model’s fit is ;5%

worse than expected).

We estimate ĉ by means of a parametric bootstrapping

procedure (Efron and Tibshirani 1998). Specifically, we

simulate a data set according to the assumptions of a

species abundance model and quantify the model’s fit to

the simulated data. We then estimate ĉ by dividing the

deviance for the real data by the deviance for the

simulated data. By repeating this procedure 1000 times,

we obtain a bootstrap distribution of ĉ values. If the

deviance of the empirical data is consistently higher than

that of the simulated data, it indicates that lack of fit of the

model is greater than would be expected under the null
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hypothesis that the data conform to the model’s

assumptions. For each bootstrap replicate, an aggregate

ĉ is calculated for the data as a whole, using total model

deviance obtained by summing the deviances across all

sites. We also calculate bootstrap distributions of ĉ for

each site individually and characterize the site-to-site

variation in this statistic in order to assess whether the

observed variation among sites is consistentwithwhat one

would expect due to effects of stochastic sampling alone.

Bootstrap simulations: the Poisson lognormal and the

negative binomial.—In this study, we explicitly compare

goodness-of-fit statistics obtained by means of three

different bootstrap analyses that differ in two important

respects: whether individuals, or species, are the units

that are sampled and whether species abundances are

sampled independently or a fixed sample size (and thus

statistical interdependence of abundances) is imposed.

These analyses are explained in detail in Appendix A;

what follows here is a summary. The ‘‘species-based’’

bootstrap involves independently sampling an abun-

dance value for each species from a species abundance

model. This is consistent with previous uses of the

parametric bootstrap in species abundance analysis

(Diserud and Engen 2000, Connolly et al. 2005) and

also with more conventional goodness-of-fit tests, such

as chi-squared analyses (e.g., McGill 2003, Volkov et al.

2003), for which sample size is the number of species,

not the number of individuals.

For comparison with the species-based bootstrap, we

devise two novel, alternative parametric bootstrap

analyses, which we term ‘‘Poisson’’ and ‘‘hypergeomet-

ric.’’ Both analyses explicitly simulate, first, the distri-

bution of species abundances in the underlying

community, and, secondly, the sampling of individuals

from that underlying distribution (see Appendix A for

details). The analyses differ in how individuals are

sampled. In the Poisson bootstrap, a species abundance

in the sample is a Poisson random variable that depends

upon an overall sampling intensity and on the species

relative abundance in the underlying community. Thus,

the Poisson bootstrap simulates a probability model in

which species abundances are statistically independent

of one another (consistent with the species-based

bootstrap and with the likelihood functions used here

and in most species abundance analyses). The hyper-

geometric bootstrap also simulates sampling from an

underlying community abundance distribution, but with

a fixed total number of individuals in the sample. In this

case, statistical interdependence is very strong: if one

species is unusually abundant, then the places available

for other species are proportionately lower. Thus, the

hypergeometric bootstrap simulates a probability model

in which the species abundance distribution is condi-

tional upon a fixed total sample size (as in the

likelihoods for some neutral models).

Bootstrap simulations: the zero-sum multinomial.—For

the ZSM model, species-based bootstrap simulations are

conducted in exactly the same way as for the Poisson

lognormal and negative binomial models: for each

species in the sample, a species abundance is drawn at

random from the best-fit species abundance distribution.

Because sample size is the sum of these simulated species

abundances, this approach leads to stochastic variation

in the total number of individuals in the sample, as for

the species-based bootstraps of the Poisson lognormal

and negative binomial models. For the hypergeometric

bootstrap, we use Etienne’s (2005) Hoppe urn sampling

algorithm, which simulates the sampling of individuals

from a ZSM distribution. However, because the ZSM

model cannot be used to estimate the size of the species

pool (the sample is assumed to be a complete census of

the community), it is not possible to devise a Poisson

bootstrap for this model.

