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PHENOTYPE SPACE AND KINSHIP ASSIGNMENT
FOR THE SIMPSON INDEX
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1
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Abstract. We investigate the computational structure of the biolog-
ical kinship assignment problem by abstracting away all biological de-
tails that are irrelevant to computation. The computational structure
depends on phenotype space, which we formally define. We illustrate
this approach by exhibiting an approximation algorithm for kinship
assignment in the case of the Simpson index with a priori error bound
and running time that is polynomial in the bit size of the population,
but exponential in phenotype space size. This algorithm is based on
a relaxed version of the assignment problem, where fractional assign-
ments (over the reals) are permitted.
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1. Introduction

Kinship assignment

Kinship assignment is a fundamental problem in population biology. This is
reflected in active research into this problem. Our work has been motivated by
several studies, e.g., [1,2,4,8,11,17,20]. Some of our research has been reported in
[12–15]. Over a population sample of n individuals drawn from a single species
one wants to assign them to kinship groups. A kinship group (hereafter: group)
is admissible if all of its members could possibly be related. The specification of
relatedness will depend on the particular application. For example, relatedness
might mean that individuals are offspring of the same pair of parents, or a more
complicated meaning might be involved, e.g., cousins, etc. The crucial point is
that an individual x is excluded from a group if there exists a member y such that
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it is impossible for x and y to be related. The rules for determining admissibility
are typically derived from heredity models. However, in most cases there will
be very many possible ways to achieve admissible groups. Thus, a measure of
goodness for any given assignment is to some extent arbitrary when we do not know
true parentage. We show that the computational structure of kinship assignment
depends critically on the rules for forming admissible groups, and that these rules
can be presented abstractly, independent of specific biological content. That is,
we present the general form of the constraints on groups without recourse to
explicit genetic assumptions. As an example of this general view, we present a
kinship assignment algorithm A for a goodness measure known as the Simpson
index that generates an admissible set of groups (called an admissible partition
of the population) whose Simpson index is within a small distance of the optimal
Simpson index. Our main result concerning algorithm A is

Theorem 1. Algorithm A has running time dominated by (log(n) + M)MO(1)
,

where M = H ·m, H is the number of phenotypes, and m is the size of phenotype
space. M is independent of n. The Simpson index of the admissible partition
returned by algorithm A is within 3M/n2 of the optimal Simpson index.

In Section 4 we give an improved version of algorithm A.
Ignoring the factor 3 in the error bound of the theorem, if we work with a pop-
ulation size n > 2k/2 · √M , algorithm A would deliver an assignment with a
Simpson index within 1/2k of optimal. For example, for a population of 10 000,
and a Simpson index within 1% of optimal, so k = 7, M must be bounded above
by 220. Assuming Mendelian heredity and independence of loci, kinship assign-
ment within the 1% tolerance can be achieved for 5 loci, with 4 alleles per locus.
Of course, directly running algorithm A for such M is impossible.

Markers and phenotypes

A genetic marker can be any number of things, from individual bases to alle-
les corresponding usually to genes. Although our approach does not depend on
specification of what constitutes a marker, it may make things more concrete if we
give an instance. Consider a diploid species, and some number r of independent
(unlinked) loci on its genome. An individual will have the string of codominant
markers (u1, v1), . . . , (ur, vr), where at locus i, (ui, vi) is a pair (one from each
parent) of alleles (gene variants). If there are hi alleles at locus i, then there will
be hi · (hi + 1)/2 = hi · (hi − 1)/2 + hi unordered pairs of alleles (note: ui = vi

is possible). Thus, there are H =
∏r

i=1 hi · (hi + 1)/2 strings of markers. For
application to kinship assignment, an individual is completely characterized by its
string of markers, which we call its phenotype. We do not enter into the complex
issue of how to define the concept phenotype from the standpoint of evolutionary
biology.

