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Abstract—As various geospatial images are available for 
analysis, there is a strong need for an intelligent geospatial 
image processing method. Segmenting and districting digital 
images is a core process and is of great importance in many 
geo-related applications. We propose a flexible image 
segmentation framework based on generalized Voronoi 
diagrams through Euclidean distance transforms. We 
introduce a three-scan algorithm that segments images in 
O(N) time when N is the number of pixels. The algorithm is 
capable of handling generators of complex types (point, line 
and area), Minkowski metrics and different weights. This 
paper also provides applications of the proposed method in 
various geoinformation datasets. Illustrated examples 
demonstrate the usefulness and robustness of our proposed 
method. 
 
Index Terms—Image segmentation, Voronoi diagram, 
Geoinformatics, Raster 
 

I.  INTRODUCTION 

Districting is to partition a study region S into 
meaningful and manageable smaller units called districts 
or zones. It is one of the widely used methods in GIS 
(Geographic Information Systems) that allows the user to 
define and manipulate aggregations of geospatial data. 
Basically, it segments S into mutually exclusive and 
collectively exhaustive regions of influence. Examples of 
districting include political boundaries, census tracts, 
catchment areas, segmented market areas, delivery areas 
and sales territories. Districting not only produces a 
geometric tessellation, but it provides a robust framework 
for various topological questions such as nearest neighbor 
questions, adjacent neighbor queries and geospatial lag 
questions. Mostly, it has been studied with the vector data 
format since most GIS are basically built on the vector 
data format for geospatial analysis. Due to the availability 
of areal photography, wide-spread Google maps, and 
remotely sensed images, the need for geospatial image 
districting is in great demand to handle these easily 
accessible geospatial images. 

The Voronoi Diagram (VD) has long been a popular 
approach in vector districting [1]. It can be obtained by 
assigning every point in the study region to the nearest 
target generator in a certain distance metric. Resulting 
Voronoi vertices, edges and regions serve as a basis for 
points, lines and areas of the vector format. In this vector 
districting approach, typically generators are limited to 
points, the underlying metric is replaced by the Euclidean 
metric and weights of generators are assumed to be 
invariant. Some vector districting based on generalized 

VDs have been proposed in order to overcome these 
limitations [1]. Despite of the wide use of the VD in 
vector districting, its use in geospatial image districting 
has attracted less attention [2]. 

This paper introduces a flexible geospatial image 
districting framework based on generalized VDs. It 
proposes a three-scan algorithm that segments geospatial 
images in O(N) time when N is the number of pixels. The 
algorithm is capable of handling generators of complex 
types (point, line and area), Minkowski metrics and 
different weights. This paper also provides applications 
of the proposed method to various geoinformation 
datasets. 

The rest of this paper is organized as follows. Section 
II briefly overviews the VD and its generalizations to 
complex primitives, Minkowski metrics and different 
weights. Section III outlines details of our proposed 
three-scan algorithm whilst Section IV provides 
applications with images from Google Earth 
(http://earth.google.com/) and GeoWeb 2.0. Section V 
draws conclusive remarks and suggests future work. 

II.  VORONOI DIAGRAM SEGMENTATION 

The Voronoi diagram models natural territories of 
events [3]. It has been widely used in geoinformatics [1], 
[4-6]. It captures estimates of the service areas, and 
models impact areas of a certain target. 

Let P = {p1,p2,…,pk} be a set of generators. For any 
point x in the plane, d(x,pi) denotes the distance from 
point x to a generator point pi. Every location x in S can 
be assigned to the closest generator pi ∈  P with a certain 
distance metric d. If it is equally close to two generators 
in P then the location becomes a part of Voronoi edge 
while if it is equally close to more than two generators 
then the location becomes a Voronoi vertex. This 
assignment results in a mutually exclusive and 
collectively exhaustive tessellation called Voronoi 
diagram. The resulting dominance region of pi over pj can 
be defined as: 

)}.,(),(|{),( jiji ppdppdpppdom ≤=        (1) 
For the generator point pi, the Voronoi region of pi can 

be defined by: 
).,()( jiiji ppdompV ≠= I                   (2) 

The partition of the plane into subsequent Voronoi 
regions V(p1),V(p2),...,V(pk) is called the generalized 
Voronoi diagram. The bounding regions of V(pi) are 
known Voronoi boundaries and depending on the 
primitive used as the generator, such as points, lines or 
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Figure 2.  Minkowski VDs: (a) Manhattan VD of P; (b) Maximum VD 
of P (P is the same as in Fig. 1). 

polygons and the metric space used, will result in a series 
of polygons and arcs made up of lines and Bezier curves 
[1]. This study considers three different types of 
generalizations: Minkowski metrics, weights and 
complex primitives. Fig. 1 depicts the ordinary VD of 5 
generators.  