Assessing model residuals.—There are two possible

sources of bias in model fit in species abundance

analyses. If the true community abundance distribution

differs from the distribution predicted by the model,

then predicted species abundance patterns will tend to

differ systematically from the observed patterns (for

instance, by consistently overestimating the number of

rare or common species). However, the maximum

likelihood method itself can lead to biased parameter

estimates and therefore to biases in fitted species

abundance distributions. In other words, even if the

model is true (e.g., the data really do follow a Poisson

lognormal distribution), the maximum likelihood pa-

rameter estimates, and thus the best-fit model predic-

tions, may be biased (e.g., Diserud and Engen 2000).

The parametric bootstrapping procedure described here

can be used to discriminate between these two sources of

bias for the species abundance distribution, as follows.

For each simulated species abundance distribution, we

calculate the difference between the observed and

expected fraction of species in each abundance class. If

the mean of these residuals differs significantly from

zero, it indicates bias due to the method of parameter

estimation. One can then compare the distribution of

these residuals (across bootstrap simulations) with

residuals obtained from model fits to the empirical data.

If the empirical residuals lie outside the corresponding

bootstrap distributions, it indicates that the empirical

species abundance distribution differs systematically

from the predictions of the model. By comparing the

degree of model bias produced by the Poisson, hyper-

geometric, and species-based bootstrap analyses, we can

also assess whether, and how much, their different

assumptions influence the degree of bias in fitted species

abundance distributions.

Comparing alternative models.—The relative fit of the

three alternative models is estimated by calculating

model weights according to

wi ¼
e�DMLLi

X

j2models

e�DMLLj
¼ Li

X

j2models

Lj

ð5Þ

where DMLLi is the difference between maximum log-
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likelihood of model i and the maximum log-likelihood of
the best-fitting model and Li is the maximum likelihood

of model i. Because all models have the same number of

parameters (two per site), these are equivalent to model

weights assigned using Akaike’s Information Criterion

(AIC) or Bayesian Information Criterion (BIC) (Boik

2004).

RESULTS

For the ZSM model, we obtained virtually identical

model fits, regardless of whether we used the individual-

based, genealogical likelihood (Etienne 2005) or the
species-abundance-based likelihood (Eq. 4; Appendix

B). Specifically, parameter estimates from the two

different likelihood functions were virtually identical;

moreover, in the few instances in which differences in

best-fit parameters were apparent, this occurred because

the log-likelihoods for the two sets of parameters were
virtually identical, regardless of which likelihood func-

tion was used. Therefore, to allow comparison with the

Poisson lognormal and negative binomial models, we

use the ZSM model based on the species abundance-

based likelihood for all comparisons in this paper.

For the Poisson lognormal and negative binomial
models, the two different individual-based bootstrap

analyses (hypergeometric and Poisson) yielded virtually

identical results, indicating that different assumptions

about the statistical independence of species abundances

have a negligible impact on our measures of model fit.

Consequently, in the following, we present only the
results from the hypergeometric analyses. See Appendix

C for comparison of results from the hypergeometric

and Poisson bootstraps.

Goodness-of-fit tests.—Estimates of the magnitude of

lack of fit produced by the individual-based and species-

based bootstrap analyses were highly consistent. Specif-

ically, for both corals and fishes, the estimated values of
ĉ did not differ significantly between individual-based

and species-based analyses, for any model (Table 1).

However, the individual-based analyses give substan-

tially more precise estimates of model fit: the confidence

limits on the goodness-of-fit statistic ĉ were, on average,

about twice as wide for the species-based simulations as
for the individual-based simulations. This higher preci-

sion of the individual-based approach was highly

consistent, producing narrower confidence intervals in

every single case: for both taxa, for all models, and for

each site considered individually. One consequence of

these narrower confidence limits was that the individual-
based tests were more likely to detect statistically

significant lack of model fit. When goodness-of-fit tests

were conducted on each site separately, statistically

significant lack-of-model fit (ĉ . 1 with .95% confi-

dence) was detected more frequently by the individual-
based than the species-based bootstrap analyses for both

taxa and all three models: overall, significant lack of fit

was found in 23% of cases for individual-based tests vs.

11% of cases for species-based tests.

The individual-based simulations also produced better

agreement between observed and predicted among-site

variation in model fit, compared with the species-based
tests. The species-based simulations typically overesti-

mated the among-site variance in model fit, especially

for the Poisson lognormal and negative binomial

models, whereas the individual-based simulations typi-

cally produced among-site variation in model fit similar
to that shown by the empirical data (Figs. 1 and 2).