Since an individual reduces to its phenotype, a group can be viewed as a set
of phenotypes. If Mendelian heredity and independence of loci are assumed, then
within an admissible group at each locus there are at most 4 possible markers over
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all members. Thus, there are at most H4 admissible groups (an overestimate for
biologically significant cases). Notice that this number is independent of n. A club
is defined to be a set of phenotypes corresponding to an admissible group. The
phenotype space is defined to be the set of clubs. We see that kinship assignment
amounts to partitioning the population into clubs. It is only in applying a goodness
measure to partitions that n enters into consideration. In the literature there is
some confusion about which space is being partitioned in connection with kinship
assignment. The space of partitions of individuals is irrelevant to the problem.
It is the partition of phenotype space into clubs that matters. The number of
indviduals in each club is determined by the goodness measure, not by the genetics
and heredity data. This will be made quite clear in our example using the Simpson
index.

We give a brute force assignment algorithm, using phenotype space which al-
ready shows that the set of partitions of the population does not enter into the
computation. List all partitions of phenotype space, throwing away all those con-
taining inadmissible groups. Now, for each surviving partition, list all possible
apportionments of individuals to each partition, based on their phenotypes. This
method has a running time dominated by P ·nb1

1 · · ·nbH

H , where P is the number of
partitions of phenotype space, and bi is the number of clubs containing phenotype
i. Notice that n = n1 + · · · + nH , and we assume ni > 0 for all phenotypes i. For
a simple comparison, assume that ni = n/H and bi = m/H . It is easy to check
that if n > H2H , then the brute force running time dominates that of A. More
important, the running times of both the brute force method and algorithm A do
not have n in the exponent.

Simpson index

The Simpson index is well known in population biology, but we review some of
its basic features. The Simpson index of a partition S1, . . . , Sr of a set S of size n
is defined to be

1
n(n − 1)

r∑
i=1

|Si| · (|Si| − 1).

Note that the Simpson index assumes values in the closed interval [0, 1], and indeed
it is usually regarded as a probability of relatedness. Each group Si is regarded
as consisting of related individuals. The probability that two individuals drawn
independently and uniformly from S are related, i.e., in the same group Si is

|Si|
n

· |Si| − 1
n − 1

·

Thus, the probability that two individuals are in the same group is the sum over
the above probability for each group (disjoint events), but this is the Simpson
index. Assuming that only admissible partitions are considered, one partition is
a better relatedness hypothesis than another if its index is larger. In effect, one
seeks to maximize legitimate probability of relatedness. Of course there may be
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many admissible partitions with maximum index. We use a variant of the Simpson
index, denoted by SI. SI is defined to be

∑r
i=1 |Si|2. It is easy to check that SI is

maximized iff the corresponding Simpson index is maximized. It is also true that
SI for two partitions are equal iff their Simspon indices are equal.

We regard two partitions of S, S1, . . . , Sr and T1, . . . , Ts as different if r �= s,
or for r = s, |S1|, . . . , |Sr| is not a permutation of |T1|, . . . , |Tr|. It is clear that
different partitions in this sense can have the same Simpson index. The next result
shows that the Simpson index falls far short of uniquely identifying partitions.

Theorem 2. Let L = a1, . . . , ar be a list of complex numbers. The list L′ =
b1, . . . , br, where bk =

∑r
i=1 ak

i determines L up to permutation, and no proper
sublist of L′ can do this.

We omit a proof as this is a well known result that can be obtained from the
classical theory of linear equations, based on explicit formulae for the coefficients
of the characteristic polynomial of a matrix in terms of the traces of its powers.
See [6].

2. Kinship assignment in terms of phenotype space

Recall that a group is admissible if its members could possibly be related ac-
cording to heredity rules, given their phenotypes. A club is an admissible group
seen only in terms of the phenotypes of its members. A kinship assignment for a
population of n individuals is defined to be a mapping of individuals to clubs under
the requirement that the phenotype of an individual is an element of the club to
which it is mapped. For a given goodness measure µ over partitions P of the set
of individuals, an optimal kinship assignment is a partition P that corresponds to
a partition of phenotype space, i.e., its groups correspond to clubs, and such that
µ(P ) is optimal. If µ is SI, then µ(P ) is maximal. We proceed to formalize this
for our algorithm A.

