Eye development in southern calamary, Sepioteuthis australis, embryos and hatchlings

Bozzano, Anna, Pankhurst, Patricia M., Moltschaniwskyj, Natalie A., and Villanueva, Roger (2009) Eye development in southern calamary, Sepioteuthis australis, embryos and hatchlings. Marine Biology, 156 (7). pp. 1359-1373.

[img] PDF (Published Version)
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1007/s00227-009-117...

Abstract

Eye development, optical properties and photomechanical responses were examined in embryos and hatchlings of the southern calamary, Sepioteuthis australis. This species occurs in shallow coastal waters in Australia and New Zealand, and the egg masses were collected in October and December 2004 from Great Oyster Bay, Tasmania. At the earliest developmental stage the eye of the squid was comprised of a hemispherical cup of undifferentiated neural retina, while presumptive iris cell layers and lentigenic precursor cells enclosed a posterior eye chamber. Differentiation of the proximal and distal processes was observed in correspondence with the cornea development and lens crystallization, and occurred before differentiation of the neural retina, which was complete prior to hatching. Longer photoreceptor distal processes were first observed just prior to hatching in the dorsal-posterior retina. After hatching, this difference was much more evident and higher photoreceptor density was found in the central retina. This indicates that the eye of S. australis at this age uses different retina areas for different visual tasks. Optical sensitivity and resolution suggest that juvenile S. australis are diurnal. This study also found functional photomechanical responses of visual screening pigment migration and pupil constriction in S. australis embryos, although complete functionality of the pupil at this stage was uncertain. However, the pupils of squid aged 2 days closed almost completely under bright conditions, showing that photomechanical responses were highly developed in the juvenile squid. These findings indicate that squid embryos are able to perceive visual stimulation, suggesting an early reliance on vision for survival after hatching.

Item ID: 7957
Item Type: Article (Refereed Research - C1)
Keywords: eye development, southern calamari, photomechanical responses, retina, marine science
ISSN: 1432-1793
Date Deposited: 18 Jan 2010 03:50
FoR Codes: 06 BIOLOGICAL SCIENCES > 0608 Zoology > 060808 Invertebrate Biology @ 34%
06 BIOLOGICAL SCIENCES > 0608 Zoology > 060807 Animal Structure and Function @ 33%
06 BIOLOGICAL SCIENCES > 0608 Zoology > 060805 Animal Neurobiology @ 33%
SEO Codes: 97 EXPANDING KNOWLEDGE > 970106 Expanding Knowledge in the Biological Sciences @ 100%
Citation Count from Web of Science Web of Science 1
Downloads: Total: 4
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page