For corals, goodness of fit of the Poisson lognormal

model was significantly better (i.e., closer to 1.0) than the

negative binomial or ZSM models, regardless of which

bootstrap method was used. In contrast, for fishes, there

were no significant differences in goodness of fit between
the three models, regardless of bootstrap method (Table

2). For corals, the individual-based bootstrap detected

significant lack of model fit (ĉ significantly greater than

1.0) in every case, whereas the species-based analysis

detected significant lack of fit only for the negative

binomial and ZSM models (Table 1). For fishes, there
were no significant differences in goodness of fit between

the models, regardless of which bootstrap analysis was

used (Table 2), nor did any of the models exhibit

statistically significant lack of model fit (Table 1).

Assessing model residuals.—Residuals of fitted species

abundance distributions illustrate systematic differences

TABLE 1. Estimates of goodness of fit (ĉ) for the Poisson lognormal (PLN), negative binomial
(NB), and zero-sum multinomial (ZSM) models fitted to coral and fish data, obtained using
the species-based and hypergeometric parametric bootstraps.

Model Species-based Hypergeometric Difference P

Corals

PLN 1.04 (1.00, 1.10) 1.07 (1.04, 1.10) �0.03 (�0.09, 0.03) 0.45
NB 1.19 (1.15, 1.24) 1.17 (1.14, 1.20) 0.02 (�0.04, 0.08) 0.48
ZSM 1.19 (1.14, 1.24) 1.17 (1.14, 1.20) 0.02 (�0.04, 0.08) 0.48

Fishes

PLN 1.07 (1.00, 1.14) 1.00 (0.96, 1.03) 0.07 (�0.01, 0.15) 0.09
NB 1.04 (0.99, 1.09) 1.00 (0.98, 1.03) 0.04 (�0.02, 0.10) 0.25
ZSM 1.01 (0.96, 1.07) 1.00 (0.97, 1.03) 0.01 (�0.05, 0.07) 0.53

Notes: Values in parentheses are 95% confidence limits, obtained from bootstrap percentiles.
‘‘Difference’’ is the estimated difference between the two ĉ estimates (species-based minus
hypergeometric), and the final column is the P value testing the null hypothesis that the two
estimates are equal.
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between the empirical data, the simulated data, and the

fitted species abundance models (Fig. 3). These differ-
ences were virtually identical for the different bootstrap

methods, so we show here only the species-based

bootstrap (Fig. 3; see Appendix C for the equivalent
results for the individual-based bootstraps). The differ-

ences between the observed and predicted species

abundances were calculated for each site, and these

residuals were averaged across sites to yield the value
plotted as a triangle. Sideways histograms represent the

expected distribution of that residual value, obtained

from the parametric bootstrap. In other words, the
histograms encompass the range of values we would

expect, if the data really did conform to the fitted

FIG. 1. Frequency distributions of the goodness-of-fit statistic ĉ across sites for (A, C, E) hypergeometric and (B, D, F) species-
based parametric bootstrapping of the (A, B) Poisson lognormal, (C, D) negative binomial, and (E, F) zero-sum multinomial
(ZSM) models, for corals. Histograms show the frequency distribution of ĉ across sites for the actual data. The solid line
approximates the expected distribution under the assumptions of the (A, C, E) hypergeometric and (B, D, E) species-based
bootstraps (obtained by averaging the frequency distributions from the bootstrap simulations). Dashed lines trace 95% confidence
limits, also obtained from the bootstrap simulations.

November 2009 3143TESTING SPECIES ABUNDANCE MODELS



species abundance model. Thus, where a triangle lies

above (below) the corresponding histogram, it indicates

that the number of species in that abundance class is

greater (less) than predicted by the model. Triangles

within the range of the corresponding histograms

indicate that the data are consistent with the species

abundance model.