A.  Minkowski Voronoi Diagrams 
The most popular distance metric d is the Euclidean 

distance. It is an instance of the Minkowski metric and in 

urban geography another instance of the Minkowski 
metric, the Manhattan distance, better approximates real 
world situations [7]. Thus, in this study we utilize three 
instances of the Minkowski metric, namely p = 1, p = 2 
and p =∞ . Let dLp: ℜ2 × ℜ2 → ℜ denote the Minkowski 
metric defined by 

∑ ≥∞∪ℜ∈−= ).1},{()||(),( /1 ppsrsrd pp
iiLp  
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(c) 

Figure 3. Weighted VDs: (a) Weighted Euclidean VD of P; (b)
Weighted Manhattan VD of P; (c) Weighted maximum VD of P (P is
the same as in Fig. 1). 

 
Figure 1. The ordinary VD or P = {p,q,r,s,t}. 
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(3) 
If p = 1, then dL1 (r, s) = |rx - sx| + |ry - sy| is the 

Manhattan metric. The Minkowski metric becomes the 
Euclidean metric when p = 2. If p = ∞ , then the 
Minkowski metric becomes dL∞ (r, s) = max{|rx - sx|, |ry - 
sy|}, which is called the maximum metric. Fig. 2 depicts 
corresponding Manhattan VD of P and maximum VD of 
P where P is the same as in Fig. 1. It is obvious to note 
that different metrics result in different tessellations. 

B.  Weighted Voronoi Diagrams 
There exist a variety of functional forms for 

calculating the weighted distance and many weighted 
VDs are possible. In this study, the multiplicatively 
weighted distance is used to model different weights in 
the Minkowski metric. It is defined as follows:  

).0(||1),( >−= ii
i

imw wpp
w

ppd            (4) 

Fig. 3 depicts several different weighted VDs of P. 

C.  Voronoi Diagrams with Complex Primitives 
The real world is obviously non-trivial and it is the 

goal of GIS to represent real world objects (roads, land 
use, elevation) and associated attributes for capturing, 
storing, analyzing and managing data which are spatially 
referenced to the Earth. However, a browse through 
recent literature on GIS and VD reveals that most 
represent real world objects of interest as point sets, and 

most methods of generating VDs are all vector-based. 

Line and area features can be used to represent objects 
where the geometric space can not be ideally represented 
by point sets. But as with the case for weighted VDs, 
vector-based methods for generating VDs work well for 
point datasets, but are not efficient for line segments, area 
features [2], [8]. 

The distance from a point x to a complex primitive pi is 
defined as: 

}.||{|min),( iiiii pxxxxpxd ∈−=         (5) 
Fig. 4 shows generalized VDs with complex data 

types. Fig. 4(a) depicts the Euclidean VD of P' while Fig. 
4(b) illustrates the weighted VD of P'  where P' = P + 
{(u,1), (v,2)} and P is the same as in Fig. 1. The line 
segment v has a weight 2 associated and the areal 
generator u has 1 associated. Fig. 5 depicts the 
generalized Manhattan VD of P'. 

 

III.  RASTER VORONOI DIAGRAMS THROUGH EUCLIDEAN 
DISTANCE TRANSFORMS 

The basic idea of raster VD is to expand the VD 
incrementally by adding one pixel at a time for all pixels 
in the image by considering the number of neighbors or 
direction of connection [9]. The raster VD is represented 
by a discrete grid lattice of size M × M which gives M2 
generators in the plane. The development of the raster 
VD is based heavily on the advances in distance 
transformations. Distance transforms are characterized by 
the mappings of each image pixel (foreground) into its 
smallest distance to regions of interest (background) [10]. 
Recently, efficient and precise Euclidean Distance 
Transforms (EDTs) emerged as a result of the difficulties 
in processing the non-local properties of the Euclidean 
metric on a discrete grid lattice which becomes a problem 
when trying to find the bisecting pixels between 
generators[11]-[13]. 