An instance of kinship assignment S, Λ, C,P(S), ι, µ consists of:
• S is a set of n individuals (population sample).
• Λ = {λ1, . . . , λH} is a set of labels (phenotypes).
• C = {C1, . . . , Cm}, where Ci ⊆ Λ is a set of clubs. C is the phenotype

space. We point out that typically one imposes the constraint that C
should be closed in the sense that if X ⊆ Ci, |X | > 2, then X = Cj for
some j. That is, a subset of at least size 3 of a club is a club.

• ι: S → Λ is the mapping that assigns an individual to its phenotype. We
extend ι to subsets S′ of S via ι(S′) =

⋃
a∈S′ ι(a).

• P(S) is the set of partitions over S. A partition of S is said to be admissible
if its groups correspond to clubs.

• µ: P(S) → R subject to µ(A) ≥ 0 and if µ(A) > 0, then ι(Si) is a club
for i = 1, . . . , r, where A = {S1, . . . , Sr}. Note that µ is the ‘goodness’
measure on partitions and only admissible partitions can receive positive
measure.
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• A kinship assignment solution is an admissible partition A such that
µ(A) ≥ µ(B) for any other partition B.

The details of how phenotype space, and phenotypes are constructed, which is a
problem in biology, has been abstracted away in this scheme. Of course, these
details will determine the number of phenotypes and the clubs. Once these have
been determined, the biology is irrelevant to the computation.

3. An algorithm for kinship assignment

This section is devoted to proving Theorem 1. Algorithm A is framed in Tarski
algebra, which makes possible streamlined descriptions of otherwise quite compli-
cated statements in real algebraic geometry. See [3] for a current and comprehen-
sive discussion of this research field.

Tarski algebra

The first order theory of the field of reals is often called Tarski algebra (TA)
in honor of Alfred Tarski who gave a quantifier elimination decision method for
it in 1931. See [18,19]. Details about Tarski algebra can be found in [3,10,16].
Background notions from logic can be found in [7]. We require just a few summary
facts about TA. A TA prenex formula B(y1, . . . , yj) in the free variables y1, . . . , yj

has the form Q1x1 · · ·QkxkA(x1, . . . , xk, y1, . . . , yj), where Q1, . . . , Qk are either
∀ or ∃ and A(x1, . . . , xk, y1, . . . , yj) is a quantifier free Boolean in just ∨,∧ over
atomic formulae. An atomic formula has the form P = 0, P > 0, P < 0, where P is
an integer coefficient polynomial in x1, . . . , yj. A term is an arithmetic expression
built up from 0, 1, +,×. Using conventional binary notation an integer m can be
represented by a term of size O(log2 m). However, admitting brackets into the
language, by Hörner’s method, if m = a0 + 2 · a1 + · · · + ak · 2k, then one can
represent M as a0 + 2 · (a1 + 2 · (. . . 2 · (ak−1 + 2 · ak) . . .), which has O(log m)
size. A TS formula B without free variables is called a sentence. TA formulae
B(y1, . . . , yk), C(y1, . . . , yk) are said to be equivalent iff

∀y1, . . . , ykB(y1, . . . , yj) ⇔ C(y1, . . . , yk)

is a true sentence interpreted over the real numbers. The main result that we need
concerning TA is

Theorem 3. A prenex TA formula B(y1, . . . , yj) can be converted to an equiva-
lent quantifier free formula C(y1, . . . , yk) in time bja+O(1)

, where b is the size of
B(y1, . . . , yj), and a is the number of quantifier alternations in the formula.

Theorem 3 is a refinement of Tarski’s result that develops out of work by Collins
and Grigoriev. For some historical perspective, see [5,9]. See [3] for details and
sharper results.
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If we have a family of formulae for which a is fixed, then each formula can be
converted to an equivalent quantifier free formula in EXP-POLY time.