Often, the expected distributions of residuals are not

centered on zero, indicating that maximum likelihood

estimates of species abundances are somewhat biased,

FIG. 2. Frequency distributions of the goodness-of-fit statistic ĉ across sites for (A, C, E) hypergeometric and (B, D, F) species-
based parametric bootstrapping of the (A, B) Poisson lognormal, (C, D) negative binomial, and (E, F) zero-sum multinomial
(ZSM) models, for fishes. Histograms show the frequency distribution of ĉ across sites for the actual data. The solid line
approximates the expected distribution under the assumptions of the (A, C, E) hypergeometric and (B, D, E) species-based
bootstraps (obtained by averaging the frequency distributions from the bootstrap simulations). Dashed lines trace 95% confidence
limits, also obtained from the bootstrap simulations.
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particularly for the Poisson lognormal and negative

binomial models (see also Diserud and Engen 2000).

However, bias in the fitted species abundance values
tends to be small for all models (means of bootstrap

distributions, in most cases, differ from zero by ;1% or

less). We also find that this bias is virtually identical,
regardless of which parametric bootstrap is used to

generate the expected distributions (Fig. 3, Appendix
C). In other words, bias is not sensitive to the different

assumptions of the alternative bootstrap methods.

A comparison of the empirical residuals with their

corresponding bootstrap distributions suggests that the
Poisson lognormal model exhibits better fit to the

empirical abundance distributions overall, for both
corals and fishes (Fig. 3). Specifically, for the Poisson

lognormal model, observed residuals generally fall

within their expected distributions, although there is
some suggestion of lack of fit, particularly for corals

(triangles near the outer tails of the corresponding

bootstrap distributions: Fig. 3A, B). However, the
magnitude of lack of fit is exceedingly small: observed

residuals deviate from the means of their corresponding
bootstrap distributions by ;1% or less. This is

consistent with the goodness-of-fit tests, which indicated

that lack of model fit was small in magnitude and
statistically significant only for corals (Table 1). In

contrast, the data deviate much more substantially from

the corresponding expected distributions for the nega-
tive binomial and ZSM distributions, most strikingly

through an excess of singletons (i.e., species represented
by a single individual) and a paucity of species with

intermediate abundances (Fig. 3). For corals, these

results are consistent with the goodness-of-fit tests, in
which lack of model fit for the negative binomial model

and the ZSM model was statistically significant and

substantially greater in magnitude than for the Poisson
lognormal model (Tables 1 and 2). For fishes, however,

the goodness-of-fit tests do not appear to be sufficiently

powerful to detect the lack of model fit apparent from
the species abundance residuals.

Model selection.—Model selection results are consis-

tent with bootstrap goodness-of-fit tests and the

assessment of species abundance residuals, but model

selection distinguishes differences in model fit more

strongly than goodness-of-fit tests. For corals, the

Poisson lognormal distribution is the best model with

nearly 100% confidence (DMLLPLN ¼ 0, wPLN ’ 1.000;

DMLLNB ¼ 197, wNB ’ 0.000; DMLLZSM ¼ 224, wZSM

’ 0.000), consistent with the finding that its ĉ is

significantly and substantially closer to 1.0 than the

other two models (Tables 1 and 2). However, model

selection also favors the negative binomial model over

the ZSM model, whereas neither goodness-of-fit tests

nor species abundance residuals clearly distinguish

between these two models (Table 1, Fig. 3C, E). For

fishes, model selection favored the Poisson lognormal

model (DMLLPLN¼ 0, wPLN ’ 1.000; DMLLNB ¼ 43,

wNB ’ 0.000; DMLLZSM ¼ 48, wZSM ’ 0.000),

consistent with the larger discrepancies between ob-

served and predicted species abundances observed for

the negative binomial model and the ZSM model (Fig.

3). As for corals, model selection favored the negative

binomial model over the ZSM model, whereas discrep-

ancies between observed and fitted species abundances

were similar for those two models.

Modifying our optimization approach for the ZSM

model to allow for either high immigration or low

immigration peaks in the likelihood function alters the

relative performance of the ZSM and the negative

binomial models, but the Poisson lognormal model

remains the selected best model with ;100% confidence

(corals, DMLLPLN ¼ 0, DMLLZSM ¼ 172, DMLLNB ¼
197; fishes, DMLLPLN¼ 0, DMLLZSM¼ 12, DMLLNB¼
43).