A.  Euclidean Distance Transform 
EDTs can be divided into mainly two categories based 

on the order used to scan the pixels [11]: iterative scan 
algorithms and sequential algorithms. Iterative algorithms 
use wave scans over points in the background image 
which are seen as sources from which distance values are 

 
Figure 5. Generalized Manhattan VD of P' (P' is the same as in Fig. 4).

  
(a) 

 

 
(b) 

Figure 4.  Generalized VDs with complex data types: (a) Euclidean VD 
of P'; (b) Weighted Manhattan VD of P'; (c) Weighted maximum VD 
of P' (P' = P + {(u,1), (v,2)} and P is the same as in Fig. 1). 
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Figure 6. Neighbors and scan masks: (a) The eight neighbors of p; (b)
The Manhattan neighbor mask; (c) The chessboard and Euclidean
neighbor mask. 

calculated for the foreground image. The waves 
propagate out from the sources like how a grassfire would 
burn from the source of ignition outwards. These 
algorithms are suited to parallel processing computer 
systems and time complexity for such parallel processing 
is typically O(M) for an image of M × M. The same 
propagation wave scan is possible with a single processor 
with a time complexity of O(M2) [10]. Therefore most 
iterative algorithms are inefficient as many pixels are 
often unnecessarily updated. Sequential algorithms are 
characterized by the number of neighbors that are 
considered and the number of sweeps from left to right 
and from top to bottom, and reverse sweeps from right to 
left and from bottom to the top of the image. The number 
of neighbors ranges from 4-neighborhood all the way to 
arbitrarily large sizes. The shape of neighbors being 
considered also differs between algorithms and there is a 
trade-off between the size and shape of neighborhood 
with the number of iterations needed to achieve a solution 
and the quality of approximation [14]. Even if sequential 
scan algorithms are more efficient than iterative 
algorithms, many pixels still need to be processed more 
than once in sequential algorithms. This becomes more of 
a problem for non-convex domains which usually require 
multiple passes before achieving the final distance values 
[12]. 

Recently, fast sequential scan algorithms requiring 
O(N) time have been proposed [15], [16] where N is the 
number of generators. Cuisenaire and Macq [15] 
proposed a fast EDT by propagation through multiple 
neighborhoods and bucket sorting. However, complex 
multiple neighborhoods and bucket sorting are 
considerable overheads of their approach. This was 
further improved by Shih and Wu [16] who employed a 3 
× 3 neighborhood instead of complex neighborhoods. 
They computed the exact EDT through the two scan 
algorithm using the simpler 3 × 3 neighborhood. 
However, their approach is limited to simple primitives 
(point type) and unweighted primitives. Therefore, it is 
not straightforward to compute generalized weighted 
raster VDs of complex primitives. We further develop 
Shih and Wu [16]’s method and propose a three scan 
algorithm to deal with multiple metrics, weighted 
primitives, and complex primitives. 

B. Proposed Three-scan Method 
The weighted EDT is processed by propagating the 

weight values of the primitives and considering the 
direction of connection for the convex domain. The 
algorithm requires just three scans over the geospatial 
image, forward and backwards followed by a forward 
scan. Distance values are also propagated as squared 
Euclidean values, skipping the square-root calculation as 
in [16]. 

Let us consider a background binary image of features 
O and a foreground image of DTs over the background 
image F. Let q1, q2,..., q8 be the eight neighbors of the 
shaded cell p as seen in Fig. 6(a). In the Manhattan 
metric, the mask q1, q3 is defined by N1(p) and q5, q7 is 
defined by N2(p) which can be seen in Fig. 6(b). In the 

Euclidean and maximum metrics, the mask q1, q2, q3, q4 is 
defined by N1(p) and q5, q6, q7, q8 is defined by N2(p) 
which can be seen in Fig. 6(c). The mask N1(p) is used 
for forward scan whilst the mask N2(p) is used for 
backward scan. At each point p the minimum distance 
value is propagated by the neighbors in the masks. The 
algorithm is given by: 

1, )('min)(' 1 += ∈ qXpX Nq                  (6) 
1],)(''),('[min)('' 2 += ∈ qXpXpX Nq       (7) 

where X'(p) is computed in a left to right, top to bottom 
scan and X"(p) is computed in a reverse scan. 