The next lemma will be used in the development of algorithm A. An interval
can be empty, a point, closed, open, or half open.

Lemma 1. Let F (z) be a TA formula in the single free variable z. The set of z
such that F (z) is a finite union of intervals.

Proof. By Theorem 3, F (z) is equivalent to a Boolean
∨

p

∧
q Fp,q(z) where Fp,q(z)

is an atomic formula. It is clear that the set of z such that Fp,q(z) is an interval,
and Fp =

∧
q Fp,q is a finite intersection of intervals, which is again an interval. �

The relaxed algorithm

We first look at a relaxed version of kinship assignment. Relaxed means that
an individual can be fractionally assigned to a club. If an individual’s phenotype
is a member of clubs Ci1 , . . . , Cik

, and a1, . . . , ak are nonnegative reals such that
a1 + · · ·+ ak = 1, then we can assign ai of the individual to Ci. We formalize this.

Let ni be the number of elements of S mapped by ι to λi, for i = 1, . . . , H.
Note that

∑H
i=1 ni = n. Define Ai,j by

Ai,j =
{

0 if λi �∈ Cj

1 if λi ∈ Cj .

The array Ai,j keeps track of phenotype membership in clubs. For i = 1, . . . , H,
j = 1, . . . , m introduce the real variables xi,j . We interpret Ai,j · xi,j as the
fraction of the population having phenotype λi that is assigned to club Cj . We
have relaxed kinship assignment by allowing for fractions that do not correspond
to a whole number of individuals. We do require that xi,j ≥ 0. The fact that
all individuals having phenotype λi are divided among all clubs is expressed by
Ui = 0, where

Ui =
m∑

j=1

xi,j − 1.

The overall partition constraint is then U = 0, where

U =
H∑

i=1

U2
i .

Notice that this forces Ui = 0 and depends on a basic property of R, namely that
for x ∈ R, x2 ≥ 0. If U = 0 we will say that the xi,j form a relaxed admissible
partition. For j = 1, . . . , m define

Vj =
H∑

i=1

Ai,j · ni · xi,j .
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Each summand Ai,j · ni · xi,j is the possibly fractional number of individuals hav-
ing phenotype λi that are assigned to club Cj , so Vj is the fractional number
of individuals assigned to Cj , i.e., the size of a group in a relaxed partition.
The relaxed SI is then

V =
m∑

j=1

V 2
j .

Since the number of partitions is finite for kinship assignment it is clear that there
is a maximum value of the Simpson index over all admissible partitions. We now
show that the maximum SI exists over all relaxed admissible partitions. We adopt
the convention that x denotes the list of all xi,j variables. The TA formula F1(y)
in the single free variable y given by

∃ x
∧
i,j

xi,j ≥ 0 ∧ U = 0 ∧ y = V,

expresses that fact that there exists a relaxed admissible partition whose SI is y.
The domain F of relaxed admissible partitions is obviously compact, since it is
determined by

∧
i,j xi,j ≥ 0 ∧ U = 0, and V is continuous over F , so by standard

analysis, V assumes its maximum over F . From this observation the TA formula
F2(y) given by ∀ z F1(y)∧F1(z) ⇒ z ≤ y expresses the fact that y is the maximum
SI for any relaxed admissible partition. It is interesting to note that Theorem 3
immediately implies that y is a real algebraic number. Also note that y is an upper
bound on the optimal SI for the kinship assignment problem.

Let y+ and y− be the maximum and minimum SI, respectively over all relaxed
admissible partitions. Notice that the admissible partition in which each individ-
ual is assigned to a different group has Simpson index of 0. The corresponding SI
is n. Because we are mapping to clubs it is likely that y− > n. Given positive
integer k, we show how to compute the integer D such that |y+ − D/2k| < 1/2k.
The same method can be applied to y−. Let G<,u and G=,u be the sentences
∀ y F2(y) ⇒ u < y and ∀ y F2(y) ⇒ u = y, respectively, where u is an integer
term. Proceeding by binary search, starting from the term u for 2k−1, we can
in O(k) tests with O(k2) size terms find D. Each of the O(k) sentences has size
O(M + k2 + log n) and has O(1) quantifier alternations and O(H) variables. Ob-
serve that the occurrence of log n in this bound is due solely to encoding the ni as
terms. By Theorem 3, we can find D in time (log n + k + M)MO(1)

.