DISCUSSION

Commonness and rarity on coral reefs

The combination of approaches used here (individual-

based and species-based goodness-of-fit tests, analysis of

species abundance residuals, and model selection)

strongly indicates that the Poisson lognormal model

provides a better fit to local species abundance patterns

than the negative binomial model or the ZSM model.

TABLE 2. Comparison of goodness of fit (ĉ) of the Poisson lognormal (PLN), negative
binomial (NB), and zero-sum multinomial (ZSM) models reported in Table 1.

Comparison

Species-based Hypergeometric

Difference P Difference P

Corals

PLN vs. NB �0.15 (�0.22, �0.08) ,0.001 �0.10 (�0.14, �0.06) ,0.001
PLN vs. ZSM �0.15 (�0.22, �0.08) ,0.001 �0.10 (�0.14, �0.06) ,0.001
NB vs. ZSM 0.00 (�0.07, 0.07) 0.98 0.00 (�0.04, 0.04) 0.89

Fishes

PLN vs. NB 0.03 (�0.06, 0.12) 0.54 0.00 (�0.04, 0.04) 0.76
PLN vs. ZSM 0.06 (�0.03, 0.15) 0.23 0.00 (�0.05, 0.05) 0.97
NB vs. ZSM 0.03 (�0.05, 0.11) 0.50 0.00 (�0.04, 0.04) 0.78

Notes:Values are estimates of the difference in ĉ values (with 95% CLs): positive values indicate
that the first model fits worse than the second model; negative values indicate the converse. The P
values are for tests of the null hypothesis that the two estimates are equal.
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For both corals and fishes, likelihood-based model

selection strongly favored the Poisson lognormal model
over the negative binomial model and the ZSM model.

Similarly, application of parametric bootstrapping to

identify systematic patterns in species abundance resid-

uals revealed greater discrepancies between fitted models

and data for the negative binomial model and the ZSM

model, compared to the Poisson lognormal model.
Likewise, for corals, when bootstrap analyses were used

to calculate goodness-of-fit statistics for the data

considered as a whole, our estimates of lack of model

fit were approximately three-fold greater (i.e., ĉ three

FIG. 3. Comparison of observed and expected species abundance distributions for the (A, B) Poisson lognormal, (C, D)
negative binomial, and (E, F) zero-sum multinomial models for (A, C, E) corals and (B, D, F) fishes, for the species-based
bootstrap. Open triangles represent mean residuals across sites (observed� expected) for each octave (i.e., the difference between
observed and fitted frequency of singletons is calculated for each site and then averaged across all sites to obtain the value plotted as
an open triangle). The sideways histograms show the expected distribution of residuals, obtained from fits to data simulated using
the species-based bootstrap.
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times farther away from 1.0) for the negative binomial

model and the ZSM model than for the Poisson

lognormal model. However, for fishes, our goodness-

of-fit tests were not sufficiently powerful to detect

significant lack of model fit for any of the models, even

though the species abundance residuals suggested that

lack of fit was present, at least for the negative binomial

and the ZSM models.

Inspection of species abundance residuals suggests that

the superior fit of the Poisson lognormal model is due to

its thicker tail of highly abundant species, relative to the

negative binomial and the ZSM models. For this reason,

it accurately captures the combination of many rare

species and a few highly abundant species that character-

ize our coral reef communities. Comparatively thin-tailed

distributions, such as the negative binomial and the ZSM

models, are unable to do this as accurately. To capture the

thick tail of highly abundant species, they systematically

underpredict the number of very rare species and over-

predict the number of moderately rare species (Fig. 3C–

F). Because neutral models, such as those generating

negative binomial or ZSM abundance distributions,

specifically assume demographic equivalence of species,

there is likely to be a limit to which such models can

capture the simultaneous presence of many very rare

species and a few highly abundant species (although this is

likely to depend to some extent on ancillary assumptions,

such as the speciation process [Etienne et al. 2007]).

Consequently, explaining species abundance patterns

with high heterogeneity, such as observed in this study,

may well require the incorporation of differences in

species’ niche space or demographic rates.