Let R(p) be the relative vector coordinates of pixel p, 
which records the horizontal and vertical pixel-distances 
between p and the closest background pixel. Let h(p, q) 
be the difference of the squared Euclidean distance 
between p and q ∈  N1 ∪  N2. Let G(p, q) be the 
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(c) 

Figure 7. The individual scans to achieve weighted VDs: (a) First scan;
(b) Second scan; (c) Third scan. 

difference of the vector distance used to calculate the 
distance values of the pixels preceding p given by the 
masks. The wq value represents the significance (weight) 
from the background pixel. The h(p, q) and G(p, q) can 
be computed in the following way: 
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C. Algorithms and Analysis 
a) Process generators to Cartesian coordinates 
b) (Forward Scan) For each pixel p ∈  F 

i) set all p ∈  F = ∞ 
ii) for each neighborhood q ∈  N1(p) 

• fnew(p) = (Rx(q)2 + Ry(q)2 + h(p,q)) / wq 
• f(p) = min(f(p), fnew(p)) 

iii) modify: R(p) = R(q) + G(p,q) 
c) (Reverse Scan) For each pixel p ∈  F 

i) for each neighborhood q ∈  N2(p) 
• fnew(p) = (Rx(q)2 + Ry(q)2 + h(p,q)) / wq 
• f(p) = min(f(p), fnew(p)) 

ii) modify: R(p) = R(q) + G(p,q) 
d) Repeat Step b) Forward Scan 
e) Scan along top left corner until highest squared 

Euclidean distance bisection found for each 
generator g ∈  G; 
1) record bisecting line between regions with 

highest squared Euclidean distance; 
2) recursively follow intersections of 3 or more 

generators and record bisecting; line 
between regions 

3) if intersection already recorded then end 
current iteration; 

4) if back to first region and completed then 
end; 

The system starts with Step a) by initializing all the 
primitives into their Cartesian coordinates. This deals 

with complex primitives like for lines and area 
generators. Step b) (Fig. 7(a)) details the forward scan 
propagation of using N1(p). Firstly all pixels p need to be 
initialized with a non-processed value. Next the pixels q 
in the mask around p is processed to determine the closest 
background pixel. Next the relative distance from the 
background object is found either being forward or 
backwards, and is updated to R(p). Step c) (Fig. 7(b)) 
details the same process in the reverse scan using N2(p). 
In order to deal with the convex domain caused by using 
weighted primitives a third raster scan with N1(p) is 
needed as seen by Step d) (Fig. 7(c)). After the first 4 
steps, the system has finished the DT and constructed F. 
From this, Step e) details the vectorization of the raster 
image F to construct a graph of the dominance region 
boundaries used for analysis and producing results to 
various topological query types. The process recursively 
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follows the highest squared Euclidean distance values in 
F which define the bounding regions until 3 or more 
intersections of generators are found at which time the 
process runs again from the first bounding region on the 
left. The process continues until all regions have been 
processed by recursion. These steps are visualized in Fig. 
8. 

 

IV.  APPLICATIONS TO GEOINFORMATICS 

A.  Market Analysis 
Market analysis is an investigation of a market that is 

used to inform a firm's planning activities particularly 
around decisions of: inventory, purchase, work force 
expansion/contraction, facility expansion, purchases of 
capital equipment, promotional activities, and many other 
aspects of a company. An important part of market 

analysis is the discovery of new strategies that can allow 
an organization to concentrate its limited resources on the 
greatest opportunities to increase sales and achieve a 
sustainable competitive advantage. Thus, segmenting an 
interested target study region into meaningful and 
catchable districts is of great importance in market 
analysis. 

 
Fig. 9 shows a series of market districting of real-

world images with our proposed three-scan algorithm. 
Fig. 9(a) depicts a snapshot of Google Earth around urban 
areas of Cairns in Australia with 6 shopping centers 
{(u,5), (v,3), (w,2), (x,1), (y,2), (z,1)}. Shopping center u 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 9. Geospatial image districting: (a) Urban suburbs of Cairns with
6 shopping centers: (b) Ordinary VD; (c) Weighted VD; (d) Weighted
VD in dL1 with complex primitives.   