We conduct a simple sensitivity analysis for V . It will be convenient to linearly
reorder the variables xi,j as z1, . . . , zM , where M = H · m. We re-index the array
Ai,j as just Ai, i = 1, . . . , M . Also, redefine ni for i = 1, . . . , M to be the number
of individuals whose phenotype corresponds to zi. Assume 0 ≤ δ < 1, and for all
i = 2, . . . , M , zi = z′i and |z1 − z′1| < δ. We have

|V (z) − V (z′)| ≤ A1 · n1 · (2 · z1 · δ + δ2).
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Since A1 · n1 ≤ n, and z1 ≤ 1, this yields

|V (z) − V (z′)| < 2n · (δ + δ2).

If we require that 2n · (δ + δ2) < 1/2k, then choosing δ < 1/(2n · 2k+1) certainly
satisfies the required inequality. Thus, δ need only be an O(k +log n) bit rational.

The basis of algorithm A is a simple deflation technique based on Theorem 3.
Each of the M variables is replaced by a suitable rational, and successively all
quantifiers are eliminated. The only care required is in keeping track of cumulative
errors introduced by replacing variables with rationals. We describe this technique
for the relaxed problem.

Let k be a positive integer and choose integer g = �log 2n� + �log M� + k. Let
D be the integer such that 0 ≤ y+ − D/2k < 1/2k and D/2k ≥ y−. We show
how to compute integers d1, . . . , dM such that z given by zi = di/2k is a relaxed
admissible partition, and its SI is within 1/2k of y+. Let F3,1(z1) be the TA
formula (compare with F1(z1))

∃ z2, . . . , zM

∧
i

zi ≥ 0 ∧ U = 0 ∧ y+ = V.

By the restrictions on D and continuity of V over the domain F , F3,1(z1) for at
least one real z1. By Theorem 3, F3,1(z1) can be converted in time (k + log(n) +
M)MO(1)

into a Boolean as in Lemma 1, and from this Boolean, d1 can be computed
in time polynomial in the time bound (all atomic formulae have sizes bounded
above by the time bound). To see this, by Lemma 1, the solution set of this
Boolean is a finite union of intervals. This means that we can take the fraction,
d1/2g, to be an approximation of either an endpoint or midpoint of an interval
which can be derived from polynomial time methods for approximating zeros of
polynomials.

The process is iterated. F3,2(z2) is the TA formula

∃ z3, . . . , zM

∧
i>1

zi ≥ 0 ∧ U = 0 ∧ D/2k = V,

where d1/2k substitutes for z1. From the sensitivity analysis with δ = 1/2g, and
choice of g, the distance between y+ and the SI associated to the partition using
d1/2g rather than the z1 being approximated is less than 1/(M ·2k). Now d2/2g is
determined, and F3,3(z3) is use, with z1 and z2 being replaced by d1/2g and d2/2g,
respectively. The distance between y+ and the new SI is less than 2/(M ·2k). After
M stages we have a distance of less than 1/2k, as required. The time bound for
this process is straightforward by Theorem 3: M · k · (log n + k + M)MO(1)

=
(log n + k + M)MO(1)

.
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Algorithm A
It is not difficult to convert a relaxed admissible partition that achieves SI close

to y+ into an admissible partition with a bounded distance from the maximal SI.
The first step of A has already been described, so we have a relaxed admissible
partition x such that its SI is within 1/2k of y+. We describe the second, conversion
step.