Despite the very close agreement between the Poisson

lognormal model and the coral and fish data, there were

statistically significant differences between the data and

the model for corals. There are two potential reasons for

this, related, respectively, to each of the two core

assumptions of the Poisson lognormal model: lognor-

mally distributed abundances in the community and

Poisson sampling of individuals from that distribution

(i.e., all individuals sampled independently and at

random with respect to species). Non-Poisson sampling

of individuals can arise due to phenomena such as local

aggregation effects (e.g., Karlson et al. 2007, Dornelas

and Connolly 2008) or interspecific variation in detect-

ability (due, for instance, to differences in colony size

[corals] or behavioral responses to observers [fishes]).

Such effects are likely to be present to some degree in

most, if not all, species abundance data.

Another possibility is that the significant lack of model

fit occurs because the underlying distribution of abun-

dances in the community deviates to some degree from

the lognormal. Such small discrepancies are consistent

with the two most general biological explanations offered

for lognormal species abundance distributions. Specifi-

cally, lognormal abundance distributions arise as a

limiting case when abundance is determined by the

multiplicative interaction of many stochastic factors,

such as annual population growth rates or niche widths

along multiple niche axes (May 1975). Similarly, the

lognormal distribution may arise as a second-order

mathematical approximation for the action of an

arbitrary number of ‘‘non-neutral’’ factors such as partial

niche overlap, environmental stochasticity, or interspe-

cific differences in demographic rates (Pueyo 2006).

Under both explanations, the lognormal should provide

a good approximation for most species abundance

distributions (coral reef and otherwise), but small

departures from the lognormal should be detectable

given a sufficiently powerful test. Alternatively, the

discrepancies we found may be caused by samples from

communities that have multi-modal abundance distribu-

tions. For instance, a very large survey (;40 000 colonies)

of a single coral community at Lizard Island, Great

Barrier Reef, is best fit by a mixture of multiple Poisson

lognormal distributions (Dornelas and Connolly 2008).

A sample of several hundred individuals (typical for our

sites) from such a community would be dominated by the

distribution with highest mean abundance and thus

might well be closely fit by a single Poisson lognormal

model. However, some species from the rarer distribu-

tions would still be sampled occasionally, and this could

potentially cause an excess of singletons in the data,

compared to a single Poisson lognormal model.

Approaches to testing species abundance models

There is now a broad consensus that prevailing

approaches to testing species abundance models are

weak and prone to ambiguous results (Alonso et al.

2006, Gray et al. 2006, McGill et al. 2007). Like the

species-based bootstrap test used here, conventional

tests for species abundance distributions, such as chi-

squared statistics, implicitly assume that species are the

units that are sampled; they treat species’ abundances as

statistically independent of one another; and they

typically also require binning of data into categories of

abundance to satisfy sample size requirements (e.g.,

McGill 2003, Volkov et al. 2003). Intuitively, one might

expect that such assumptions about sampling of species

will overestimate the variability in model fit due to

stochastic sampling effects, because there are typically

substantially fewer species than individuals in ecological

samples. This intuition is borne out by the bootstrap

analyses conducted here. The individual-based hyper-

geometric and Poisson bootstraps explicitly characterize

the sampling of individuals from an underlying abun-

dance distribution. Data simulated using this approach

exhibit site-to-site variability in model fit that is in

relatively close accordance with that of the real data

(Figs. 1 and 2A, C, E). In contrast, the species-based

bootstrap simulations generate site-to-site variability in

model fit that is typically substantially greater than that

of the empirical data, especially for the Poisson

lognormal and negative binomial models (Figs. 1 and

2B, D). This greater variability leads to less-precise

goodness-of-fit tests: the confidence limits on ĉ are
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substantially and very consistently (i.e., for corals,

fishes, all models, and even all sites individually) broader

for the species-based bootstrap compared to the hyper-

geometric and Poisson bootstraps.

The greater precision with which the individual-based

bootstraps estimate goodness of fit implies that they are

likely to provide more powerful tests of model fit than

the species-based approach, at least for species abun-

dance patterns similar to our data. For our goodness-of-

fit statistic, statistically significant lack of fit is detected

when 95% confidence limits on ĉ do not overlap 1. Our

analyses indicate that ĉ does not differ between the

individual-based and species-based approaches (consis-

tent with the assumption that the two approaches are

estimating the same quantity) and that the individual-

based estimate has narrower confidence limits. If so, the

individual-based approach should identify lack of model

fit more frequently than the species-based approach, as

our analyses of the coral and fish data show.