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 8. Vectorization of the geospatial image with (1), (2), (3) and (4)
referring to the steps of the algorithm at Step e).  
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is a big shopping complex forming an areal shape with a 
higher weigh 5. Fig. 9(b) shows the ordinary VD in the 
Manhattan metric. Note that, the Manhattan metric better 
approximates real world situations in urban geography 
[7]. Therefore, Fig. 9(b) shows an informative urban 
districting. Fig. 9(c) illustrates the same study region with 
weights considered. It provides a more meaning 
districting when weights (sizes or the number of shops) of 
shopping centers are considered. Fig. 9(d) models when 
the areal unit of the shopping center u is considered along 
with weights in the Manhattan metric. 

 
 

B.  Emergency Management 
A disaster is the impact of a natural or man-made 

hazard that negatively affects society or the environment. 
There is nothing new about disasters. Since the beginning 

of human civilization and settlement, people have been 
faced with a myriad of risks and dangers, effecting both 
individuals and communities. However, the Earth seems 
to be undergoing a notable change that has the potential, 
if no corrective action is taken, to lead to the greatest 
disasters that human civilization has ever experienced. 
More than four times the number of natural disasters are 
occurring now than just two decades ago. The world 
suffered about 120 natural disasters per year in the early 
1980s. That figure now stands at about 500 per year and 
is predicted only to increase more. Researchers say that 
rising green house gas emissions are the major cause of 
global warming. 

In many real world situations, disasters have many 
various components like different sizes, speed and 
spreading, impacts on neighboring regions and time 
specific values. A small bush fire should not be equally 
thought of to be as dangerous as burning homes and 
buildings. In the same regard, emergency management 
units are widely varied and there are many reasons why 
they should not be equally weighted. For example a 
regional volunteer fire department should not be thought 
to provide the same abilities as that of a city fire 
department which have more fire-engines and fire-
fighters available. Also, the distance from one point to the 
next should not be taken for granted to be in Euclidean 
distance (A direct route from A to B). The streets within a 
city are rarely so efficient and require many turns and 
other factors to be considered. VDs are capable of 
modeling all of these scenarios and more. 

Fig. 10 illustrates an example of emergency 
management with our framework. Fig. 10(a) depicts a 
current real-world disaster extracted from GeoWeb 2.0 on 
19th January 2009. There is one reported disaster, 
tropical storm called Charlotte. We have temporarily 
placed 8 emergency management units with different 
weights (higher weights with bigger units) to protect local 
areas and handle damages from the tropical storm. Due to 
this storm, there reported three floods in nearby areas. 
Fig. 10(b) shows these floods extracted from GeoWeb 2.0 
with the ordinary VD of the temporal emergency units. 
This is of particular interest when emergency units are of 
the same size and floods equally spread to every 
direction. This diagram clearly shows that emergency 
unit p is the closest unit to the flood in the northern side, r 
is to the one in the middle, and v is to the one in the 
south. However, this scenario is better modeled by 
weighted VDs. Fig. 10(c) depicts a new tessellation with 
weights considered. Now, a big emergency unit q is in 
charge of the two disasters in the northern side whilst v is 
in the one in the south. Different uses of VDs generate 
different tessellations. Our framework provides a set of 
different tessellations from which a user can select one 
that best suits the case at hand. 

 

V.  SUMMARY AND FUTURE WORK 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 10. Emergency management: (a) A tropical storm Charlotte and
8 disaster management units D = {(p,1), (q,2), (r,1), (s,1), (t,2), (u,1),
(v,2), (w,1)}; (b) Ordinary VD of D; (c) Weighted VD of D. 
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In this paper, we propose a general-purpose geospatial 
image segmenting model through generalized raster VDs 
using EDTs. We describe the generalizations of raster 
VDs and distance transforms to complex primitives, 
weighted primitives and Minkowski metrics. We also 
provide a set of real world examples from Google Earth 
images to illustrate the usefulness and robustness of our 
framework. Our proposed algorithm needs O(N) time and 
supports various districting questions for what-if analysis. 
A future implementation of our project could explore 
iterative scan algorithms to see if there is some 
advantages to this method. Also, more generalizations of 
the VD like power and the network VD could be 
researched to include the elements of time, networks and 
underlying population information into the analysis of 
emergency management decision support systems. 
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