Recall that ni is the number of individuals with phenotype i. We revert to
regarding x as the list xi,j . Let bi be the number of clubs in which phenotype i is
a member. We can write xi,j = ai,j/ni + δi,j , where ai,j is a nonnegative integer,
and 0 ≤ δi,j < 1/ni. Since x is admissible (Ui = 1 for each i),

m∑
j=1

(Ai,j · ai,j/ni + Ai,j · δi,j) = 1.

It follows from this that
m∑

j=1

Ai,j · δi,j = fi/ni,

where fi < bi is a nonnegative integer. Notice here that
∑m

j=1 Ai,j = bi. Let
j1, . . . , jbi be the indices for which Ai,j = 1. By re-indexing, assume that for
j = j1, . . . , jbi , the ai,j are in descending order by size. For j = j1, . . . , jfi , assign
ai,j +1 individuals to club Cj , and for j = jfi+1, . . . , jbi , assign ai,j . Observe that

∑
j=j1,...,jbi

(ai,j + 1) = ni,

so that we obtain an admissible partition in this way. Call this partition y, noting
that each yi,j is a nonnegative integer.

We measure the distance between the SI for the relaxed admissible partition
x and the admissible partition y we have just constructed. We now have that
|xi,j − yi,j | < 1/ni. From this we get, Recalling the sensitivity analysis,

|V (x) − V (y)| ≤ 2
∑

i

ni ·
∑

j

Ai,j · xi,j/ni +
∑

i

ni ·
∑

j

Ai,j/n2
i .

The RHS is bounded above by 2
∑

i bi +
∑

i bi/ni. It is clear that 3M is a crude
upper bound for this sum because

∑
i bi ≤ H ·m = M . Reverting to the Simpson

index, the distance becomes 3M/(n(n−1). This completes the proof of Theorem 1.

4. An improvement to algorithm A
We make an improvement on algorithm A by reducing its running time to

(M + k + log n)HO(1)
with error 1/2k. In general we expect that H = o(

√
M). We

begin by noting that the relaxed kinship assignment problem, ignoring the xi,j ≥ 0
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constraints, can be treated by the Lagrange multiplier method, i.e., we can inspect
the system of M equations ∂i,jV −λ∂i,jU = 0, where ∂i,j abbreviates ∂

∂xi,j
. Since

both V and U are quadratic forms, both sides of each equation are linear in all
variables. We show that in H stages, we can eliminate all of the xi,j variables at
the cost of introducing new variables λ1, . . . , λH . The xi,j will be expressed as
rational functions in these λ variables.

Consider eliminating all variables belonging to phenotype 1, so x1,1, . . . , x1,b,
where double subscripting of the club index has been dropped to simplify notation.
We have the H equations

(1 − ai · λ)xi,j = λ[xi,1, . . . , xi,j−1, xi,j+1, . . . , xi,p] − [. . . , xi′,j, . . .].

Here ai �= 0, [xi,1, . . . , xi,j−1, xi,j+1, . . . , xi,p] is a linear form in the indicated
variables, coming from Ui, and [. . . , xi′,j, . . .] is a linear form coming from Vj .
Thus, xi,1 is expressible as a linear form A in xi,2, . . . , xi,p and some variables
belonging to phenotypes i′ �= i. Examining the equation for xi,2, and substituting
A in the expression for xi,2 on the LHS, we get a nontrivial linear form for xi,2 in
xi,3, . . . , xi,p and some variables belonging to phenotypes i′ �= i. In the same way
we can eliminate all of the variables through xi,p. The stage for each phenotype
introduces a new λ variable, so after all xi,j have been eliminated, we still have H
of the λ variables. We re-impose the nonnegativity constraints for all xi,j in terms
of their forms in the λ variables. Notice that these forms are rational functions
and may have terms of degree roughly

∑
i bi ≤ M . Thus we obtain a TA formula

of size O(M) + log n) in H variables, with O(1) alternations of quantifiers. By
algorithm A, we can obtain a relaxed admissible partition within 1/2k of y+ in
time (k + M + log n)HO(1)

.
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