Our results also indicate that the traditional approach

to fitting species abundance models is probably robust

to statistical interdependence of species abundances. The

overwhelming majority of fits of species abundance

models in the literature make the implicit assumption

that species abundances are sampled independently of

one another; indeed, the prevalence of this assumption

has led some workers to formulate alternative likeli-

hoods, which are explicitly conditional on the total

number of individuals sampled (e.g., Dewdney 1998,

Etienne 2005, Etienne and Olff 2005). Here, rather than

formulating alternative likelihoods, we focused on

quantitatively assessing whether and how much the

independence assumption of the more conventional

fitting approach might bias fits of species abundance

models to data, when the independence assumption is

violated in the data. Specifically, the Poisson bootstrap

simulates each species abundance independently, con-

sistent with the assumptions of the likelihoods used in

our model fitting. Conversely, the hypergeometric

bootstrap enforces a fixed total sample size, so every

time an individual of one species is recorded, this

reduces, by one individual, the number of individuals

that can belong to one of the other species. The fact that

virtually identical results were obtained from these two

different bootstraps (Appendix C) indicates that the

classical likelihood-based approach to fitting species

abundance models is unlikely to be biased by statistical

interdependence of species abundances.

In reality, typical ecological sampling probably falls

between the extremes of Poisson and hypergeometric

sampling. For instance, space occupied by one coral

species reduces space available to colonies of other

species, but, because space is typically far from saturated

by corals, an increase in larval supply can lead to more

colonies of one species without displacing other species’

colonies. We know of no statistical models for species

abundance distributions that impose such an intermediate

form of statistical dependence, so the apparent robustness

of standard model-fitting approaches to the extremes of

hypergeometric and Poisson sampling is encouraging.

Conclusions

The analyses in this paper confirm that the Poisson

lognormal model provides better fit to patterns of

commonness and rarity of corals and reef fishes than

either the negative binomial model or ZSM. This better

fit appears to be due to the fact that the comparatively

thin tails of the latter models limit their ability to

capture the combination of many very rare and few

highly abundant species, a pattern that characterizes

patterns of commonness and rarity for both corals and

fishes. Moreover, assessments of model fit were robust to

two important kinds of assumptions about sampling

that are typical of species abundance models, but likely

to be unrealistic: species, not individuals, are the units

that are sampled; and species’ abundances are either

statistically independent of one another or strictly

interdependent. Nevertheless, we found one important

difference between species-based and individual-based

model tests: the latter predict less stochastic variability

in model fit than the former. This lower level of

variability was more consistent with empirical site-to-

site variation in model fit and yielded substantially more

powerful tests of model fit, in individual-based tests.

More broadly, our individual-based bootstrap analy-

ses can be adapted for any species abundance model that

characterizes sampling from an underlying community

distribution of species abundances, as the Poisson

lognormal and negative binomial models do. Where

there is bias in parameter estimates and predicted species

abundances (as is likely to be the case for most species

abundance models, given their highly asymmetric

shapes), residuals from such bootstrap analyses can

estimate the magnitudes of such biases (e.g., sideways

histograms in Fig. 3), allowing an assessment of the

extent to which discrepancies between model fits and

data can be attributed to such statistical artifacts and

how much to real departures from a species abundance

model. Moreover, the approach makes possible a

goodness-of-fit test that appears to be substantially

more powerful than tests that treat species as the units

that are sampled. Thus, this approach may yield new

insights where previous tests of model fit have been

inconclusive and, more broadly, help to resolve the

problem of low statistical power that has plagued the

analysis of patterns of commonness and rarity for

decades (McGill et al. 2007).
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Parametric bootstrap algorithms (Ecological Archives E090-225-A1).

APPENDIX B

Comparison of alternative zero-sum multinomial fits (Ecological Archives E090-225-A2).

APPENDIX C

Poisson vs. hypergeometric bootstrap results (Ecological Archives E090-225-A3).
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